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Part I

Single-Variable Calculus

1 Limits

1.1 Tricks for solving limits

1.1.1 x
x

In some situations, you can multiply a limit by some factor of x
x
to simplify an otherwise difficult to evaluate

limit

eg:

lim
x→∞

x+ 3√
9x2 − 5x

= lim
x→∞

x+ 3√
9x2 − 5x

.
1
x
1
x

= lim
x→∞

x
x
+ 3

x√
( 1
x2
)(9x2 − 5x)

= lim
x→∞

1 + 3
x√

9− 5
x

(1)

The terms 3
x
and 5

x
both tend to 0 as x→ ∞, so the final limit simplifies:

lim
x→∞

1√
9
=

1√
9

=
1

3

(2)

1.1.2 Intuition with∞

In limits involving fractions where both numerator and denominator are polynomials, you can intuitively cal-
culate the limit using the coefficients/powers.

lim
x→∞

axm

bxn

1. m > n :∞

2. m < n : 0

3. m = n : m
n
(since both of the powers are the same “strength” ie ∞, you can think of this as the infinities

“canceling out”). To prove this idea actually works, use the method above.

§1.1 Limits: Tricks for solving limits p. 5



1.1.3 L’Hôpital’s Rule

Theorem (L’Hôpital’s Rule). In short, if:

f(c)

g(c)
=

0

0
,
∞
∞
, 00,∞−∞, ...(indeterminate form)

then:
lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

This can also be repeated for multiple derivatives of f, g, as long as the resulting form is still indeterminate.
Oftentimes, you will need to manipulate the limit to express it in an indeterminate form such that L’Hôpital’s is
usable.

While solving limits this way is very powerful (and, often, very easy), one should be careful to not overuse it
when it is not applicable.

1.1.4 Solving for a given limit

When given a function with variables in place of constants and a final limit to solve for, there are some additional
considerations to take into account.

eg:

lim
x→0

√
ax+ b− 2

x
= 1

In order for this limit to even exist, limx→0

√
ax+ b− 2MUST equal 0, following the quotient rule of limits,

which states:

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)

So:

lim
x→0

√
ax+ b− 2 = 0

√
a ∗ 0 + b− 2 = 0

√
b = 2

b = 4

(3)

To finish solving this limit, see:

§1.1 Limits: Tricks for solving limits p. 6



1.1.5 “Radicalizing” fraction

Similar to the first point, but a little more complex/situation-specific.

When a limit is in the form:

lim
x→0

n
√
(ax+ b) + c

x

The issue here is that we have an x alone on the bottom, which results in something being divided by 0. To
solve this, we can radicalize the fraction; this results in an x “alone”, canceling with that on the bottom, making
the equation solvable.

For the example above:

lim
x→0

√
ax+ 4− 2

x
= 1

lim
x→0

√
ax+ 4− 2

x
.

√
ax+ 4 + 2√
ax+ 4 + 2

= 1

lim
x→0

ax

x(
√
ax+ 4 + 2)

= 1

lim
x→0

a√
ax+ 4 + 2

= 1

...

a = 4

(4)

1.1.6 Squeeze Theorem

Theorem (Squeeze Theorem). If:

• f(x) ≤ g(x) ≤ h(x)

• limx→c f(x) = limx→c h(x)

then
lim
x→c

f(x) = lim
x→c

g(x) = lim
x→c

h(x)

This makes a lot more sense in practice:

§1.1 Limits: Tricks for solving limits p. 7



lim
x→0

x4 sin
(x
2

)
=?

−1 ≤ sin
(x
2

)
≤ 1

−x4 ≤ x4 sin
(x
2

)
≤ x4

lim
x→0

−x4 = lim
x→0

x4 = 0 ∴ lim
x→0

x4 sin
(x
2

)
= 0

(5)

See Figure 1 to see this visually.

Figure 1: The squeeze theorem visualized

1.1.7 Using the definition of a derivative

A derivative, f ′(x), is defined as followed:

f ′(x) = lim
x→a

f(x)− f(a)

x− a

Alternatively, given h = x− a:

f ′(x) = lim
h→0

f(x+ h)− f(h)

h

If you are given a limit in the form (or near) the above forms, you can use these definitions to solve the limit.

eg:

§1.1 Limits: Tricks for solving limits p. 8



lim
x→π

esin(x) − 1

x− π
= lim

x→π

esin(x) − esin(π)

x− π

Let f(x) = esin(x)

= lim
x→π

f(x)− f(π)

x− π

This is simply the definition of f ′(x) at a = π

= f ′(π) = cos(π)esin(π) = −1

(6)

1.2 Intermediate Value Theorem

Theorem (Intermediate Value Theorem). If

• f is continuous on [a, b]

• f(a) ̸= f(b)

• f(a) <= N <= f(b)

there exists some c in (a, b) such that N = f(c).

See Figure 2.

Figure 2: The intermediate value theorem visualized

2 Exponential and Logarithmic Functions

2.1 Exponential Functions

2.1.1 Defining e

An exponential function is any f(x) of the form f(x) = ax. To find the derivative, f ′(x):

§2.1 Exponential and Logarithmic Functions: Exponential Functions p. 9



f ′(x) = lim
h→0

[
ax+h − ax

h
]

= ax lim
h→0

[
ah − 1

h
]

(7)

We can rewrite this for the derivative of f at x = 0:

f ′(0) = a0 lim
h→0

[
ah − 1

h
]

= lim
h→0

[
ah − 1

h
]

(8)

We can use this to find for what value of a that f ′(0) = f(0). f(0) = a0 = 1, therefore f ′(0) = f(0) = 1 =

limh→0[
ah−1
h

].

1 = lim
h→0

[
ah − 1

h
]

a = 2 : lim
h→0

[
2h − 1

h
] = 0.693...

a = 3 : lim
h→0

[
2h − 1

h
] = 1.099...

(9)

By the Intermediate Value Theorem, we know that 2 < a < 3, which can be defined by e.

1 = e0 = lim
h→0

[
eh − 1

h
] (10)

Extending this further for e;

d
dxe

x = lim
h→0

[
ex+h − ex

h
]

= ex lim
h→0

[
eh − 1

h
]

Substituting from eqn. 10

= ex

(11)

§2.1 Exponential and Logarithmic Functions: Exponential Functions p. 10



2.1.2 Generalizing d
dx
ax

From eqn. 8:

d
dxa

x = ax lim
h→0

ah − 1

h
= f ′(0)ax

We can rewrite using the rules of logs:

d
dxa

x =
d
dxe

ln ax =
d
dxe

x ln a

We can let u = x ln a, and thus ax = eu. We can then use implicit differentiation as follows:

d
dxa

x =
d
dxe

u

=
du
dx

d
du [e

u]

From eqn. 11

= eu
du
dx

= eu
d(x ln a)

dx Differentiating in terms of x

= eu ln a

= eln a
x

ln a

= ax ln a

(12)

Thus, d
dxa

x = ax ln a.

2.2 Logarithmic Functions

Let f(x) = y = loga x, so x = ay. To find the derivative of f(x):
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d
dxx =

d
dxa

y

1 = [
d
dya

y]
dy
dx

Using eqn. 12 :

1 = ay ln a
dy
dx

1

ay ln a
=

dy
dx

Subbing in for y :

1

alogax ln a
=

d
dxlogax

1

x ln a
=

d
dx loga x

(13)

Therefore, f ′(x) = d
dx logax = 1

x ln a
.

When a = e:

d
dxlogex =

d
dx lnx

=
1

x ln e

=
1

x

(14)

2.3 Obtaining e as a limit

Let f(x) = lnx,∴ f(1) = ln 1 = 0. In addition, f ′(x) = 1
x
,∴ f ′(1) = 1/1 = 1. We can use the definition of a

limit to say the following:
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Figure 3: Eqn. 15 visualized

1 = lim
h→0

[
f(1 + h)− f(1)

h
]

= lim
h→0

1

h
[f(1 + h)− f(1)]

= lim
h→0

1

h
[ln(1 + h)− ln 1]

= lim
h→0

1

h
ln(1 + h)

= lim
h→0

ln[(1 + h)
1
h ]

= ln[lim
h→0

[(1 + h)
1
h ]]

∴ lim
h→0

[(1 + h)
1
h ] = e

(15)

Note that the penultimate step of this work relies on the following (very helpful) theorem:

Theorem. If f is continuous at limx→a g(x), then,

lim
x→a

f(g(x)) = f(lim
x→a

g(x))

A proof can be found for this on page A39 of the Stewart’s book.

Alternatively, we can write e as a limit going to∞; Let y = 1
h
, and, substituting into eqn. 15:

lim
y→∞

[1 +
1

y
]y = e (16)
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3 Linearization

3.1 Linear Approximation

We can approximate a function by using the equation for its tangent at a particular point.

For example; For a function y = f(x), there exists a point P = (a, f(a)). Let L(x) be the line tangent to
f(x) at P . The slope of L would be defined as:

mL =
∆y

∆x
=
L(x)− f(a)

x− a
= f ′(a)

Solving for L(x):

L(x)− f(a) = (x− a)f ′(a)

L(x) = f(a) + (x− a)f ′(a)
(17)

This function is a fairly good approximation of f(x) near x = a, at least for most continuous functions. It’s
also very important to note that, by definition f(a) = L(a), AND f ′(a) = L′(a). This will be expanded upon
later.

For example; take f(x) = sin(x), @ a = 0:

f(x) ≈ L(x) = f(0) + (x− 0)f ′(0)

= f(0) + x cos(0)

= 0 + x ∗ 1

= x = L(x)

(18)

Clearly, in the vicinity of a, this is a pretty good approximation, but it quickly becomes inaccurate as we
move away.

3.2 Quadratic Approximation

From the section earlier, we defined L(x), a linear approximation of f(x), where f(a) = L(a) AND f ′(a) =

L′(a). Now, what if we wanted to continue this trend, and define a new function, P2(x), where f(a) = P2(a),
f ′(a) = P ′

2(a), and f ′′(a) = P ′′
2 (a)? Rather than a “linear” approximation, this would, logically, become a

“quadratic” approximation. We can say:
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Figure 4: Linearization of sin(x) at x = 0

P2(x) = f(a) + (x− a)f ′(a) + k(x− a)2

P2(x) = L(a) + k(x− a)2

P ′
2(x) = L′(a) + 2k(x− a)

P ′′
2 (a) = 2k

k =
P ′′
2 (a)

2
=
f ′′(a)

2

(19)

Note that L′′(a) = 0; since L(x) is a line, its first derivative is a constant, and its second is 0.

The purpose of this work was to find some k that we can multiply by a quadratic factor (x− a)2 to maintain
the previously stated desired properties of P2. As such, we can rewrite:

P2(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(a)

3.2.1 Taylor Polynomials

We can, logically, continue this trend for cubic, quartic, etc. approximations. In general, you can approximate
any function f(x) to the N th power;

f(x) ≈ PN(x) =
N∑
n=0

(x− a)nf (n)(a)

n!

This approximation:

• passes through the point (a, f(a))

• has the same slope, concavity, …, ie PN−1
N (a) = fN−1

N (a)

This N th degree polynomial is called a Taylor Polynomial, and, intuitively, better approximates f(x) as
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N → ∞.

When a = 0, this polynomial becomes called aMaclaurin Polynomial:

Pn(x) =
N∑
n=0

xnfn(0)

n!

3.2.2 Relationship between f(x) and PN(x)

While, intuitively, it makes sense that PN(x) becomes a better approximation of f(x) as N → ∞, this isn’t
necessarily true.

Theorem (Taylor’s Theorem).
f(x) = PN(x) +RN(x);

where PN(x) is an approximation (via Taylor Polynomial) of f(x), andRN(x) is the error in said approximation,
defined as:

RN(x) =
(x− a)N+1

(N + 1)!
f (N+1)(c), c ∈ R and between x, a

.

We can then rewrite Taylor’s Theorem, as N goes to∞:

f(x) = lim
N→∞

[
N∑
n=0

(x− a)nfN(a)

n!
+

(x− a)N+1

(N + 1)!
f (N+1)(c)]

Therefore, f(x) = PN(x) if, and only if, limN→∞RN(x) = 0. Logically, this should make sense; if there is
no remainder, then the approximation is equal to the original function.

3.3 Taylor Polynomials, Applied Example

Using Taylor Polynomials, we can explore a number of interesting properties of functions, and even derive some
unique expressions. For instance (assuming RN(x) = 0):

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ ...

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+ ...

eix = 1− x2

2!
+
x4

4!
...+ i[x− x3

3!
+
x5

5!
...]

(20)
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This may look like it just made things more complicated. However, take a look at the Taylor Polynomial
representations of sin(x):

f(x) = sin(x) =
∞∑
n=0

(x− a)nfn(a)

n!

f ′(x) = cos(x)

f ′′(x) = − sin(x)

f ′′′(x) = − cos(x)

f IV (x) = sin(x)

∴ f(x) = 0 + x+ 0 +
−x3

3!
+ 0 +

x5

5!
+ ...

=
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

(21)

and, very similarly, for cosx:

f(x) = cos(x)

= 1− x2

2!
+
x4

4!
+ ...

=
∞∑
n=0

(−1)nx2n

(2n)!

(22)

Thus, we can rewrite equation 20 by substituting in sin and cos, for the odd and even factors respectively:

eix = cos(x) + i sin(x) (23)

This is a very helpful equation, known as Euler’s Formula. Some applications are present in Section 5.

From here, we can solve for x = π, to obtain:

eiπ = cos(π) + i sin(π)

= −1 + i ∗ 0

eiπ + 1 = 0

(24)
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This (“the most beautiful formula in mathematics”) is known as Euler’s Identity.

