
Linear Algebra and Geometry

by Louis Meunier

notes.louismeunier.net

https://notes.louismeunier.net

Contents

1 Unit 1 3
1.1 Solving Linear Systems . 3

1.1.1 Algebraically vs Geometrically . 3
1.1.2 Gaussian Elimination . 3
1.1.3 rref . 5
1.1.4 Determining Solutions from rref . 5
1.1.5 Representing Solutions . 6
1.1.6 Rank . 6

1.2 Spans . 7
1.3 Linear Relations . 7
1.4 Subspaces . 8
1.5 Standard Basis Vectors . 9
1.6 Matrix-Vector Multiplication . 9

1.6.1 Column View . 9
1.6.2 Row View . 9

1.7 Linear Transformations . 9
1.7.1 Determining Linear Transformations . 10
1.7.2 Geometric Linear Transformations . 10
1.7.3 A Quick Look at Projections . 12

2 Unit 2 12
2.1 Images and Kernels . 13

2.1.1 Rank-Nullity Theorem . 13
2.2 Matrix Algebra . 13
2.3 Compositions . 15

2.3.1 Transformation Inverses . 16
2.3.2 Inverting a Matrix . 17

2.4 Bases and Coordinates . 17
2.4.1 Introduction . 17
2.4.2 Changing Bases . 18
2.4.3 Application to Transformations . 18

2.5 Elementary Matrices . 19
2.5.1 Types of Elementary Matrices . 19

2.6 Distances . 20
2.6.1 Point to Point . 21
2.6.2 Point to Line . 21
2.6.3 Point to Plane . 22
2.6.4 Further Applications . 22

3 Unit 3 23
3.1 Curve Fitting . 24
3.2 Orthogonality and the Transpose of a Vector . 25
3.3 Normal Equations . 27
3.4 The Determinant . 28

3.4.1 Determinants of Larger Matrices . 28

1

3.4.2 Properties of Determinants . 29
3.5 Applications to Area and Volume . 29

3.5.1 Area . 29
3.5.2 Volume . 30

3.6 Adjugates . 30
3.7 Cramer’s Rule . 32
3.8 Linear Discrete Dynamical Systems . 32
3.9 Eigenstuff . 34

3.9.1 Application to Linear Discrete Dynamical Systems 34
3.9.2 Computing Eigenvalues, Eigenvectors . 35
3.9.3 Algebraic Multiplicity . 36
3.9.4 Eigenspaces and Bases . 36

3.10 Diagonalization . 37
3.10.1 Properties of Diagonalizable Matrices . 39

3.11 Extensions of Eigenvalues, etc . 40
3.12 More on Dynamical Systems . 41

3.12.1 Stability . 41

4 Summary of Terms 42
4.1 Notation . 42
4.2 Vocabulary . 44

2

1.1 Unit 1: Solving Linear Systems

Unit 1: The Basics of Linear Algebra

1.1 Solving Linear Systems

1.1.1 Algebraically vs Geometrically

Consider a set of linear equations, a1x+ b1y = c1 and a1x+ b2y = c2. Solving this should be fairly
straightforward:

• Isolate one variable in one of the equations

• Substitute said variable in the second equation

• Solve for second variable

• Plug in solution to second variable in either original equation to find the other variable

Doing this reveals one of two things: either the system is consistent, or inconsistent:

• Consistent: a solution to the system exists. This can either be:

– A unique solution (Fig. 1)

– Infinite solutions (Fig. 2)

• Inconsistent: no solution to the system exists (Fig. 3)

Being able to recognize when these particular circumstances occurs is essential.

Graphically, the differences between these are also very noticeable (see figures 1, 2, and 3.)

(a) Two equations with a unique solution (b) Three equations with a unique solution

Figure 1: Unique solutions

1.1.2 Gaussian Elimination

Although the procedure described above is fine for smaller equations, it can often become cum-
bersome. Using the concept of Gaussian Elimination, you can not only more easily solve systems
of linear equations, but also determine patterns in said systems more easily.

To begin, create an augmented matrix of the system. This involves a coefficient matrix
on the left, and the augmented part on the right.

3

1.1 Unit 1: Solving Linear Systems

Figure 2: Any number of equations with infinite solutions (always intersecting)

(a) Two equations with no solution (b) Three equations with no solution

Figure 3: No solutions

The coefficient matrix has a row representing each equation, and each column representing
the coefficients belonging to each individual variable in the system.

The augmented matrix contains each of the corresponding constants that the rows sum up
to.

For example, the system

x+ 2y − z = 1

2x− 3y + z = 4

y + 2z = 0

(1)

becomes

1 2 −1 1
2 −3 1 4
0 1 2 0

Note that even though there is no x in the third equation, its coefficient must still be represented

(as a 0).

4

1.1 Unit 1: Solving Linear Systems

1.1.3 rref

When working with augmented matrices, there are a number of possible operations that can be
used to reach the ”end goal”: the row reduced echelon form (rref). An rref is achieved when:

• The first non-zero term in each row (aka the leading 1) is a 1, and there are zeroes above
and below it.

• The leading 1 in any row is to the right of the leading 1 above (this creates the typical
staircase form).

• Any rows with all zeros in the coefficient matrix are at the bottom.

A (very simple) rref matrix could look like this:

1 0 0 1
0 1 0 4
0 0 1 0

To be clear: not all matrices will result in a nice, orderly pattern as this; most won’t.

To get to this point at all, you must manipulate the matrix using certain operations:

• Switch rows

• Add a multiple of one row to another

• Multiply a row by a constant

Note that all of these operations work on rows; attempting to manipulate columns will result
in a wrong answer.

1.1.4 Determining Solutions from rref

Given any rref matrix, you should be able to tell how many solutions a system has (and, by
extension, what they are). The following examples should reveal some patterns in determining the
number of solutions for any matrix:

•
1 0 0 c1
0 1 0 c2
0 0 1 c3

This system has one unique solution: when x = c1, y = c2 and z = c3. This comes
from the fact that each column represents a variable; thus, you can read the first row as
1 ∗ x+ 0 ∗ y + 0 ∗ z = c1. The same idea applies for the rest of the rows.

•
1 0 0 c1
0 1 0 c2
0 0 0 c3 ̸= 0

5

1.1 Unit 1: Solving Linear Systems

This system has no solutions: the final row is stating that 0 ∗ x+ 0 ∗ y + 0 ∗ z ̸= 0, which
is impossible. Thus, no solution to the system exists that would fulfil this requirement.

•
1 0 0 c1
0 1 0 c2
0 0 0 0

This system has infinite solutions: in no row is there any restriction on the value of z.
Thus, while x = c1 and y = c2, z can be any real number. When this happens, z is called a
”free variable”.

In rref matrices of the following form, you can also have variables that are reliant on the
value of free variables.

1 0 0 c1
0 1 1 c2
0 0 0 0

In this case, x = c1 and y = c2 − z, where z is free. It should be noted that you could also
rewrite this as z = c2 − y, in which case y would be the free variable. Either way of writing
it, there is one free variable.

There are many other forms, of varying complexity, that rrefs can have as well. However,
following these simple patterns will make it fairly straightforward to determine the solutions in
any situation.

1.1.5 Representing Solutions

As above, you can write the solutions to a system as x = ..., y = ..., z = However, a more
”standard” way, which will also make certain manipulations easier later, is in vector form:

xy
z

 =

c1c2
c3

Or, if there is a free variable: xy

z

 =

c1c2
t

 , t ∈ R

1.1.6 Rank

The rank of a matrix is the number of leading ones in the rref of that matrix. You can similarly
say that the rank is equal to the number of columns of that matrix minus the number of free
variables (though this way of thinking is more relevant later).

If a matrix has a rank equal to its number of columns, then the system of equations it represents
is consistent and has a unique solution.

6

1.3 Unit 1: Linear Relations

1.2 Spans

Before proceeding, we need to define a few concepts to analyze solutions and describe vectors and
matrices in new ways.

A linear combination of the vectors v⃗1, v⃗2, ..., v⃗n is an expression c1v⃗1+c2v⃗2+ ...+cnv⃗n, where
c1, c2, ..., cn ∈ R. In ”simpler” terms, it is a sum of multiples of the vectors involved.

A span of vectors is all possible linear combinations of a set of vectors, represented by the
notation span(v⃗1, v⃗2, ..., v⃗n).

Spans can also be rewritten as a set; span(v⃗1, v⃗2) = c1v⃗1 + c2v⃗2, c1, c2 ∈ R. Being able to switch
between these two forms will be important for later.

Another important concept is being able to determine if a vector exists in a particular span;
say, does the vector v⃗ exist in span(x⃗, y⃗)? This is the equivalent of asking whether a particular
vector can be reached by summing multiples of a set of other vectors. Based on our ”alternative”
form of writing a span, we can say:

v⃗
?
∈ span(x⃗, y⃗) = c1x⃗+ c2y⃗, c1, c2 ∈ R

Thus, we can say v⃗ = c1x⃗+ c2y⃗. If and only if c1 and c2 exist can we say that v⃗ is in span(x⃗, y⃗).

1.3 Linear Relations

Piggybacking off the ideas of linear combinations earlier, we can define a linear relation of vectors
v⃗1, v⃗2, ..., v⃗n as an equation of the form c1v⃗1 + c2v⃗2 + ...+ cnv⃗n = 0⃗.

If you can solve this equation where at least on cn is N OT 0, then this is called a non-trivial
linear relation. Otherwise, if the only possible solution occurs when all cn’s are 0, then this is a
trivial linear relation.

From this, we can state yet another definition to describe vectors; linear (in)dependence. A
set of vectors can be described as linearly independent if the only linear relation between them
that exists is the trivial one; conversely, a set of vectors are linearly dependent if a non-trivial
linear relation exists.

