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Notes by Louis Meunier
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1 Integration by Parts

1.1 The Rule

Inverse of the product rule;
(fg)′ = f ′g + fg′

becomes;∫
fg′ + f ′g = fg

This format is understandable, but not very helpful. Subtracting one of the
products of the integrals over to the opposite side creates a far more helpful
form, typical written;

∫
udv = uv −

∫
vdu

1.2 Examples

1.
∫
xsin(x)dx

u = x; du = 1

dv = sin(x); v = −cos(x)∫
xsin(x)dx = x(−cos(x))−

∫
(−cosx) ∗ 1dx

= −xcos(x) + sin(x) +C

2.
∫
5xe3xdx

u = 5x; du = 5

dv = e3x; v = e3x

3∫
5xe3xdx = 5xe3x

3 − 5
∫

e3x

3 dx

= 5xe3x

3 − 5
9e

3x +C

1.3 Tips

1. Pick u such that du becomes simpler

2. Pick dv such that v doesn’t get more complicated
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2 Trigonometric Identities

Goal: to use trig identities to in substitution to evaluate integrals.

2.1 List of Identities

1. sin2(x) + cos2(x) = 1

2. tan2(x) + 1 = sec2

3. cot2(x) + 1 = csc2

4. sin(2x) + 1 = 2sin(x)cos(x)

5. cos(2x) = 2cos2(x)− 1 = 1− 2sin2(x)

6. sin2(x2 ) =
1−cos(x)

2

7. cos2(x2 ) =
1+cos(x)

2

2.2 Examples

1.
∫
sin3(x)dx

=
∫
sin(x)sin2(x)dx

=
∫
sin(x)(1− cos2(x))dx

[u = cos(x); du = −sin(x)dx]

= −
∫
(1− u2)du

= −u+ u3

3

= cosx+ cos3

3 +C

2.
∫
tan3(x)sec4(x)dy

=
∫
u3sec2(x)du

=
∫
u3(tan2(x) + 1)du

=
∫
u3(u2 + 1)du

=
∫
u5 + u3du

...

3 Trigonometric Substitution

3.1 Examples

1.
√
1− x2dx, just the area of a circle

x = sinθ, dx = cosθdθ
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∫ √
1− sin2θcosθdθ — trig identity

=
∫ √

cos2θcosθdθ

=
∫
cos2θdθ — trig identity

=
∫ 1+cos(2θ)

2 dθ — [u = 2θ, du = 2]

= θ
2 + sin(2θ

4 + C

= sin−1x
2 + sin(2sin−1x)

4 +C — not quite done...

3.2 Simplification

sin(2sin−1(x)) — [sin(2θ) = 2sin(θ)cos(θ)]
= 2sin(sin−1(x))cos(sin−1(x))

= 2x
√
1− x2

3.3 Some good substitutions to remember

expression substitution√
a2 − x2 x = asin(θ)√
a2 + x2 x = atan(θ)√
x2 − a2 x = asec(θ)

4 Partial Fractions

4.1 Theorem

If f(x) = P (x)
Q(x) , where P and Q are polynomials and deg(P ) < deg(Q), the f can

be written as a sum of simple rational functions with either linear or quadratic
denominators.

4.1.1 Example

x3−12x2+15
x7+19x3+12 = A

ax+b +
B

cx+d + ...
Note: deg(P ) < deg(Q). If not, have to divide first.

4.2 Basic Case

If f has only linear factors...

f(x) = P (x)
(a1x+b1)(a2x+b2)...(anx+bn)

= A1

a1x+b1
+ A2

a2x+b2
+ ...+ An

anx+bn
If some factors are repeated...

f(x) = P (x)
(a1x+b1)3(a2x+b2)2

= A
a1x+b1

+ B
(a1x+b1)2

+ C
(a1x+b1)3

+ D
a2x+b2

+ E
(a2x+b2)2
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4.3 Irreducible Quadratic Factors

If f contains irreducible quadratic factors... (ex. x2 + 1)

f(x) = P (x)
(x2+1)2 = Ax+B

x2+1 + Cx+D
(x2+1)2

Any higher-degree polynomial can be reduced down to linear and quadratic
factors.

4.4 Examples

1.
∫

x+3
x2−5x−6dx

x+3
x2−5x−6 = x+3

(x−6)(x+1) =
A

x−6 + B
x+1

x+ 3 = Ax+A+Bx− 6B

x+ 3 = (A+ 3)x+A− 6B

A+B = 1, A− 6B = 3 (SOE)

A = 9/7, B = −2/7∫ 9
7

x−6 +
− 2

7

x+1dx

= 9
2 ln|x− 6| − 2

7 ln|x+ 1|+C

2.
∫

x+1
x3−x2 dx

x+1
x3−x2 = x+1

x2(x−1) =
A
x + B

x2 + C
x−1

x+ 1 = Ax(x− 1) +B(x− 1) + Cx2

At this point, we could solve for A, B, and C using a systems of equations.
However, we can instead use helpful values of x and solve more easily
instead.

x = 0 => 1 = A ∗ 0 +B ∗ −1 + C ∗ 02 => B = −1

x = 1 => 2 = 0 + 0 + C => C = 2

x = 2 => 3 = 2A+ (−1) + 8 => A = −2

Using this, we can now rewrite our original integral in a much nicer form.∫ −2
x + −1

x2 + 2
x+1dx

= −2 lnx+ 1
x + 2 lnx+ 1+C

3.
∫

10
(x−1)(x2+9)dx

10
(x−1)(x2+9) =

A
x−1 + Bx+C

x2+9

10 = A(x2 + 9) + (Bx+ C)(x− 1)

We can use the same idea as above; rather than solving using SOE, we
can instead simply pick nice values for x

x = 1 => 10 = A(10) => A = 1

x = 0 => 10 = 9A+ C(−1) => C = −1

x = 2 => B = −1
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Rewrite integral as...∫
1

x−1 + −x−1
x2+9 dx

=
∫

1
x−1 + −x

x2+9 − 1
x2+9dx

First factor uses basic integration, second uses u substitution, and the last
uses the fact that

∫
1

x2+a2 dx = 1
a tan

−1(xa )

= ln |x− 1| − 1
2 ln |x2 + 9| − 1

3tan
−1(x3 ) +C

4.
∫

x3+4
x2+4dx

Since deg(P ) > deg(Q), we have to do some work first by dividing P by
Q.

(x3 + 4)/(x2 + 4) = x+ −4x+4
x2+4∫

x+ −4x+4
x2+4 dx

This way, we already have a irreducible quadratic factor, so we can inte-
grate normally.

= x2

2 − 2 ln |x2 + 4|+ 2tan−1(x2 ) +C

5.
∫

dx
2
√
x+3+x

In this example, we don’t even have a rational function. We need to
transform it first through substitution.

u =
√
x+ 3

x = u2 − 3, 2udu = dx∫
2udu

(u+3)(u−1)

Work as before...

= 3
2 ln(

√
x+ 3 + 3) + 1

2 ln(
√
x+ 3− 1) + C

5 Integration Strategies

How do I know what technique to use?

5.1 Simplifying

A helpful way to think about all this is to simplify: in reality, we only have 2
integration techniques, with other techniques just subsets/algebraic manipula-
tion.

1. Substitution

2. Integration by Parts

So which one to use?