To take this formula further we can solve for sin(x) and cos(x) in the imaginary plane.

eix = cos(x) + i sin(x) =⇒ cos(x) = eix − i sin(x)

e−ix = cos(x)− i sin(x) =⇒ cos(x) = e−ix + i sin(x)

eix − i sin(x) = e−ix + i sin(x)

eix − e−ix = 2i sin(x)

sin(x) =
eix − e−ix

2i

cos(x) = eix − i sin(x)

cos(x) = eix − i(
eix − e−ix

2i
)

cos(x) =
eix + e−ix

2

(25)

From here, we can solve for cos(ix) and sin(ix):

cos(ix) =
ei

2x + e−i(ix)

2

=
ex + e−x

2
= cosh(x)

sin(ix) = i(
ei

2x − e−i(ix)

2
)

= i(
ex − e−x

2
) = i sinh(x)

(26)

And thus, we can define the hyperbolic trigonometric functions using the complex plane, Taylor Series, and
Euler’s Identity.

4 Trigonometry

4.1 Inverse Trig Functions

As with all functions, we can define the inverse of the basic trig functions, as the functions that undo their
respective trig functions. The following shows each of the three basic trig functions, their inverses, and how to
derive their respective derivatives.
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• y = arcsinx = sin−1x

x = sin y

d
dxx =

d
dx sin y

1 =
d
dy [sin y]

dy
dx

1 = cos y
dy
dx

dy
dx =

1

cos y

=
1√

1− sin2(y)
=

1√
1− x2

(27)

• y = arccosx = cos−1x

x = cos y

d
dxx =

d
dx cos y

1 =
d
dy [cos y]

dy
dx

1 = − sin y
dy
dx

dy
dx = − 1

sin y

= − 1√
1− cos2(y)

= − 1√
1− x2

(28)

• y = arctanx = tan−1 x

x = tan y

d
dxx =

d
dx tan y

1 =
d
dy tan y

dy
dx

1 = sec2 y
dy
dx

dy
dx =

1

sec2 y

=
1

1 + tan2 y
=

1

1 + x2

(29)
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Figure 5: cosh(x), sinh(x), tanh(x)

4.2 Hyperbolic Functions

4.2.1 Definitions, Identities, Derivatives

Def:

sinhx =
ex − e−x

2

coshx =
ex + e−x

2

(30)

Hyperbolic trigonometric functions are the “hyperbolic equivalent” of the basic trig functions. This is an ad-
mittedly abstract definition, but there is a more concrete definition in section 3.3, using Taylor Polynomials and
complex numbers.

The derivatives are as follows; for sinhx:

d
dx sinhx =

d
dx [

ex − e−x

2
] =

ex + e−x

2
= coshx;

and for coshx:

d
dx coshx =

d
dx [

ex + e−x

2
] =

ex − e−x

2
= sinhx.

Note that this is not quite the same relationship between the derivatives of sinx and cosx.

Similarly, there exist several properties of hyperbolic functions that, while similar in appearance to their
equivalent trig functions, have some key differences.
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cosh2 x− sinh2 x = 1

sinh(x+ y) = sinh x cosh y + coshx sinh y

cosh(x+ y) = sinh x sinh y + coshx cosh y

(31)

We can also define tanhx:

tanhx =
sinhx

coshx
=

ex−e−x

2
ex+e−x

2

=
ex − e−x

ex + e−x
;

and its derivative:

d
dx tanhx =

d
dx [

sinhx

coshx
] =

sinhx sinhx− coshx coshx

cosh2 =
sinh2 x− cosh2 x

cosh2 x
=

1

cosh2 x
= sech2 x.

4.2.2 Inverse Hyperbolic Functions and their Derivatives

Figure 6: Inverse Hyperbolic Functions
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y = sinh−1(x) ⇒ x = sinh(y)

d
dxx =

d
dx sinh(y)

1 =
dy
dx cosh(y)

dy
dx =

1

cosh(y)
=

1√
1 + sinh2(y)

=
1√

1 + x2

y = cosh−1(x) ⇒ x = cosh(y)

d
dxx =

d
dx cosh(y)

1 =
dy
dx sinh y

dy
dx =

1

sinh y
=

1√
cosh2(y)− 1

=
1√

x2 − 1

y = tanh−1(x) ⇒ x = tanh(y)

d
dxx =

d
dx tanh(y)

1 =
d
dy tanh(y)

dy
dx

1 = sech2(y)
dy
dx

dy
dx =

1

sech2(y)
=

1

1− tanh2(y)
=

1

1− x2

(32)

Note that for cosh−1(x), the domain of cosh(x) must be restricted to x >= 0 so that cosh−1(x) is a valid
one-to-one function. You can see this graphically in figure 6.

4.2.3 Explicitly Expressing Inverse Hyperbolic Functions

Using the rules of natural logarithms, we can re-express each inverse hyperbolic function explicitly in terms of
x.

y = sinh−1(x) ⇒ x = sinh y =
ey − e−y

2

2x = ey − e−y

2xey = (ey − e−y)ey

2xey = e2y − 1

0 = e2y − 2xey − 1

(33)

This is just a quadratic formula in terms of ey, and can be solved accordingly:
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ey =
2x±

√
4x2 + 4

2

ey = x+
√
x2 + 1

(34)

We don’t take the negative, as ey is always > 0.

ln(ey) = ln
(
x+

√
x2 + 1

)
y = sinh−1(x) = ln

(
x+

√
x2 + 1

) (35)

A very similar process follows for cosh and tanh, so it won’t be shown, but for reference:

y = cosh−1 x = ln
(
x+

√
x2 − 1

)
y = tanh−1 x =

1

2
ln

(
1 + x

1− x

) (36)

5 Complex Numbers

5.1 ComplexQuadratic Equations

To introduce the concept of complex numbers, take an arbitrary quadratic equation of the form

αx2 + βx+ γ = 0, α, β, γ ∈ R

.

We can solve this for x as follows:

x =
−β ±

√
β2 − 4αγ

2α

.

If the discriminant, β2 − 4αγ, is < 0, then the equation has no real roots. However, it does have two
imaginary roots, of the form
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Figure 7: The complex plane

x =
−β ±

√
(−4α)(−β2)

2α

=
−β
2α

± i

√
4αγ − β2

2α

= a± ib; a, b ∈ R.

(37)

This final, simplified form, a± ib, is also known as “complex conjugates”, which has one part (a) that is real,
and one part (ib) that is imaginary. Generally, this is written as z = a+ ib

5.2 De Moivre’s Formula and Related

Take the equation from the previous section, z = a+ ib. Figure 7 shows this formula in the complex plane, with
r representing the distance between z and the origin (0, 0).

Using this visualization, we can rewrite the formula in the polar form

z = r cos θ + ir sin θ

.

We can use Euler’s formula to simplify this;
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z = r(cos θ + i sin θ)

z = reiθ
(38)

From this definition, we can define several other properties to aid in solving equations involving complex
numbers.

• Products: z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2)

• Quotients: z1
z2

= r1
r2
ei(θ1−θ2)

• Powers: zn = rneinθ, n ∈ Z

Example: calculate (−1− i)20. See figure 8 for a visual representation.

Figure 8: (−1− i) represented on the complex plane

(−1− i)20 = zn = rneinθ

=
√

(2)20ei20∗
5π
4

= 210e25πi

= 1024e24πieπi

= 1024 ∗ (1)(−1)

= −1024

(39)

Note that the second to last step is done using Euler’s Identity; specifically:

eiπ = −1

eniπ = e(iπ)
n

= −1n, n ∈ Z

n = {0, 2, 4, ...}, eniπ = 1

n = {1, 3, 5, ...}, eniπ = −1

(40)
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5.2.1 Roots

We can use some of the identities above to find a formula to find the real AND complex roots of number:

z = reiθ = rei(θ+2kπ), k ∈ Z ≥ 0

z
1
n = z

1
n e

i(θ+2kπ)
n , k = 0, 1, . . . , (n− 1)

(41)

For example, to find all of the cube roots of 8:

z = 8 = 8e2kπi

z
1
3 = 8

1
3 = 8

1
3 e

2kπi
3 , k = 0, 1, 2

zk=0 = 8
1
3 e0 = 2

zk=1 = 8
1
3 e

2πi
3 = 2e

2π
3 = 2[cos

2π

3
+ i sin

2π

3
] = 2[−1

2
+ i

√
(3)

2
] = −1 + i

√
3

zk=2 = 8
1
3 e

4πi
3 = ... = −1− i

√
3

(42)

Thus, the cube roots of 8 are 2,−1 + i
√
3,−1− i

√
3.

Another method of solving for the roots of a complex number (which can also be extended to other problems
involving complex numbers, but is most obvious when calculating roots) involves a little more intuition rather
than just using the polar form immediately.

Say you are solving for the square roots of −8− 15i, ie (−8− 15i)
1
2 . We can then say:

(−8− 15i)
1
2 = a+ bi, a, b ∈ R

−8− 15i = (a+ bi)2 = a2 + 2abi− b2 = a2 − b2 + 2abi

⇒ −8 = a2 − b2

⇒ −15 = 2ab

(43)

Logically, the roots of a complex number involve some real part (a) and some imaginary part (bi). Using this
knowledge, we can use the above steps to find a and b using more basic algebra. Doing the work out fully will
result in a quadratic formula for a and b, which can finally be solved for the values of the roots (the ± in the
quadratic formula allows for the creation of two roots).

5.2.2 Logarithms

We can use some of the identities above to also find a log involving complex numbers:
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z = reiθ

ln(z) = ln
(
reiθ

)
= ln(r) + ln

(
eiθ

)
= ln(r) + iθ

(44)

For example, to find ln(−1):

ln(−1) = ln(1) + i(π + 2nπ)

= i(π + 2nπ), n = 0,±1,±2, ...
(45)

6 Applications of Differentiation

6.1 Related Rates

“Related rates” problems are very common, and often follow very similar patterns that can be exploited to make
individual problems very straightforward. Generally:

1. Draw a picture to represent the scenario

2. Write a formula involving the variable whose change is given, in relation to the variable whose change
you’re solving for

(a) Many times, said formula will have to be simplified/rewritten in terms of a single variable. This often
involves similar triangles in geometric questions.

3. Differentiate, then solve accordingly

(a) This pretty much always involves implicit differentiation

The best way to approach these questions is to simply practice. The patterns between questions will quickly
become obvious.

6.2 Rolle’s Theorem

Theorem (Rolle’s Theorem). If a function f

• is continuous on [a, b]

• is differentiable on (a, b)

• f(a) = f(b)
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Figure 9: Rolle’s Theorem visualized

then there is a number c in (a, b) such that f ′(c) = 0.

The proof for this theorem is fairly straightforward (and intuitive), and also makes a lot of sense graphically
(see figure 9).

6.3 Mean Value Theorem

Figure 10: The Mean Value Theorem visualized

Theorem (Mean Value Theorem). If a function f is

• continuous on [a, b]

• differentiable on (a, b)

then there exists a c in (a, b) such that f(b)−f(a)
b−a = f ′(c). See figure 10.

This theorem is essentially an application of Rolle’s Theorem, but for any a, b that are not necessarily equal.
To prove it, using Rolle’s Theorem:

Proof. Take a function f(x) that is continuous on the closed interval [a, b], and differentiable on the open in-
terval (a, b). We can define g(x) as the secant line between the two points (a, f(a)) and (b, f(b)) as g(x) =
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(f(b)−f(a)
b−a )(x− a) + f(a). We can then define a function h(x) as the difference between the secant line and the

original function, h(x) = g(x)− f(x).

We can then compute h(a) and h(b) respectively:

h(a) = g(a)− f(a)

= (
f(b)− f(a)

b− a
)(a− a) + f(a)− f(a)

= 0

h(b) = g(b)− f(b)

= (
f(b)− f(a)

b− a
)(b− a) + f(a)− f(b)

= (
f(b)− f(a)

b− a
)(b− a)

= 0

Since h(a) = h(b) = 0, and h(x) is simply the difference between a linear function and an arbitrary continu-
ous function on [a, b] and is thus continuous, we can say that, by Rolle’s Theorem, there exists a c ∈ (a, b) such
that h′(c) = 0. We can thus say that:

0 = h′(c) = g′(c)− f ′(c)

=
f(b)− f(a)

b− a
− f ′(c)

f ′(c) =
f(b)− f(a)

b− a

This, and Rolle’s, are useful in questions involving proving the number of roots in an equation, as well as
proving other theorems.

6.4 Optimization

Optimization questions are (at least to me) very similar to related rates questions. In both, you have to find some
sort of formula representing a situation, then differentiating. However, for optimization questions, the intention
is to solve for a min/max value, by finding when the derivative (“rate of change”) is 0. Logically this should make
a lot of sense: when something is not changing (dxdy = 0), then it has to be either increasing until that point and
then begin to decrease, or vice versa. From here, checking the second derivative will reveal whether it was a
min or max.

In many situations, you will have to ensure that your min/max fits within some endpoints, which depend on
the situation at hand; eg, if you have a geometric question, then your value logically can’t be negative.
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A summary of general steps:

• Draw a diagram, assign relevant variables, create a formula

• Differentiate the formula, set it equal to 0, and solve for the unknown(s) that satisfy the question

• Check the sign of the second derivative of the formula to ensure that your value really was a min/max

• Check the “endpoints” of the problem (are either logical, or imposed by the wording in the question), and
ensure that your min/max falls within that range

– If it doesn’t, this usually means your ACTUAL min/max is one of the endpoints, so be careful for this

6.5 Error and Uncertainty

6.5.1 Uncertainty

Figure 11: Visual representation of using a differential to approximate error

One very helpful use of derivatives is in estimating how some variable changes when given the relative
change in another. This same idea is very similar to the rationale behind using differentials to estimate an error
in a measurement, but this will be further explained a little later.