Its helpful to think about this logically: if a set of vectors are dependent, then one (or more) of
the vectors relies on the one (or more) of the others. In more ”mathematical” terms, this means
that vectors in the set can be created from a sum of different multiples of others vectors in said
set. This, on the other hand, is impossible between independent vectors.

For example: is the vector

[
1
2

]
in span(

[
−4
−5

]
,

[
1
1

]
)? If this were true, then we should be able

to say that:

c1

[
1
1

]
+ c2

[
−4
−5

]
=

[
1
2

]
, c1, c2 ∈ R

7

1.4 Unit 1: Subspaces

c1 and c2 are, clearly, just scalars of their respective vectors. As such, we can rewrite:

[
c1
c1

]
+

[
−4c2
−5c2

]
=

[
1
2

]
[
c1 − 4c2
c1 − 5c2

]
=

[
1
2

] (2)

It should (hopefully) be clear that this is simply a system of linear equations, where c1 and c2
are the unknowns!

c1 − 4c2 = 1; c1 − 5c2 = 2

From here, we can simply use Gaussian elimination to see whether or not a solution does exist:

[
1 −4 1
1 −5 2

]
⇒

[
1 0 −3
0 1 −1

]
Therefore, c1 = −3 and c2 = −1; as this system is consistent, then the vector is indeed in the

span.

When working with spans of a number of vectors, it is important to be able to rewrite spans
with as few vectors as possible; this is called the basis of the set. With more notation, we can
say that the vectors v1, v2, ..., vn of set V are a basis of V if they both span V and are linearly
independent.

The first requirement here should make intuitive sense; if a set of vectors doesn’t span V , then
of course it can’t represent it fully. The second requirement takes care of the ”as few vectors as
possible” part; if the opposite were true, and the vectors were linearly dependent, then one or
more of the vectors could be represented by vectors already existing in the set.

Using the basis, we can then define the dimension of a set; the number of vectors in the basis
of the set.

1.4 Subspaces

A subspace of RN is a non-empty set of vectors in RN , that can be described as a span of vectors.
These two terms can often be interchanged, but be careful when you do so.

Formally, a subspace, V , must have the following properties:

1. Closed under scalar multiplication: if u⃗ ∈ V , then ku⃗ ∈ V for any scalar k ∈ R

2. Closed under addition: if v⃗, w⃗ ∈ V , then v⃗ + w⃗ ∈ V .

The concepts of bases and dimension similarly apply to subspaces, with the same rules.

8

1.7 Unit 1: Linear Transformations

1.5 Standard Basis Vectors

The standard basis vectors of Rn are written as e⃗i, with i from 1 to n, where the vector is made up

of all 0’s and a 1 in the ith row. For example, the standard basis vectors R2 are e⃗1 =

[
1
0

]
, e⃗2 =

[
0
1

]
.

These standard basis vectors are, hopefully clearly, linearly independent; that is why they are
called the ”basis” after all. They will be helpful to use later on.

1.6 Matrix-Vector Multiplication

Being able to multiple a matrix by a vector has a large number of applications that are important
to understand. We can approach defining matrix multiplication in a few ways.

1.6.1 Column View

Given a matrix A and a vector x⃗:

Ax⃗ =

 | | |
c⃗1 c⃗2 ... c⃗n
| | |

x1

x2

...
xn

 = x1c⃗1 + x2c⃗2 + ...+ xnc⃗n

In other words, this is defining the product of a matrix and vector as a linear combination of
the columns of the matrix. It should be noted that this works by treating each column of the
matrix A as a vector; this can be helpful in better visualizing this operation.

1.6.2 Row View

Given a matrix A and a vector x⃗:

Ax⃗ =

− r⃗1 −
− r⃗2 −

...
− r⃗m −

 x⃗ =

r⃗1 · x⃗
r⃗2 · x⃗
...

r⃗m · x⃗

Note that ”·” represents a dot product : this is the operation involving multiplying each element

in one vector by the corresponding element in another vector.

Note that, conversely to above, this way of viewing the operation involves treating each row of
A as an individual matrix.

Deciding which ”view” to use when is, often, very subjective to the particular situation. How-
ever, it should be noted that the result is the same no matter which view you take.

1.7 Linear Transformations

A linear transformation T : Rn → Rm is a function that:

9

1.7 Unit 1: Linear Transformations

1. preserves vector addition: T (x⃗+ y⃗) = T (x⃗) + T (y⃗) for all x⃗, y⃗

2. preserves scalar addition: T (cx⃗) = cT (x⃗) for all x⃗ and c ∈ R

Linear transformations are often described by a matrix A, which induces said linear transfor-
mation. In other terms:

T : Rn → Rm = T (x⃗) = Ax⃗

This matrix A must be an m x n matrix in order for this formula to make sense.

1.7.1 Determining Linear Transformations

In order to figure out the linear transformation T of any vector, you must know the T (x⃗) of as
many linearly independent x⃗’s as there are columns in the matrix A. If you know, or are able
to determine, the T of the standard basis vectors of A, it is far easier to determine the linear
transformation of any vector, thanks to the properties of linear transformations:

T (x⃗) = T (c1e⃗1 + c2e⃗2 + ...) = c1T (e⃗1) + c2T (e⃗2) + ...

Using this same pattern, we can rewrite the T of any vector x⃗ as a sum of multiples of the T of
the standard basis vectors.

1.7.2 Geometric Linear Transformations

Linear transformations can be visualized as a number of geometrical transformations; representing
these in two dimensions makes it easiest to comprehend, but the same concepts are applicable to
an arbitrary number of dimensions.

Say T (x⃗) = Ax⃗, consider the following transformations on the standard basis vectors e⃗1 and e⃗2
of R2 (see figure 4):

Figure 4: e⃗1, e⃗2 before any transformation

10

1.7 Unit 1: Linear Transformations

• A =

[
−1 0
0 1

]

T (e⃗1) =

[
1
0

] [
−1 0
0 1

]
=

[
−1
0

]
, T (e⃗2) =

[
0
1

] [
−1 0
0 1

]
=

[
0
1

]

Figure 5: Reflection of e⃗1, e⃗2 over the y-axis

• A =

[
0 1
1 0

]

T (e⃗1) =

[
1
0

] [
0 1
1 0

]
=

[
0
1

]
, T (e⃗2) =

[
0
1

] [
0 1
1 0

]
=

[
1
0

]

Figure 6: Reflection of e⃗1, e⃗2 over y = x

11

Unit 2:

• A =

[
1 −1
0 1

]

T (e⃗1) =

[
1
0

] [
1 −1
0 1

]
=

[
1
0

]
, T (e⃗2) =

[
0
1

] [
1 −1
0 1

]
=

[
−1
1

]

Figure 7: Shear of e⃗1, e⃗2 towards left

• A =

[
0 −1
1 0

]

T (e⃗1) =

[
1
0

] [
0 −1
1 0

]
=

[
0
1

]
, T (e⃗2) =

[
0
1

] [
0 −1
1 0

]
=

[
−1
0

]

Figure 8: Rotation counter-clockwise of e⃗1, e⃗2 about the origin

In these transformations, finding the effect on the standard basis vectors is typically quite
simple, while finding the transformation for any random vector can be quite difficult. So, we can
instead use the rules of linear transformations to find the effect on any vector in terms of its ratio
to the standard basis vectors.

1.7.3 A Quick Look at Projections

If a plane P passes through the origin in Rn, any vector x⃗ ∈ Rn can be written as x⃗∥ + x⃗⊥, where
x⃗∥ is a vector in the plane P and x⃗⊥ is a vector perpendicular to P . This can be defined as a linear
transformation projP : Rn → Rn = projP (x⃗) = x⃗∥

12

2.2 Unit 2: Matrix Algebra

Unit 2: Transformations & Matrix Properties

2.1 Images and Kernels

For a matrix A, we can define the following (useful) subsets:

• kernel: aka null space, written ker(A), is the set of vectors x⃗ where Ax⃗ = 0⃗.

• image: written im(A), the set of vectors y⃗ where y⃗ = Ax⃗. This is more commonly known
as the ”range” for functions.

You can solve for ker(A) by simply augmenting A by 0⃗. The image of A is simply the span of
the columns of A (which is fairly simple to prove, so it won’t be shown here).

2.1.1 Rank-Nullity Theorem

A useful pattern to keep in mind is that the rank of an rref matrix is equal to the dimension of the
image, and the number of free columns in the rref matrix is equal to the dimension of the kernel.

This pattern leads to what is called the Rank-Nullity Theorem.

2.2 Matrix Algebra

Similarly to processes described earlier for performing algebraic operations between vectors and
vectors, as well as vectors and matrices, it is also possible to perform a number of operations
between matrices. However, there are some very specific limitations and rules that must be followed
that can make said operations rather unintuitive if viewed as purely extensions of the operations
performed between numbers, for instance.

• Matrix times scalar

Multiplying a matrix A times a scalar k is very similar to multiplying a vector times a scalar:

kA = k

[
A1a A2a

A1b A2b

]
=

[
kA1a kA2a

kA1b kA2b

] (3)

• Matrix plus matrix

Adding together two matrices (say A, a n x m, and B, a p x q) requires certain restrictions
on the dimensions of the affected matrices, just as in vector addition. In this case, n = p
and m = q:

13

2.2 Unit 2: Matrix Algebra

A+B =

[
A1a A2a A3a

A1b A2b A3b

]
+

[
B1a B2a B3a

B1b B2b B3b

]
=

[
A1a +B1a A2a +B2a A3a +B3a

A1b +B1b A2b +B2b A3b +B3b

] (4)

• Matrix times matrix

In order to multiply two matrices (say A, a n x m, and B, a p x q), another set of restrictions
apply, that may be a little trickier to interpret. Say you’re finding AB; here, m = p, and the
resulting matrix is an n x q matrix.