1. Try u-substitution first (with simplification). Did it work?
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2. If not, try integration by parts (again with simplification). Did
it work?

3. If not, think of other algebraic tricks to manipulate the problem

(a) rational function → partial fractions

(b) trig → trig identities

(c)
√
a2 ± x2-type → trig subs, trig identities

6 Integration Tables

Tables found in most calculus textbooks, of many common integrals with the
work shown. Essentially obsolete nowadays.

7 Approximate Integration

7.1 An Example Demonstrating Need

ex)
∫ 5

0
ex

2

dx
= F (5)− F (0) (normally, with FTC)

However, ex
2

does not have an anti-derivative that we can write with ele-
mentary functions.

Instead, we have to approximate the value of this (using, say, Riemann
sums).

7.2 Riemann Approximation

Approximate
∫ 4

0

√
xdx using right-hand rule w/ intervals.

∆x(
√
1 +

√
2 +

√
3 +

√
4)≈ 6.146

7.3 Midpoint and Trapezoidal Rules∫ 4

0

√
xdx

7.3.1 Midpoint

Same as Riemann, but using the midpoint of each rectangle approximation.

∆x(
√

1
2 +

√
3
2 +

√
5
2 +

√
7
2 )≈ 5.384

7.3.2 Trapezoidal

Same as Riemann, but adjusting the ”top” side to form more approximate
trapezoids.

∆x(
√
0+2

√
1+2

√
3+

√
4

2 )≈ 5.146
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7.3.3 General Formulas

1. Midpoint Rule∫ b

a
f(x) dx ≈

∑n−1
i=0 f(xi+xi+1

2 )∆x

2. Trapezoidal Rule∫ b

a
f(x) dx ≈ 1

2∆xf(x0)+2f(x1)+ ...+2f(xn−1)+f(xn) where ∆x = b−a
n

7.4 Simpson’s Rule

1. Divide the function into an even number of points

2. Use every 3 points to create a number of parabolas, imitating the curve

7.4.1 Formula∫ b

a
f(x) dx ≈ 1

3∆x(f(x0)+4f(x1)+2f(x2)+ ...+2f(xn−2)+4f(xn−1)+f(xn))

where ∆x = b−a
n and n is an even number.

ex)
∫ 4

0

√
x dx = 1

3 (1)(
√
0 + 4

√
1 + 2

√
2 + 4

√
3 +

√
4 ≈ 5.25)

7.5 Error Bounding

7.5.1 What makes an approximation bad?

In general, our rules for approximation assume a nice, smooth, not-too-crazy
curve. Very curvy (second and higher derivatives are large) functions cause
worse approximations.

Things that matter in approximations:

1. Higher order derivatives

2. The number of intervals

3. Length of interval of integration (b− a)

7.5.2 Error Bounds for Trapezoid and Midpoint Approximation

If ET and EM are the errors in the trapezoidal and midpoint rules, respectively,
and if f ′′(x) ≤ K for all x on [a, b], then

|ET | ≤ K(b−a)3

12n2 and |EM | ≤ K(b−a)3

24n2

where n is the number of intervals of integration.

ex) Suppose we approximate
∫ 6

2
e−2x dx using the midpoint with n = 5. What

is the largest the error could be?
f ′(x) = −2e−2x, f ′′(x) = 4e−2x

|f ′′(x)| ≤ 4e−4 = 4
e4

|EM | ≤
4
e4

(6−2)3

24(5)2
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7.5.3 Error Bounds for Simpson’s Rule

If ES is the error in Simpson’s Rule and if f (4)(x) ≤ K for all x on [a, b], then

|ES | ≤ K(b−a)5

180n4

ex) Suppose we want to approximate
∫ 1

0
sin(2x) dx to within a maximum

error of .000002. How large do we need to let n be? (Using Simpson’s).
f ′(x) = 2cos(2x)
f ′′(x) = −4sin(2x)
f (3)(x) = −8cos(2x)
f (4)(x) = 16sin(2x)
Find n...
0.000002 ≤ 16(1)5

180n4

n > 14.5
We need an even number of intervals for Simpson’s, therefore n must be at

least 16.

7.6 Improper Integrals

7.6.1 A Use Case

e) What is the area between the graph of 1
x2 and the x-axis?

Can’t just use a standard integral: the graph of 1
x2 continues forever to the

right. Therefore, we have to deal with infinity in some way... Need to use a
limit!

7.6.2 Definition

If
∫ b

a
f(x) dx exists for all b, we can define∫∞

a
f(x) dx = limb→∞

∫ b

a
f(x) dx.

If the limit does not exist, we say the improper integral is divergent. If the
limit does exist, it is convergent.

Similarly, we define∫ b

−∞ f(x) dx = lima→−∞
∫ b

a
f(x) dx.

7.6.3 Examples

ex) What is the area between the graph fo 1
x , the line x = 1, and the x-axis.∫∞

1
1
x dx = limb→∞

∫ b

1
1
x dx

= limb→∞ ln |x|]1, b
= limb→∞ ln b− ln 1

= ∞
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Therefore, this interval is divergent.
For negative to positive infinity intervals...∫∞

−∞ f(x) dx =∫∞
a

f(x) dx+
∫ a

−∞ f(x) dx

for any value a.

ex)
∫
−∞ ∞ x2

9+x6 dx

lim a → −∞
∫ 0

a
x2

9+x6 dx+ limb→∞
∫ b

0
x2

9+x6 dx

= lima→−∞
1
9 tan

−1(x
3

3 )|[a, 0] + limb→∞
1
9 tan

−1(x
3

3 )|[0, b]
= 0− 1

9 (
−π
2 ) + 1

9 (
π
2 )− 0

= pi
9

Non-infinite answer, therefore, the interval is convergent.

7.6.4 More Impropriety

ex)
∫ 4

0
1

x−1 dx
This is improper because it has an asymptote at x = 1.∫ 1

0
1

x−1 dx+
∫ 4

1
1

x−1 dx

= limb→1−
∫ b

0
1

x−1 dx+ lima→1+

∫ 4

a
1

x−1 dx
= limb→1− ln |x− 1||[0, b]...
= −∞
Therefore, the integral is divergent.

7.6.5 A Comparison Theorem

Can be used to test for convergence or divergence of an improper integral; cannot
find the value of the integral.

If 0 ≤ g(x) ≤ f(x) for all x ≥ a,
Then∫∞

a
f(x) dx converges →

∫∞
a

g(x) dx is convergent.∫∞
a

g(x) dx diverges →
∫∞
a

f(x) dx is divergent.

ex) Show that
∫∞
1

e−x2

dx is convergent.

If x ≥ 1, then e−x2 ≤ e−x∫∞
1

e−x dx = limb→∞ −e−x|[1, b]
= limb→∞ −e−b + e−1

= 1
e

This is convergent, and less than the original, therefore the original is also
convergent.
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8 Arc Length

8.1 Formula∫ b

a

√
1 + (f ′(x))2 dx

8.2 Examples

1. What is the distance traveled by a particle traveling along the x3 = y2

from (0, 0) to (4, 8).

y = x3/2

y′ = 3
2x

1
2

Arc Length =
∫ 4

0

√
1 + ( 32

√
x)2 dx

... = 8
27 (10

3
2 − 1)

2. What is the arc length of the curve y = x
1
3 from −1 to 1?∫ 1

−1

√
1 + ( 1

3x
2
3
)2 dx

This is an improper integral! We could continue integrating this, but
instead we could integrate with respect to y to create a nicer problem.

x = y3∫ 1

−1

√
1 + (3y2)2 dy

8.3 Arc Length Function

If y = f(x), S(x) =
∫ x

a

√
1 + (f ′(t))2 dt is the arc length from a to x.

ds
dx =

√
1 + ( dydx )

2

ds = dx
√
1 + dy2

dx2

ds2 = dx2 + dy2

This is really just the Pythagorean theorem!