To show how a derivative of a function at a point can be used to estimate its change over a particular range,
consider a function y = f(x), as shown in figure 11.

As discussed in 3, we can define L as the linear approximation of f(x) at P as L = f(a) + (x− a)f ′(a)

As shown in the graph, PQ = ∆x = dx; note that this is the change in x of both f(x) AND L. Conversely,
QS = ∆y, the change in f(x), and QT = dy, the change in L. In summary:
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L = f(a) + (x− a)f ′(a)

PQ = ∆x = dx

QS = ∆(f(x)) = ∆y

QT = ∆(L(x)) = dy

(46)

From here, we can define θ as the angle between PQ and PT . As such:

QT

PQ
= tan θ = f ′(a)

∴ QT = f ′(a)PQ

dy = f ′(a)∆x = f ′(a)dx

∴ QS ≈ QT ∴ ∆y ≈ dy = f ′(a)∆x = f ′(a)dx

(47)

As shown, dy is a good approximation for∆y when∆x is relatively small. This reasoning can also be applied
to the logic behind why a linear approximation L(x) of a function f(x) at a is most accurate when x ≈ a.

For example: say you were asked to find cos
(
π
3
+ 0.05

)
. In this case, we can say f(x) = cos(x), a = π

3
, and

∆x = dx = 0.05. From here:

f ′(x) = − sin(x)

f ′(a) = − sin
(π
3

)
= −

√
3

2

dy ≈ f ′(a)dx =
−
√
3

2
∗ 0.05 ≈ −0.043

(48)

In reality, cos
(
π
3
+ 0.05

)
= −0.044, demonstrating how accurate (and easy-to-compute) this method is.

6.5.2 Error

Using very similar reasoning to above, we can use differentials to find the range of error in a calculation. If given
the error (change) of one variable in a formula, you can then use implicit differentiation, and solve for the error
(change) in the desired variable.

Oftentimes, “relative change” is also asked for. This is simple dx
x
.

For example: given a circle with radius r = 24, with a max error in measurement of 0.2. To find the max
error in the circle’s area:
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A = πr2 = f(r)

∆A ≈ dA = f ′(r)dr

= 2πrdr

= 2π(24)(0.2) = 9.6π ≈ 30.16

rel. error:
∆A

A
≈ dA

A
=

1

60

(49)

6.6 Newton’s Method

Newton’s Method is an application of derivatives that can be used to estimate the solutions/roots of a function.
The steps to the method are as follows, for a function f(x):

1. Pick some x1, then find the point P = (x1, f(x1))

2. Find the tangent line of f(x) at the point P , defined by y − f(x1) = f ′(x1)(x− x1)

3. Find the point x2 where the tangent line intersects the x-axis, by setting y = 0:

0 = f(x1) + f ′(x1)(x2 − x1)

x2 = x1 −
f(x1)

f ′(x1)

(50)

4. Repeat steps 1-3 for increasing xn and xn+1. As n increases, the xn will approach a root of f(x). The
general formula follows:

xn+1 = xn −
f(xn)

f ′(xn)

See figure 12 to see this process visually.

6.7 Derivative-Related Theorems

Following are a number of theorems related to derivatives, and limits. While many of them are already described
above, some are not.

These theorems have various applications in determining limits and derivatives and can aid in graphing
functions.

1. Intermediate Value Theorem

If f is continuous on [a, b], let N be any number between f(a) and f(b), where f(a) ̸= f(b), there exists
a c in (a, b) such that f(c) = N .
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Figure 12: Newton’s Method Visualized

2. Extreme Value Theorem

If f is continuous on [a, b], then f attains a minimum and maximum value (extrema) on that interval. Not
that these extrema may occur at a or b; make sure to check this case when answering questions using this
theorem.

3. Fermat’s Theorem

If f has a local extrema at c, and f ′(c) exists, then f ′(c) = 0.

Note that the inverse of this theorem is not necessarily true: if f ′(b) = 0, then b is not necessarily a local
extrema.

4. Rolle’s Theorem

If f is continuous on [a, b], f ′ is continuous on (a, b), and f(a) = f(b), then there exists a c in (a, b) such
that f ′(c) = 0.

6.8 Graph Sketching

Using calculus (and other properties of functions), we can sketch curves with fairly high accuracy, without
needing calculators. To do so, there is a “shopping list” to follow, to graph a function f(x):

1. Domain

Find all x for which f(x) is defined. If f(x) is undefined for some x, you should also find how f behaves as
it approaches x (is it a hole? An asymptote? Or does the function simply only exist on a closed interval?)

2. Intercepts

Find both the x and y intercepts, i.e. the ordered pair (x, f(x)) at y = 0 and x = 0 respectively.

3. Symmetry (even/odd)

• f(x) = f(−x): f(x) is even
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• f(−x) = −f(x): f(x) is odd

Graphically, an even function is symmetrical over the y axis, and an odd function is symmetrical over
y = x.

4. Asymptotes

Determine limx→∞ f(x) and limx→−∞, to determine whether the function has any horizontal asymp-
totes. In addition, find the limit of f(x) to any holes in the domain, from both right and left, to determine
if the function has any vertical asymptotes.

5. Intervals of Increase/Decrease & Local Min/Max

Find f ′(x), and find when f ′(x) is greater/less than 0 to find when f(x) is increasing/decreasing respec-
tively. The points where f ′(x) = 0 are also the place where the function has a local min/max, AS LONG
AS f ′(x) is not an inflection point…

6. Concavity & Points of Inflection

Find f ′′(x), and find when f ′′(x) is greater/less than 0 to find when f(x) is concave up/down respectively.
The points where f ′′(x) = 0 are also the inflection points of f(x).

7 Integration

7.1 Defining Antiderivatives

For a function f(x), we can say that:

∫
f(x) dx = F (x) + k

,

where d
dx [F (x) + k] = f(x), and k is a constant.

For example:
∫
x2 dx = x3

3
+ k.

You can (and should) think of
∫

dx and d
dx as inverse operators of one another, hence the term “antiderivative”.

As such, numerous derivative rules have corresponding rules for integrals, which are discussed later. Also note
that this type of integration is called indefinite because it defines the integral of a function over an indefinite
range, ie, for all x. Definite integrals will be discussed later and have their own very particular applications, and
define an integral

∫ n
m
over a range [m,n].
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7.2 Techniques of Integration

7.2.1 Known Formulas of Derivatives

eg)
∫

1
1+x2

dx = arctanx+ c

“Simply” recognize that the integral to solve for is the derivative of a common function. Most other techniques
of integration involve simplifying/modifying a given integral into this type of easy-to-solve form.

7.2.2 By Substitution

For many integrals, we can substitute part of a complex expression for a single variable (typically u; this tech-
nique is often shorthanded “u-sub”), and, following some manipulation, find an integral much more easily. The
best way to understand this method is through an example:

∫ √
x3 + 2x2 dx

We can let u = x3 + 2, and differentiating u in terms of x, we get

du
dx = 3x2

du = 3x2dx

x2dx =
du
3

(51)

From here, we can substitute our expressions back into the original integral, and solve:

∫
x2
√
x3 + 2 dx =

∫
u

1
2
du
3

=
1

3

u
3
2

3
2

+ k

=
2(x3 + 2)

3
2

9
+ k

(52)

Note that solving this integral involved using the inverse of the “power rule” of derivatives, which should
hopefully be intuitive.

7.2.3 By Parts

Given two functions u and v, we can write:
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d
dx(uv) =

du
dxv + u

dv
dx∫

(
d
dx(uv) =

du
dxv + u

dv
dx)dx∫ d

dx(uv) dx =

∫ [
v
du
dx

]
dx+

∫ [
u
dv
dx

]
dx

uv =

∫
vdu+

∫
u dv∫

udv = uv −
∫
v du

(53)

For example, to calculate the integral of xeax:

∫
xeax dx

x = u, du = dx

eaxdx = dv, v =
eax

a∫
xeax dx = x

eax

a
−
∫
eax

a
dx

=
xeax

a
− eax

a2
+ C

(54)

Generally, you want to find some u such that du becomes “simpler”, and a dv such that v does not get “too
much more complicated”.

Another integral that is commonly computed using integration by parts is as follows:

∫
lnx dx

= x lnx−
∫
x
dx
x

= x lnx− x+ C

(55)

7.2.4 Trigonometric Integrals

Finding the integral of a combination of trigonometric functions is largely a question of using trig. identities in
such a way that the integral becomes easier to solve using more “basic” methods.

While a lot of this becomes intuitive over time, some general guidelines are as follows:

•
∫
sinm(x) cosn(x) dx
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If n is odd (n = 2k + 1), rewrite all cos, except one, with cos2(x) = 1− sin2(x).

∫
sinm(x) cos2k+1(x) dx =

∫
sinm(x)(cos2 x)k cos(x) dx

=

∫
sinm(x)(1− sin2(x))k cos(x) dx

(56)

From here, substitute u = sin(x) and solve accordingly.

Very similarly, ifm is odd (m = 2k + 1):

∫
sin2k+1(x) cosn(x) dx =

∫
(sin2(x))k cosn(x) sin(x) dx

=

∫
(1− cos2 x)k cosn(x) sinn(x) dx

(57)

Let u = cos(x), etc..

If bothm and n are even, you can use the half-angle theorems.

•
∫
tanm(x) secn(x) dx

Very similar to the strategy for sin and cos: if n is even, substitute sec2(x) = 1+tan2(x) for all sec except
one, and the opposite for tan2(x) ifm is even.

7.2.5 Trigonometric Substitution

Using a strategy similar to “u-substitution”, we can carefully replace variables in an integral with trigonometric
functions to make the integral easier to solve.

In general, we can say:

∫
f(x) dx =

∫
f(g(t))g′(t) dt

There are three main forms to look out for in integrals that can be used to effectively substitute trigonometric
functions. Notice that, in each case, a form similar to a common trigonometric identity is present.

•
√
a2 − x2 ⇒ x = a sin θ

•
√
a2 + x2 ⇒ x = a tan θ

•
√
x2 − a2 ⇒ x = a sec θ

Using this strategy makes a lot more sense when used in an example; say
∫ √

9−x2
x2

dx. This is of the first form
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listed above, so we can substitute x = 3 sin θ, meaning dx = 3 cos θdθ. Assume −π
2
≤ θ ≤ π

2

∫ √
9− x2

x2
dx =

∫ √
9− 9 sin2(θ)

9 sin2(θ)
3 cos(θ) dθ

=

∫ √
9 cos2(θ)

9 sin2(θ)
3 cos(θ) dθ

=

∫
3 cos(θ)

9 sin2(θ)
3 cos(θ) dθ

=

∫
cos2)(θ)

sin2(θ)
dθ =

∫
cot2(θ) dθ

=

∫
(csc2(θ)− 1) dθ = − cot(θ)− θ + C

(58)

From here, the integral can be rewritten in terms of x using some trig rules (drawing a diagram of a triangle
can help here):

− cot(θ)− θ + C = −
√
9− x2

x
− sin−1(

x

3
) + C

7.3 The Fundamental Theorem of Calculus

Consider a function f(x) that is continuous and non-negative over a ≤ x ≤ b. We can divided (a, b) into
subintervals of width ∆x = b−a

N
, and consider rectangles of area f(x∗i )∆x, where x∗i is the midpoint of the ith

subinterval. The area of all of these integrals can be written

N∑
i=1

f(x∗i )∆x.

Taking the limit of this sum (limN→∞) represents subdividing (a, b) into infinitely many subintervals (and more
accurately approximating the area under the curve). If this limit converges, we say

lim
N→∞

N∑
i=1

f(x∗i )∆x =

∫ b

a

f(x) dx.

Specifically, f(x)must be piecewise continuous over (a, b); it can have (finite) jump discontinuities (over a finite
interval), but does not have to be continuous nor differentiable.

Consider the integral ∫ x

a

f(t) dt = g(x).

We can say that, for some small h, g(x + h) − g(x) ≈ f(x∗)h, where x∗ is the midpoint of (x, x + h). Thus,
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f(x∗) ≈ g(x+h)−g(x)
h

. Approaching h to 0, we have

lim
h→0

f(x∗) = lim
h→0

[
g(x+ h)− g(x)

h

]
= g′(x).

Thus,
d
dx

∫ x

a

f(t) dt = f(x).

7.4 Applications of Integrals

7.4.1 Area Under a Curve

In short, the area under f(x) from a to b is ∫ b

a

f(x) dx,

assuming f(x) is piecewise continuous over (a, b).

7.4.2 Area Between Curves

The area between two curves f(x) and g(x) from a to b is∫ b

a

f(x) dx−
∫ b

a

g(x) dx =

∫ b

a

f(x)− g(x) dx,

assuming f(x) ≥ g(x) over (a, b) (among the other conditions from FTC). If, on the other hand, f is less than g
at some point in (a, b), we must do the opposite subtraction in this range. Say that f > g on (a, c), and f < g

on (c, b), we can then write the are between the two curves as∫ c

a

f(x)− g(x) dx+
∫ b

c

g(x)− f(x) dx.

This can be rewritten any number of ways using properties of integrals (eg,
∫ b
a
f(x) dx =

∫ a
b
f(x) dx). It can

also be generalized to any number of “switches” in the inequality.