When multiplying two matrices, you can imagine the first matrix being multiplied by each of
the columns of the second matrix, treating each column as a vector. The result of each vector-
matrix multiplication becomes the corresponding column of the resulting matrix. Given these
steps, the above restrictions should hopefully make more intuitive sense.

It should also be clear from these steps that multiplying matrices is not commutative;

A =

1 0 2
2 −2 1
3 1 0

B =

−1 3
2 0
1 1

 =
[
b⃗1 b⃗2

]
AB =

[
Ab⃗1 Ab⃗2

]
=

(−1 ∗ 2 + 2 ∗ 0 + 1 ∗ 2) (3 ∗ 1 + 0 ∗ 0 + 1 ∗ 2)
... ...
... ...

=

 1 5
−5 7
−2 9

(5)

Doing BA, on the other hand, would result in a 2 x 3 matrix, which, naturally, would not
be equal to the product of AB.

• Identity Matrix

While not exactly an algebraic operation, its important to note that the notation I is often
used to denote the identity matrix, a matrix such that AI = A. I is essentially a rref
matrix with the same number of leading ones as columns. Example:

I2 =

[
1 0
0 1

]
14

2.3 Unit 2: Compositions

• Solving for a matrix given its product

If you are given a matrix A and the product of A with an unknown matrix B, you can find
B fairly easily using a similar idea as discussed above; by treating each column of B as a
vector.

AB =

−1 0
4 5
0 1

B =

−1 −1 0
9 −1 −10
1 −1 −2

 (6)

Treating each column of B as a vector (b⃗1, etc), we can write the product of each column of
B equal to the corresponding column of the product of A and B:

b⃗1A =

−1
9
1

 , ..., b⃗nA (7)

Finding the vector that multiplies to a matrix to produce a given vector has already been
discussed above, so the steps from here (creating an augmented matrix and solving for each

component of b⃗n) should be clear. However, we can make the work a little easier by simply
creating an augmented matrix of A augmented by the product of AB:

−1 0 −1 −1 0
4 5 9 −1 −10
0 1 1 −1 −2

 (8)

All row operations to the left hand side of this matrix would be the same no matter the
augmented side, so this technique should (hopefully) seem intuitively correct.

2.3 Compositions

Recall that we can describe a linear transformation T (x⃗) as a matrix A times the vector x⃗. However,
what if we want to perform two (or more!) linear transformations, one after another? Rather
than simply performing said linear transformations one after another, we can use the concept of
compositions.

For instance, say we want T composed with S. This can be written as follows, given T (x⃗) = Ax⃗
and S(x⃗) = Bx⃗:

T ◦ S = T (S(x⃗))

= T (Bx⃗)

= A(Bx⃗)

(9)

15

2.3 Unit 2: Compositions

This composition, just like the functions is composes, is linear. This can be proved using
aforementioned definitions, but should also make intuitive sense.

Another common question is how to find the single matrix, say C, that induces the composition.
As shown above, a composition is simply a vector multiplied by a number of matrices, so we can
find C by simply multiplying the matrices involved (in this case, A and B) using the method
described earlier.

Note that, since this is essentially just matrix-matrix multiplication, order matters.

2.3.1 Transformation Inverses

Given a particular transformation y⃗ = T (x⃗), we know we can describe it as y⃗ = Ax⃗. However, it
is very helpful to be able to describe its inverse, T−1(x⃗) = S(y⃗) = x⃗. By a natural extension, we
should be able to find a matrix B such that By⃗ = x⃗. Below will describe strategies for finding B
for a number of transformations, and later how to generalize said strategies to any matrix A.

First, let’s look at a number of common linear transformations, and how to determine their
inverses; if possible.

• Reflections

T (x⃗) = refL(x⃗)

How do we reflect a vector back over to where it started? Well, as the question almost
answers by itself, you simply reflect it again. As such, we can say T−1 = T .

• Rotations

T (x⃗) = rot(x⃗)

Say our transformation rotates a vector x⃗ by an angle Θ clockwise. To invert this, we can
simply rotate it counterclockwise by Θ, or, equivalently, clockwise by −Θ.

• Projections

T (x⃗) = projL(x⃗)

How can we invert a projection? Simply put: we can’t! When a vector x⃗ is projected onto
a line L, for instance, we lose information about the original x⃗, and thus have no way of
returning to x⃗. Another way to interpret this is that T (x⃗) for any x⃗ ⊥ L equals 0⃗, and thus
it is impossible to go backwards to find any individual x⃗.

From these few examples, we can generalize the following: a transformation T : Rm → Rn is
only invertible if for all outputs y⃗ ∈ Rn there exist a x⃗ ∈ Rm such that T (x⃗) = y⃗ and x⃗ is unique.

16

2.4 Unit 2: Bases and Coordinates

We can think about this a little differently by considering A such that T (x⃗) = Ax⃗ = y⃗. Given
our definition above, Ax⃗ = y⃗ must be consistent for any y⃗ if T is invertible. As such, we can say
that rref(A) must have a leading one in each row.

Further, we also require that Ax⃗ = y⃗ has a unique solution, so rref(A) must also have a leading
one in each column.

The only way that this is possible, to begin with, is that the number of columns of A equals
to the number of rows of A, and by extension, rref(A) = I. In other words, the matrix must be
square.

2.3.2 Inverting a Matrix

As seen earlier in Unit 1, we can say that a transformation T (x⃗) = Ax⃗ =
[
T (e⃗1) T (e⃗2)

]
x⃗. To

find the inverse of A (A−1), we can say that A−1 =
[
T−1(e⃗1) T−1(e⃗2)

]
.

We can say that c⃗n = T−1(e⃗n), so T (c⃗n) = e⃗n. Thus, we can say that each nth column of
matrix A times some c⃗n equals e⃗n. To find each c⃗n (ie, find each column of A−1), we can therefore
augment A by the corresponding number of unit vectors; or, in other words, In.

For example, to invert

[
3 2
7 5

]
, we write:

[
3 2 1 0
7 5 0 1

]
→

[
1 0 c⃗1 c⃗2
0 1 | |

]
→

[
I A−1

]
(10)

2.4 Bases and Coordinates

2.4.1 Introduction

To understand the use of bases in linear algebra, consider the standard basis vectors, e⃗1, e⃗2, ..., e⃗n.
Any vectors in Rn can thus be rewritten as a combination of these standard vectors (c1e⃗1 + c2e⃗2 +
... + cne⃗n). However, consider a situation in which, say, ”movements” are restricted to only a
particular set of vectors (say v⃗1 and v⃗2) that aren’t the standard basis vectors.

While you can write these vectors, or any combinations of these vectors, as a combination of
standard basis vectors, it can be easier to call these vectors as a new set of ”basis vectors”. We
define this as B = {v⃗1, v⃗2}, ie B is a basis of R2.

When writing about vectors in basis B, we use the notation [y]B =

[
c1
c2

]
to indicate the

coordinates of y⃗ in the B basis. This vector can thus, by extension, be represented as a linear
transformation of the vectors in the basis B.

17

2.4 Unit 2: Bases and Coordinates

2.4.2 Changing Bases

To change a vector from one base to another, we can find a matrix S such that S[x⃗]B = x⃗, where S
is typically called the ”change of basis matrix”, in this case, changing base from B to the standard
basis.

Finding S is fairly straightforward. We know that S times each vector in B must equal the
corresponding standard basis vector, so we can write Sv⃗1 = e⃗1, Sv⃗2 = e⃗2, and so on. Therefore, S

simply equals the matrix of the vectors in B, ie S =

 | | |
v⃗1 v⃗2 ...
| | |

.
To extend this, since we can say that S[x⃗]B = x⃗, we can inversely say that [x⃗B] = S−1x⃗, so to

find the matrix that changes bases in the opposite direction, we simply find the inverse of S. From
here, this same rationale can be extended transform between any two bases in the same Rn.

2.4.3 Application to Transformations

As noted earlier, we can define a linear transformation as a matrix A such that T (x⃗) = Ax⃗. With
the added knowledge of bases, we can often more easily find the matrix of a transformation by
carefully picking a basis for the transformation which makes the matrix easier to find.

To demonstrate this, take a transformation T that projects vectors in R3 onto the plane P
defined by 3x1 + 2x2 − 5x3 = 0. To find a matrix A such that T (x⃗) = Ax⃗, we can create a basis
B of R3 using vectors that make A easy to compute.

For this particular case, we can define B = {v⃗1, v⃗2, v⃗3}, where:

• v⃗1 =

 3
2
−5

, since T (v⃗1) = 0, as it is perpendicular to P

• v⃗2 =

05
2

, since T (v⃗2) = v⃗2, as it lies along P

• v⃗3 =

50
3

, since T (v⃗3) = v⃗3, as it also lies along P

To put it in more clear notation, we say that [T (v⃗1)]B = 0⃗, [T (v⃗2)]B =

01
0

, and [T (v⃗3)]B =

00
1

;
this step should make sense, as each vector denoted is the corresponding combination of vectors
in B. Here, it should be clear that any vectors that that form a base of R3 could realistically have
been used here, but these are clearly easier to work with.

