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1 Simple Linear Regression

1.1 Definitions

Definition 1 (Simple Linear Regression)
Modeling of the relationship between two variables X and Y , which assumes that Y is a linear function of X .
We can denote this:

E(Y |X = x) = f(x)

Y = f(x) + ε,X = x

where ε is the error of the model.

More specifically, we say that for each i ∈ {1, . . . , n}, yi is the ith response (or, in other words, the response
of the ith observation), and xi is the ith independent variable, or covariate. We assume that:

yi = β0 + β1xi + εi

for each i ∈ {1, . . . , n}. Here, β0 and β1 are population parameters, representing the y-intercept and slope of
the model, respectively. In practice, we must estimate these variables, and they become the estimators β̂0 and
β̂1; we thus say:

ŷi = β̂0 + β̂1xi

Similarly, ŷi is the “estimation” of yi, given the particular β̂0 and β̂1. The goal of regression is to find the appro-
priate estimators such that ŷi ≈ yi, ∀ i ∈ {1, . . . , n}. We achieve this using the least squares criterion, and we
can rephrase our goal as finding the appropriate estimators that reduce the sum of the square of the difference
between each ŷi and its corresponding yi. In other words, we aim to minimize:

n∑
i=1

(ŷi − yi)
2 =

n∑
i=1

(β̂0 + β̂1xi − yi)
2

This can be computed in a number of ways, but using calculus is fairly straightforward, by defining a function
of β̂0 and β̂1, and minimizing it; briefly:

S(β̂0, β̂1) =
n∑

i=1

(β̂0 + β̂1xi − yi)
2

Sβ̂0
(β̂0, β̂1) =

∑
[2(β̂0 + β̂1xi − yi)] = 0

nβ̂0 + β̂1

∑
xi =

∑
yi

Sβ̂1
(β̂0, β̂1) =

∑
[2(β̂0 + β̂1xi − yi)xi] = 0

β̂0

∑
xi + β̂1

∑
x2
i =

∑
xiyi

From here, we have a system of two equations of two unknowns, which can be solved for in any number of
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ways. In the end, we find that

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
=

Sxy

Sxx

β̂0 = ȳ − β̂1x̄

In R, these values (among other stats) can be computed using lm(y˜x).

1.2 Assumptions of the Model

• xi, . . . , xn are explanatory variables treated as independent constants, with negligible error in measure-
ment.

• the error terms ε1, . . . , εn are mutually independent random variables, with a mean ε̄ = 0 and variance
of σ2

• the terms Y1, . . . , Yn are random and mutually independent (as they are the sum of a random term and
a constant term).

We can denote these assumptions as follows:

E(Yi|Xi = xi) = β0 + β1xi + E(εi)

= β0 + β1xi

Var(Yi|Xi = xi) = Var(β0 + β1xi) + Var(εi)

= 0 + σ2

This assumption is formally known as homoscedasticity.

1.3 Interpreting the Model

Assuming ε̄ = 0, then β1 is the change in the mean of Yi for a one-unit change in xi (i.e., the slope). β1 is the
mean of Yi when xi = 0 (i.e., the y-intercept).

1.4 Nature of Estimators: Making Inferences

When computing estimators, we are working with a sample of a larger population of data, and as a result,
changing our sample can change our estimators; in this way, we can consider estimators as an “approximate
representation of reality”. In particular, we can use β̂1 to infer the value of β1. However, this is only really
helpful given a good value of β̂1.
Definition 2 (Unbiasedness)

β̂1 is unbiased for β1 if it gives a good estimate over large number of samples, on average.
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We compute how accurate β̂1 using its standard deviation:

σβ̂1
=

√
Var(β̂1) =

σ√
Sxx

However, σ is a population parameter, which we typically do not know the true value of, so we must estimate
it. First, take the formula for the estimation of the variance, σ̂2:

σ̂2 =
1

n− 2

n∑
i=1

(yi − ŷi)
2 =

SSE
n− 2

=
Syy − β̂1Sxy

n− 2

Note that SSE represents the sum of squares due to error and n− 2 represents the degrees of freedom. With this
estimation of the variance, we can now rewrite our formula for the standard error of β̂1:

σ̂β̂1
=

σ̂√
Sxx

=

√
SSE
n−2√
Sxx

As before, this value can be computed with the lm function in R, and is the value under “Std. Error” in the
output. The larger the σ2 (or its estimate σ̂2):

• the more spread out the data is around the regression line

• the more uncertainty there is about the quality of the model

• the more uncertainty about the parameter estimates

1.5 Further Inferences about β1

In order to make further inferences about the model, we must make the extra assumption that the error terms
are a Normal random sample:

ε1, . . . , εn ∼ N (0, σ2)

By extension, when the error terms are normally distributed, then so is β̂1:

β̂1 ∼ N (β1,
σ2

Sxx
)

Note that this extra assumption is only needed for making inferences about β1, while the previous assumptions
are the minimum needed to estimate β̂1. If σ2 were known, we could use this assumption to construct confident
intervals and test hypotheses about β1, namely:

T =
β̂1 − β1

σ/
√
Sxx

∼ N (0, 1)

In practice, however, as previously mentioned, σ2 is not known, and we thus cannot use the Normal distribution.
Instead, we can use the Student t distribution (for reasons beyond the scope here):

T =
β̂1 − β1

σ̂/
√
Sxx

∼ tn−2
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Figure 1: Normal Distribution compared to Student t Distribution

When hypothesis testing, we typically set set H0 : β1 = 0 and Ha : β1 ̸= 0 to test whether a linear trend
does truly exist. With this particularH0, we can then calculate the test statistic as follows:

T =
β̂1 − 0

σ̂/
√
Sxx

We can use the resulting value to construct a rejection region and proceed accordingly; if we reject H0, we are
saying that the data does display a linear relationship. We can similarly use the distribution of T to construct a
100× (1− α)% confidence interval for β1, where α is our desired level of significance:

C.I. = β̂1 ± tn−2,α/2
σ̂√
Sxx

Recall that t is the x-value of the t-distribution chart where the area under the curve from x to ∞ is α/2. Note
also that the t-value can be computed in R using the qt(1 − alpha/ 2, df) function, or you can compute the
confidence interval directly by calling confint () on the lm object. Practically, we can interpret this interval by
saying that our true β1 is likely to be in this interval 100× (1− α)% of the time.