7.4.3 Curve Length

Take a curve f(x) on the interval (a, b), and two points Pi = (xi, f(xi)) and Pi−1 = (xi−1, f(xi−1)) in this
interval. The length of the section of curve between these two points is (very) approximately equal to the length
of the secant line between them, with this approximation improving the closer the points are. It follows that we
can take the sum of “all possible” values of these these points Pi between a and b to approximate the length of
f on (a, b); thus, we can say

L ≈ lim
N→∞

N∑
i=1

|Pi−1Pi|.
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Figure 13: Visualization of finding the curve length.

The secant length between Pi and Pi−1 can be rather simply rewritten using the standard distance formula;

|PiPi−1| =
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2

=

√
1 + (

f(xi)− f(xx−1)

xi − xi−1

)2(xi − xi−1)

=
√

1 + f ′(x∗)2(xi − xi−1) =
√
1 + f ′(x∗)2∆x

Where∆x = xi−xi−1; notice that f ′(x∗) is simply the slope of the secant line, and x∗ is the value of x in the
interval (xi, xi−1) with the same slope of the secant (which must exist by Mean Value Theorem). Substituting
this into the original limit;

L = lim
N→∞

N∑
i=1

√
1 + (f ′(x∗))2∆x

=

∫ b

a

√
1 + (f ′(x))2 dx

To try to understand this more intuitively and in terms of differentials, consider the length of the curve at a
particular, infinitesimally small range to be ds, ie, the “instantaneous change in length”. At this small scale, it
can be considered to be the hypotenuse of a right triangle made up of sides dx and dy, the changes in x and y
respectively. Thus, we can say ds2 = dx2+ dy2 =⇒ ds =

√
dx2 + dy2 =

√
1 + (dy)2

(dx)2 dx. Summating this over
an entire interval yields the same integral as above.

7.4.4 Volume of Revolution

Consider a function f(x), which is rotated about the x-axis to form a solid. We can subdivide this solid into
disks of area A = πr2 = πf(xi)

2. The width of each particular disk is a small interval ∆x = xi − xi−1, and we
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can thus estimate the volume of the entire solid (between two points a, b) as

V ≈ lim
N→∞

N∑
i=1

π(f(xi))
2∆x =

∫ b

a

π(f(x))2 dx

7.4.5 Surface Area of Revolution

Consider a function f(x) rotated about the x-axis to form a solid. Subdividing this solid into disks, the surface
area of each disk is 2πrh = 2πf(xi)∆s, where∆s is the change in the length of the curve between xi and xi−1.
Using the definitions of curve length from earlier, we can write

SA = lim
N→∞

N∑
i=1

2πf(xi)∆s

=

∫ b

a

2πf(xi) ds

= 2π

∫ b

a

f(xi)

√
1 + (

dy
dx)

2 dx

7.4.6 Gamma Function

The Gamma Function is defined
Γ(n) =

∫ ∞

0

e−xxn−1 dx,

and is a generalization of the factorial operator, i.e., Γ(n + 1) = nΓ(n). The Gamma function appears in many
contexts (such as statistics), but one “helpful” (situationally) use case is the fact∫ π/2

0

sin2m−1 θ cos2n−1 θ dθ = Γ(n)Γ(m)

2Γ(n+m)
;m,n > 0,

which is proven in 10.3.2.

8 Differential Equations

8.1 Definitions

A differential equation is an equation that contains an unknown function and some of its derivatives. We can
more specifically describe differential equations by their order, which is the number of the highest derivative
in the equation, ie, a first-order differential equation is of the form F (x, y, y′).
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8.2 Variables Separable

While not all differential equations are solvable (or at least, easily solvable), one (of many) special cases is of the
form:

dy
dx = f(x)g(y) =

f(x)

h(y)
, g(y) =

1

h(y)
, h(y) ̸= 0

This is the form of a function of x times a function of y, indicating the parts are separable. We can rewrite
this:

dy
dx = f(x)g(y)

dy = [
dy
dx ]dx = f(x)g(y)dx∫ dy

g(y)
=

∫ dx
f(x)

(59)

From here, integrating both sides yields either y as a function of x, or x as a function of y (which one you
solve for depends on the context of the question).

For example, take: dy
dx = x2y − y + x2 − 1. This can be rewritten as a separable equation:

dy
dx = x2y − y + x2 − 1

= y(x2 − 1) + 1(x2 − 1)

= (y + 1)(x2 − 1)∫ dy
y + 1

=

∫
(x2 − 1) dx

ln(|y + 1|) = x3

3
− x+ k

y + 1 = ±e(
x3

3
−x+k) = ±e(

x3

3
−x)ek

y = Ce(
x3

3
−x) − 1, C = ±ek

(60)

From here, if given y(0), you can solve for the value of C and rewrite the equation appropriately. This would
then become what is called an initial value problem (IVP); you are given the initial value, after all.

In this example, say y(0) = 3. We can write:
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3 = Ce
(0)3

3
−0 − 1

3 = Ce0 − 1

C = 4

y = 4e
x3

3
−x − 1

(61)

8.3 Mathematical Models

Several real-world scenarios can be represented using differential equations, and the following are some of the
more common/useful forms, as well as their general solutions and applications.

I: αy = dy
dt , α ∈ R

When solved for a function y of t, this differential equation becomes a (hopefully) familiar form;

dy
dt = αy∫ dy
y

=

∫
αdt

ln |y| = αt+ C

y = ±e(αt+C) = ±eCeαt = keαt, k = ±eC

(62)

If we say y(0) = y0, then we can rewrite y(t) = y0e
αt. This is the typical form used to represent simple

exponential growth/decay; which of these two the function represents depends on α:

– α > 0;growth: used in scenarios such as simple population models.

– α < 0; decay: used in scenarios such as radioactive decay.

See figure 14 for a visual representation of these two.

II: dy
dt = k(N − y)

This general form of the equation is used in a number of scenarios, such as Newton’s Law of cool-
ing/heating and modeling deprecation. Solving this differential for y as a function of t goes as follows:
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Figure 14: Exponential growth and decay

dy
dt = k(N − y)

dy
N − y

= kdt∫ dy
N − y

=

∫
kdt

− ln |N − y| = kt+ C

N − y = ±e−Ce−kt = Ke−kt

y = N −Ke−kt

(63)

If we state that y(0) = y0, we can rewrite this equation as y = N + (y0 −N)e−kt. This is the same form
that Newton’s Law of Cooling takes: T (t) = Tenv + (T (0)− Tenv)e

−rt.

It’s important to note that y(t) approaches N as time approaches infinity, ie:

lim
t→∞

[N + (y0 −N)e−kt] = N

If the value of y0−N is positive, then this limit is approached from above (ie, the function is lower bounded
byN ), and if y0−N is negative, then the limit is approached from below (upper bounded byN ). See figure
15 for a visual representation of the difference, assuming a constant y0.

III: dy
dt =

k
N
y(N − y)

This differential equation represents a general form of the logistic equation, commonly used in popula-
tion modeling in ecology and other fields. Solving this differential equation for y as a function of x goes
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Figure 15: y = N + (y0 −N)e−kt, y0 −N > 0 vs y0 −N < 0

as follows:

dy
dt =

k

N
y(N − y)

dy
y(N − y)

=
kdt
N∫ dy

y(N − y)
=

∫
kdt
N∫

[
1
N

y
+

1
N

N − y
] dy =

k

N
t+ C

1

N
(ln |y| − ln|N − y|) = k

N
t+ C

ln | y

N − y
| = kt+D,D = CN

y

N − y
= Kekt, K = ±eD

y =
NKekt

1 +Kekt
=

NKekt

1 +Kekt

e−kt

K
e−kt

K

=
N

e−kt

K
+ 1

=
N

1 + Ae−kt
, A =

1

K

(64)

If we say y(0) = P0, or the initial population, then we can simplify further and say:

y(0) = P0 =
N

1 + b

=⇒ b =
N

P0

− 1 =
N − P0

P0

∴ y(t) =
N

1 + be−kt
, b =

N − P0

P0

y(t) =
NP0

P0 + (N − P0)e−kt

(65)
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Just as with Model II, the function approaches N as the time goes to infinity, and as such, we can call N
the “carrying capacity” or “max population”, depending on the context of the problem.

Another interesting property of the logistic model comes about from exploring its derivatives. Its first
derivative is clear, as it is given in the expression of the logistic model as a differential equation. This first
derivative (dy

dt
) is always positive, which should be clear from inspection of the original formula for dy

dt
, as

both N and y are always positive, and N must be greater than y.

Recall that the second derivative represents the derivative of the first derivative, and in the context of pop-
ulation growth, for example, represents the change in how fast the population is growing. By extension,
the inflection point of the logistic model would represent when the change in the population growth rate
is at a maximum (or minimum, but the work below will show that it is indeed a maximum).

We can find this inflection point (IP) by doing the follow:

dy
dt =

k

N
y(N − y) = ky − ky2

N
d2y
dt2 = k − 2ky

N

k − 2ky

N
= 0

y =
N

2

f(t) =
N

2
=

N

1 + be−kt

1 + be−kt = 2

e−kt =
1

b

t = −1

k
ln

(
1

b

)
= ln

(
(
1

b
)−

1
k

)
t = ln

[
(
N − P0

P0

)
1
k

]

(66)

As such, the point (ln[(N−P0

P0
)
1
k ], N

2
) is an inflection point and represents the maximum change in popula-

tion growth (proving this is relatively straightforward and is omitted here).

8.4 Linear Equations

A first-order linear differential equation is a differential equation of the general form:

dy
dx + P (x)y = Q(x)

,
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Figure 16: y(t) = N
1+be−kt , b =

N−P0

P0

where P and Q are continuous over a particular interval. Notice that this form does not fit the form of a
separable equation (see 8.2), and thus is not solvable using the same method.

Instead, we have to use a new function, called an integrating factor, called I(x), which will make the equa-
tion solvable for y. To understand the motivation behind I(x), recall the product rule for calculating derivatives:

(xy)′ = xy′ + y

We can define I(x) as a factor such that the left-hand side of the general equation becomes the derivative of
I(x)y, and simplifies as follows:

I(x)(
dy
dx + P (x)y) = (I(x)y)′ = I(x)Q(x)∫

(I(x)y)′ =

∫
I(x)Q(x) dx

I(x)y =

∫
I(x)Q(x) dx+ C

y(x) =
1

I(x)
[

∫
I(x)Q(x) dx+ C]

(67)

This provides a general solvable form for the equation, but we still need to find I(x) to make this useful. We
can do so by rearranging I(x)( dydx + P (x)y) = (I(x)y)′ as follows:
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I(x)(
dy
dx + P (x)y) = I(x)(y′ + P (x)y) = (I(x)y)′

I(x)y′ + I(x)P (x)y = I ′(x)y + I(x)y′

I(x)P (x)y = I ′(x)y

I(x)P (x) = I ′(x)

(68)

This is just a separable equation, which can be solved for I :

∫ dI
I

=

∫
P (x) dx

ln |I| =
∫
P (x) dx

I = ±e
∫
P (x) dx+C = Ae

∫
P (x) dx, A = ±eC

(69)

We can typically set A = 1 for a general I . Using these general steps, we can thus solve a linear first-order
differential equation by multiplying it by the appropriate integrating factor I(x) = e

∫
P (x) dx. For instance, to

solve x2y′ + xy = 1:

x2y′ + xy = 1

y′ +
1

x
y =

1

x2

I(x) = e
∫

1
x
dx = elnx = x

I(x)(y′ +
1

x
y) = I(x)

1

x2

xy′ + y =
1

x

(xy)′ =
1

x∫
(xy)′ =

∫
1

x
dx

xy = lnx+ C

y =
lnx+ C

x

(70)

Note that the original equation was not in standard form, but we were able to simply divide each factor by
x2 to get it into standard form.
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8.5 Orthogonal Families of Curves

Using differential equations, we can determine the general equation of curves orthogonal (ie “perpendicular”)
to a given curve (or, typically, a family of curves). Consider the general family of curves described by;

ax2 + by2 = k,

where a, b, k are real constants. The derivative of any perpendicular curve must be the negative reciprocal of
the derivative of the original curve (by the very definition of perpendicularity), so we can find the derivative of
the original curve as follows, using implicit differentiation:

ax2 + by2 = k

2ax+ 2by
dy
dx = 0

dy
dx =

−2ax

2by
= −ax

by

∴ morth. = −(
dy
dx)

−1 =
by

ax

(71)

If we define P as the orthogonal curve’s y-value, we can then find a general equation for the orthogonal
curve as a function of x by rewriting it as a (separable) differential equation:

dP
dx = morth. =

by

ax
=
bP

ax
dP
bP

=
dx
ax∫ dP

bP
=

∫ dx
ax

1

b
ln |P | = 1

a
ln |x|+ C

ln |P | = b

a
ln |x|+ C

P (x) = Keln |x
b
a | = Kx

b
a , K = ±eC

(72)

This general method can be used to find the general equation of any curve orthogonal to a given curve
(assuming the given curve is differentiable). See figure 17 for a visualization of this concept.
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Figure 17: ax2 + by2 = k and its orthogonal curves

Part II

Multivariable Calculus

9 Partial Derivatives and Applications

9.1 Introductions/Visualizations

Numerous real-world concepts can be described as function of multiple variables. A function of two variables,
for instance, can be defined as a f(x, y).

Figure 18: f(x, y) = x2 + y2

Functions of many variables can often be difficult to visualize (particularly of more than 2 variables), but at
least for a function of two variables, we can visualize it as a surface in 3D. For instance, consider the function
f(x, y) = x2 + y2, and figure 18.