9 (Lateral) Area of a Surface of Revolution

9.1 Surface Area of a Frustum

How do we calculate the area of this not-quite-a-cylinder?
We could compute it as a difference of 2 cones.
From here, we can derive the formula SA = 2πrl
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9.2 Area of a Surface of Revolution

SA =
∑

2πrl

=
∑

2π( f(xi)+f(xi+1

2 )
√
1 + f ′(ci)2∆x

As ∆x → 0f(xi+1 ≈ f(ci), so
=

∑
2πf(ci)

√
1 + (f ′(c))2∆x

As n → ∞,∆x → 0
= 2π

∫
f(x)

√
1 + (f ′(x))2 dx

This is our surface area.

9.3 Example

1. What is the surface area of a sphere of radius r?

y =
√
r2 − x2

SA = 2π
∫ r

−r

√
r2 − x2

√
1 + ( −2x

2
√
r2−x2)

dx

= 2π
∫ r

−r

√
r2 − x2

√
r2

r2−x2 dx

= 2π
∫ r

−r
rdx

= 4πr2

This matches our known formula

2. What is the area of the surface of revolution obtained by rotating the
curve y = x1/3, from 1 ≤ y ≤ 2, around the y-axis?

SA = 2π
∫ 2

1
x
√

1 + (dxdy )
2 dy

= 2π
∫ 2

1
y3
√

1 + (3y2)2dy

= π/27(145
√
145− 10

√
10)

10 Sequence

10.1 Definition

An infinite list of numbers, in order, indexed by natural numbers.

10.2 Expression Sequences

Common notation: {a1, a2, a3, ...} = {an} = {an}∞n=1

ex) {3/n} = {3/1, 3/2, 3/3, 3/4...}
ex) {0, 3, 8, 15, 24, ...} = {an} where an = n2 − 1
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Not all sequences can be expressed via formula, however, ex) {ab} where
an = nth digit of π, or {Fn} where F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1

(Fibonacci sequence).
These are a recursive formula. These can sometimes, but not always, turned

into an explicit formula.

10.3 Sequence Terminology

1. A sequence is increasing if an < an+1 for all n ≥ 1.

2. A sequence is decreasing if an > an+1 for all n ≥ 1.

3. A sequence is monotonic if it is increasing or decreasing.

4. A sequence is bounded above if there exists some M such that an ≤ M for
all n ≥ 1.

5. A sequence is bounded below if there exists some M such that an ≥ M for
all n ≥ 1.

6. A sequence is bounded if it is bounded from above and below

10.4 Limits of a Sequence

10.4.1 Definition

limn→∞ an = L if for all ϵ > 0 there is some N such that if n < N , then
|an − L| < ϵ.

If this limit exists (ie, closes to a point), then the function converges. Oth-
erwise, the function diverges (ie, fluctuates between two points, continues to
infinity).

10.4.2 A Theorem

If an is given by a function f (an = f(n)), and limx→∞ f(x) = L, then
limn→∞ an = L.

So all the limit laws we have for functions will work for sequences as well.

10.4.3 Examples

ex) Does { (−1)n√
n

} converge?

f(x) = (−1)x√
x

Apply Squeeze Theorem: −1
s
√
n
< (−1)x√

x
< 1

s
√
x

limx→∞
1

2
√
x
= 0

limx→∞ − 1
2
√
x
= 0

Therefore, limx→∞
(−1)x

2
√
x

= 0

ex) Does the sequence {an} where a1 = 3 and an+1 = an

n converge?
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Each term multiplies the previous by 1/n.
an = 3

1∗2∗3∗...(n−1) =
3

(n+1)! ’

limn→∞ an = 0
ex) For what values of r does {rn} converge?
f(x) = rx

If r > 1, exponential growth. If 0 < r < 1, exponential decay. In exponential
decay, f(x) is heading towards a limit, and therefore it converges.

But what if r < 0?
If −1 < r < 0, then by Squeeze Theorem, converges to 0.
If r <= −1, diverges.
In summary, converges if −1 < r <= 1. If 01 < r < 1, converges to 0. If

r = 1, converges to 1.

10.4.4 Another Theorem

Every bounded, monotonic sequence is convergent.
Can’t go in one direction infinitely since it is bounded; similarly, can’t go

another direction since it is monotonic.

11 Series

11.1 Zeno’s Paradox

Someone is walking towards a wall. He, of course, at some point walks halfway,
leaving half the total distance remaining to walk. Then, he walks half of the
remaining, then again and again, etc., always having a little left to reach the
wall.

So what’s going on? Does 1/2 + 1/4 + 1/8 + ... equal 1?

11.2 Decimal Representations

π ≈ 3.14159 = 3 + 1x10−1 + 4x10−1 + 1x10−3 + 5x10−4 + ...
These kinds of irrational decimals are in fact infinite sums.

11.3 Power Series

Claim: 1
1−x = 1 + x+ x2 + x3 + ...

1 = (1 + x+ x2 + ...)(1− x)
1 = 1(1− x) + x(1− x) + x2(1− x) + ...
1 = 1− x+ x− x2 + x2 − x3 + x3 + ...
1 = 1
This like a true statement, and demonstrates a way to represent a fraction

as an infinite series.
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11.4 Issues

0 = 0 + 0 + 0 + 0 + ...
= (1− 1) + (1− 1) + (1− 1) + ...
= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + ...
= 1 + 0...
= 1
Right? Well, we can’t just use series like this all the time; there are some

caveats.

11.5 Defining Infinite Series∑∞
i=1 ai = limn→∞

∑n
i=1 ai

The last summation is often written as sn.
If the limit does not exist, then the sum is divergent.

11.5.1 Example

ex)
∑∞

n=1 3n+ 2
= (3 + 2) + (6 + 2) + (9 + 2) + (12 + 2) + ...
5 + 8 + 11 + 14 + ...
Partial sums: 5, 13, 24, 38, ...
This is divergent: do not approach any finite number.
ex)

∑∞
n=1(

1
2 )

n

= 1/2 + 1/4 + 1/8 + 1/16 + ...
s1 = 1/2
s2 = 3/4
s3 = 7/8
...
It appears that sn = 2n−1

2n , meaning that limn→∞
2n−1
2n = limn→∞ 1− 1

2n = 1.
ex) This is the harmonic series:

∑∞
n=1

1
n

= 1 + 1/2 + 1/3 + 1/4 + 1/5
Converge or diverge?
This actually diverges; although the partial sums are getting smaller, there

is no real pattern, and this limit equals ∞.

11.6 Theorems

1. If
∑

an converges, then limn→∞ an = 0.

This is often used in the divergence test: If limn→∞ ̸= 0, then
∑

an
diverges.

Note: Converse of this statement is not true; limn→∞ an = 0 does not
necessarily mean that the sum converges; the harmonic series falls into
this category.
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2. Since series are defined via limits, the usual limit laws hold.