1.6 Analysis of Variance

Definition 3 (Analysis of Variance)
Short-handed as “anova”, this is a statistical method used to analyze the differences between groups, and specif-
ically, compare the variance caused by error to the variance caused by estimation.

1.7 Correlation
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Definition 4 (Correlation)
A measure of association between two random variables.

Statistically, correlation is a measure of linear association that is symmetric, i.e., the correlation between X
and Y is the same as that of Y and X ;

corr(X, Y ) = corr(Y,X)

In linear regression swapping X and Y will not yield the same slope coefficients: the scales can differ and β1 is
the change of one variable in relation to the change of another.

The correlation between two random variables X and Y can be calculated:

r =
SXY√

SXXSY Y

where r is called the correlation coefficient, and SXX , SXY , and SY Y are the same as previously defined (i.e.,
the sum of the product of the differences between values and the mean). We can say that r has the following
properties:

• it lies between −1 and +1;

• it is scaleless; a particular value of correlation is the same regardless of the scale of the variables. This is
in contrast to β̂1, which is scale-dependent;

• it is an estimator for the population correlation, ρ. By extension, we can create a hypothesis test for
lack of association between two random variables with H0 : ρ = 0. This test, under the assumption that
the error terms are Normal is the equivalent ofH0 : β1 = 0:

H0 : ρ = 0 ⇐⇒ H0 : β1 = 0

The only difference in using one of these tests over the other is in the assumptions needed for the data;
the first assumes that both X and Y are random, while the second assumes that X is constant and Y is
random.

A 100 × (1 − α)% confidence interval for ρ using Fisher’s variance stabilizing z-transformation can also be
made. This involves first transforming r to z:

z =
1

2
ln

(
1 + r

1− r

)
(= arctanh(r))

We can then build a C.I. for z:
(cL, cU) = z ±

zα/2√
n− 3

Inverting the z-transformation, we can then compute a 100× (1− α)% C.I. for ρ:[
e2cL − 1

e2cL + 1
,
e2cU − 1

e2cU + 1

]
The reason for using this transformation is that, in data with r near −1 or +1, distribution is highly skewed;
this transformation yields a value with an approximately-Normal distribution.
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In R, you can find the correlation coefficient using the cor () function on two vectors.

1.8 Determination

Definition 5 (Determination)
A measure of the proportion of variance in Y explained by the model (by X , that is).

In simple linear regression, the coefficient of determination (R2) is defined:

R2 = 1− SSE
SY Y

We can show that if:

• X is not linearly associated with Y , then SY Y = SSE =⇒ R2 = 0

• X is linearly associated with Y , SSE < SY Y =⇒ 0 < R2 < 1

Also note that (as the notation implies) the coefficient of determination is also the square of the correlation
coefficient. Recall that SSE = SY Y − β̂1SXY , and β̂1 =

SXY

SXX
, therefore we can write

SSE = SY Y − SXY

SXX

SXY =⇒ SSE
SY Y SXX

= 1− (SXY )
2

SXX

And rewrite R2 accordingly:

R2 = 1− SSE
SY Y

=
(SXY )

2

SXXSY Y

=

(
SXY√
SXXSY Y

)2

= r2

The determination coefficient is denoted in the summary() function.

Note also that R2 is a measure of the strength of a model, while r is a measure of the strength of the associ-
ation between X and Y ; knowing which to use depends on the context.

1.9 Estimation and Prediction

Once a regression line has been fitted from data, the model can be used to

• estimate the mean response y0 for a particular x0 value;

• predict a new individual value of the response for a particular x0 value.

In both of these cases, the numerical values will be the same, while the the nature of uncertainty will differ.
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1.9.1 Estimaing the Mean Response

For estimators β̂0, β̂1, and value x0, we have

ŷ0 = β̂0 + β̂1x0

This estimate ŷ0 is unbiased;
E(ŷ0) = β0 + β1x0

It can be shown that its variance is

var(ŷ0) = σ2

{
1

n
+

(x0 − x̄)2

SXX

}
As before, the value of σ2 is usually unknown and is estimated with σ̂2, resulting in an estimation of the variance
of ŷ0:

v̂ar(ŷ0) = σ̂2

{
1

n
+

(x0 − x̄)2

SXX

}
From here, under the assumption of Normally distributed error terms, a 100× (1−α)% confidence interval for
the mean value y0 is thus:

ŷ0 ± tn−2,α/2σ̂

√
1

n
+

(x0 − x̄)2

SXX

1.9.2 Predicting a Value

We can (very similarly) use the model to predict some individual new value, Y0, for x0. The variability associated
with this new value is estimated

v̂ar(Y0) = σ̂2

{
1 +

1

n
+

(x0 − x̄)2

SXX

}
Again, if the error terms are Normally distributed, we can find a 100 × (1 − α)% confidence interval for an
individual: Y0

ŷ0 ± tn−2,α/2σ̂

√
1 +

1

n
+

(x0 − x̄)2

SXX

The confidence interval when predicting a value for a particular x0 is always wider than when just estimating
the mean response for that x0 (for reasons outside the scope of this course…).

Caution: it is important to note that using the least squares value for estimation/prediction for values of
x that fall outside of the range of values used to create the model may lead to errors, as there is no guarantee
that a similar linear relationship will hold for values outside of the range of the data. To extrapolate from a
regression model, we must make the assumption that nothing will change in the future with respect to the mean
and standard deviation of the model, and that the linear relationship will persist.
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1.10 Residual Analysis

Previously, appropriate assumptions for the error terms (ε1, . . . , εn)weremade; validations of these assumptions
will be done using estimates, (ε̂i, . . . , ε̂n) called residuals. Recall that fitted values for our model are computed:

ŷi = β̂0 + β̂1xi , i ∈ {1, . . . , n}

This is the best estimate of the mean of Yi; therefore, the best guess to the unobservable value of εi is

ε̂i = yi − ŷi

This is the ith residual.

Because ε̂1, . . . , ε̂n are estimates of ε1, . . . , εn, these estimates can be used to check our assumptions that
ε1, . . . , εn are:

• normally distributed;

• have mean 0;

• have the same variance σ2;

• independent;

While there are formulaic methods to check these assumptions, we will instead use graphical methods, which
are far easier to interpret and use. One way to analyze residuals is by standardizing them; the ith standardized
residual is equal to

ε̂stdi = ε̂i/σ̂

where σ̂ is the estimate of σ from regression.