While this is helpful, 3D plots aren’t always realistic to use to visualize a function. Instead, we can draw
level curves, by plotting a number of curves of a constant z-value in the standard x − y plane. See figure 19
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Figure 19: Level curves of f(x, y) = x2 + y2

for a level curve graph of f(x, y) = x2 + y2. Note that, visually, this plot is essentially the same as looking at
the surface of the function in 3D from above the z-axis.

Note that, while harder to visualize, functions of more than two variables can be described similarly. For
instance, a function of three variables can be described as a surface in 4D, and a function of four variables can
be described as a surface in 5D, and so on. By extension, we can also describe the level curves of a function of
n variables as a family of functions in n (ie a function of 3 variables can be visualized as a level plot in 3D).

9.2 Limits

A limit of a function of multiple variables is described as the value of the said function when all of its variables
approach a particular coordinate. For the function f(x, y), for example, we can write its limit as it approaches
some point (a, b):

lim
(x,y)→(a,b)

f(x, y)

Determining limits (and in particular, if a limit exists) is not quite as straightforward as for functions of
a single variable. For a function f(x) and a point a, for instance, if the limit approaching from the right (a+)
doesn’t equal the limit approaching from the left (a−), then the limit doesn’t exist. For a function of two variables,
though, a limit can be approached from an infinite number of directions, assuming the corresponding (x, y) is
still in the domain of the function. By extension, we can only say that a limit exists in this case if, no matter
which direction we approach the limit from, the limit is the same.

We can use, however, the precise definition of a limit to more accurately define a limit of f(x, y)with domain
D as it approaches (a, b):

lim
(x,y)→(a,b)

f(x, y) = L
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if for every ϵ > 0, there exists a δ > 0 such that if (x, y) ∈ D and 0 <
√
(x− a)2 + (y − b)2 < δ, then

|f(x, y)− L| < ϵ.

By extension of this definition of a limit, we can say a function f(x, y) is continuous at (a, b) if lim(x,y)→(a,b) f(x, y) =

f(a, b), very similarly to the definition of continuity for a function of a single variable.

9.3 Partial Derivatives

Extending the definition of a derivative of a function of 1 variable, we can find the partial derivative of a func-
tion of multiple in terms of a particular variable (notated as ∂f

∂x
or fx(x, y)), while treating the other variable(s)

as a constant:

fx(x, y) =
∂f

∂x
= lim

h→0
[
f(x+ h, y)− f(x, y)

h
]

fy(x, y) =
∂f

∂y
= lim

h→0
[
f(x, y + h)− f(x, y)

h
]

(73)

This definition can, naturally, be extended to higher derivatives. Just as there were two partial derivatives
for f(x, y) depending on which variable f was being differentiated in respect to, there are similarly two second
partial derivatives for each first partial derivative (and a similar pattern follows for functions of a higher number
of variables). For f(x, y), it can be said:

(fx)x = fxx =
∂

∂x
(
∂f

∂x
) =

∂2f

∂x2

(fx)y = fxy =
∂

∂y
(
∂f

∂x
) =

∂2f

∂y∂x

(fy)x = fyx =
∂

∂x
(
∂f

∂y
) =

∂2f

∂x∂y

(fy)y = fyy =
∂

∂y
(
∂f

∂y
) =

∂2f

∂y2

(74)

Theorem (Clairaut’s Theorem). If the point (a, b) is in the domain of f(x, y), and fxy and fyx are continuous, then
fxy(a, b) = fyx(a, b).

9.4 Differentials, Errors, Approximations

In functions of a single variable, it can be said:

dy = f ′(x)dx

Similarly, in a function of multiple variables (say z = f(x, y)), we can say:
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dz = fx(x, y)dx+ fy(x, y)dy

=
∂z

∂x
dx+ ∂z

∂y
dy

(75)

Similarly to how the approximate error ∆f in a function f(x) can be estimated from the value of ∆x by
calculating ∆f ≈ df = f ′(x)dx, we can similarly estimate the error in a function of multiple variables by
calculating:

dz = ∂z

∂x
dx+ ∂z

∂y
dy

∆z =
∂z

∂x
∆x+

∂z

∂y
∆y

(76)

9.5 Partial Differential Equations

Just as a differential equation relates a function with its derivative(s), a partial differential equation relates a
multi-variable function with its partial derivatives.

One of the most notable of these is the Laplace equation,

∂2u

∂x2
+
∂2u

∂y2
= 0 (77)

with applications in various fields.

9.6 Tangents, Linear Approximations

Just as it is possible to find the tangent line to a particular function f(x) by finding the slopem = f ′(a) at some
point a, we can find the tangent plane to a function f(x, y) at a particular point (a, b, c). In general, such a plane
can be defined as:

z − c = mx(x− a) +my(y − b)

z − c = fx(a, b)(x− a) + fy(a, b)(y − b)
(78)

Note the similarities between using this equation and the linear equation y = mx + b when finding the
tangent line to a function of a single variable.

We can also use the tangent plane to a function f(x, y) to define a linear approximation (or, more accurately,
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tangent approximation) L(x, y):

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) (79)

The derivation of this equation is very similar to that of a single-variable linearization. It should be clear that
this is simple the equation for the tangent plane at a particular point (a, b), simply rewritten as a function of x
and y.

9.6.1 Normal Equation to a Plane

Using the general form of a tangent plane (z = ax + by + c), we can find the normal equation to the the plane
at which it is tangent to the original function fairly easily. Rewriting this equation, we can say:

z = ax+ by + c

z − ax− by = c
(80)

One property of the function in this form is that a vector that is perpendicular to it can be written using the
coefficients of each variable, ie n⃗ = ⟨−a,−b, 1⟩ (this can fairly easily be proven). From here, we can find a set
of functions in terms of (for instance) t that parametrically describe the general normal equation. The slope in
each direction x, y, z must be the same as the respective quantity in our normal vector n⃗, so we can say:

x = −at

y = −bt

z = t

(81)

This form assumes that the original tangent plane in question is at the origin, but can be easily modified to
account for a different point, say at (x, y, z) = (m,n, p):

x = m− at

y = n− bt

z = p+ t

(82)
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9.7 The Chain Rule

Thechain rule for derivatives of functions of 1 variable describes the derivative of a composition of two functions;
say y = f(x) and x = g(t) (assuming f and g are differentiable), then the derivative of y with respect to t can
be described as:

dy
dt =

dy
dx

dx
dt

(f(g(t)))′ = f ′(g(t))g′(t)

(83)

This is extendable to functions of multiple variables, though with some caveats. In general, though, if u is a
function of n variables x1, x2, . . . , xn, and each x is a (differentiable) function ofm variables t1, t2, . . . , tm, then
u is also a function of t1, t2, . . . , tm, and the derivative of u with respect to ti can be described as:

∂u

∂ti
=

∂u

∂x1

∂x1
∂ti

+
∂u

∂x2

∂x2
∂ti

+ · · ·+ ∂u

∂xn

∂xn
∂ti

=
m∑
j=1

∂u

∂xj

∂xj
∂ti

(84)

This general form can seem quite daunting, but can be simplified down to a couple of main cases:

Case 1: u = z = f(g(t), h(t))

Say u = z = f(x, y), where x = g(t) and y = h(t). We can then write:

dz
dt =

∂f

∂x

dx
dt +

∂f

∂y

dy
dt (85)

Case 2: u = z = f(g(s, t), h(s, t))

Say u = z = f(x, y), where x = g(s, t) and y = h(s, t). We can then write:

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

(86)

Notice that Case 2 demonstrates the equation for two partial derivatives. By extension, the more variables
that u is a function of, the more partial derivatives there will be; in this situation, further “cases” simply follow
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the general aforementioned.

For example, if z = ex sin y, x = st2, and y = s2t, then:

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

=
∂

∂x
(ex sin y)

∂

∂s
(st2) +

∂

∂y
(ex sin y)

∂

∂s
(s2t)

= (ex sin y)(t2) + (ex cos y)(2st)

= (est
2

sin
(
s2t

)
)(t2) + (est

2

cos
(
s2t

)
)(2st)

= t2est
2

sin
(
s2t

)
+ 2stest

2

cos
(
s2t

)
(87)

The same method can be used to find ∂z
∂t
.

Figure 20: Tree graph for the partial derivative of z = f(x(s, t), y(s, t)).

Figure 21: Tree graph for F (x, f(x)).
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9.7.1 Tree Graphs

Using the chain rule for implicit functions of many variables can easily become very confusing. It can help to
create a tree graph to visualize the relationships between the functions at hand. For example, for the example
above, where z = f(x(s, t), y(s, t)), we create a tree graph as in figure 20.

To find, for instance, ∂z
∂s
, you follow the path from z to each s in the tree graph, and multiply the partial

derivatives of each function along the way (note the highlighted branches). In this case, ∂z
∂s

= ∂z
∂x

∂x
∂s

+ ∂z
∂y

∂y
∂s
.

9.8 Implicit Differentiation

Given a function in the form F (x, y) = 0 where y is a function f of x (ie F = (x, f(x))), we can differentiate
both sides in terms of x, using the chain rule (see figure 21):

F (x, y) = 0

∂F

∂x

dx

dx
+
∂F

∂y

dy
dx = 0

∂F

∂x
+
∂F

∂y

dy

dx
= 0

dy
dx = −

∂F
∂x
∂F
∂y

= −Fx
Fy

(88)

Note that dx
dx = 1, as we can think of x as a function of x (ie x = x). The proof for functions of more variables

is fairly similar; for a function of the form F (x, y, z) = 0 where z = f(x, y), we can find ∂z
∂x
:

F (x, y, z) = 0

∂F

∂x

∂x

∂x
+
∂F

∂y

∂y

∂x
+
∂F

∂z

∂z

∂x
= 0

∂x

∂x
= 1,

∂y

∂x
= 0

∂F

∂x
+
∂F

∂z

∂z

∂x
= 0

∴
∂z

∂x
= −

∂F
∂x
∂F
∂z

(89)

Note that the third line of this proof is valid as ∂x
∂x

= 1 as shown above, and ∂y
∂x

= 0 because y is not a function
of x. Finding ∂z

∂y
is incredibly similar (and equals −

∂F
∂y
∂F
∂z

).

Consider a “simpler” function, x2 + y3 = 0; differentiating in terms of x gives:
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F (x, y) = x2 + y3 = 0

dy
dx = −

∂F
∂x
∂F
∂y

= − 2x

3y2

(90)

9.9 Directional Derivatives and the Gradient

The rate of change (derivative) of a function f(x, y) of 2 variables can theoretically be defined in any arbitrary
direction, say, in the direction of a unit vector u⃗ = ⟨a, b⟩. By this logic, then fx(x, y) is the derivative in the
direction of î = ⟨1, 0⟩, and fy(x, y) is the derivative in the direction of ĵ = ⟨0, 1⟩. The derivative in the direction
of any arbitrary unit vector u⃗ is called a directional derivative, and is denoted as Du⃗f(x, y). Using the limit
definition of a derivative, we can write:

Du⃗f(x0, y0) = lim
h→∞

[
f(x0 + ah, y0 + bh)− f(x0, y0)

h
] (91)

Note that the top line states f(x0 + ah, y0 + bh) because the function is increasing by a in the x direction and b
in the y direction.

To simplify this, let g(h) = f(x0 + ah, y0 + bh), then we can say, using eqn. 91:

g′(0) = lim
h→∞

[
g(h)− g(0)

h
] = lim

h→∞
[
f(x0 + ah, y0 + bh)− f(x0, y0)

h
] = Du⃗f(x0, y0) (92)

Since g(h) = f(x0 + ah, y0 + bh), we can define x = x0 + ah and y = y0 + bh (ie, x and y are both functions
of h), and using the chain rule, write:

§9.9 Partial Derivatives and Applications: Directional Derivatives and the Gradient p. 58



g(h) = f(x0 + ah, y0 + bh) = f(x(h), y(h))

g′(h) =
∂f

∂x

dx

dh
+
∂f

∂y

dy

dh
dx

dh
=

d

dh
(x0 + ah) = a

dy

dh
=

d

dh
(y0 + bh) = b

∴ g′(h) =
∂f

∂x
(a) +

∂f

∂y
(b)

= fx(x, y)a+ fy(x, y)b

g′(0) = fx(x0, y0)a+ fy(x0, y0)b

= Du⃗f(x0, y0)

(93)

Note that this last line involves combining the result of calculating g′(h) with the original definition of g′(0)
from eqn. 93. In summary, if u⃗ = ⟨a, b⟩, then the derivative of f(x, y) in the direction of u⃗ is:

Du⃗f(x, y) = fx(x, y)a+ fy(x, y)b (94)

Note that this can be rewritten as a dot product:

Du⃗f(x, y) = fx(x, y)a+ fy(x, y)b

= ⟨fx(x, y), fy(x, y)⟩ · ⟨a, b⟩

= ⟨fx(x, y), fy(x, y)⟩ · u⃗

(95)

The first vector in this equation is the gradient (denoted ∇) of f(x, y); specifically:

∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩

( =
∂f

∂x
î+

∂f

∂y
ĵ)

(96)

Using this notation, we can simplify the form of the directional derivative to

Du⃗f(x, y) = ∇f(x, y) · u⃗ (97)
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In higher dimensions, the same general concepts apply; for instance, Du⃗f(x, y, z) = ∇f(x, y, z) · u⃗, where
u⃗ is a vector in R3.