From here, we can define B, such that B[v⃗1]B = [T (v⃗1)]B, simply enough as B =

0 0 0
0 1 0
0 0 1

.
18

2.5 Unit 2: Elementary Matrices

From the previous section, we showed that S−1x⃗ = [x⃗]B. Extending that to this linear trans-
formation, we can recap our steps above using a number of matrices, as follows:

T (x⃗) = Ax⃗

[T (x⃗)]B = B[x⃗]B

[T (x⃗)]B = BS−1x⃗

T (x⃗) = SBS−1x⃗

=⇒ A = SBS−1

(11)

The final line above indicates a general process that can be used to find a matrix to represent
any linear transformation, and while this process may seem initially more difficult that previously
discussed methods, it has many advantages as well.

2.5 Elementary Matrices

Throughout these notes, the idea of ”Gaussian elimination” and row reduction has been constantly
discussed, with the concept of modifying the rows and columns of a matrix through a number of
operations. Elementary matrices define matrices that, when multiplied to another matrix,
execute these same row operations. These are typically denoted with an E.

2.5.1 Types of Elementary Matrices

Just as there a set number of possible row operations that we can perform on matrices, there
are a corresponding number of elementary matrices that we can define to perform the equivalent
transformations.

I : Row Interchanges

This type of elementary matrix simply swaps rows of a matrix. For example, for a 2 by 3
matrix:

[
0 1
1 0

] [
a b c
p q r

]
=

[
p q r
a b c

]
(12)

The elementary matrix

[
0 1
1 0

]
swaps the first and second rows, as shown. It should also be

clear that there could be any number of columns in the matrix on the left, and the elementary
matrix would still perform the same operation.

Finding the matrix to exchange rows for any dimension of matrix is fairly straightforward,
as the matrix will only involve 0’s and 1’s in different positions.

If we were to invert this operation, we can simply use the same elementary matrix again.
Thus, in this case, E = E−1; this can be verified by manually inverting E as well, by using
methods described earlier.

19

2.6 Unit 2: Distances

II : Row Multiplication

To multiply a particular row (or rows) of a matrix by a constant, we can define another
fairly simply elementary matrix that involves essentially all 1’s and 0’s again, except for the
appropriate constant in the appropriate position. For instance, say we want to multiply the
second row of the same matrix as above by 3:

[
1 0
0 3

] [
a b c
p q r

]
=

[
a b c
3p 3q 3r

]
(13)

To invert this operation, we have to divide the appropriate row by the same constant, or,
more appropriately, multiply it by the inverse of the constant. Thus, E−1 = E but with the
constant inverted (fractional).

III : Adding Multiples of Rows

Adding a certain number of a row (or rows) to another row (or rows) of a matrix is, often,
the most complicated to describe with an elementary matrix. However, with an example, it
should hopefully be rather clear; so, to add twice the second row to the first row of a matrix,
consider the following:

[
1 2
0 1

] [
a b c
p q r

]
=

[
a+ 2p b+ 2q c+ 2r

p q r

]
(14)

To invert this operation, we have to subtract the constant times the same row from the row

involved. In this particular case, E−1 =

[
1 −2
0 1

]
.

It should be noted that, in all these operations, the elementary matrix was invertible; and not
only that, the inverted elementary matrix was also an elementary matrix in its own regard. If we
want to invert such a matrix, we can either do so with typical methods (augmenting it by I) or by
simply finding the logical inverse of the operation that the elementary matrix performs.

It should be noted that you will often see problems with the following format, for some matrix
A:

E5E4E3E2E1A (15)

While this may seem scary, since it is a whole lot of matrix-matrix multiplication, once you are
able to determine what operation each En performs, calculating this should be fairly straightfor-
ward. Simply find A after E1’s operations on performed on it, then after E2 is performed on the
result of that, etc..

2.6 Distances

Finding the distance between arbitrary figures in a particular space is very important in a number
of applications. This section will cover the general trend for finding the distance between points,

20

2.6 Unit 2: Distances

lines, and planes in Rn.

2.6.1 Point to Point

Figure 9: Vector-vector distance

Given two points, we can consider the point as the tip of a vector in the respective base (see
figure 9). From here, the distance between the two vectors is clear: it is simply the length of the
vector between the two points. If we consider two vectors x⃗ and y⃗, then we can write the distance
vector d⃗ as:

x⃗+ d⃗ = y⃗ =⇒ d⃗ = y⃗ − x⃗

From here, we simply find the length of d⃗, denoted as ∥d⃗∥, using the Pythagorean theorem (and
its higher-dimension extensions...):

∥d⃗∥ =
√

d21 + d22 + ...+ d2n

2.6.2 Point to Line

Finding the distance between a point and a line (specifically, the shortest distance; this is really
the only helpful one that should be found, as any point can be considered an infinite distance from
a particular point on a line...) requires a little more intuitive and computation (though it can be
simplified later). First, to understand how to find this shortest distance, we have to consider the
properties of a particular point on the line in question that creates this shortest distance with our
given point. Perhaps this is intuitive, but this point is the point on the line that forms a distance
vector that is perpendicular to the line.

From the figure, it should be clear that if d⃗ is drawn anywhere else along the line L, it will
be longer than if drawn perpendicular. You can visualize this as d⃗′ forming the hypotenuse of a
triangle, with another side being d⃗⊥; the hypotenuse is always the longest side of a triangle, and
thus, d⃗′ would be longer than d⃗⊥.

As discussed in earlier sections, the projection of a vector perpendicular onto a particular line
(or any space really, but a line in this case) is simply 0⃗. As such, we can determine the vector d⃗

21

2.6 Unit 2: Distances

(and from here, naturally, finding its distance) by writing the linear transformation T (x⃗) = projLx⃗,

finding the matrix A that induces this transformation, and finding d⃗.

d⃗ ⊥ L =⇒ T (d⃗) = 0⃗, T (x⃗) = projL(x⃗)

T (x⃗) = Mx⃗ ∴ Md⃗ = 0⃗
(16)

Note that a very similar method can be used to find the distance between a point and a line that
doesn’t pass through the origin, by adding the distance from the line to the origin when computing
the transformation.

2.6.3 Point to Plane

Finding the distance between a point and a plane is conceptually similar to above, but much harder
to visualize. The general methods are as follows, given a plane P , that doesn’t go through the
origin, and a point Q (ie the tip of a vector Q⃗):

• Pick any point R on the plane. Using this, we can define Q⃗ = R⃗+ x⃗, where R⃗ describes the
vector with a point at R. Note that the important vector here is x⃗(= Q⃗− R⃗).

• Define the distance vector d⃗ between Q and P , which we know is perpendicular to P .

• The projection of x⃗ onto d⃗ is d⃗, since they share a point at their tips and both
touch the plane.

• By extension, the projection of x⃗ onto any vector perpendicular to P is d⃗, so we can use any
such vector (say, n⃗) for the projection:

projn⃗x⃗ = d⃗

For a plane of form ax+by+cz = d, we can use the shortcut of n⃗ =

ab
c

 begin perpendicular

to P .

• To find this projection, we can simply use the standard formula (proj⃗ba⃗ = (a⃗·⃗b
||⃗b||2

)⃗b).

2.6.4 Further Applications

Beyond these distances, other further combinations can be found by applying similar ideas.

• Line-Plane: use any point on the line, and use the same method as above for the distance
between a point and a plane.

• Plane-Plane: use any point on the plane, and use the same method as above for the
distance between a point and a plane.

22

Unit 3:

• Line-Line: find a distance vector d⃗ such that d⃗ is perpendicular to both lines (this will be
the shortest vector between the two). You can either do so by using standard algebra and
Gaussian elimination to find a vector that is perpendicular to both lines, or by using the
cross product of the two lines.

A cross product of two vectors a⃗, b⃗ is denoted as a⃗× b⃗, where the result is the vector perpen-

dicular to the two. The formula for the cross product of vectors a⃗ =

a1a2
a3

 and b⃗ =

b1b2
b3

 in

R3 is:

a⃗× b⃗ =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 (17)

23

3.1 Unit 3: Curve Fitting

Unit 3: Applications of Matrices & More

3.1 Curve Fitting

Figure 10: Curve fitting example

If you want to see the calculus approach to curve fitting, see here.

One application (of many) of linear algebra, and specifically, the ability to find distances between
different elements in any particular base is in curve fitting. The process is a little abstract to
describe generally, so first consider the following set of points (and corresponding graph, figure
10):

(x, y) = {(−2, 0), (1, 3), (2, 5), (3, 5)}

It seems as if these points generally follow a linear trend, so we can try to find a line that
fits the points as well as possible (note that a similar method to the following can be used for a
polynomial trend, an exponential trend, etc, but with a little more work). A line can be described
by the equation y = mx+ b, so our goal is to find the values of m and b that minimize the distance
between the line and the points. We can write, for each individual point:

y = mx+ b

0 = m(−2) + b

3 = m(1) + b

5 = m(2) + b

5 = m(3) + b

(18)

It should (hopefully) be clear that this is a system of equations for the variables m and b. We
can, as described earlier, consider this as a matrix equation of Ax⃗ = y⃗, where A is the matrix of
coefficients, x⃗ is the vector of variables, and y⃗ is the vector of y values. We can write this as:

24

http://notes.louismeunier.net/Calculus%20A,%20B/calculus.pdf#page=60

3.2 Unit 3: Orthogonality and the Transpose of a Vector

0
3
5
5

 = m

−2
1
2
3

+ b

1
1
1
1

0
3
5
5

 =

[
m
b

]
−2 1
1 1
2 1
3 1

y⃗ = x⃗A

(19)

The last line here may seem a little bizarre, but should make more sense using the column-
view of a matrix-vector multiplication. We could solve this system of equations using Gaussian
elimination as always, but it should be clear that it will be inconsistent. Intuitively, there is clearly
no line that goes through all the points, and as such, there is no m and b that makes this equation
true. You can also conclude this by looking at the rows of the A matrix, which, if reduced, will
not be consistent.