1.10.1 Normallity

The first thing we can check is the Normality of the residuals, which can be done using a histogram and a Q-Q
plot, which can created with R, using a combination of hist, qqnorm, and qqline.

But how can we check for sure? We can use the standardized residuals to examine the “significance” of the
magnitude of a residual, using the Empirical rule that 95% of observations are within 2 standard deviations of the
mean, etc.. Since standardized residuals have a mean of 0 and standard deviation of 1, we can say that residuals
that are larger than three (absolute value), then they are possible regression outliers.

What should we do in the case that these outliers do exist? Technically, the data is assumed to be a random
sample from the population, and if the data point is not “special”, it should not be excluded, as there is no way
of knowing if it would be an outlier compared to the entire population. Naturally, there are some cases where
it is logically clear that a particular point should be removed.

We can also redo our regression calculation after removing the outliers, and compare the results to the
original regression. If the results are similar, then we can be confident that the outliers were not affecting the
regression.
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Figure 2: Example Histogram & Q-Q plot of residuals with corresponding line

1.10.2 Mean and Homoscedasticity

The next thing to check is the assumption that for all i ∈ {1, . . . , n},

E(εi) = 0, var(εi) = σ2

We can begin to check these assumptions by plotting the residuals against the fitted values. This way, we usually
see one of two patterns:

1. If the residuals do actually have a mean of 0, then we should not see any residuals that vary as a function
of the fitted mean

2. If the residuals all have the same variance, then we should see variability across all the fitted values

In general, if there is a pattern in the residuals, then the model is not appropriate for the data. In terms of
simple linear regression, one can try to improve the model by adding more polynomial terms to it, such as in
the model:

Y = β0 + β1x+ β2x
2 + ϵ

We can also analyze whether the variance of the residuals stays constant in a number of ways; often, if the
variance increases as a function of the residuals, despite a linear relationship, then the model is not appropriate
for the data. It is also possible to see amore “football”-shaped pattern, indicating that the variance of the residuals
is larger in the middle than at the ends. In either case, this violates the assumption of homoscedasticity; this, in
turn, is called heteroscedasticity.
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Figure 3: Example of residuals against fitted values; in this case, there is a pattern in the residuals, indicating
that the model is not appropriate for the data. Intuitively, one can probably tell that a polynomial model would
be more appropriate for this data.

1.11 Polynomial Regression

Often times, it is clear that a linear regression model will not be appropriate for some given data, i.e.,

E(Y |X = x) ̸= β0 + β1x

In this case, it is possible to try and fit a polynomial regression model to the data. In this case, we might
assume that ∀ i ∈ {1, . . . , n},

Yi = β0 + β1xi + β2x
2
i + εi,

or, equivalently,
E(Y |X = x) = β0 + β1x+ β2x

2

This is specifically a quadratic model, but more general, polynomial regression specifies that

E(Y |X = x) = β0 + β1x+ · · ·+ βpx
p

where the integer p is the largest power (degree) of x in the model.

It should be noted that all intermediate powers need not be present; in this case, some βi would equal 0 where
i < p.

To find the appropriate polynomial regression models, we use the same least squares criterion as in simple
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linear regression, i.e., we seek β0, . . . , βp such that

n∑
i=1

(yi − β0 − βixi − · · · − βpx
p
i )

2

is minimized.

As before, the respective estimates β̂0, . . . , β̂p can be computed with R, by passing extra terms to the lm
function: lm(y ˜ x + I (xˆ2) + … + I (xˆp )) . The same functions and tests can be used from the output of this
function as in the case of simple linear regression.

When fitting a polynomial regression model;

• it is important to be sensitive to both overfitting local features of the data and also to interpretation;

• the more complex the model, the less plausibly we can justify trying to estimate with a relatively small
amount of data (adding excessive polynomial terms to a model);

Generally, it is also preferable to not have a quadratic term without a linear model.

The null hypothesis test we use to determine the appropriate fit of a polynomial regression model is, appro-
priately,

H0 : βp = 0,

where p is the highest degree of the regression. If the hypothesis is not rejected for, say, p = 2, then we cannot
say that a polynomial regression is any better than a linear regression.

2 Multiple Regression

Multiple regression is an extension of simple linear regression, in which a response variable Y is modeled as a
function of several covariatesX1, . . . , XK , rather than just one. Using multiple regression is helpful when want
to assess the association between various covariates and the response variable, or, similarly, we want to assess
how the addition of more than one covariate affects the quality of prediction of the model.

2.1 Comparison with Simple Linear Regression

Several of the issues from simple linear regression are still present in multiple regression;

• Parameter estimation: there are just more parameters; how do we estimate and interpret them?

• Hypothesis testing: how do the hypothesis tests changes, if at all?

• Diagnosis of residuals: what assumptions are made underlying the model?

New issues also arise in multiple regression:

• Model selection: which covariates do we include in the model?
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• Simultaneous hypotheses: can we test hypotheses about multiple parameters at once?

• Multi-colinearity: what happens if the covariates are associated with each other?

• Qualitative covariates: can we use qualitative covariates in the model?

• Interactions: it may be possible that association of one covariate with response depends on the values
of other covariates?

2.2 Model Description

In multiple regression, it is still assumed that the covariates have a linear association with the response variable.
Assuming there areK covariates of interest,X1, . . . , Xl, and a single response variable Y , the regression model
assumes that for each i ∈ {1, . . . , n},

Yi = β0 + β1xi1 + · · ·+ βkxiK + εi.

i.e., the response variable can be written as a non-random linear function of the covariates (plus, as always, some
random error). This model has n− (K + 1) degrees of freedom, as it has K + 1 parameters to estimate (the K
regression coefficients and the intercept) and n observations.

The model is linear in the parameters but not necessarily in the covariates. To specify, all of the following
are examples of linear models;

Yi = β0 + β1xi1 + β2xi2 + εi,

Yi = β0 + β1xi1 + β2x
2
i2 + εi,

ln(Yi) = β0 + β1e
xi1 + β2x

2
i2 + β3

√
xi3 + εi.

Note that in many of these cases, the covariates are somehow transformed to “create” a linear
relation. For instance, in the model

Yi = β0 + β1xi1 + β2x
2
i2 + εi,

the covariates areX1 andX2
2 ; while Yi is not linear withX2, it is linear withX2

2 . Similar rationale applies to the
other examples. In general, linear regression, whether multiple or simple, refers to linearity in the coefficients
of the model, not necessarily in the covariates.