9.9.1 Maximizing the Gradient

Given a function, f(x, y), a common question is to find what direction it changes the fastest, ie, what direction
should u⃗ be pointing to maximize Du⃗f(x, y)? This is fairly simple to calculate using eqn. 97’s definition of the
gradient:

Du⃗f(x, y) = ∇f(x, y) · u⃗

= |∇f(x, y)||u⃗| cos(θ)

= |∇f(x, y)| cos(θ)

(98)

Since cos is at a max when θ = 0, we can thus maximize Du⃗f(x, y) by setting u⃗ in the same direction as
∇f(x, y).

9.10 Using a Jacobian Matrix

The Jacobian matrix is a matrix of partial derivatives of a function of multiple variables. It has many more
applications beyond the scope of this course, but is still interesting/useful enough to include here. To understand
the derivation of the Jacobian matrix, first consider the derivation of Cramer’s rule.

9.10.1 Cramer’s Rule

Cramer’s Rule is a general method for solving systems of linear equations, specifically, when there are as
many unknowns as there are equations. Its easiest to understand by deriving it first from a simple system of 2
equations (and thus, 2 unknowns):

ax+ by = α

cx+ dy = β
(99)

We can cancel out the y terms:
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d(ax+ by = α)

b(cx+ dy = β)

(adx+ bdy = dα)

−(cbx+ bdy = bβ)

adx− cbx = dα− bβ

x(ad− cb) = dα− bβ

x =
dα− bβ

ad− cb

(100)

If we consider A as the matrix of coefficients of the system and B as the matrix with the first column of A
replaced with the column vector ⟨α, β⟩ (ie the solutions), then we can write the above as:

A =

[
a b

c d

]
B =

[
α b

β d

]

x =
dα− bβ

ad− cb
=

det(B)

det(A)

(101)

Cramer’s Rule in general states that for an equation Ax = b, xi = det(Bi)
det(A)

, where Bi is the matrix with the ith

column of A replaced with b and xi is the ith variable in the equation(s). See here for more Linear Algebra.

9.10.2 Using Cramer’s Rule to Derive the Jacobian Matrix

Given two functions F (x, y, u, v) = 0 and G(x, y, u, v) = 0, where u and v are both functions of x and y, we
can find ∂u

∂x
(or ∂u

∂y
, ∂v
∂x
, and ∂v

∂y
, by the same method) by setting up a system of equations. For both F and G, we

can take the derivative of both sides with respect to x:

∂F

∂x
+
∂F

∂u

∂u

∂x
+
∂F

∂v

∂v

∂x
= 0

∂F

∂u

∂u

∂x
+
∂F

∂v

∂v

∂x
= −∂F

∂x
∂G

∂x
+
∂G

∂u

∂u

∂x
+
∂G

∂v

∂v

∂x
= 0

∂G

∂u

∂u

∂x
+
∂G

∂v

∂v

∂x
= −∂G

∂x

(102)

In this way, we can consider this as a system of two equations and two variables (∂u
∂x

and ∂v
∂x
), which we can

solve using Cramer’s Rule, for example, for ∂u
∂x
:
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∂u

∂x
=

|

[
−∂F

∂x
∂F
∂v

−∂G
∂x

∂G
∂v

]
|

|

[
∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

]
|

=

−∂(F,G)
∂(x,v)

∂(F,G)
∂(u,v)

(103)

9.11 Optimization

9.11.1 Extrema of Functions of Multiple Variables

For a function f(x) of a single variable, an extrema of the function exists when f ′(x) = 0. By extension, we say
that an extrema exists at some point (call it P0) on a function f(x, y) of two variables when both [∂f

∂x
]P0 = 0 and

[∂f
∂y
]P0 = 0. By extension, P0 is an extrema if ∇⃗f(P0) = 0⃗. There exist several proofs for this fact, but consider

the following 2:

Proof. Assume that P0 is a minimum point of z = f(x, y). The tangent plane to this point must thus be hori-
zontal. Now take a new function F (x, y, z) = z − f(x, y) = 0. Finding the gradient of F :

∇⃗F = −∂F
∂x

î− ∂F

∂y
ĵ + k̂

This gradient is normal to P0. Since P0 is a minimum, the normal vector to f(x, y) at P0 is −k̂. Thus,
∇⃗F = ∇⃗f(P0), and we can write:

∇⃗F = −∂f
∂x
î− ∂f

∂y
ĵ + k̂ = −k̂

∂f

∂x
î+

∂f

∂y
ĵ = 0⃗

Thus, ∂f
∂x

= 0 and ∂f
∂y

= 0, and so ∇f⃗(P0) = 0⃗ ■

A similar proof can be made for a maximum point…

Proof. Take a function f(x, y) that has a maximum at P0. Now, assume that ∇⃗f(P0) ̸= 0⃗. If this were the case,
then, by definition, the gradient of the function is pointing to a direction where the function is increasing. This

§9.11 Partial Derivatives and Applications: Optimization p. 62



contradicts the fact that P0 is a maximum point, and thus, ∇⃗f(P0) must equal 0⃗. ■

For functions of 3 variables (and higher), similar reasoning to the second proof above can be used to show
that ∇⃗f(P0) = 0⃗ if P0 is a maximum or minimum point; there is no real geometric proof for this, however.

9.11.2 Second Derivative Test

Just as for functions of a single variable, it is not sufficient to say that a point is an extrema of a function of two
variables simply because the gradient is zero. Instead, we must use the second derivative test. The motiva-
tion/derivation of this test comes from Taylor polynomial expansion of a general function of two variables, but
won’t be covered just yet.

Consider a function f(x, y), and a point P0 at which ∇f(P0) = 0⃗. We can define a new matrix containing
the second derivatives of f at P0:

[
∂2f
∂x2

∂2f
∂xy

∂2f
∂yx

∂2f
∂y2

]
=

[
fxx fxy

fyx fyy

]

Note that ∂2f
∂yx

= ∂2f
∂xy

, assuming continuity at P0, by Clairaut’s Theorem. This, somewhat similarly to the
Jacobian matrix defined earlier, is called the Hessian matrix of f .

The determinant of this matrix, from the definition of the determinant of a 2 by 2 matrix, is fxxfyy−fxyfyx =
fxxfyy − f 2

xy. The value of this determinant can then be used to determine what exactly the point P0 is:

• fxxfyy − f 2
xy > 0

– fxx > 0 and fyy > 0: P0 is a local minimum

– fxx < 0 and fyy < 0: P0 is a local maximum

• fxxfyy − f 2
xy < 0: P0 is a saddle point. This is a point where the function decreases in one direction, and

increases in the other (think of the central point of a hyperbolic paraboloid).

• fxxfyy−f 2
xy = 0: the test is inconclusive. If this situation arises, you’d have to do significantly more work

(ie by further expanding the Taylor polynomial of f ) to determine what exactly the point is.

Example: consider a rectangular open box with dimensions x, y, and z, with a volume of 32 and a minimal
surface area. We can define S as the surface area of the box:

S = xy + 2xz + 2yz

The volume is given by xyz = 32 =⇒ z = 32
xy
, so we can rewrite S as a function of x and y:
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S(x, y) = xy +
64

y
+

64

x

Optimizing S:

∇S = ⟨y − 64

x2
, x− 64

y2
⟩

∇S = ⟨0, 0⟩

=⇒ x =
64

y2
and y =

64

x2

Solving this set of equations, we get x = y = 4. To verify that this is indeed a minimum, we can use the
second derivative test:

HS =

[
128
x3

1

1 128
y3

]
128

x3
· 128
y3

− 12

=
16384

4096
− 1 > 0

Sxx(4, 4) =
128

43
> 0

Syy(4, 4) =
128

43
> 0

Thus, the point (4, 4) is a local minimum of S. We can find the length of side z = 32
4∗4 = 2, and so the

minimum surface area is S = 4 ∗ 4 + 2 ∗ 4 ∗ 2 + 2 ∗ 4 ∗ 2 = 48.

Testing the types of extrema of a function of more than two variables is slightly trickier, but still uses the
aforementioned Hessian matrix (an in fact, the formula above is just a special case of the following “method”).
Take a Hessian matrix of a function of n variables:

∂2f
∂x21

∂2f
∂x1x2

. . . ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x22

. . . ∂2f
∂x2xn

... ... . . . ...
∂2f
∂xnx1

∂2f
∂xnx2

. . . ∂2f
∂x2n


The ith principal minor (denoted ∆i) of this matrix is the determinant of the matrix formed by the upper left
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i by i submatrix of this matrix. For instance, we have:

∆1 =
∂2f

∂x21
; ∆2 =

∣∣∣∣∣
[

∂2f
∂x21

∂2f
∂x1x2

∂2f
∂x2x1

∂2f
∂x22

]∣∣∣∣∣ ; ∆3 =

∣∣∣∣∣∣∣∣


∂2f
∂x21

∂2f
∂x1x2

∂2f
∂x1x3

∂2f
∂x2x1

∂2f
∂x22

∂2f
∂x2x3

∂2f
∂x3x1

∂2f
∂x3x2

∂2f
∂x23


∣∣∣∣∣∣∣∣ ; . . .

A particular point is a local maximum if ∆1 < 0,∆2 > 0,∆3 < 0, . . . (alternating positive/negative) (ie, the
matrix is negative definite), and a local minimum if ∆1 > 0,∆2 > 0, . . . (all positive) (ie, the matrix is positive
definite).

9.11.3 Least Squares

Consider a set of N points (x1, y1), . . . , (xN , yN). We can fit a line to these points (of the form y = mx+ b) by
finding the points with “the least error” of the original points, ie (x1,mx1 + b), . . . , (xN ,mxN + b). We define
this “error” as the sum of the squares of the differences between the original points and the points on the line,
hence the name “least squares”. We can thus define a function S(m, b) describing the square of the distance
between the given points, and optimize it to find the best fit line:

S(m, b) =
N∑
k=1

(mxk + b− yk)
2 (104)

We can find the extrema of this function by finding when the partial derivatives of this function are equal to
zero, as described in the previous section:

∂S

∂m
=

∂

∂m

N∑
k=1

(mxk + b− yk)
2

=
N∑
k=1

∂

∂m
(mxk + b− yk)

2

=
N∑
k=1

2(mxk + b− yk)xk = 0

Note that this relies on the fact that the derivative of a sum is equal to the sum of the derivatives. Rearranging
terms:

m[
N∑
k=1

x2k] + b[
N∑
k=1

xk] =
N∑
k=1

xkyk
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Similarly for ∂S
∂b
:

∂S

∂b
=

N∑
k=1

∂

∂b
(mxk + b− yk)

2

=
N∑
k=1

2(mxk + b− yk)

=
N∑
k=1

(mxk + b− yk) = 0

m[
N∑
k=1

xk] +Nb =
N∑
k=1

yk

While its not obvious in this form, this is now simply a system of two equations in two unknowns (m and b),
which, when given a set of N points, can be solved with any number of methods (ie Cramer’s).

9.12 Extrema with Constraints

Say we have a function f(x, y) subject to some constraint g(x, y) = 0 that we wish to optimize. Suppose we
can represent g parametrically as the curve C : x = x(t), y = y(t). If P [x(t), y(t)] is an extrema of f , we can
write f(x(t), y(t)) = F (t) (for some function F ). We can then write (via the chain rule):

dF
dt = 0 =

df
dx

dx
dt +

df
dy

dy
dt

This is simply a dot product,
∇f⃗ · ⟨dxdt ,

dy
dt ⟩,

where the second vector is the tangent vector to the curve C at P , which we can call T⃗ . As this dot product is
zero,∇f⃗ must be perpendicular to T⃗ . Now, taking the gradient of g (again via the chain rule), we have

∂g

∂x

dx
dt +

∂g

∂y

dy
dt = 0,

and can further say that
∇g⃗ · T⃗ = ∇g⃗ · T⃗ = 0.

Here too, (assuming ∇g⃗(P ) ̸= 0),∇g⃗ ⊥ T⃗ . Since both f⃗ and g⃗ are perpendicular to T⃗ , we can thus say

∇f⃗(P ) = ±λ∇g⃗(P ),
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where λ is an arbitrary constant called, in the context of these problems, the Langrangian multiplier. In
problems involving extrema with constraints, we can also define the Lagranian;

L(x, y, λ) = f + λg,

and require that
∇L⃗ = ∇f⃗ + λ∇g⃗ = 0.

This gives us a system of three equations for three unknowns; namely

Lx = fx + λgx = 0

Ly = fy + λgy = 0

Lλ = g(x, y) = 0

This can be extended to a function, f(x, y, z), subject to two constraint g(x, y, z) = 0 and h(x, y, z) = 0; we
write

L(x, y, λ, µ) = f + λg + µh,

where we require
∇L⃗ = ∇f + λ∇g + µ∇h = 0.

Extending this out yields a system of four equations of four unknowns.

In general, the actual value(s) of the Lagrangian multiplier(s) are irrelevant; simply use the equations that
they are a part of to solve for the coordinates of the extrema.