As such, we have to find the m and b that make this equation ”as close to true” as possible. We
define a new vector z⃗, where z⃗ = Ax⃗. As described in an earlier section, we can find the shortest
distance between two vectors by finding the projection of one onto the other, and we can then use
this said projection to solve the system of equations. This is a fine method, but is very tedious
and time-consuming, particularly for systems of multiple hundreds of data points.

For a non-linear trend (say, y = ax2 + bx+ c), we can use the same method as above, but with
a slightly different A matrix, naturally.

3.2 Orthogonality and the Transpose of a Vector

Given a subspace V of Rn, we can define the orthogonal complement of V as the set of all vectors u⃗
such that u⃗· v⃗ = 0 for all v⃗ ∈ V . This is denoted V ⊥. Finding this is fairly simple; for instance, take

V = {v⃗1, v⃗2} = {

−2
2
3
0

 ,

−1
1
1
1

}. To find V ⊥, we simply find the set of all vectors perpendicular

to v⃗1 AND v⃗2. Let’s define

x1

x2

x3

x4

 = x⃗ ∈ V⊥, so v⃗1 · x⃗ = v⃗2 · x⃗ = 0. Solving from here is fairly

straightforward:

−2x1 + 2x2 + 3x3 + 0x4 = 0

−x1 + x2 + x3 + x4 = 0
(20)

Notice: this is the equivalent of multiplying the matrix

[
−2 2 3 0
−1 1 1 1

]
by x⃗. Since we are

25

3.2 Unit 3: Orthogonality and the Transpose of a Vector

trying to find x⃗ when this product is 0, we can see this instead as finding the kernel of this new

matrix (ie ker(

[
−2 2 3 0
−1 1 1 1

]
)).

Now, let us define A as the matrix with columns equal to the vectors in V (ie A =
[
v⃗1v⃗2

]
).

As previously discussed, the image of a matrix is the span of its columns, so we can say that
im(A) = span(v⃗1, v⃗2) = V .

To find how this work so far is useful, we need to introduce a new concept, namely the transpose
of a matrix. Denoted, in our example, AT , the transpose of a matrix is the matrix with rows equal
to the columns of the original matrix:

AT =

[
−2 2 3 0
−1 1 1 1

]
(21)

Please note that this is not the same as simply ”flipping” the matrix on its side.
In actuality, you can think about this as the first element of the first row of A becoming the first
element of the first column of AT , and so on.

Also notice that this matrix is equal to the matrix we found earlier when trying to find the
perpendicular vectors to v⃗1 and v⃗2. So, continuing from our earlier logic, we can thus define the
vectors perpendicular to V :

x⃗ ∈ V ⊥

∴ x⃗ ∈ ker(

[
−2 2 3 0
−1 1 1 1

]
) = ker(AT)

(22)

Putting all of this together, we can develop the following relationship between a matrix’s trans-
pose and orthogonal component:

V ⊥ = ker(AT)

V = im(A) =⇒ V ⊥ = (im(A))⊥

∴ (im(A))⊥ = ker(AT)

(23)

Working through the whole proof of this can be a little tedious, but it is very useful to under-
stand. We can also slightly rewrite this conclusion to another useful form:

(im(A))⊥ = ker(AT)

((im(A))⊥)⊥ = (ker(AT))⊥

im(A) = (ker(AT))⊥

im(AT) = (ker(ATT

))⊥

im(AT) = ker(A)⊥

(24)

26

3.3 Unit 3: Normal Equations

3.3 Normal Equations

While we showed a general form to use least squares to calculate the best fit line for an equation
earlier, it would have resulted in having to find a projection, which, in higher dimensions, would
prove unnecessarily tedious. Here, we build upon previous concepts to show a more efficient
method.

Consider a set of data that, following the steps in section 3.1, we have defined as Ax⃗ = b⃗.
Assuming this system is inconsistent (which would thus merit using least squares), our goal is to

find a vector y⃗ that is as close to b⃗ as possible. We know we can do this using projections, and
thus write:

Ax⃗ = y⃗ = projim(A)(⃗b) (25)

We can more thoroughly define b⃗ as well. b⃗ can be thought of as being the sum of y⃗ in one
direction, and some other vector perpendicular to y⃗. We’ve established that y⃗ ∈ im(A), so this
perpendicular vector is in A⊥. Even more specifically, we can write:

b⃗ = projim(A)(⃗b) + projim(A)⊥ (⃗b)

projim(A)(⃗b) = b⃗− projim(A)⊥ (⃗b)
(26)

Substituting into equation 25, and doing some (admittedly unintuitive) algebra:

Ax⃗ = b⃗− projim(A)⊥ (⃗b)

AT (Ax⃗) = AT (⃗b− projim(A)⊥ (⃗b))

ATAx⃗ = AT b⃗− ATprojim(A)⊥ (⃗b)

(27)

Recall that (im(A))⊥ = ker(AT), so we can write:

ATAx⃗ = AT b⃗− ATprojim(A)⊥ (⃗b)

ATAx⃗ = AT b⃗− ATprojker(AT)(⃗b)
(28)

However, in this final line, b⃗ is being projected onto the kernel of AT , resulting in a vector in
the kernel of AT , which, when then multiplied by AT itself, simply results in 0⃗. Thus, we can write
our final form:

ATAx⃗ = AT b⃗ (29)

In all, the goal is to find x⃗, which now only requires a couple of matrix operations, rather than
a whole mess of projections. This equation is known as the normal equation.

27

3.4 Unit 3: The Determinant

3.4 The Determinant

The determinant of a matrix is a scalar value that can be used to describe many properties of a
matrix, denoted either as det(A) or |A|. In particular, it can be used to describe whether a matrix
is invertible without needing to actually invert it; by extension, a determinant only exists for a
square matrix. The formula for the determinant of a 2× 2 matrix can be derived through trying
to invert it (by augmenting it with the identity matrix):

[
a b 1 0
c d 0 1

]
...[

1 b
a

1
a

0
0 d− bc

a
− 1

a
1

] (30)

Without even finishing the elimination, it should be clear that the term d− bc
a
(in red) cannot

equal 0 in order for the matrix to be invertible. We can rewrite this term as ad − bc; this is the
determinant of a 2× 2 matrix.

3.4.1 Determinants of Larger Matrices

The determinant of matrices larger than 2× 2 could be derived similarly, but the work is tedious.
Instead, you can break down the matrix into smaller matrices, and use the determinant of the
smaller matrices to find the determinant of the larger matrix. For example, consider the following

3× 3 matrix, A =

a b c
d e f
g h i

.
To solve for the determinant of A, we can pick any particular row or column, and break the

matrix into smaller matrices based on it. For example, we can pick the first row, and break the
matrix into 2× 2 matrices:

det(A) = a ∗ det(
[
e f
h i

]
)− b ∗ det(

[
d f
g i

]
) + c ∗ det(

[
d e
g h

]
) (31)

Note that each ”submatrix” used in this case is the matrix of A without the respective row or
column that the coefficient of our row in question is in. Also note that we multiplied the second
term by −1. In general, we have to multiply by the corresponding sign in a ”sign matrix”, in which
the top left corner is positive, and the sign alternates from there.

We can finish solving this using our determinant formula of 2× 2 matrices:

det(A) = a(ei− fh)− b(di− fg) + c(dh− eg)

Theoretically, you could use this formula as a general formula for any 3 × 3 matrix, but, in
practice, it is far easier to simply use the algorithm described above for the particular case.

28

3.5 Unit 3: Applications to Area and Volume

Figure 11: A parallelogram defined by vectors v⃗ and u⃗

For determinants of higher order matrices, the same general formula applies, but the resulting
”submatrices” have to then be broken down more.

3.4.2 Properties of Determinants

It is helpful to remember a few properties of determinants of different matrices to make certain
problems easier. For matrices A and B:

• det(A) = det(AT)

• det(A) = −det(A), if a row of A is exchanged

• det(kA) = kndet(A), where n is the order of A

• det(A) = det(A), if a multiple row of A is added to another row

• det(AB) = det(A)det(B)

• det(A) + det(B) ̸= det(A+B)

3.5 Applications to Area and Volume

3.5.1 Area

Take a parallelogram who’s sides are defined by the length of vectors v⃗ =

[
a
b

]
and u⃗ =

[
c
d

]
. You

can also think of this as the base being defined as v⃗, then being translated upwards by u⃗; see figure
11.

We can see this image as the area of a rectangle removed by the area of 2 triangles on either
side of the parallelogram:

29

3.6 Unit 3: Adjugates

A = (a+ b)(c+ d)− 2(
1

2
(c(a+ b))) + 2(

1

2
(b(c+ d)))

A = (a+ b)(c+ d)− ca− cb− bc− bd

A = ac+ ad+ bc+ bd− ca− bc− bc− bd

= ad− bc = |
[
a b
c d

]
|

(32)

Note that this is simply the determinant of the matrix defined by the vectors v⃗ and u⃗ (though
you may have to take the absolute value, depending on the context).

3.5.2 Volume

Consider a parallelepiped, whose sides are defined by the vectors v⃗ =

ab
c

, u⃗ =

de
f

, and w⃗ =

gh
i

.
The volume of such a figure can be found with:

A = u⃗ · (v⃗ × w⃗)

To derive this expression, first consider the base, defined by the vectors v⃗ and w⃗. The area of
this base is the height times the matrix, which, with a little trigonometry, can be shown to equal
||v⃗||||w⃗|| sin θ, with θ representing the angle between the two vectors. This, as a matter of fact, is
simply another way to define cross product of v⃗ and w⃗, namely v⃗ × w⃗ = Abase.