Non-linear models are also possible, where the coefficients appear, for instance, as powers of the covariates.

2.3 Assumptions of the Model

The multiple regression model states that for all i ∈ {1, . . . , n},

Yi = β0 + β1xi1 + · · ·+ βkxiK + εi.
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The assumptions of the model are that

1. E(ε1) = · · · = E(εn) = 0;

2. var(ε1) = · · · = var(εn) = σ2;

3. ε1, . . . , εn are mutually independent.

To make further inferences (confidence intervals, test), particularly when working with small sample sizes,
we must additionally assume that

ε1, . . . , εn ∼ N (0, σ2)

2.4 Interpretation

Interpretation of the coefficients of a multiple regression model is more complicated than in simple linear re-
gression. βj represents the increase in the mean of Yi observed for a single unit increase in xij , holding all
other variables xi1, . . . , xiK constant. βj is now the slope of the regression plane in the direction of xj (a
plane with K + 1 dimensions; K covariates and the intercept).

βj is not just the association ofXj with Y , but is actually the association ofXj with Y while accounting for
the associations of all the other covariates with Y .

2.5 Parameter Estimation

The estimate β̂ of β minimizes the sum of the squared distances between the predicted values of the value,
namely,

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxiK ;

and the actual response values yi for i ∈ {1, . . . , n}. i.e., β̂ minimizes

n∑
i=1

(yi − ŷi)
2

Just as before, the lm (…) function can be used in R to estimate the parameters, but simply adding more
covariates to the model.

2.6 Matrix Formulation of the Model (extra)

We can derive a matrix formulation of the multiple linear regression model as follows. Take

Y = Xβ + ε,

in which
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• Y = (Y1, . . . , Yn)
T is an n× 1 column vector;

• X =


1 x11 . . . x1K

1 x21 . . . x2K

... ... . . . ...
1 xn1 . . . xnK

 is an n× (K + 1) matrix (this is the design matrix);

• β = (β0, . . . , βK)
T is a p× 1 vector where p = K + 1;

• ε = (ε1, . . . , εn)
T is an n× 1 vector.

All together, this can be written;


Y1

...
Yn

 =


1 x11 . . . x1K

1 x21 . . . x2K

... ... . . . ...
1 xn1 . . . xnK



β0

...
βK

+


ε1
...
εn

 .

Note that this framework also fits to simple linear regression, by taking p = 1.

Looking at the design matrix part of this framework, each xij corresponds to a particular βj , with the first
column of the design matrix corresponding to the intercept β0 (all 1’s).

As before, the goal is to find the estimate β̂ to minimize the sum of the squared distances between the
predicted values. In this new matrix view, it can be shown that

β̂ = (XTX)−1XTy = (β̂0, . . . , β̂K)
T .

2.7 Inference

(Recall the following, in the case of simple linear regression). β̂ is unbiased for β (i.e. E(β̂) = β), and thus for
each ordinary least squares coefficient, E(β)j = βj . To get an (unbiased) estimate of the variance of β, σ2, we
must divide SSE by n−(K+1), whereK+1 is the number of coefficients estimated in the mode, i.e. β0, . . . , βK .
Thus, we have

σ̂2 =
1

n− (K + 1)

n∑
i=1

(yi − ŷi)
2 =

SSE
n− (K + 1)

.

Note, too, that n− (K + 1) = n− 2

Using these properties, we can create hypothesis tests and confidence intervals for each respective regression
coefficient. Typically, our tests are of the form

H0 : βj = 0, Ha : βj ̸= 0.

In this case, H0 represents no association between Y and Xj , after adjusting for all other covariates in the
model. Note: failing to rejectH0 does not mean thatXj is NOT associated with Y ; it simply means there is no
association after adjustment.
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2.7.1 Confidence Intervals

To form a 100× (1− α)% confidence interval for βj , we use

β̂j ± tn−(K+1),α/2 × σ̂β̂j
.

As before, this interval can be interpreted as containing βj 100× (1− α)% of the time.

Note that there is an inherent problem with multiple testing; we can only interpret the Type I error for each
coefficient individually

2.8 Measuring the Fit of the Model

The multiple coefficient of determination, R2, is defined

R2 = 1− SSE
SY Y

∈ [0, 1]

As before, the R2 value can be interpreted as the proportion of the variance in Y that is explained by the model.
However, unlike before, R2 can no longer be interpreted as the squared correlation between Y and a covariate,
because there are several covariates. R2 is, in some sense, a summary of how strongly the response variable is
linearly associated to the linear combination of the covariates.

The R2 value, however cannot be used to determine the best combination of covariates, since the R2 value
for a model with one extra variable will always be at least as large as the R2 value for the “original” model.
Instead, R2 should be adjusted to take into account this fact.

The adjusted coefficient of determination, or, commonly, adjusted R2 is defined

R2
a = 1− n− 1

n− (K + 1)
(
SSE
SY Y

) = 1− n− 1

n−K − 1
(1−R2)

=
n− 1

n−K − 1
R2 − K

n−K − 1
.

Note that R2
a < R2, and R2

a cannot be ’forced’ to be 1 by adding more variables. As always, R2
a and R2 are

sample statistics.

2.9 Testing the Global Fit

To test if the fitted model is actual doing anything to help with the prediction, we can use an overall hypothesis
test for the regression model. The null hypothesis;

H0 : β1 = · · · = βK = 0,
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and the alternative hypothesis;

Ha : at least one of βj is not equal to zero (∃ βj ̸= 0).

We can test this hypothesis using the F-test;

F =
(SY Y − SSE)/K

SSE/ [n− (K + 1)]
=

R2/K

(1−R2)/ [n− (K + 1)]
=

MSR
MSE ,

where MSR is the mean square for the regression model. Under the above null hypothesis, the F -statistic will
have F distribution with K and n − (K + 1) degrees of freedom. H0 is rejected for large values of F ; for
F > Fα,K,n−(K+1).

Note: rejecting H0 does not say which of the slope coefficients is unlikely to be equal to 0, only that there
is evidence that they are all 0. It is also possible to reject the above null hypothesis without rejecting a single
null hypothesis of the formH0 : βj = 0; in this case, the only conclusion we can draw is that the model is doing
“something”. However, ifH0 isn’t rejected, then none of the covariates will yield significant Student t-tests.