9.12.1 Sufficiency for Extrema

Similar to section 9.11.2; the second derivative test for a Lagrangian of two variables x, y and constraint λ, ie

L = f(x, y)± λg(x, y)

is given
H = Lxxg

2
y − 2Lxygxgy + Lyyg

2
x;

• H > 0 =⇒ (x, y) a min

• H < 0 =⇒ (x, y) a max
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10 Multiple Integration

10.1 Double Integrals

Consider an arbitrary rectangleD in the x, y-plane, and let f(x, y) be a function inD. SubdividingD into small
rectangles, we can say that the total value of f in the smaller rectangle is approximately, taking P (x∗ij, y∗ij) to be
a point within this rectangle, f(P )∆xi∆yj . Summating all of these rectangles yields

lim
m,n→∞,∞

n∑
i=1

m∑
j=1

f(P )∆xi∆yj

=

∫ d

c

∫ b

a

f(x, y) dx dy

Where (a, b) is the interval of x-values and (c, d) is the interval of y-values. This is the simplest case of
a double integral, where the region is rectangular and can thus be broken down into a grid of rectangles. A
common subcase here is when f(x, y) = g(x) ∗ h(y); in this case, we can write∫∫

D

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dx dy

=

∫ d

c

h(y)

∫ b

a

g(x) dx dy

=

∫ d

c

h(y) dy
∫ b

a

g(x) dx

Another helpful case in evaluating double integrals is the following theorem.

Theorem (Fubini’s Theorem). If an integral has a finite value, then the order of integration may be interchanged.
That is, ∫ b

a

∫ d

c

f(x, y) dx dy =

∫ d

c

∫ b

a

f(x, y) dy dx.

More complex regions are typically broken down into two types; Type I, where the region’s y values are
bounded by functions of x, and Type II, where the region’s x values are bounded by functions of y. In short,
these can be written as follows:

1. Type I: region D bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x).∫∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx
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2. Type I: region D bounded by h1(y) ≤ x ≤ h2(y) and c ≤ y ≤ d.∫∫
D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy

10.2 Applications of Double Integrals

Other than the obvious (finding the area of an arbitrary region in the x, y-plane), there are a number of other
applications;

• Volume of a Projected Region: A surface defined by z = f(x, y) can be projected to the region D on
the x, y-plane. Considering the surface as the “top” of a pseudo-cylinder, and D as the base, the volume
of the resulting solid is

V =

∫∫
D

f(x, y) dA

• Volume of a Region Rotated: Very similarly to finding the volume of a function of a single variable
being rotated about an axis, the volume of an arbitrary region can also be found when rotated; about the
x-axis:

V =

∫∫
D

2πy dA;

and the y-axis:
V =

∫∫
D

2πx dA.

• Average Value of a Function over a Region: Given a function f(x, y) over a region D of area A, the
average value of the function within this region is, simply,

faverage =

∫∫
D
f(x, y) dA
A

.

• Center of Mass: The center of mass of a region R with density function ρ(x, y)isgiven :

(xcent, ycent) =

(∫∫
R
xρ(x, y)dA∫∫

R
ρ(x, y)dA

,

∫∫
R
yρ(x, y)dA∫∫

R
ρ(x, y)dA

)
Notice that when ρ is constant, it simply cancels out, and the center of mass is simply the average of the
x and y values of the region.

10.3 Coordinate Transformations

Consider a vector function R⃗ = R⃗(u⃗, v⃗), as well as figure 22. The gradient of this function, ∇⃗R, is given by

∇⃗R =
∂R

∂u
û+

∂R

∂v
v̂,

§10.3 Multiple Integration: Coordinate Transformations p. 69



Figure 22: Coordinate transformation

in the base {û, v̂}. The region formed by the û and v̂ vectors to “add up” to ∇⃗R can be extended (as shown).
Consider that the vectors û and v̂ are changing at rates du and dv, respectively; thus, the area (A) of this
parallelogram would also be changing accordingly (using the general formula for the area of a parallelogram
defined via vectors);

A = ||∂R
∂u

du× ∂R

∂v
dv||

= ||∂R
∂u

× ∂R

∂v
||dudv

= det

 î ĵ k̂
∂x
∂u

∂y
∂u

0
∂x
∂v

∂y
∂v

0

 = k̂(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
) dudv

= |∂(x, y)
∂(u, v)

| dudv

Thus, dA is simply (or not so simply?) the determinant of the Jacobian matrix of the relevant variables of
transformation. In practice, this means∫∫

D

f(x, y)dA =

∫∫
D′
f(x(u, v), y(u, v)) |∂(x, y)

∂(u, v)
| dudv,

where D′ is a region in the u, v-plane.

One of the most common coordinate transformations is the polar coordinate system, where x(r, θ) = r cos(θ)

and y(r, θ) = r sin(θ). We can also more “formally” say that R⃗(r, θ) = r cos θî + r sin θĵ. Working out the
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Jacobian, we get

dA = |∂(x, y)
∂(r, θ)

| = det
[

cos θ sin θ

−r sin θ r cos θ

]
drdθ

= (r cos2 θ + r sin2 θ)drdθ

= r drdθ

An often-helpful theorem when working with coordinate transformations is as follows;

Theorem. Two functions u(x, y) and v(x, y) are functionally related as

Φ(u, v) = 0 ⇐⇒ ∂(u, v)

∂(x, y)
= 0.

Note too that ∂(x,y)
∂(u,v)

= 1/∂(u,v)
∂(x,y)

; practically, this means that (depending on what is easiest to do), we can either
rewrite u and v in terms of x and y then find the Jacobian, or we can find the Jacobian and then rewrite u and v
in terms of x and y.

10.3.1 Gaussian Integral

Consider the integral I =
∫∞
0
e−x

2 dx. We can also state that I =
∫∞
0
e−y

2 dy, and write:

I2 =

∫ ∞

0

e−x
2 dx

∫ ∞

0

e−y
2 dy

=

∫ ∞

0

∫ ∞

0

e−x
2

e−y
2 dydx

=

∫ ∞

0

∫ ∞

0

e−(x2+y2) dydx

We can then rewrite this in polar coordinates (x = r cos θ, y = r sin θ);

=

∫ ∞

0

∫ π
2

0

e−(r2 cos2 θ+r2 sin2 θ)r dθdr

=
π

2

∫ ∞

0

re−r
2 dr

= −π
4

[
e−r

2
]∞
0

=
π

4

Thus, I2 = π
4

=⇒ I =
√
π
2
. You can alternatively solve the integral

∫∞
−∞ e−x

2 dx by the same method, which
would result in more straightforward change-of-bounds when converting to polar coordinates.
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10.3.2 Generalizing Triginometric Integrals

Take the Gamma function, Γ(n) =
∫∞
0
e−xxn−1 dx. Substituting x = w2, dx = 2w dw gives us

Γ(n) = 2

∫ ∞

0

e−w
2

w2n−1 dw = 2

∫ ∞

0

e−x
2

x2n−1 dx

Multiplying this result by Γ(m) (with the same substitution, but in terms of y rather than x) gives:

Γ(n)Γ(m) = 4

∫ ∞

0

e−x
2

x2n−1 dx
∫ ∞

0

e−y
2

y2m−1 dy

= 4

∫ ∞

0

∫ ∞

0

e−(x2+y2)x2n−1y2m−1 dy dx

Rewriting this in terms of polar coordinates:

Γ(n)Γ(m) = 4

∫ ∞

0

∫ π
2

0

e−r
2

r2n−1 cos2n−1 r2m−1 sin2m−1 dθdr

= 2

∫ ∞

0

e−r2r2(m+n)−1 dr 2
∫ π

2

0

cos2n−1 θ sin2m−1 θ dθ

= Γ(n+m)

∫ π
2

0

cos2n−1 θ sin2m−1 θ dθ

=⇒
∫ π

2

0

cos2n−1 θ sin2m−1 θ dθ = Γ(n)Γ(m)

2Γ(n+m)

10.3.3 Laplace Transform

The Laplace Transform, denoted L, is the integral L(f(s)) =
∫∞
0
f(t)e−st dt. A particularly useful transform is

L(tn) =
∫ ∞

0

e−sttn dt,

where s > 0. Taking st = x =⇒ dt = dx
s
, we have

L(tn) =
∫ ∞

0

e−x
xn

sn
dx
s

=
1

sn+1

∫ ∞

0

e−xxn dx

=
Γ(n+ 1)

sn+1

Thus, L(tn) = n!
sn+1 where n is a positive integer.
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10.4 Triple Integrals

Consider a function f(x, y, z), continuous in a domain D. The sum of the function over the domain can be
written as

lim
p,n,m→∞

p∑
k=1

n∑
j=1

m∑
i=1

f(x∗ijk, y
∗
ijk, z

∗
ijk)∆Vijk =

∫∫∫
D

f(x, y, z) dV

10.5 Applications of Triple Integrals

• Function Evaluated over Region Between Two Surfaces: consider the region D, enclosed by the two
surfaces described by z = ψB(x, y) and z = ψT (x, y), where ψT > ψB . The value of f(x, y, z) over this
region can thus be written as∫∫∫

D

f(x, y, z) dV =

∫∫
Rxy

[∫ ψT

ψB

f(x, y, z) dz
]
dA,

where Rxy is the projection of D on the xy-plane. When f(x, y, z) = 1, this is equivalent to the volume
of the region D:

V =

∫∫∫
D

dV =

∫∫
Rxy

[∫ ψT

ψB

dz
]
dA =

∫∫
Rxy

[ψT (x, y)− ψB(x, y)] dA

• Same Applications as in Double Integrals: just this time, with 3D surfaces instead of 2D curves/areas.

10.5.1 Coordinate Transformations

Similarly to in double integrals, we have

dV =

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw.
Some notable coordinate systems include:

• Spherical: 
x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

,

where the natural bounds are 0 ≤ r ≤ ∞, 0 ≤ ϕ ≤ π, and 0 ≤ θ ≤ 2π. The Jacobian is ∂(x,y,z)
∂(ρ,ϕ,θ)

= ρ2 sinϕ.

Also note that x2 + y2 + z2 = ρ2, a helpful fact for some integrals.
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• Cylindrical: 
x = r cos θ

y = r sin θ

z = z

,

where the natural bounds are 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π, and −∞ ≤ z ≤ ∞. The Jacobian is ∂(x,y,z)
∂(r,θ,z)

= r.

Part III

Vector Calculus (Brief)

11 Vector Calculus

11.1 Surface Integration

11.1.1 Motivations

Consider the following descriptions of surfaces as vector functions in 3D:

• Cartesians, z = f(x, y)We have:

R⃗(x, y) = x̂i+ ŷj+ f(x, y)k̂

• Cylindricals, height H radius a

– Bottom:
R⃗B(θ, r) = r cos θ̂i+ r sin θ̂j+ 0k̂
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– Top:
R⃗T (θ, r) = r cos θ̂i+ r sin θ̂j+Hk̂

i.e. a circle

– Lateral:
R⃗L(θ, z) = a cos θ̂i+ a sin θ̂j+ zk̂

• Flat Cone, radius a angle α with x− y plane

R⃗c(ρ, θ) = ρ sinα cos θ̂i+ ρ sinα sin θ̂j+ ρ cosαk̂

• Spherical, radius a
R⃗(ϕ, θ) = a sinϕ cos θ̂i+ a sinϕ sin θ̂j+ a cosϕk̂

Notice, all of surfaces can be described as a vectorial function of two variables, ie,

R⃗ = R⃗(u, v).

As was shown in the derivation of Jacobians, it follows that the cross product of the change in surface dR⃗
represents the change in area along the surface (viz the area of a parallelogram) Specifically, we have

dS =

∣∣∣∣∣
∣∣∣∣∣∂R⃗∂u du× ∂R⃗

∂v
dv

∣∣∣∣∣
∣∣∣∣∣ ,

the infinitesimal surface area change. It follows that the total surface area of a surface described by R⃗(u, v) over
a domain Duv would be

S =

∫∫
Duv

∣∣∣∣∣
∣∣∣∣∣∂R⃗∂u × ∂R⃗

∂v

∣∣∣∣∣
∣∣∣∣∣ dudv.

11.1.2 “Special” Cases

We can “specify” the surface integral formula

S =

∫∫
Duv

∣∣∣∣∣
∣∣∣∣∣∂R⃗∂u × ∂R⃗

∂v

∣∣∣∣∣
∣∣∣∣∣ dudv

for a number of “special” cases.

• Cartesians, z = f(x, y) =⇒ R⃗(x, y) = x̂i + ŷj + f(x, y)k̂. We thus have u = x, v = y, and we can
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compute:

∂R⃗

∂u
=
∂R⃗

∂x
= î+ 0̂j+ fxk̂

∂R⃗

∂v
=
∂R⃗

∂y
= 0̂i+ ĵ+ fyk̂

Taking the cross product of these two:

∂R⃗

∂x
× ∂R⃗

∂y
= det

 î ĵ k̂

1 0 fx

0 1 fy


= −fxû− fy ĵ+ k̂

||...|| =
√

(fx)2 + (fy)2 + 1

Thus, the surface area for a surface described with Cartesians is

S =

∫∫
Dxy

√
(fx)2 + (fy)2 + 1 dxdy.

• Sphericals, R⃗(θ, ϕ) = a sinϕ cos θ̂i+ a sinϕ sin θ̂j+ a cosϕk̂. We thus have the derivatives

∂R⃗

∂θ
= −a sinϕ sin θ̂i+ a sinϕ cos θ̂j+ 0k̂

∂R⃗

∂ϕ
= a cosϕ cos θ̂i+ a cosϕ sin θ̂j− a cosϕk̂.

And their cross products:

∂R⃗

∂θ
× ∂R⃗

∂ϕ
= det

 î ĵ k̂

−a sinϕ sin θ a sinϕ cos θ 0

a cosϕ cos θ a cosϕ sin θ −a cosϕ


= · · ·

||...|| = a2 sinϕ

This gives us a surface area of
S =

∫∫
Dθϕ

a2 sinϕ dθdϕ.

NB: the similarity with the Jacobian.
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11.1.3 Applications

Many general applications from multiple integration can be applied to surface integrals; instead of evaluating
over a volume, we evaluate over a surface now. For instance, the mass of a “sheet” of variable density ρ(x, y, z)
over a domain S can be evaluated as ∫∫

S

ρ(x, y, z) dS.