Now, to find the volume we next need the height. We can find this by picturing a right triangle
with a hypotenuse defined by u⃗, and the height in question actually being a scalar multiple of the
cross product of v⃗ and w⃗. With a little more trigonometry, it is clear that this value is simply
equal to ||u⃗|| cosα, with α representing the angle between u⃗ and v⃗.

Multiplying the height by the area of the base, we get the volume of the parallelepiped:

A = ||u⃗|| cosα ∗ (v⃗ × w⃗)

= u⃗ · (v⃗ × w⃗)

3.6 Adjugates

To define adjugates of a matrix, the idea of a cofactor must first be defined. The cofactor of a
matrix is the matrix of the determinants of a matrix’s submatrices, with the signs of the submatrices

alternating. For example, take A =

[
a b
c d

]
. The cofactors of A can be found as follows (note the

similarity between the work here and the method used to find the determinant of a large matrix):

30

3.6 Unit 3: Adjugates

c1,1 = det(
[
d
]
) = d

c1,2 = det(
[
c
]
) = −c

c2,1 = det(
[
b
]
) = −b

c2,2 = det(
[
a
]
) = a[

c1,1 c1,2
c2,1 c2,2

]
=

[
d −c
−b a

]

Notice the similarity between this and the formula for computing the inverse of A:

A−1 =
1

det(A)

[
d −b
−c a

]
(33)

The matrix of cofactors we derived is simply the transpose of the matrix in this equation, which
is called the adjugate of A, denoted adj(A). We can thus say the following:

A−1 =
1

det(A)
adj(A) (34)

Note that this formula is, clearly, undefined if det(A) = 0; this should make sense, since, by
definition of the determinant, the determinant of a matrix is 0 if and only if the matrix is singular.

We can also prove this formula for the general case of an n× n matrix (for those interested...).

Proof. Consider the inverse matrix A−1, with columns x⃗1, x⃗2, . . . , x⃗n, ie

A−1 =

 | | |
x⃗1 x⃗2 . . . x⃗n

| | |

We can describe the jth row of A−1 by x⃗j = A−1e⃗j, which we can rewrite Ax⃗j = A(A−1e⃗j) =
Ine⃗j = e⃗j. Using Cramer’s Rule (explained below), we can find the ith entry of x⃗j:

xi,j =
det(Ai)

det(A)

where Ai is the matrix A with the ith column replaced by e⃗j. Finding the determinant of Ai by
expanding upon the ith row, we see that det(Ai) is simply the ith entry of the cofactor matrix of
A, ie det(Ai) = ci,j. Thus,

xi,j =
ci,j

det(A)

31

3.8 Unit 3: Linear Discrete Dynamical Systems

We can now write the jth column of A−1 as

x⃗j =
1

det(A)

c1,j
c2,j
...

cn,j

which is simply the jth column of the adjugate matrix of A, adj(A). Thus, we can say that

A−1 =

 | | |
x⃗1 x⃗2 . . . x⃗n

| | |

 =
1

det(A)
adj(A)

■

Also note that we can rewrite this expression as:

A ∗ det(A)A−1 = A ∗ det(A) 1

det(A)
adj(A)

det(A) = A ∗ adj(A)
(35)

3.7 Cramer’s Rule

Explained here.

In summary: we can find the solution of the ith variable (ie, xi) in a system of n equations of
n variables of the form ax1 + bx2 + ...+ zxn = c with the formula:

xi =
det(Ai)

det(A)
(36)

Where A is the matrix of coefficients, and Ai is the matrix of coefficients with the ith column
replaced by the vector of solutions of the respective equations.

3.8 Linear Discrete Dynamical Systems

Breaking down the definition of a linear discrete dynamical system:

• linear: output of the system is a linear combination of the inputs (recall linear transforma-
tions)

• discrete: the system is defined over a non-continuous range (ie, integers, Z)

• dynamical: the vectors in the system change with time

32

http://notes.louismeunier.net/Calculus%20A,%20B/calculus.pdf#page=56

3.8 Unit 3: Linear Discrete Dynamical Systems

These types of systems are often used to describe changes in several populations which depend
on one another (whether inversely or directly).

For example, consider a system of two populations, x and y, where x is a predator of y. Say we
can model the change in each population as follows:

{
x(t+ 1) = 0.5x(t) + 0.2y(t)

y(t+ 1) = −0.3x(t) + 1.5y(t)
(37)

We can interpret this system as follows:

• The population of x in a particular year (t + 1) depends on its population in the previous
year (t) and the population of y in the previous year (t); in particular, the population of x
decreases by 50% and increases by 20% for each y in the previous year.

• The population of y in a particular year (t + 1) depends on its population in the previous
year (t) and the population of x in the previous year (t); in particular, the population of y
decreases by 30% and increases by 150% for each y in the previous year.

This changes in population could be due to predation (clearly, as x is a predator of y), repro-
duction/survival rates, or any other factor.

This system can be represented as a matrix times a vector; specifically, a matrix of the coeffi-
cients of the system, and a vector of the populations in the previous year. If we define P⃗ (t) as the
population vector in year t+ 1, we can write the system as:

P⃗ (t+ 1) =

[
x(t+ 1)
y(t+ 1)

]
=

[
0.5 0.2
−0.3 1.5

] [
x(t)
y(t)

]
= AP⃗ (t) (38)

This matrix is often called a Leslie matrix, when used in population dynamics.

This form of equation, while helpful when P (t) is known for a particular t, but does not make
it clear how P changes over time. However, seeing as how this equation is recursively defined, we
can say the following:

P⃗ (t) = AP⃗ (t− 1)

= A(AP⃗ (t− 2))

= A2P⃗ (t− 2)

= A3P⃗ (t− 3)

= . . .

= AtP⃗ (0)

(39)

This has somewhat generalized our equation, but we still need the initial population in order

33

3.9 Unit 3: Eigenstuff

to find the population at any given time. The following section will show how we can modify this
equation accordingly...

3.9 Eigenstuff

3.9.1 Application to Linear Discrete Dynamical Systems

An eigenvector of a matrix A is a vector v⃗ ̸= 0⃗ such that Av⃗ = λv⃗, where λ is a scalar. In other
words, the eigenvector is a vector that is simply scaled by some scalar λ when multiplied by the
matrix A. This scalar is the corresponding eigenvalue of the eigenvector.

Reconsider the previous section, where we said that P⃗ (t) = AtP⃗ (0). Lets say we are given two
linearly independent eigenvectors of A (which, as we’ll say later, is the max number of eigenvectors
A can have since it is 2× 2), v⃗1 and v⃗2, and their corresponding eigenvalues λ1 and λ2. WE know
that:

Av⃗1 = λ1v⃗1

Av⃗2 = λ2v⃗2

We can multiply each of these by A again (t times...):

AAv⃗1 = Aλ1v⃗1

A2v⃗1 = λ1Av⃗1

= λ2
1v⃗1

· · ·
Atv⃗1 = λt

1v⃗1; similarly: Atv⃗2 = λt
2v⃗2

Let’s say we are given P⃗ (t0) =

[
a
b

]
for some time; we can consider this as the initial population,

P⃗ (0), and write:

P⃗ (t) = AtP⃗ (0) = At

[
a
b

]

Since v⃗1, v⃗2 are two linearly independent vectors (which is generally true of eigenvectors, but will
be explained more later...) in R2, we can therefore say:[

a
b

]
= c1v⃗1 + c2v⃗2; c1, c2 ∈ R

Substituting this into the previous equation for P⃗ (0), we get:

P⃗ (t) = At(c1v⃗1 + c2v⃗2)

We can distribute the At:

P⃗ (t) = c1A
tv⃗1 + c2A

tv⃗2

34

3.9 Unit 3: Eigenstuff

However, since v⃗1, v⃗2 are eigenvectors of A, we established that Atv⃗1 = λt
1v⃗1 and Atv⃗2 = λt

2v⃗2, so
we can substitute these into the previous equation:

P⃗ (t) = c1λ
t
1v⃗1 + c2λ

t
2v⃗2

This is a far more usable form of the equation, since, if we can find the eigenvalues and eigenvectors
of A, we can find the population at any given time, given the population at some time and the
corresponding matrix A. This form of equation is called the closed-form for P⃗ (t).

3.9.2 Computing Eigenvalues, Eigenvectors

Recall how we defined an eigenvector v⃗ of a matrix A:

Av⃗ = λv⃗

Moving all the terms to the same side, we get:

λv⃗ − Av⃗ = 0⃗

v⃗(λ− A) = 0⃗

This, however, is not currently possible to solve: A is a matrix and λ is a constant, so we cannot
subtract one from the other. However, we can multiply both sides of the equation by I, which will
leave A the same (and 0, of course):

I ∗ v⃗(λ− A) = 0⃗ ∗ I
v⃗(λI − A) = 0⃗

Notice that λI − A is a matrix itself now. Since v⃗ multiplied by this new matrix is equal to 0⃗,
then v⃗ must be in the kernel of λI −A. As such, in order for v⃗ to even have a kernel, then λI −A
must be singular (not invertible), and by extension, its determinant must equal 0. Therefore, we
can write:

det(λI − A) = 0

Solving this formula typically results in a polynomial in terms of λ equal to 0; this is called the
characteristic polynomial (denoted cA(λ)) of A. The roots of this polynomial are the eigenvalues
of A. Plugging these values into the original equation for v⃗, we can find each corresponding
eigenvector of A.