If
∑

an and
∑

bn both converge, then

(a)
∑

can = c
∑

an

(b)
∑

(an + bn) =
∑

an +
∑

bn

(c)
∑

(an − bn) =
∑

an −
∑

bn

However, if either sum is divergent, then these rules will not always hold.

11.7 General Examples

1. Write down the first four partial sums of
∑∞

n=1
(−1)nn

2n .

= −1/2 + 2/4 +−3/8 + 4/16 + ...

s1 = −1/2

s2 = 0

s3 = −3/8

s4 = −1/8

2. What is
∑∞

n=1 r
n−1?

This is an example of a geometric series.

sn = 1 + r + ...+ rn−1

rsn = r + r2 + ...+ rn

sn − rsn = 1− rn

sn = 1−rn

1−r

limn→∞ sn = limn→∞
1−rn

1−r = 1
1−r if |r| < 1. Otherwise, diverges.

3. What is
∑

n=1 ∞
(−4)n+1

4n ?

= 9/4 +−27/16 + ...

Rewrite:

=
∑ (−3)n(−3n−1)

4(4)n−1

= 9
4

∑∞
n=1(−

3
4 )

n−1

This is a geometric series.

= 9
4 (

1
1−(− 3

4 )
)

= 9
4 ∗ 1

7
4

= 9
7
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4. Write 0.888... as a ratio of two integers.

= 8/10 + 8/100 + 8/1000 + ...

= 8x10−1 + 8x10−2 + 8x10−3 + ...

=
∑∞

n=1 8(
1
10 )

n

=
∑∞

n=1
8
10 (

1
10 )

n−1

= 8
10 ∗ 1

1− 1
10

= 8
9

5. True or false: if two series,
∑

an and
∑

bn both diverge, then
∑

(an+ bn)
also diverges.

False; take:∑
an =

∑
1,

∑
bn +

∑
−1∑

(1 +−1)

= 0

6. True or false: if
∑

an diverges and
∑

bn converges, then
∑

(an + bn)
diverges.

True;
∑

bn is a single number. suman either goes to infinity, or something
similar. Therefore, adding the two together still results in some sort of
”infinity”.

A more rigorous proof by contradiction:

Suppose it was false;
∑

an diverges,
∑

bn converges, and
∑

(an + bn)
converges.

Then:
∑

(an + bn)−
∑

(bn)

=
∑

(ab + bn − bn)

=
∑

an, which should converge, but doesn’t...

12 The Integral Test

12.1 Why

Sometimes it is very hard to compute the limit of a series.
Can we at least tell if it converges or diverges?

12.2 Picturing Partial Sums

Suppose an = f(n) for some function f .∑
an = 2 + 3 + 2 + 1 + 1/2

This can be drawn as a number of rectangles of different heights of width 1.
The sum is just the sum of the areas; very similar to Riemann sums.

16



12.2.1 Examples

1. an = 1
n2∑

an = 1 + 1/4 + 1/9 + 1/16 + ...∑
an ≤

∫∞
1

1
x2 dx+ 1

2. an = 1√
n∑

an ≥
∫∞
1

1√
x
dx

12.3 The Test

Suppose an = f(n), where f is a continuous, positive, decreasing function on
[1,∞}. Then the series

∑
an is convergent if and only if the integral

∫∞
1

f(x) dx
is convergent.

12.4 Remainders∑
an limn→∞ sn, where sn = a1 + a2 + ...
Compare sn with

∑
an∫∞

n+1
f(x)dx ≤ Rn ≤

∫∞
n

f(x)dx
The error between the nth partial sum sn and s can be bounded by the

above.
sn +Rn = s
sn +

∫∞
n+1

f(x)dx ≤ s ≤ sn +
∫∞
n

f(x)dx

12.5 Examples of the Integral Test

1.
∑∞

n=1
n

n2+1∫∞
1

x
x2+1dx = limb→∞

∫ b

1
x

x2+1dx = limb→∞ 1/2 lnx2 + 1|b1
= limb→∞ 1/2 ln b2 + 1− 1/2 ln 2

= ∞
The series diverges.

2.
∑∞

n=1
1
n3∫∞

1
1
x3 dx = limb→∞ − 1

2x2 |b1
= limb→∞ − 1

2b2 + 1/2

= 1/2

Therefore, the series converges (though not to 1/2...)

Furthermore...∫∞
n+1

1
x3 dx ≤ Rn ≤

∫∞
n

1
x3 dx

1
2(n+1)2 ≤ Rn ≤ 1

2n2

If we wanted to be within a, we need Rn ≤ a. If 1
2n2 ≤ a, this works.

17



3. p-series

Series of form
∑

1
np .

For what values of p does a p-series converge?

If p ≤ 0, clearly diverges.

Otherwise,
∫∞
1

1
xp = limb→∞ − 1

pxp−1 |b1
= limb→∞ − 1

pbp−1 + 1/p

This converges if p > 1.

Note: if p = 1, it is the harmonic series.

p-series converges if p > 1.

13 The Comparison Test

1. If bn ≥ an and
∑

bn converges, then
∑

an converges.

2. If bn ≤ an and
∑

bn diverges, then
∑

an diverges.

13.1 Examples

1.
∑∞

5
3

n−4

= 3
∑

1
n−4

Very close to
∑

1/n; we can compare to it.
1

n−4 ≥ 1
n

Since
∑

1/n diverges, so does our sum.

2.
∑∞

n=3
n−1

(n+1)3

n−1
(n+1)3 ≤ n+1

(n+1)3 = 1
(n+1)2 ≤ 1

n2∑
1
n2 converges, therefore our series converges as well.

3.
∑ √

n4−1
n3+n

This is kind of like 1/n;
√
n4 − 1 ≈

√
n4 = n2 and n3 + n ≈ n3; ≈ n2

n3

This is hard to prove algebraically however; this is where we use Limit
Comparison.

13.2 Limit Comparison

Suppose that
∑

an and
∑

bn are series with positive terms. If limn→∞
an

bn = c,
where 0 < c < ∞, then either both series converge or both series diverge.

Ex)
∑ √

n4−1
n3+n

(limn→∞
√
n4−1

n3+n )/ 1
n = limn→∞

√
n4+1/

√
n4

1+ 1
n2

= 1

Since this series diverges, then so does our original series.

18



14 Alternating Series

A series whose terms alternate between positive and negative.∑
an =

∑
(−1)n−1bnor

∑
(−1)nbn, bn ≥ 0

14.1 Alternating Series Test

If the series
∑∞

n=1(−1)nbn satisfies:

1. bn+1 ≤ bn for all n

2. limn→∞ bn = 0

then the series converges.

ex)
∑ (−1)n−1

n
1/n ≥ 1

n+1
limn→∞ 1/n = 0
Therefore, it converges.

14.2 Error

|Rn| ≤ bn+1

15 Comparison Test

15.1 Basics

If bn ≥ an and
∫
bn converges, then

∫
ab converges.

If bn ≤ an and
∫
bn diverges, then

∫
ab diverges.

15.2 Limit Comparison

Sometimes, comparing whether a sum is larger or smaller than another is too
complex. In these cases we can use:

If limx→∞
an

bn
= c, where c is a finite number, then an and bn are both

divergent or convergent.