2.10 Prediction

Given a set of values for the covariates x0 = (x10, . . . , xK0), the value of Y predicted for the model for this set
of covariate values is

ŷ0 = β̂0 + β̂1x10 + · · ·+ β̂KxK0.

This formula could be used to estimate

• the mean of observations at a given set of covariate values;

• a new individual observation at a given set of covariate values.

Calculating prediction intervals for multiple regression is quite straightforward using the predict (…) func-
tion.

As in simple linear regression, one must be careful about making predictions outside the range of values in
the dataset. In the case of multiple regression, this must be true for each covariate.

2.11 Interactions

In multiple regression, two variables, X1 and X2, are said to interact when the relationship between X1 and
the response variable Y depends on the value of the second variable X2, and vice versa. We can allow for
interactions in the model by using the product of the two covariates as an additional linear predictor. For
instance, if X1 and X2 are thought to interact, the model can be written as

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi.

In this case, β3 is the coefficient for the interaction between X1 and X2.
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Doing this serves the intended purpose in the model because it can be rewritten the following two ways,

Yi = β0 + (β1 + β3xi2)xi1 + β2xi2 + εi,

and
Yi = β0 + (β2 + β3xi1)xi2 + εi.

Thus, the slope coefficient forX1 depends on the values of β1, β3, andX2, and similarly, the slope coefficient for
X2 depends on the values of β2, β3, and X1.

Note the following:

1. If an interaction term is included in the model, then we want to test for the presence of that interaction
first.

2. Once an interaction is shown to exist, we cannot interpret themain effects anymore. An overall association
between an independent variable and the response cannot be discussed because the association always
depends on the level of the other variable.

3. Only if we fail to reject the null hypothesis of no interaction will we want to try to interpret the main
effects.

To clarify, consider the model

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi.

If it is concluded that β3 ̸= 0, then β1 cannot be interpreted as the change in the mean of Y for a one-unit change
in X1; we can only interpret the association of X1 with the response Y depending on the value of X2 (and vice
versa).

2.11.1 Testing for Interaction

For a model
Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi,

the null hypothesis of no interaction is simply

H0 : β3 = 0.

β3 can be thought of as a coefficient of a “new” covariate (X3 = X1 ×X2), and the same t-test can be used.

The general procedure is as follows;

1. Fit the model including the two covariates and the interaction;

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi.

2. Conduct a global F -test to determine if any of the regression coefficients are different from zero;

H0 : β1 = β2 = β3 = 0.
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3. If this hypothesis is rejected, then test for interaction by using a Student t-test;

H0 : β3 = 0.

If this hypothesis is rejected, then stop. Otherwise, re-fit themodelwithout the interaction term to estimate
β1 and β2 normally.

Note that if H0 : β3 = 0 is rejected, we still need to keep the main effect terms in the model, although
they are not interpreted the same way. Although we can’t interpret the main effect terms in the present of
an interaction, we cannot drop a main effect covariate from the model due to an insignificant p-value. This is
because in a model with an interaction, all three of the model terms (β1X1, β2X2, β3X1X2) work together to
describe the interaction, and we therefore cannot take any of them out, or we would no longer be modeling their
interaction.

In general, interactions should be used with moderation, and only when they model real relationships be-
tween the variables at hand. Otherwise, they can lead to overfitting the data.

2.12 Qualitative Data

2.12.1 Two Groups

Given “qualitative” data in a model (i.e. yes/no, true/false, etc.), we can assign a value to each category, i.e.

Yi = β0 + β1zi + εi.

The group coded Z = 0 is called the reference group for the analysis. Using this model,

• the group coded Z = 1 has a mean level of β0 + β1;

• the group coded Z = 0 has a mean level of β0.

By extension, β1 is the difference in the mean of the response between the two groups. Fitting this model,
we find that, more simply,

β̂0 = Ȳ0, and β̂1 = Ȳ1 − Ȳ0.

To test the significance of this model, we use the hypothesis

H0 : β1 = 0 ⇐⇒ µ1 = µ0; Ha : β1 ̸= 0 ⇐⇒ µ1 ̸= µ0,

where µi are the true population means for Z = 1 and Z = 0, respectively. Thus, you can test this either using
a t-test on the difference of the means or a t-test on the coefficient β1 (using the fitted model).

2.12.2 More than Two Groups

When there are more than two groups that need to be coded, we cannot use the same idea as above, where
each of the n groups gets a numerical code 1, . . . , n, since this would not result in the intended difference in
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the values of the corresponding coefficients in the model. Instead, we have to use multiple variables for each
“subgrouping” of groups, called indicator or dummy variables. Say there are three groups; we can code them

Z1 =

1 if in group 2

0 otherwise
; Z2 =

1 if in group 3

0 otherwise
,

with the corresponding regression model

Yi = β0 + β1Z1 + β2Z2 + εi.

Here, the expected values of the response for each group would be;

• Group 1 (Z1 = 0, Z2 = 0): µ1 = β0

• Group 2 (Z1 = 1, Z2 = 0): µ2 = β0 + β1

• Group 3 (Z1 = 0, Z2 = 1): µ3 = β0 + β2

Interpretation of coefficients in this case becomes rather complicated; for three variables,

• β0 is the mean of the first group;

• β1 is the difference in mean between the first and second groups;

• β2 is the difference in mean between the first and third groups;

and the difference in mean between the second and third groups is

µ3 − µ2 = (β0 + β2)− (β0 + β1) = β2 − β1.

As a result, various hypotheses can be used to test different aspects of the model, for instance

• β1 = 0: Groups 1, 2 have the same mean

• β2 = 0: Groups 1, 3 have the same mean

• β1 = β2 = 0: Groups 1, 2, 3 have the same mean

• β1 = β2: Groups 2, 3 have the same mean

The overall F -test corresponds to

H0 : β1 = β2 = 0 ⇔ H0 : µ1 = µ2 = µ3.

The other various tests can be done using the t-test on the corresponding coefficient.
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2.12.3 Mixing Qualitative and Quantitative Variables

Take a model that has a qualitative variable (Z , equal to 1 if in group A, and 0 if in group B) and a quantitative
variable (X),

Yi = β0 + β1zi + β2xi + εi.