Taking the example from the previous section, we can find the eigenvalues and eigenvectors of

A =

[
0.5 0.2
−0.3 1.5

]
as follows (using our formula for the determinant of a 2× 2 matrix):

0 = det(λI − A) = det(λI −
[
0.5 0.2
−0.3 1.5

]
)

= det(

[
λ− 0.5 −0.2
0.3 λ− 1.5

]
)

= (λ− 0.5)(λ− 1.5)− 0.3(−0.2)

= λ2 − 2λ+ 0.81

. . .

λ = 0.564, 1.436

35

3.9 Unit 3: Eigenstuff

We could then plug these values into the original formula to find the corresponding eigenvectors.

3.9.3 Algebraic Multiplicity

Recall the characteristic polynomial of matrix A, cA(λ) = |λI − A|. Sometimes, this polynomial
will have multiple of the same roots, ie, multiple of the same eigenvalue; this will arise if the
polynomial is, say, in the form (λ1 − a)n where n ≥ 2. When this occurs, we can say that this
particular eigenvalue has algebraic multiplicity n.

3.9.4 Eigenspaces and Bases

An eigenspace is the set of vectors that are eigenvectors of a matrix A with a particular eigenvalue
λ, denoted Eλ.

For instance, take the matrix A =

[
1 1
0 1

]
. Solving for the eigenvalues:

0 = |λI − A|

= |
[
λ− 1 −1
0 λ− 1

]
|

= (λ− 1)2 = 0

λ = 1

Note that the eigenvalue of this matrix has algebraic multiplicity 2. Finding the corresponding
eigenvector(s?):

ker(λI − A) = ker(

[
λ− 1 −1
0 λ− 1

]
)

= ker(

[
0 −1
0 0

]
)

= {
[
x
y

]
=

[
t
0

]
, t ∈ R}

As such, we can say that the eigenspace of A with eigenvalue λ = 1 is this same set, ie,

E1 = span(

[
1
0

]
). In other words, the eigenspace for a matrix A’s particular eigenvalue λ has an

eigenspace Eλ = ker(λI − A).

Note that, in this situation, there exists only one eigenvector, and as such, it is impossible to
span R2 (which this matrix is in) with only eigenvectors. If this were possible, however, then we
would have found a eigenbasis for R2, as the eigenvectors would span the entire space. This is
what happened in the earlier example: the eigenvectors spanned the entire space, and as such,
we found an eigenbasis, and were able to solve the discrete dynamical system by rewriting the

36

3.10 Unit 3: Diagonalization

equation in terms of the eigenvectors. It is not possible to use the same method if an eigenbasis
does not exist.

Another relevant term to know is the geometric multiplicity of a particular eigenvalue,
which corresponds to the dimension of its eigenspace (ie, dim(ker(λI −A))). In this example, the
geometric multiplicity of λ = 1 is 1, as the eigenspace is a line. Also note the following inequality
(which is too difficult to prove in this course):

1 ≤ geom. multiplicity of λi ≤ alg. multiplicity of λi (40)

3.10 Diagonalization

A diagonalized matrix A (such that T (x⃗) = Ax⃗) is one that can be written as [T (x⃗)]B = B[x⃗]B

where B has the form

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

, where λ1, λ2, . . . , λn are the eigenvalues of A. By exten-

sion, a matrix is diagonalizable if and only if it has a eigenbasis. Since a matrix can only
have an eigenbasis if each of its eigenvectors has an algebraic multiplicity of 1, we can say that a
matrix is diagonalizable if and only if each of its eigenvalues has algebraic multiplicity of 1 (note
that there are many other ways to state this same property...).

For instance, take some matrix A, with eigenvalues λ1 = 3, λ2 = 2, and λ3 = −2, and

corresponding eigenvectors v⃗1 =

−3
1
0

, v⃗2 =

10
5

, and v⃗3 =

02
7

, respectively. We can take

B = {v⃗1, v⃗2, v⃗3}, a basis of R3 spanned by the eigenvectors. We can then solve for the B matrix
of this situation:

T (x⃗) = Ax⃗

T (v⃗1) = A ∗ v⃗1 = λ1v⃗1 = 3v⃗1

T (v⃗2) = A ∗ v⃗2 = λ2v⃗2 = 2v⃗2

T (v⃗3) = A ∗ v⃗3 = λ3v⃗3 = −2v⃗3

∴ B =
[
[T (v⃗1)]B, [T (v⃗2)]B, [T (v⃗2)]B

]
=

3 0 0
0 2 0
0 0 −2

Note that this matrix B has the eigenvalues of A on its diagonal, and thus, is diagonalizable.

To phrase this in a more general sense, a matrix A is diagonalizable if you can write A = SBS−1,
where S is an invertible matrix and B is a diagonal matrix. In this form, we can rewrite An in a
closed form as follows:

37

3.10 Unit 3: Diagonalization

An = (SBS−1)n

= SBS−1SBS−1 . . . SBS−1

= SBnS−1

This form is far easier to compute than computing n products of A, since Bn, being a diagonal
matrix, is simply:

Bn =

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . 0

0 0 0 λn

n

=

λn
1 0 . . . 0
0 λn

2 . . . 0
...

...
. . . 0

0 0 0 λn
n

Note that, since we’ve written An = SBnS−1, we can say that An is diagonalizable if A is

diagonalizable. It also has the same eigenvectors as A, since S does not change, and it has the
same eigenvalues as A but raised to the power of n.

In the context of a linear discrete dynamical system, where x⃗(t) = Atx⃗(0), we can derive the gen-
eral closed form expression in a different way. We want x⃗(0) = c1v⃗1+ · · ·+cnv⃗n, where v⃗1, v⃗2, . . . , v⃗n

are the eigenvectors of A. As such, we can say x⃗(0) = S

c1c2
cn

B

, where B = {v⃗1, v⃗2, . . . , v⃗n}. We

can then say:

38

3.10 Unit 3: Diagonalization

x⃗(t) = Atx⃗(0)

= (SBS−1)tx⃗(0)

=
[
v⃗1 . . . v⃗n

] λ
t
1

. . .

λt
n

S−1x⃗(0)

=
[
v⃗1 . . . v⃗n

] λ
t
1

. . .

λt
n

S−1S

c1...
cn

=

[
v⃗1 . . . v⃗n

] c1λ
t
1

. . .

cnλ
t
n

= c1λ

t
1v⃗1 + · · ·+ cnλ

t
nv⃗n

This is the same form as derived before for x⃗(t).

3.10.1 Properties of Diagonalizable Matrices

• If A is diagonalizable, so is An for any n ∈ N. An also has the same eigenvectors as A and
the same eigenvalues as A but raised to the power of n.

• If A is diagonalizable and invertible, then A−1 is also diagonalizable. Proof:

A = SDS−1

A−1 = (SDS−1)−1

= S−1D−1S

Thus, we can write A−1 in the form required for it to be diagonalizable. We can also see that
A−1 has the same eigenvalues as A but raised to the power of −1.

• If A and B are diagonalizable matrices of the same dimension, their sum is not necessarily
diagonalizable. Counterexample:

A =

[
1 1
0 2

]
, B =

[
−1 0
0 −2

]
A+B =

[
0 1
0 0

]
(̸= SBS−1)

39

3.11 Unit 3: Extensions of Eigenvalues, etc

• If A and B are diagonalizable matrices of the same dimension, their product is not
necessarily diagonalizable. Counterexample:

[
1 0
0 −1

] [
1 1
0 −1

]
=

[
1 1
0 1

]
(̸= SBS−1)

3.11 Extensions of Eigenvalues, etc

Take a general 2× 2 matrix A =

[
a b
c d

]
. Solving for the eigenvalues of A:

0 = |λI − A| = |
[
λ− a −b
−c λ− d

]
|

= λ2 − (a+ d)λ+ (ad− bc)

Note that the constant value of the characteristic polynomial of A is simply the determinant of
A, ad− bc.

The term in from of λ, a+ d, is the sum of the main diagonal of A which is known as the trace
of A (denoted tr(A)).

Now, say that the eigenvalues of A are α and β; thus, the CA(λ) can also be written:

(λ− α)(λ− β) = 0

λ2 − (α + β)λ+ αβ = 0

Thus, we can write that a+ d = α+ β and ad− bc = αβ, and thus, the trace of a matrix is the
sum of its eigenvalues, and its determinant is the product of its eigenvalues.

This pattern also applies to higher order matrices (but won’t be proven here...). In summary,
for a matrix A of dimension n:

tr(A) =
n∑
i

λi

det(A) =
n∏
i

λi

Note that for eigenvalues of multiplicity ≥ 2, the eigenvalues must included that many times in
the sum/product.

40

3.12 Unit 3: More on Dynamical Systems

3.12 More on Dynamical Systems

3.12.1 Stability

Definition: a dynamical system x⃗(t + 1) = Ax⃗(t) is considered stable if A is a diagonalizable
matrix and all solutions x⃗(t) approach 0⃗ as t → ∞, regardless of the initial x⃗0.

Take a system defined as x⃗(t) = c1(
1
2
)t
[
3
−1

]
+ c2(

1
4
)t
[
0
1

]
, where x⃗(0) = c1

[
3
−1

]
+ c2

[
0
1

]
.

Intuitively, it should be clear that as t → ∞, x⃗(t) approaches 0⃗, since for both (1
2
)t and (1

4
)t, as t

increases, vectors they are being multiplied to approach 0⃗. We can thus say that a linear dynamical
system is stable if the eigenvalues of A are all less than 1 in magnitude (ie |λi| < 1). Since the
eigenvalues do not depend on the initial condition of the system, we can say that the system is
stable.

Consider also the phase portrait of this system. A phase portrait is a graph of the system’s
solutions over time, which essentially treats x⃗(t) as a parametric plot of the x and y coordinates
of the vector. The phase portrait of the system is shown below:

x

y

v1

v2

(0, 0)

41

4.1 Summary of Terms: Notation

Summary of Terms

This course relies heavily on vocabulary. Below is a brief conglomeration (ignore the oxymoron)
of these terms.