16 Alternating Series

Very simple: if an alternating series (switches between positive and negative):

1. bn < bn+1 (ie, do consecutive elements (ignoring alternating signs) de-
crease for all n?)

2. limn→∞ bn = 0
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17 Absolute vs. Conditional Convergence

A series
∑

an is absolutely convergent if
∑

|an| converges.
A series

∑
an is conditionally convergent if

∑
|an| diverges but

∑
an con-

verges. (ex. alternating harmonic series)

17.1 Example∑∞
n=0

(−1)n

3n+5
Does it converge? yes (alternating series test)
Does

∑
|an| converge? no (limit comparison test)

Therefore, the sum is conditionally convergent.

18 Ratio Test

Given a series
∑

an:

1. if lim |an+1

an
| = L < 1, then the series converges absolutely

2. if lim |an+1

an
| = L > 1, then the series diverges

3. if lim |an+1

an
| = L < 1, then the Ratio test is inconclusive

19 Root Test

Given a series
∑

an:

1. if limnthrootof |an| = L < 1, then the series converges absolutely

2. if limnthrootof |an| = L > 1, then the series diverges

3. if limnthrootof |an| = L = 1, then the test is inconclusive

20 Power Series

A series of the form:∑∞
n=0 cnx

n = c0 + c1x+ c2x
2 + c3x

3 + ...
where the cn are coefficients and x is a variable.
These are like polynomials, but with an infinite number of terms.
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20.1 Examples

What does it mean to converge?
For a fixed value of x, does the series converge?
What are all the values of x for which the series converges?

1.
∑∞

n=0 x
n = 1 + x+ x2 + x3 + x4 + ...

This example is a geometric series, so it converges if −1 < x < 1.

2.
∑∞

n=0
xn

n! = 1 + x+ x2/2 + x3/6 + x4/24 + ...

We can use the ratio test to find convergence.

limn→∞
xn+1

(n+1)!
xn

n!

= limn→∞
xn+1

(n+1)! ∗
n!
xn limx→∞

x
n+1 = 0 for any fixed x.

Therefore, this converges for all values of x

20.2 Power Series at a

A power series of the form∑
cn(x− a)n

is called a power series about a.
All the series above have been series about 0.
Note: if x = a, then the series will converge. when x is ”near” a, x− a will

be ”small”, so more likely to converge.

20.2.1 Radius of Convergence

Give a power series about a, there are only three possibilities:

1. The series converges at x = 0

2. The series converges for all values of x

3. There is a number R such that the series converges if x is within R of
a, and the series diverges if x is R away from a. R is also known as the
”radius of convergence”.

20.2.2 Examples

Find the interval and radius of convergence of∑∞
n=1 4

n(x− 1)n

We can use the root test here:
limn→∞ nthrootof4n(x− 1)n = limn→∞ 4(x− 1)
Therefore, converges if |4(x− 1)| < 1, ie, if x is in the interval (3/4, 5/4).
It diverges if |4(x− 1)| > 1, ie, if x is in (−∞, 3/4)U(5/4,∞)
What if x = 3/4, 5/4?
x = 3/4 =>

∑
4n(−1/4)n =

∑
(−1)n => diverges

x = 5/4 =>
∑

4n(1/4n) =
∑

1n => diverges.
The radius of convergence is therefore 1/4, and the interval of convergence

is (3/4, 5/4).
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21 Functions as Power Series
1

1−x =
∑∞

n=0 x
n

21.1 Examples

1. ex) 1
1+x

First way to generate new power series is to use our old known one.

= 1
1−(−x) =

∑∞
n=0(−x)n =

∑∞
n=0(−1)nxn

Converges |x| < 1

2. ex) 1+x
1−x

= (1 + x)
∑∞

n=0 x
n

=
∑∞

n=0(1 + x)xn

=
∑∞

n=0 x
n + xn+1

...

= 1 +
∑∞

n=1 2x
n

3. ex) 3
1+x2

= 3 1
1−(−x2)

= 3
∑∞

n=0(−x2)n

=
∑

3(−1)nx2n

21.2 Theorem

If a function f is defined by the power series
∑

cn(x − a)n with radius of
convergence R > 0, then f is differentiable on the interval (a−R, a+R) and

1. f ′(x) =
∑

ncn(x− a)n−1

2.
∫
f(x) dx = C +

∑ cn(x−a)n+1

n+1

and the radii of convergence of f ′(x) and
∫
f(x) dx are both R.

21.2.1 Theorem Examples

1. ex) tan−1(x) =

Note: d
dx tan

−1(x) = 1
1+x2 =

∑
(−1)nx2n

Therefore: tan−1(x) =
∫ ∑

(−1)nx2n dx

=
∑∫

(−1)nx2n dx

=
∑ (−1)nx2n+1

2n+1

= x− x3

3 + x5

5 − x7

7 + ...
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21.2.2 Notes

Above theorem can be useful for computing derivatives, integrals.

1.
∫ 1

0
1

1+x4 dx

This integral is difficult to solve with substitution, etc.

=
∫ 1

0

∑∞
n=1(−1)nx4n dx

Now, just a polynomial.

=
∑ (−1)nx4n+1

4n+1 |10
Radius of convergence is 1, so we are good.

=
∑∞

n=0
(−1)n

4n+1

Using this, we can approximate the integral to any degree of accuracy we
want with partial sums.

22 Taylor Series

22.1 Approximating Functions

We can approximate a function at a certain range by using its derivative (tangent
line) at that point.

Tangent line approx:p1(x) = f(a)+ f ′(a)(x− a) ≈ f(x) when x is ”near”
a.

In this case, p1(a) = f(a) and p′1(a) = f ′(a)
By extension, a quadratic approximate of f would have:
p2(a) = f(a)
p′2(a) = f ′(a)
p′′2(a) = f ′′(a)
We can try:
p2(x) = f(a) + f ′(a)(x− a) + c(x− a)2

This is the same as the tangent line approximation but with a quadratic
part added (c(x− a)2).

p′2(x) = f ′(a) + 2c(x− a)
p′′2(x) = 2c

Since we want p′′2(a) = f ′′(a), we can let c = f ′′(a)
2 , and rewrite:

p2(x) = f(a) + f ′(a)(x− a) + f ′′(x)
2 (x− a)2

Following this pattern, we can continue with this pattern for more powers...

p3 = f(a) + f ′(a)(x− a) + f ′′(a)
2 (x− a)2 + f(3)(x)

3! (x− a)3

This patterns becomes...

23



22.2 Taylor Polynomials

The Taylor polynomial pk(x) of f is defined by

pk(x) =
∑k

n=0
f(n)(a)

n! (x− a)n

This approximates f near a. Derivatives p′k(a) through p
(k)
k (a) will match

those of f .
We can take this idea to infinity and get...

22.3 Taylor Series

If a function f can be represented as a power series at a, then its power (Taylor)
series is

f(x) =
∑∞

n=0
f(n)(a)

n! (x− a)n.
With infinite terms, this Taylor ”approximation” should be equal to our

function, if it can have a power series representation.

22.3.1 Examples

1. ex) Determine the Taylor series of ex at x = 0.

If it has a power series expansion, this is rather easy as all derivatives of
any order of ex are ex, and f (n)(0) always equals 1.

Taylor series = 1 + x+ x2

2! +
x3

3! +
x4

4! + ...