When Z = 0 (group B), then this model becomes

Yi = β0 + β2xi + εi,

and if Z = 1 (group A), the model becomes

Yi = (β0 + β1) + β2xi + εi.

Notice that the slope of both of these new lines is β2, which represents the mean response of Y for a one unit
change in X regardless of Z . The y-intercepts are different, however.

As before, changes in Y may be different depending on the value of Z , so we should take into account the
potential interaction between the qualitative and quantitative variables, i.e.

Yi = β0 + β1zi + β2xi + β3zixi + εi,

where if there is an interaction, β3 ̸= 0. Using this model, if Z = 0, then Yi = β0 + β2xi + ε, and if Z = 1, then
Yi = (β0+β1)+ (β2+β3)xi+ ε.These now have different slopes; the change in Y for a change inX is β2 when
Z = 0, and (β2 + β3) for Z = 1.

In general, the interaction term should always be included (and tested for), and then removed and re-fitted
if it is not significant.

2.13 Comparing Nested Models

Some modelM0 is said to be nested in modelM1 ifM0 contains a subset of the covariates included inM1. For
instance, take

M1 : Yi = β0 + β1zi + β2xi + β3zixi + εi,

and
M0 : Yi = β0 + β2xi + εi.

Note that setting β1 = β3 = 0 inM1 yields M0; as such, we can use this idea to test the hypothesis

H0 : β1 = β3 = 0

to test if these extra covariates yields any statistically significant improvement in the model.

Generally, assume that these models (the null and alternative models, respectively) can be written as

M0 : Y = β0 + β1x1 + · · ·+ βgxg + ε,

M1 : Y = β0 + β1x1 + . . . βgxg + βg+1xg+1 + · · ·+ βkxk + ε.
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Then, the null hypothesis states thatM1 does not improve significantly compared toM0;

H0 : βg+1 = βg+2 = · · · = βk = 0.

This is a simultaneous test of the parameters of the larger model;Ha is that at least one of these parameters is
non-zero.

Note too that, sinceM1 always contains more covariates thanM0, it is always true that SSEM0 ≥ SSEM1 . We
can say, loosely,

• if SSEM0 − SSEM1 is “large”, then M1 explains more of the variance thanM0;

• if SSEM0 − SSEM1 is “small”, then the additional terms inM1 do not contribute much to the model.

To put actual numbers to “large”/“small”, we use

F =
(SSEM0 − SSEM1)/(k − g)

SSEM1/{n− (k + 1)}
.

If H0 is true, and the usual model assumptions hold, then F has a distribution

F(k − g, n− (k + 1)).

If the observed F is large, we could rejectH0 and conclude that at least one of the extra model terms is not equal
to zero.

2.14 Other Issues with Multiple Regression

1. Prediction beyond observed range of covariates: If we have no data in the region where we are trying
to predict, its unsure whether the regression model fits the data in this range.

2. Multicollinearity: The covariates must be sufficiently different from each other to be able to actually
estimate their associations with the response accurately; if two covariates are highly correlated, for in-
stance, it can be difficult to determine the association of each individual covariate. In this situation, the
regression model is said to be subject to multicollinearity.

3. Model errors correlation: The model errors may be correlated, even though they were assumed to be
independent at the start. This problem tends to happen with data measured over time.

3 Categorical Data

3.1 Multinomial Distribution

Take a random qualitative, random variable C with k possible values, {c1, . . . , ck} (called classes, categories,
etc.). Suppose

Pr(C = c1) = p1, . . . , Pr(C = ck) = pk.
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Note that we must have that p1+ · · ·+pk = 1, where each pi represents the probability of observing a particular
ci.

Say we take n independent trials, measuring C each time, taking Xi to represent the number of times that
a particular ci is observed. The set of these random variablesX1, . . . , Xk is said to have a multinomial distri-
bution.

X1, . . . , Xk are integer-values, and X1 + · · ·+Xk = n, and it can be shown that

Pr(Xi = n1, . . . , Xk = nk) =
n!

n1! · · ·nk!
pn1
1 · · · pnk

k ,

where n1 + · · ·+ nk = n. These values, n1, . . . , nk, are sometimes called cell counts.

3.2 Chi-Square Test

Take X1, . . . , Xk to be a set of random variables with multinomial distribution. It can be shown that for each
i ∈ {1, . . . , k}, E(Xi) = npi. This is called the expected count in a random sample (of size n); however, the
observed count is Xi = ni for the ith category.

If pi is the true probability of drawing an observation from category i, then

ni − E(Xi) = ni − npi

is the deviance between the observed and expected counts.

If we want to test the hypotheses

H0 : p1 = p∗1, . . . , pk = p∗k; Ha : pi ̸= p∗i for at least one i ∈ {1, . . . , k},

where p∗i represents the hypothesized probability of ci, we use the test-statistic

X2 =
k∑

i=1

(ni − np∗i )
2

np∗i
,

where χ2 is called Pearson’s chi-square statistic. In other words, the null hypothesis represents the case
where the likelihood of all categories is equal, and thus the category has no effect on the observed response. It
is often re-written as

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

,

with O and E standing for observed and expected cell values, respectively. X2 can be thought of as the sum of
the squared deviations under the hypothesized model.

The distribution of X2 under the null hypothesis is approximately χ2
ν , where ν = k − 1, the degrees of

freedom. We can thus for a rejection region given a significance level of α,

{X2 > χ2
α,(k−1)}.
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The p-value, similarly, would be
p = Pr{χ2

(k−1) > X2}.

For the test to be valid, the following must be true:

• The counts must represent a random sample from the population;

• The same size n is large enough, so that for every cell the expected count is ≥ 5.

3.3 Contingency Tables

Suppose the variables X and Y are observed for a sample of n subjects, where X has the values j ∈ {1, . . . , r}
and Y has the values k ∈ {1, . . . , c}. In other words, for a subject i ∈ {1, . . . , n}, (Xi, Yi) = (j, k) is observed.
This data can be represented in what is called a contingency table.

A d-way contingency table contains all the counts of all possible combinations of levels of d qualitative
random variables; for instance, for a 2-way table for variables X and Y with r rows and c columns, the table
would look like:

Y
X 1 2 · · · c Total
1 n11 n12 · · · n1c n1•

2 n21 n22 · · · n2c n2•
... ... ... . . . ... ...
r nr1 nr2 · · · nrc nr•

Total n•1 n•2 · · · n•c n

By convention,
nj• = nj1 + · · ·+ njc, n•k = n1k + · · ·+ nrk,

where the sums n1•, . . . , nr• and n•1, . . . , n•c are called marginal, or observed, counts. Note that the sum of all
entries is the sample size, i.e.

n11 + · · ·+ nrc = n,

and similarly, the sum of the marginalized sums is as well,

n1• + · · ·+ nr• = n•1 + · · ·+ n•c = n.