4.1 Notation

• R: real numbers

• Z: integers

• N: natural numbers

• Rn: the nth real dimension

• {...}: set

• ∈: ”is in”

• ∃: ”exists”

• ∴: ”therefore”

• u⃗: vector named ”u”

• 0⃗: ”0 vector”, vector of any dimension with all 0’s

• e⃗i: ”unit vector”, vector of any dimension with all 0’s except for the ith element, which is 1

• f : A → B:”a function f has a domain A and codomain B

• T ◦ S: ”T composed with S”

• B,C, ...: a basis of some Rn

• [x⃗]B: a vector x⃗ represented in base B

• E: some elementary matrix

• A−1: the inverse of a matrix A

• A⊥: the orthogonal complement of a matrix A

• AT : the transpose of a matrix A

•

a1 . . .

an

: a diagonal matrix with the 0’s omitted

• tr(A): the trace of a matrix A

• ker(A): the kernel of a matrix A

42

4.1 Summary of Terms: Notation

• im(A): the image of a matrix A

• det(A): the determinant of a matrix A

• |A|: the determinant of a matrix A

• λi: the ith eigenvalue of some matrix

• Eλ: the eigenvector with eigenvalue of λ

• CA(λ): the characteristic polynomial of a matrix A

43

4.2 Summary of Terms: Vocabulary

4.2 Vocabulary

• rref :

– ”reduced row echelon form”

– a matrix (representing a system of linear equations) that has been manipulated to have
the following properties:

∗ the first non-zero in each row is a leading 1, with 0’s above and below

∗ the leading 1 in any row is to the right and below the leading 1 above it

∗ rows with all 0’s are at the bottom (this is purely convention)

• rank: the number of leading 1’s in the rref of a matrix

• linear combination: a sum of multiples of a number of vectors.

eg, c1v⃗1 + c2v⃗2 would be a linear combination of v⃗1 and v⃗2.

• span: all possible linear combinations of some vectors, denoted as span(v⃗1, v⃗2)

• linear relation: an equation of the form c1v⃗1+c2v⃗2+...+cnv⃗n = 0⃗ for the vectors v⃗1, v⃗2, ..., v⃗n.

– if the only way this relation holds true are when all cn = 0, then this is called a trivial
linear relation

– if at least one cn ̸= 0, then this is called a nontrivial linear relation

• linear (in)dependence:

– a set of vectors are linearly independent if the only linear relation between them is
the trivial one

– a set of vectors are linearly dependent if there exists a linear relation between them
that is nontrivial

• basis: the minimal set of vectors in a subspace needed to span that subspace. By extension,
it can be said that a set of vectors x is the basis of a subspace V if:

– x spans V

– the vectors in x are linearly independent

• dimension: the number of vectors in a basis of a span

• subspace: a non-empty set of vectors in Rn that can be denoted as a span of vectors. A
subset V of Rn can be qualified as a subspace if:

– the subset is closed under scalar multiplication: for any u⃗ ∈ V , ku⃗ ∈ V for any scalar
k ∈ R

– the subset is closed under addition: for any u⃗, w⃗ ∈ V , u⃗+ w⃗ ∈ V

44

4.2 Summary of Terms: Vocabulary

• standard basis: the set of unit vectors forming a basis of Rn. These are denoted by e⃗i,
with i ranging from 1 to n.

For example, in Rn, the standard basis vectors are e⃗1 =

[
1
0

]
, e⃗2 =

[
0
1

]
.

• matrix multiplication: the process of multiplying a vector x⃗ by a matrix A. There are
two ways of visualizing this process:

– column view :

Ax⃗ =

 | | |
c⃗1 c⃗2 ... c⃗n
| | |

 x⃗ = A

x1

x2

...
xn

 = x1c⃗1 + x2c⃗2 + ...+ xnc⃗n

In this case, each column of A is treated as a vector, and multiplied by each component
of x⃗.

– row view :

Ax⃗ =

− r⃗1 −
− r⃗2 −

...
− r⃗m −

 x⃗ =

r⃗1 · x⃗
r⃗2 · x⃗
...

r⃗m · x⃗

In this case, each row of A is treated as a vector, and the dot product of x⃗ and each row
becomes the row of the resulting vector.

Note that in either view, the answers are equivalent, and using one view or the other simply
helps make particular operations easier.

• linear transformations: a function T : Rn → Rm that has the following two properties:

– preserves vector addition: T (x⃗+ y⃗) = T (x⃗) + T (y⃗), x⃗, y⃗ ∈ Rn

– preserves scalar multiplication: T (cx⃗) = cT (x⃗), x⃗ ∈ Rn, c ∈ R

• kernel: the set of vectors x⃗ such that Ax⃗ = 0⃗, denoted by ker(A)

• image: the set of vectors y⃗ such that y⃗ = Ax⃗ for some vector x⃗, denoted by im(A); also
known as the range.

• rank-nullity theorem: ”the rank of an rref matrix is equal to the dimension of the image,
and the number of free columns is equal to the dimension of the kernel”.

• identity matrix: denoted In for some integer n, a matrix of n rows and n columns of the

45

4.2 Summary of Terms: Vocabulary

format

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

• composition: a number of transformations performed in a particular order. For instance,
given the linear transformations T and S and a vector x⃗, we can denote performing S and
then T on x⃗ by saying:

T ◦ S = T (S(x⃗))

Note that ”◦” is read as ”T composed with S”.

Its important to note that it is not necessarily true that S ◦ T = T ◦ S.

• inverses: just as the inverse of a function, the inverse of a matrix is a matrix that undoes
the operations of a matrix. More information can be found above, but to invert a matrix
you can simply augment it by the corresponding In.

A matrix, A, is only invertible if:

– A is square (number of rows = number of columns)

– rref(A) = I

This second requirement does in fact incorporate the first, but it is helpful to explicitly state
the first as it can make determining if certain matrices are invertible or not very simple.

• elementary matrix: a matrix that performs a row operation on a matrix. They are typically
denoted E, are always invertible, and their inverses are always elementary matrices as well.
Also, by extension of always being invertible, they are, of course, always square.

• orthogonal component: denoted A⊥ for some matrix A, this is the set of all vectors
perpendicular to A.

• transpose matrix: denoted AT , this is the matrix that is the result of switching the rows

and columns of a matrix. For example, the transpose of

[
a b c
d e f

]
is

a d
b e
c f

.
• normal equation: the equation used to find the least squares solution to a system of linear
equations. It is given by:

ATAx⃗ = AT b⃗ (41)

• determinant: a scalar value that can be used to describe many properties of a matrix A,
denoted either as det(A) or |A|.

• singular matrix: a matrix that is not invertible (i.e. det(A) = 0).

46

4.2 Summary of Terms: Vocabulary

• eigenvectors/eigenvalues: a vector v⃗ is an eigenvector of a matrix A if:

Av⃗ = λv⃗ (42)

where λ is a scalar, and v⃗ ̸= 0⃗. This λ is an eigenvalue for this particular eigenvector.

• characteristic polynomial: the polynomial that arises from |λI − A| = 0 (when solving
for the eigenvalues of A), denoted CA(λ).

• algebraic multiplicity: the number of times a particular eigenvalue appears in the char-
acteristic polynomial of a matrix.

• eigenspace: the set of all vectors that are eigenvectors for a particular eigenvalue of a
matrix.

• eigenbasis: for a matrix A in Rn, the set of eigenvectors of A that are linearly independent,
ie, are a basis of Rn.

• geometric multiplicity: the dimension of the eigenspace of a particular eigenvalue of a
matrix.

• diagonal matrix: a matrix that has all of its entries outside of the main diagonal equal

to zero, ie,

a 0 0
0 b 0
0 0 c

. Sometimes the 0’s are omitted, for the sake of brevity, such as ina b
c

.
• diagonalizable: a characteristic of a matrix A that can be written as A = SDS−1, where
D is a diagonal matrix and S is invertible.

• trace: the sum of the diagonal entries of a matrix, denoted tr(A).

47

	Unit 1
	Solving Linear Systems
	Algebraically vs Geometrically
	Gaussian Elimination
	rref
	Determining Solutions from rref
	Representing Solutions
	Rank

	Spans
	Linear Relations
	Subspaces
	Standard Basis Vectors
	Matrix-Vector Multiplication
	Column View
	Row View

	Linear Transformations
	Determining Linear Transformations
	Geometric Linear Transformations
	A Quick Look at Projections

	Unit 2
	Images and Kernels
	Rank-Nullity Theorem

	Matrix Algebra
	Compositions
	Transformation Inverses
	Inverting a Matrix

	Bases and Coordinates
	Introduction
	Changing Bases
	Application to Transformations

	Elementary Matrices
	Types of Elementary Matrices

	Distances
	Point to Point
	Point to Line
	Point to Plane
	Further Applications

	Unit 3
	Curve Fitting
	Orthogonality and the Transpose of a Vector
	Normal Equations
	The Determinant
	Determinants of Larger Matrices
	Properties of Determinants

	Applications to Area and Volume
	Area
	Volume

	Adjugates
	Cramer's Rule
	Linear Discrete Dynamical Systems
	Eigenstuff
	Application to Linear Discrete Dynamical Systems
	Computing Eigenvalues, Eigenvectors
	Algebraic Multiplicity
	Eigenspaces and Bases

	Diagonalization
	Properties of Diagonalizable Matrices

	Extensions of Eigenvalues, etc
	More on Dynamical Systems
	Stability

	Summary of Terms
	Notation
	Vocabulary