22.4 When do we have a Taylor series?

For any k, f(x) = pk(x) + Rk(x), where Rk(x) is a remainder. This remainder
is smaller if k is bigger and/or x is close to a.

Theorem: If |f (n+1)(x)| ≤ M for |x−a| ≤ d, then |Rk(x)| ≤ M
(k+1)! |x−a|k+1

for values of |x− a| ≤ d.
By extension, if limk→∞ Rk(x) = 0, then the Taylor series works.

22.5 Examples

1. ex) Determine the Taylor series of cos(x) at x = π

f(π) = −1

f ′(π) = −sin(x)|x=π − 0

f ′′(π) = −cos(x)|x=π = 1

f (3)(π) = 0

f (4)(π) = −1

...

= −1+0 ∗ (x−π)+ 1
2 (x−π)2+ 0

3! (x−π)3+ −1
4 (x−π)4+ 0

5! (x−π)5+ ....

=
∑∞

n=0
(−1)n+1(x−π)2n

(2n)!
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Does this work?

Yes, the limit of R(x) goes to 0.

2. ex) Determine the Maclaurin series of (1 + x)k

Maclaurin: Taylor series at x = 0

If k = 1, 2, 3..., it is quite easy as you can just expand.

f ′(x) = k(1 + x)k−1

f ′′(x) = k(k − 1)(1 + x)k−2

...

f (n)(x) = k(k − 1)...(k − n+ 1)(1 + x)k−n

About 0:

(1 + x)k =
∑∞

n=0
k(k−1)...(k−n+1)

n! xn (Binomial expansion)

22.6 Taylor Approximations of Functions at a Point

ex) Suppose you approximate x
2
3 about a = 1 using a cubing Taylor polynomial.

Find a bound on the maximum error when 0.8 ≤ x ≤ 1.2.
f(1) = 1

f ′(1) = 2
3x

− 1
3 |x=1 = 2

3

f ′′(1) = − 2
9x

− 4
3 |x=1 = − 2

9

f (3)(1) = 8
27x

− 7
3 |x=1 = 8

27

f(x) ≈ 1 + 2
3 (x− 1)−

2
9

2 (x− 1)2 +
8
27

6 (x− 1)3

f( 23 ) ≈ ... ≈ 1.129283945

To bound R3(x), we need f (4)(x) = 56
81x

− 10
3

|f (4)(x)| ≤ |f (4)(0.8)| = 1.454576
So, |R3(x)| ≤ 1.454576

4! |1.2− 1|4 = 0.00009697

23 Differential Equations

What is it? An equation that involves a function and its derivative, and come
up often in real-world situations.

Ex. A proposed model of population growth:
dP
dt = kP
The rate of graph of a population P is proportional to the size of the popu-

lation.
Ex 2. More nuanced model of population growth:
dP
dt = kP (1− P

M )
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23.1 Terminology

1. A differential equation is an equation that involves an unknown function
and one or more of its derivatives.

Ex) y′′ − y = 2ex

2. A solution to a differential equation is a function that makes that equation
true.

Ex) y = xex

3. The order of a differential equation is the highest derivative that appears.

23.2 Initial Value Problems

Ex. Verify that f(x) = ce
x2

2 are solutions to the differential equation y′ = xy,
and find the solution satisfying the initial condition y(0) = 2.

y = ce
x2

2

y′ = xce
x2

2

y′ = xy
2 = ce0

c = 2

23.3 Visualizing Solutions

Some diff equations are hard to solve....Instead of solving, we can visualize the
solutions.

23.3.1 Direction Fields

Ex. y′ = y2 − 4
Using this, we know the slope at different points. (0, 0) : −4, (0, 1) : −3, (0, 2) :

0...
We can use this to create a direction field and visualize the path the graph

will take overall.

23.4 Euler’s Method

A method to numerically approximate solutions.
Ex. Approximate the solution to y′ = 2− y with y(0) = 0.
e(0, 0), y′ = 2
e(1/2, 1), y′ = 1
e(1, 3/2), y′ = 1/2
e(3/2, 7/4), y′ = 1/4
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23.4.1 Definition of the Method

Given the initial value problem y′ = F (x, y), y(x0) = y0, Euler’s method with
step size h approximates the solution via:

xn = xn−1 + h
and
yn = yn−1 + hF (xn−1, yn−1)
The smaller h, the more accurate.
Ex. Approximate the solution to y′ = y − 2x with y(1) = 0
Let’s pick h = 0.1:
e(1, 0) : y′ = −2
e(1.1, 0− 2(0.1) = e(1.1,−0.2) : y′ = −2.4
e(1.2,−0.2− 2.4(0.1)) = e(1.2,−0.44) : y′ = ....
...

23.5 Separable Equations

Def: A differential equation that can be written in the form:
dy
dx = g(x)f(y)
Ex: y′ = 3xsin(y)

23.5.1 Solving

Rewrite:
dy = g(x)f(y)dx
1f(y)dy = g(x)dx
You can now integrate both sides and solve.
Ex. Solve dy

dx = xy∫
1/ydy =

∫
xdx

ln|y| = x2

2 + C

y = e
x2

2 +C

...
y = ce

x2

2

Ex. Solve dy
dt = ln(t)

y+1∫
y + 1dy =

∫
ln(t)dt

y2

2 + y = tlnt− t+ C
y2 + 2y = 2tlnt− 2t+ C
(add one to both sides...)
(y + 1)2 = 2tlnt− 2t+ 1 + C
y = +/−

√
2tlnt− 2t+ 1 + C − 1
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24 Population Growth Models

24.1 Natural Growth
dP
dt = kP

In this model, the rate of growth is proportional to the population size.
Solve:∫
1/pdP =

∫
kdt

ln|P | = kt+ C
P = ekt+C

P = P0e
kt where P (0) = P0, the ”initial” population

24.2 Logistic Model
dP
dt = kP where P is small, and dP

dt is small when P approaches its carrying
capacity M.

dP
dt = kP (1− P

M )
Solve:∫

1
P (1− P

M )
=

∫
kdt

...
ln|P | − ln|M − P | = kt+ C
ln|M−P

P | = −kt+ C
M−P

P = e−kt+C

M
P − 1 = Ae−kt

P = M
1+Ae−kt

24.3 Other Models
dP
dt = kP (1− P

M )− c (constant rate of loss)
dP
dt = kP (1− P

M )(1− m
P ) (if P < m, pop. decreases)

25 Linear Equations

A first-order linear differential equation is one that can be written in the form:
dy
dx + P (x)y = Q(x)
Linear in y and y′, not necessarily in x.
ex) y′ + sin(x)y = ex

25.1 Example

y′ + 1
xy = x2

xy′ + y = x3

(xy)′ = x3

xy = x4

4 + C

y = x3

4 + C/x
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25.2 General Method of Solving
dy
dx + P (x)y = Q(x)

We want to multiply by something, I(x), so that (I(x) dydx + I(x)P (x)y) =
(I(x)y)′

Then, we can solve:
(I(x)y)′ = I(x)Q(x)
I(x)y =

∫
I(x)Q(x)dx

y = 1
I(x)