This can also clearly be seen in the table under both the “Total” row and column.

Equivalently, a contingency table can be written in terms of the probabilities of each cell, where, similarly,
p1•, . . . , pj• and p•1, . . . , p•k are called marginal probabilities:

Y
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X 1 2 · · · c Total
1 p11 p12 · · · p1c p1•

2 p21 p22 · · · p2c p2•
... ... ... . . . ... ...
r pr1 pr2 · · · prc pr•

Total p•1 p•2 · · · p•c 1

The sum of all the probabilities is 1;

p11 + · · ·+ prc = p1• + · · ·+ pr• = p•1 + · · ·+ p•c = 1

3.3.1 Testing Indepdence

To test whetherX and Y are independent, we are essentially testing stochastic independence betweenX and
Y , meaning

pjk = Pr(X = j and Y = k) = Pr(X = j)Pr(Y = k), ∀ j ∈ {1, . . . , r},∀ k ∈ {1, . . . , c}.

Specifically,

p11 = p1•p•1 p12 = p1•p•2 · · · p1c = p1•p•c

p21 = p2•p•1 p22 = p2•p•2 · · · p2c = p2•p•c
... ... . . . ...

pr1 = pr•p•1 pr2 = pr•p•2 · · · prc = pr•p•c

Under the assumption of independence (ourH0), the expected counts in a random sample of size n is given
as

Ejk = npjk = npj•p•k,

∀ j ∈ {1, . . . , r} and ∀ k ∈ {1, . . . , c}. Specifically (similar to above…),

E11 = np1•p•1 E12 = np1•p•2 · · · E1c = np1•p•c

E21 = np2•p•1 E22 = np2•p•2 · · · E2c = np2•p•c
... ... . . . ...

Er1 = npr•p•1 Er2 = npr•p•2 · · · Erc = npr•p•c

The marginal probabilities here (for the population) are unknown, and are estimated

p̂j• = nj•/n and p̂•k = n•k/n,

which are simply the proportions in the sample. Thus, we can find the expected counts (under assumption of
independence),

Êjk = np̂j•p̂•k = n(nj•/n)(n•k/n) = nj•n•k/n,
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∀ j ∈ {1, . . . , r} and ∀ k ∈ {1, . . . , c}. This can then be used to find the individual estimated expected counts
for each Xi and Yk.

The test-statistic in this case is given as

X2 =
r∑

j=1

c∑
k=1

(njk − (nj•n•k/n))
2

nj•n•k/n
.

Under theH0 of independence,X2 ∼ χ2
(r−1)(c−1), i.e., d.f. = (r− 1)(c− 1). This allows us to construct a α-level

rejection region of
RR = {X2 > χ2

[α,(r−1)(c−1)]}.

Similarly to earlier, the following conditions must hold for this test to be valid:

• The counts represent a random sample from the population (multinomial experiment, r × c possible out-
comes)

• The sample size n is large enough such that for every cell the estimated expected count ≥ 5

3.4 Chi-Square Test Caveats

Pearson’s test relies on a chi-square approximation of the distribution of X2. This approximation has some
caveats:

• If the expected number of cell counts is small for any one of the cells (< 5), the approximation is poor. In
this case, other tests (Fisher’s exact test) can be used.

• The observations must be mutually independent and identically distributed; for paired qualitative data,
we can use McNemar’s test.

3.4.1 Fisher’s Exact Test

Fisher’s Exact Test is a test for independence of bivariate qualitative data (i.e. contingency tables). It is “exact”
as it does not rely on a large-sample.

It is generalized to the Fisher-Freeman-Halton test for contingency tables larger than 2× 2.

3.4.2 McNemar’s Test

McNemar’s Test can be usedwith frequency counts collected frommatched-pairs experiments (i.e. twomeasures
for a particular individual). An example table for this type of table would be:

Response 2
Response 1 Yes No Total

Yes n11 n12 n1•

No n21 n22 n2•

Total n•1 n•2 n
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The question of interest for such data is whether the proportion of Response 1: Yes is the same as the
proportion of Response 2: Yes, which cannot be answered using chi-square test.

Let p1 denote the true, population probability of Response 1: Yes, and p2 the true, population probability of
Response 2: Yes; we then want to test

H0 : p1 = p2; Ha : p1 ̸= p2.

As before, p̂1 = n1•/n and p̂2 = n•1/n, and thus

p̂1 − p̂2 = n1•/n− n•1/n

= (n11 + n12)/n− (n11 + n21)/n

= (n12 − n21)/n.

McNemar’s test is based on the conditional binomial distribution of (n12, n21), giving the test statistic

QM =
(n12 − n21)

2

(n12 + n21)
,

which has an approximate chi-square distribution with 1 degree of freedom.

For contingency tables larger than 2× 2, the Stuart-Maxwell test and Bhakpar tests are generalizations.

4 Nonparametric Statistics

Nonparametric statistics are helpful as in they do not rely on the distribution of the sampled population.

For instance, the median, η, of a sample can be a nonparametric statistic, say

H0 : η = η0.

4.1 Wilcoxon Test for Independent Samples

TakeX1, . . . , Xn1 be a random sample from population 1, and Y1, . . . , Yn2 be a random sample from population
2, and assume the two samples are independent. The Wilcoxon rank sum test can be used to test the hypothesis
that the probability distributions associated with the two populations are equivalent. It goes as follows:

1. Put all the observations for both groups together, as if they were from the same population, for a group
of size n = n1 + n2.

2. Order them from smallest to largest.

3. Rank them from smallest to largest, ie, the smallest gets rank 1, the largest gets rank n. If there are ties,
take the averages of the ranks and assign it to each observation.
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4. Separate the ranks by group and sum the ranks of each group;

WX = sum of the ranks associated with the observations X1, . . . , Xn1

WY = sum of the ranks associated with the observations Y1, . . . , Yn2

The test is based on the following idea;

• If there is no difference between the probability distribution (p.d.) of population 1 and the p.d. of population
2, the ranks of the X values (and hence also the Y ’s) are distributed randomly in the set {1, . . . , n}.