It follows that the center of mass of a particular surface would be

x̄ =
1

m

∫∫
S

xρ(x, y, z) dS, etc · · · .

More broadly, the sum of a function over a particular surface is rather straightforward:∫∫
S

f(x, y)dS

11.2 Differential Geometry

11.2.1 Motivations: Motion on Curves

We can describe the motion of an object in space by parameterizing it with respect to some variable t (often
representing time):

R⃗ = x(t)̂i+ y(t)̂j+ z(t)k̂.
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It follows naturally that

dR⃗
dt = ẋ(t)̂i+ ẏ(t)̂j+ ż(t)k̂ = v⃗(t)

d2R⃗
dt2 = ẍ(t)̂i+ ÿ(t)̂j+ z̈(t)k̂ = a⃗(t).

Consider some small change in R⃗ of∆R⃗; the norm of this vector is approximately equal to the change in arc
length, ∆s. It follows:

||∆R⃗|| ≈ ∆s =⇒ ||∆R⃗
∆s

|| ≈ 1

=⇒ dR⃗
ds = lim

∆s→0

∆R⃗

∆s
= T̂

where T̂ is the unit tangent vector, ie the “vector of change” of the curve with respect to the curve length.
We can thus write:

v⃗ =
dR⃗
dt =

dR⃗
ds

ds
dt

=
ds
dt T̂

=⇒ a⃗ =
dv⃗
dt =

d2s
dt2 T̂ +

ds
dt

dT̂
dt

NB: ds
dt is simply the norm of dR⃗

dt , ie the speed of the object; it points, naturally, in the direction of T̂ .

Unfortunately, we don’t know how T̂ changes wrt time, t, directly; we can still compute, however, by the
following:

dT̂
dt =

dT̂
ds

ds
dt

Solving for
dT̂
ds : T̂ · T̂ = 1

=⇒ d
ds [T̂ · T̂ ] = 0 =

dT̂
ds · T̂ +

dT̂
ds T̂

=⇒ 2[
dT̂
ds · T̂ ] = 0

The dot product of these two vectors can be zero under the following cases:

1. T̂ = 0⃗: under the assumption that we are working with smooth ( ⇐⇒ differentiable) curves, this is not
possible
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2. dT̂
ds = 0⃗: this is only possible if the curve is a straight line, which we will assume for now is not the case.

3. T̂ ⊥ dT̂
ds : this is the “standard case” we will consider; it should also make intuitive sense; the motion that

a tangent vector to a curve is changing is perpendicular to the curve itself (Consider the most “extreme”
case, of a motion about a circle).

We introduce a new notation here:
dT̂
ds = κN̂,

where κ = ||dT̂ds ||, the curvature of R, and N̂ is the unit principal normal. This “derives” rather clearly: if
dT̂
ds is normal to T̂ , then it is a scalar multiple of a unit vector perpendicular to T̂ (ie N̂ ), where the scalar is the
magnitude of T̂ .

Returning to the earlier definition of a⃗, we can write;

dT̂
dt =

ds
dt

dT̂
dt =

ds
dt

ds
dt

dT̂
ds

=

(
ds
dt

)2 dT̂
ds

=

(
ds
dt

)2

κN̂

=⇒ a⃗ =
d2s
dt2 T̂ + κ

(
ds
dt

)2

N̂

≡ aT T̂ + aNN̂

where, in the final line, aT and aN represent the tangential and normal components of acceleration respec-
tively.

NB: the norm of a⃗ can be written as ||⃗a||2 = a2T + a2N , as per the definition of the norm of a vector. This is
often a helpful result to find either of the components of a⃗ when given the other, as often aT is fairly easy to
compute as it only relies on ds

dt while aN relies on knowing κ.

11.2.2 The T̂ , N̂ , B̂ frame

Previously, we defined the unit tangent and normal vectors. In order to “complete” our span of R3, we must
define a third vector perpendicular to both of these vectors, viz.,

B̂ = T̂ × N̂ .

B̂ is called the binormal unit vector. Together, these three vectors form a frame that can be used to describe
the motion of along a curve (specifically, a smooth curve…) in space. It differs from the “standard” {̂i, ĵ, k̂} frame
as it is not fixed in space; the vectors “follow” the motion of the curve. In addition to this curve, we also briefly
define the radius of curvature,

ρ =
1

κ
.

§11.2 Vector Calculus: Differential Geometry p. 79



How these vectors further interact (or, more accurately, their derivatives interact) is described in the next
section.

11.2.3 The Frenet-Serret Equations

The Frenet-Serret Equations describe the relationship between the derivatives of the T̂ , N̂ , and B̂ vectors. Pre-
viously, we defined

dT̂
ds = κN̂. (1)

Our goal is to similarly define each of the derivatives of the vectors in the frame {T̂ , N̂ , B̂}.

Consider B̂ = T̂ × N̂ . Taking the derivative wrt arc length:

dB̂
ds =

dT̂
ds × N̂ + T̂ × dN̂

ds

= κN̂ × N̂ + T̂ × dN̂
ds

= 0 + T̂ × dN̂
ds

=⇒ dB̂
ds ⊥ T̂

We now know that dB̂
ds is perpendicular to T̂ ; however, this is rather ambiguous, as this could really be in

any of four directions (albeit some we can intuitively rule out). To clear this up, we can use a similar “trick” as
before, and consider the derivative of the dot product of B̂:

B̂ · B̂ = 1 =⇒ d
ds [B̂ · B̂] = 0

2
dB̂
ds · B̂ = 0

Under the same assumptions of smoothness, etc, as discussed previously, we can thus conclude that dB̂
ds ⊥ B̂.

Thus, as dB̂
ds ⊥ B̂ and ⊥ T̂ , the only direction left for dB̂

ds to point is along N̂ . We thus write:

dB̂
ds = −τN̂ , (2)

where τ is the torsion of the curve, and is negative by convention.
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Finally, we seek to find dN̂
ds . We know N̂ = B̂ × T̂ , thus

dN̂
ds =

dB̂
ds × T̂ + B̂ × dT̂

ds
= (2)× T̂ + B̂ × (1)

= −τN̂ × T̂ + B̂ × κN̂

= τB̂ − κT̂ , (3)

where each step is justified by the earlier definitions as well as the fundamental workings of the cross product
of two vectors.

From (1), (2), and (3), we typically write the following (for ease of computation/memory):
dT̂
ds
dN̂
ds
dB̂
ds

 =

 0 κ 0

−κ 0 τ

0 −τ 0


 T̂N̂
B̂

 .

Using these definitions, any curve R described in terms of î, ĵ, k̂ can be rewritten in terms of the T̂ , N̂ , B̂
frame.

11.2.4 Notes: Helpful Results

• Arc Length:

Recall that ds
dt , the derivative of arc length with respect to time, can be fairly easily found by finding the

norm of the velocity vector. Thus, to find the arc length of a curve;

s(t) =

∫ t

0

ds
dτ dτ,

assuming the curve “starts” at t = 0. By extension, the upper/lower limits can be changed to find the arc
lengths between any particular points in time.

• Obtaining Curvature:

We often wish to describe the curvature, κ, of a curve without necessarily finding all of the derivatives of
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the vectors in the T̂ , N̂ , B̂ frame. Consider the following:

dR⃗
dt × d2R⃗

dt2 = v⃗ × a⃗

=

[
ds
dt T̂

]
×

[
d2s
dt2 T̂ + κ

(
ds
dt

)2

N̂

]

=
ds
dt T̂ × d2s

dt2 T̂ + κ

(
ds
dt

)3

N̂ × T̂

= 0 + κ

(
ds
dt

)3

B̂

= κ

∣∣∣∣∣
∣∣∣∣∣dR⃗ds

∣∣∣∣∣
∣∣∣∣∣
3

B̂

norm
=⇒ κ =

||v⃗ × a⃗||
||v⃗||3

Rewriting this more generally, we have

κ =
||dR⃗dt ×

d2R⃗
dt2 ||

||dRdt ||3

From here, we can consider a number of special cases:

– Planar Curves; ie, no movement in k̂. We thus have R⃗(t) = x(t)̂i+ y(t)̂j (and natural higher-order
derivatives). It follows naturally that:

κ =
|ẋÿ − ẏẍ|

(ẋ2 + ẏ2)3/2

Consider a circle, for instance, of x = h+ a cos t, y = k + a sin t. The curvature would be give

κ =
|(−a sin t)(−a sin t)− (a cos t)(−a cos t)|

(a2 sin2 t+ a2 cos2 t)3/2

= · · · = 1

a

It follows that ρ = a, ie the radius of curvature of a circle is its radius.

– Function of x; say we have y = f(x). We can parametrize this curve as x = t, y = f(t), and
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compute the curvature:

κ =
|f ′′(t)− 0|

(1 + f ′(t)2)3/2

=
d2y
dx2

(1 +
( dy
dx

)2
)3/2

i.e., the curvature in “Cartesian form”.

• Direction of N̂ :

Figure 23: The direction of N̂ is always along the “inside” of a curve.

To determine the direction of N̂ along a planar curve, one must consider the curvature; N̂ always points
towards the “inside” of curve, ie, along increasing angle of T̂ with the horizontal. See Figure 23.

• “Planes”:

Given the definitions of the T̂ , N̂ , and B̂ vectors, we can take the span of the combination of any two of
these vectors to form a particular plane to a curve. Namely:

– span(B̂, N̂), ⊥ T̂ : Normal Plane

– span(T̂ , B̂), ⊥ N̂ : Rectifying Plane

– span(T̂ , N̂), ⊥ B̂: Osculating Plane

These can be most easily obtained by finding the appropriate orthogonal vector, then finding the plane in
question.

• Area of a Parametrically Defined Curve:

Say we have a function defined parametrically as x = x(t), y = y(t). The area under a function F (x) is
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given:

A =

∫ b

a

F (x) dx.

We can substitute x(t) for x, meaning dx = dx
dt dt. We thus have F (x(t)), meaning F can simply be written

as a function of t, which we will take as our y(t). All together, this gives us:

A =

∫ b

a

y(t)x′(t) dt

A similar result can be used to obtain a formula for the volume of a revolved parametrically defined surface.

11.2.5 Osculating Circle

An osculating circle is one that touches a curve at a point, such that it has the same curvature and tangent
vector at that point.

Figure 24: An osculating circle

Generally, to find the osculating circle of a curve:

1. Parametrize the curve as x = x(t), y = y(t).

2. Find the curvature at the point of interest, κ; from here, the radius of the circle is simply ρ = 1
κ
.

3. Find the normal vector (N̂ ) at the point of interest.

4. The vector function of the osculating circle is then given by R⃗ = O⃗P + ρN̂ , where O⃗P is the vector from
the origin to the point of interest.
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11.2.6 Polar Coordinates

We can describe the unit vectors of a polar coordinate system as follows:

µ̂r = cos θ̂i+ sin θ̂j

µ̂θ = cos
(
θ +

π

2

)̂
i+ sin

(
θ +

π

2

)̂
j = − sin θ̂i+ cos θ̂j

We thus take

R⃗ = rµ̂r

dR⃗
dt =

dr
dt µ̂r + r

dµ̂r
dt

dµ̂r
dt =

dµ̂r
dθ

dθ
dt

= (− sin θ̂i+ cos θ̂j)
dθ
dt = µ̂θ

dθ
dt

=⇒ v⃗ =
dR⃗
dt =

dr
dt µ̂r + rµ̂θ

dθ
dt

≡ vrµ̂r + rθ̇µ̂θ = vrµ̂r + vθµ̂θ, where vr =
dr
dt , vθ = r

dθ
dt

For acceleration, we have:

a⃗ =
dv⃗
dt = r̈µ̂r +

dµ̂r
dt ṙ + ṙθ̇µ̂θ + rθ̈µ̂θ + rθ̇

dµ̂θ
dt

dµ̂r
dt = θ̇µ̂θ,

dµ̂θ
dt = −θ̇µ̂r

=⇒ a⃗ =
[
r̈ − rθ̇2

]
µ̂r +

[
2ṙθ̇ + rθ̈

]
µ̂θ

≡ arµ̂r + aθµ̂θ, where ar = r̈ − rθ̇2, aθ = 2ṙθ̇ + rθ̈

NB: to find the radial/circumferential components of velocity/acceleration, we can simply take the dot product
of the vector with the appropriate unit vector. For instance:

vr = v⃗ · µ̂r; vθ = v⃗ · µ̂θ
ar = a⃗ · µ̂r; aθ = a⃗ · µ̂θ
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11.2.7 Arc Length and Area of Curves with Polars

From the previous section, we had v⃗ = dr
dt µ̂r + r dθdt µ̂θ. We can thus write:

||v⃗|| =

√(
dr
dt

)2

+ r2
(
dθ
dt

)2

=
ds
dt

ds = dt

√(
dr
dt

)2

+ r2
(
dθ
dt

)2

=

√(
dr
dθ

)2

+ r2 dθ

The length of the curve between two points (well, angles, specifically) α and β would thus be the sum of the
changes of arc length between the points, namely

L = s =

∫
ds =

∫ β

α

√
r2 +

(
dr
dθ

)
dθ ≡ length of curve r = f(θ)

As shown in previous sections, the area between two curves can be described as a double integral over the
region described by the relevant area. In polars, we can write

A =

∫ β

α

∫ f(θ)

g(θ)

r drdθ =
∫ β

α

[f(θ)]2 − [g(θ)]2

2
dθ
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