∫
I(x)Q(x)dx

What is I(x), or the ”integrating factor”, then?
IF I(x)y′ + I(x)P (x)y = (I(x)y)′

then I(x)y′ + I(x)P (x)y = I ′(x)y + I(x)y′

I(x)P (x) = dI
dx

P (x)dx = 1
I dI∫

P (x)dx = ln|I|
e
∫

P(x)dx = I

25.2.1 Example

ex) y′ + y = sin(ex)
P (x) = 1

I(x) = e
∫

P (x)dx = ex

exy′ + exy = exsin(ex)
(exy)′ = exsin(ex)∫
(exy)′dx =

∫
exsin(ex)dx

exy = −cos(ex) + C

y = −cos(ex

ex + C
ex

26 Predator-Prey System

26.1 Assumptions of the System

1. If no predators, the population of prey will grow unconstrained.

2. If no prey, the population of predators will decline.

3. Death rate of prey depends on number of interactions between prey and
predator.

4. Growth rate of predators depends on number of interactions between prey
and predator.

5. Number of interactions of prey and predator is proportional to the product
of their populations.
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26.2 The Model
dR
dt = kR− aRW and dW

dt = −rW + bRW
In the first equation: The growth rate of rabbits (R) is proportional to the

number of rabbits, minus the number of rabbits eaten (aRW ).
In the second equation: The growth rate of wolves (W ) is proportional to

the number of wolves and rabbits, and will decline if there are no rabbits, plus
the number of wolves eating rabbits (bRw).

26.3 Example
dR
dt = 0.03R− 0.0004RW and dW

dt = −0.01W + 0.002RW

* Note: if R = 0 and W = 0, then dR
dt = 0 and dW

dt = 0. We can then call
(0, 0) and equilibrium point.

By the chain rule: dW
dt = dW

dR ∗ dR
dt

Therefore, dW
dR = −0.01W+0.002RW

0.03R−0.0004RW
If graphed on a phase plane, you can see a near-cyclical relationship between

the two populations, with an equilibrium point near the center.

26.4 Finding the Equilibrium Point

This is the point where both derivatives are 0.
0 = 0.03R− 0.0004RW
0 = R(0.03− 0.0004W )
W = 75
0 = −0.01W + 0.002RW
R = 5

26.5 Visualizing Individual Populations

Other than just graphing the relationship between the two populations, we can
also graph the individual populations of the rabbits and wolves fairly easily.

27 Second-Order Linear Equations

A second-order homogeneous linear differential equation with constant coeffi-
cients is one that can be written in the form:

ay′′ + by′ + cy = 0
where a, b, c are real constants.
second-order: involves y′

homogeneous: = 0
linear: y′′, y′, y
constant coefficients: a, b, c are real numbers
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27.1 Solutions

1. Fact 1: if y1(x) and y2(x) are two solutions to

ay′′ + by′ + cy = 0,

then so are c1y1(x) + c2y2(x) are any real numbers c1, c2

2. Fact 2: if y1(x) and y2(x) are two linearly independent (not multiples of
each other) solutions to

ay′′ + by′ + cy = 0,

then all solutions are of the form c1y1(x) + c2y2(x) for some real numbers
c1, c2.

27.2 Guessing a Solution

ex) y′′ + 3y′ − 4y = 0
Maybe erx?
y = erx, y′ = rerx, y′′ = r2erx

r2erx + 3rerx − 4erx = 0
erx(r2 + 3r − 4) = 0
erx(r + 4)(r − 1) = 0
r = 1,−4
By our theorem, our general solution is c1e

x + c2e
−4x

27.3 General Method

ay′′ + by′ + cy = 0
Guess erx, etc
erx(ar2 + br + c) = 0
So erx is a solution if ar2 + br + c = 0 (auxiliary equation).

27.3.1 Cases

The auxiliary equation ar2 + br + c = 0 may have:

1. two distinct real roots, r1 and r2. The general solution is c1e
r1x + c2e

r2x,
happens when discriminant is greater than 0.

2. one single real root, r. The general solution is c1e
rx + c2xe

rx, happens
when discriminant is equal to 0.

3. two complex roots, r1 and r2. The general solution is eαx(c1cos(βx) +
c2sin(βx), happens when discriminant is less than 0.

Example of single real root: y′′ − 4y′ + 4y = 0
r2 − 4r + 4 = 0
(r − 2)2 = 0
r = 2
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We know that e2x is a solution. We can also see (through some math) that
xerx is also a solution.

Example of two complex roots: y′′ + 4y′ + 5y = 0
r2 + 4r + 5 = 0
r = −4±

√
16−20
2

r = −2± i
We could say that the solution is c1e

(−2+i)x + c2e
(−2−i)x

Let’s simplify this with Euler’s Formula, eiθ = cos(θ) + isin(θ)
General solution: c1e

(α+iβ)x + c2e
(α−iβ)x

= c1e
αx(cos(βx) + isin(βx)) + c2e

αx(cos(−βx) + isin(−iβx))
= c1e

αxcos(βx) + ic1e
αxsin(βx) + c2e

αxcos(βx)− ic2e
αxsin(βx)

= eαx(c1 + c2)cos(βx) + eαxi(c1 − c2)sin(βx)
say C1 = c1 + c2 and C2 = c1 − c2
= C1(e

αxcos(βx) + C2e
αxsin(βx)

= eαx(C1cos(βx)) + C2sin(βx)

27.4 Boundary Value Problems

ex) Find the solution to y′′ − 6y′ + 9y = 0 such that y(0) = 2 and y(3) = 1
(r − 3)2 = 0, r = 3
General solution: c1e

3x + c2xe
3x

y(0) = 2, c1 = 2

y(3) = 1, 2e9 + 3c2e
9 = 1, c2 = e−9−2

3

27.5 NON-Homogeneous Second-Order Linear Differen-
tial Equations with Constant Coefficients

ay′′ + by′′ + cy = G(x)
Complementary equation: ay′′ + by′ + cy = 0, solution: yc(x)
Say we can find a particular solution, yp(x)
Theorem: The general solution to the non-homogeneous equation is given

by yc(x) + yp(x)

27.5.1 Solving; Two methods

1. Undetermined Coefficients

(a) easier, straightforward

(b) like guess and check ... kind of?

(c) doesn’t always work

2. harder

3. works more widely
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27.5.2 Undetermined Coefficients

1. Take a reasonable guess at yp(x), but leave the coefficients undetermined
(good guess? Same form as G(x))

2. Solve to find what the coefficients should be

ex) y′′ − y = x2 + 2
Guess: yp(x) = Ax2 +Bx+ C
y′p(x) = 2Ax+B
y′′p (x) = 2A
2A− (Ax2 +Bx+ C) = x2 + 2
−Ax2 −Bx+ 2A− C = x2 + 2
A = −1, B = 0, C = −4
Therefore, we claim that −x2 − 4 is a particular solution to this equation.
Complementary equation: r2 − 1 = 0, r = ±1, c1e

x + c2e
−x

Therefore, our general solution is c1e
x + c2e

−x + (−x2 + 4)
ex) y′′ + y = sin(x)
Watch out: homogeneous equation has solution of the form c1cos(x) +

c2sin(x)
Normally, we would try yp(x) = Asin(x) + Bcos(x), but since is the same

form as the homogeneous solution, it won’t work. Instead, try multiplying by
x; yp = Axsin(x) +Bxcos(x)

27.5.3 Variation of Parameters

Solution to complementary: c1y1(x) + c2y2(x)
We can view c1 and c2 as our parameters, and we can vary them to look for

a particular solution of the form yp(x) = u1(x)y1(x) + u2(x)y2(x)
Then y′p(x) = u′

1y1 + u1y
′
1 + u′

2y2 + u2y
′
2

We need to satisfy 2 conditions: 1) u1, u2 make u1y1 + u2y2 a solution and
2) say u′

1y1 + u′
2y2 = 0, to make life easier

y′′p = u′
1y

′
1 + u1y

′′
1 + u′

2y
′′
2 + u2y

′′
2

(Assume yp is a solution)
a(u′

1y
′
1 + u1y

′′
1 + u′

2y
′
2 + u2y2) + b(u1y

′
1 + u2y

′
2) + c(u1y1 + u2y2) = G

u1(ay
′′
1 + by′1 + cy1) + u2(ay

′′
2 + by′2 + cy2) + a(u′

1y
′
1 + u′

2y
′
2) = G

However, since ay′′1 + by′1 + cy1 and ay′′2 + by′2 + cy2 are solutions to the
homogeneous equation, they just equal 0.

a(u′
1y

′
1 + u′

2y
′
2) = G

We also assume that u′
1y1 + u′

2y2 = 0, and if we can satisfy both equations,
we can find a particular solution.

Example: y′′ − 2y′ − 3y = ex

Homogeneous: (r − 3)(r + 1) = 0, r = 3,−1
yc = c1e

3x + c2e
−x

Suppose yp = u1e
3x + u2e

−x

y′p = u′
1e

3x + 3u1e
3x + u′

2e
−x − u2e

−x

Let u′
1e

3x + u′
2e

−x = 0
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y′′ = 3u′
1e

3x + 9u1e
3x − u′

2e
−x + u2e

−x

3u′
1e

3x+9u1e
3x−u′

2e
−x+u2e

−x−2(3u1e
3x−u2e

−x)−3(3u1e
3x−u2e

−x) = ex

u1(9e
3x − 6e3x − 3e3x) + u2(e

−x + 2e−x − 3e−x) + 3u′
1e

3x − u′
2e

−x = ex

3u′
1e

3x − u′
2e

−x = ex

solve with both equations...

yp(x) =
e−3x

8 e3x + −e2x

8 e−x = −ex

4

General solution: c1e
3x + c2e

−x − ex

4

28 Second-Order Linear Equations Applications:
Springs

28.1 Hooke’s Law

If a spring is stretched or compressed x units from its nature length, the corre-
sponding force exerted is proportional to the distance x, Force = −kx, where k
is called the spring constant.

28.2 Newton’s Second Law

f = ma
Since acceleration is the second derivative of distance, we can combine this

with Hooke’s Law: md2x
dt2 = −kx, or mx′′ + kx = 0, a homogeneous differential

equation.

28.3 Simple Harmonic Motion

mx′′ + kx = 0
mr2 + k = 0
r2 = −k/m

r = ±i
√

k
m

Solution: c1cos(
√

k
m t) + c2sin(

√
k
m t)

Often written as x(t) = Acos(ωt + δ), where ω =
√

k
m , A =

√
c21 + c22, and

cos(δ) = c1
A , sin(δ) = −c2

A . This form makes it clearer that the function has a
frequency and amplitude, and is periodic.

28.4 Example

ex) A spring with a 5-kg mass is kept stretched 0.5 m beyond its natural length
by a force of 40 N. The spring starts at its equilibrium point and is given an
initial velocity of 0.2 m/s. Find the position of the mass at any time t.

40 = k(0.5)
80 = k
5x′′ = −80x

34



5x′′ + 80x = 0
5r2 + 80 = 0
...
r = ±2i
x(t) = c1cos(2t) + c2sin(2t)
x(0) = 0
0 = c1cos(0) + c2sin(0)
0 = c1
x′(t) = −2c1sin(2t) + 2c2cos(2t)
x′(0) = 0.2 => 2c2 = 0.2
c2 = 0.1
Solution: x(t) = 0.2sin(2t)

28.5 Damping Force

Damping force is proportional to the velocity of the mass:
Damping Force = −cdxdt
Adding this to our earlier equation:
F = ma = −kx− cdxdt
mx′′ + cx′ + kx = 0
mr2 + cr + k = 0
r = −c±

√
c2−4km
2m

We have to look at the three possible cases for the discriminant here:

1. over-damping: c2 − 4mk > 0

roots will be less than 0, giving us exponential decay (x = c1e
r1t + c2e

r2t)

2. critical damping: c2 − 4mk = 0

gets back to equilibrium as quickly as possible (x = c1e
rt + c2xe

rt)

3. under-damping c2 − 4mk < 0

oscillates (x = e−rt(c1cos(ωt) + c2sin(ωt))

29 Using Power Series

29.1 Why?

It is a lot easier to work with and find solutions that can’t be expressed as
function when looking at a function as a power series when solving differential
equations.
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29.2 Examples

1. y′′ − y = 0

Assume that y =
∑∞

n=0 cnx
n = c0 + c1x+ c2x

2...

y′ =
∑∞

n=1 ncnx
n−1c12c2x+ 3c3x

2...∑∞
n=1 nc

n−1
n −

∑∞
n=0 cnx

n = 0∑∞
n=0(n+ 1)cn+1x

n −
∑∞

n=0 cnx
n = 0∑

((n+ 1)cn+1 − cn)x
n = 0

Therefore, (n+ 1)cn+1 − cn = 0 for all n.

Value for c0 implies values for the rest; a recursive relationship.

Say: c0 = 1

c1 = 1

c2 = 1
2

c3 = 1
3∗2

c4 = 1
4∗3∗2

cn = 1
n!

y =
∑∞

n=0
xn

n! = ex

2. y′′ − xy′ − y = 0

For this problem, our normal methods don’t work.

Say: y =
∑∞

n=0 cnx
n

y′ =
∑∞

n=1 ncnx
n−1

y′′ =
∑∞

n=2 n(n− 1)cnx
n−2∑∞

n=2 n(n− 1)cnx
n−2 − x

∑∞
n=1 ncnx

n−1 −
∑∞

n=0 cnx
n = 0

(simplify and rewrite starting at n = 0)∑∞
n=0(n+ 2)(n+ 1)cn+2x

n −
∑∞

n=0 ncnx
n −

∑∞
n=0 cnx

n = 0∑∞
n=0((n+ 1)(n+ 1)cn+2 − ncn − cn)x

n = 0

(n+ 2)(n+ 1)cn+2 − (n+ 1)cn = 0

cn+2 = cn
n+2 (This is our recursive relationship)

c0 = c0

c1 = c1

c2 = c0
2

c3 = c1
3

c4 = c0
8

c5 = c1
15

You can separate this out by even vs odd terms.
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y =
∑∞

n=0
c0x

2n)
(2n)(2n−2)(2n−4)...(2) +

∑∞
n=0

c1x
2n+1

(2n+1)(2n−1)...(1)

=
∑∞

n=0
c0x

2n

2nn! −
∑∞

n=0
c1x

2n+1

(2n+1)!
2nn!

=
∑∞

n=0
c0(

x2

2 )n

n! + ...

= c0e
x2

2 +
∑∞

n=0
c1x

2n+1

(2n+1)!

Although we were able to find an elementary function for our left side,
there is none for our right side, and therefore must be left in power series
notation. In practice, we could approximate this value to any degree of
accuracy with previously discussed methods.
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