• If the p.d. of population 1 is shifted left of the p.d. of population 2, the ranks of the X values tend to be
smaller than if randomly, and thus so will their sum.

• If the p.d. of population 1 is shifted right of the p.d. of population 2, the ranks of the X values tend to be
larger than if randomly, and thus so will their sum.

LetD1 andD2 denote the p.d.’s of populations 1 and 2 respectively. The null hypothesis would beH0 : D1 =
D2. The relevant test statistics would be T = Wx if n1 < n2, T = WY if n1 > n2, and either if n1 = n2.

• If Ha: D1 shifted left of D2,

RR = {T ≤ TL} ifWX chosen, OR {T ≥ TU} if WY is chosen

• If Ha: D1 shifted right of D2,

RR = {T ≥ TU} if WX chosen, OR {T ≤ TL} if WY is chosen

• If Ha: D1 shifted anywhere of D2,

RR = {T ≤ TL OR T ≥ TU}

Where TL and TU are table values. The necessary conditions for this test to be valid are:

• Independent samples;

• The populations from which we are sampling have both a continuous distribution.

Rather than basing the test onWX or WY , we use the Mann-Whitney U-statistic, defined as

U = m1m2 +
m1(m1 + 1)

2
− T

where:

• m1 is the smallest of n1 and n2;

• m2 = n−m1;
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• T is the test-statistic for the Wilcoxon test.

There is also a large-sample version of this test, for n1 ≥ 10 and n2 ≥ 10;

Z =
U − (n1(n1 + n2 + 1))/2√

n1n2(n1 + n2 + 1)/12
,

where Z has an approximate N (0, 1) distribution.

4.2 Wilcoxon Test for Paired Samples

Wilcoxon’s signed rank test can be used to test the distributions of matched-pair data. Let X1, . . . , Xn and
Yn, . . . , Yn be two random samples of paired observations, and let Diff1 = X1 − Y1, . . . ,Diffn = Xn − Yn be the
sample of differences. Now:

1. Order the absolute value of differences from smallest to largest.

2. Rank them, after taking out all differences that are equal to 0.

Ties are handled as discussed previously; rank them as if they were consecutive, take the average of the
ranks, and assign it to each observation.

To understand the relevant hypotheses, we define the following:

• T+: the sum of the ranks of the differences that were positive before taking the absolute values.

• T−: the sum of the ranks of the differences that were negative before taking the absolute values.

Taking D1 and D2 to denote the probability distributions of populations 1 and 2, respectively, we wish to
test the null hypothesisH0 : D1 = D2.

• If Ha : D1 is shifted left of D2, T = T+;RR = {T+ ≤ T0}.

• If Ha : D1 is shifted right of D2, T = T−;RR = {T− ≤ T0}.

• If Ha : D1 is shifted to either the left or right of D2, T = min(T−, T+);RR = {T ≤ T0}.

Where T0 is the table value.

The necessary conditions for this test are:

• The sample differences are randomly selected from the population differences;

• The p.d. from which the sample of paired differences is taken from is continuous.
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There is also a large-sample version of this test, for n ≥ 25; we have

Z =
T+ − [n(n+ 1)/4]√
n(n+ 1)(2n+ 1)/24

,

where Z has an approximateN (0, 1) distribution. From here, the RR and p-value are the same as with any test
following the standard Normal distribution.

4.3 Kruskal-Wallis Test

The Kruskal-Wallis Test can be used to investigate the difference in distribution among more than two groups.
It arises fromwhat is called a completely randomized design (CRD), where the groups are assigned completely
at random so that each subject has the same chance of being assigned; any difference is considered experimental
error.

The data are assumed to be random samples from K independent populations; i.e.

X11, . . . , X1n1 from population 1;

X21, . . . , X2n2 from population 2;
... ... ... ...

XK1, . . . , XKnK
from population K.

The hypotheses of interest are

H0 : The K probability distributions are identical;

Ha : At least two of theK probability distributions differ in location.

The procedure of the test is very similar to that of the Wilcoxon rank sum test. The first step is to rank all of
the observations as a single group, handling ties as usual. This gives us {(R11, . . . , R1n1), . . . , (RK1, . . . , RKnK

)},
the ranks from each sample.

Under H0, the ranks of the observations should be approximately of the same order of magnitude in each
group. If H0 is false, the ranks in one group would be larger or smaller in magnitude than the ranks of at least
one other group.

To summarize the ranks, the average rank is taken per group; for each j ∈ {1, . . . , K}, R̄j is the average of
the pooled ranks of the jth group. In other words, if Rj is the sum of the ranks of group j, then R̄j = Rj/nj .

Thus, underH0, it is expected
R̄1 ≈ · · · ≈ R̄K .
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If this is true, then the rank average per group should be close to the overall average of ranks;

R̄ = (1 + · · ·+ n)/n = (n+ 1)/2.

The Kruskal-Wallis statistic measures how much R̄1, . . . , R̄K deviate from R̄:

KW =
12

n(n+ 1)

K∑
j=1

nj(R̄j − R̄)2.

KW is similar to the total sum of squares in a one-way ANOVA, but using ranks rather than actual data. KW is
also approximately distributed according to a χ2 distribution, withK−1 degrees of freedom (it isn’tK because
the if the average ranks of K − 1 of the groups are known, then theKth average can be deduced).

H0 is rejected for large values of KW, because this indicates that the average ranks of the groups are very
different compared to what one would expect. The necessary conditions for the test are:

• The K samples are random and independent.

• There are five or more measurements in each sample.

• The K probability distributions from which the samples are drawn are continuous.

4.4 Friedman Test

This test addresses the analog of a matched-pairs design but for more than 2 groups. We first define the notion
of “block”, a group of experimental units that receive all levels of “treatments” exactly once. A randomized
block design (RBD) has two steps:

1. Blocks are formed with each block consisting ofK experimental units (K is the number of “treatments”).
The B blocks should consist of experimental units that are as similar as possible.

2. One experimental unit from each block is randomly assigned to each treatment, given n = BK observa-
tions. The data would resemble the following:

Treatment
Block 1 · · · K

1 Y11 · · · Y1K

2 Y21 · · · Y2K

... ... . . . ...
B YB1 · · · YBK

A special case of RBD: B subjects, each subject receives all K treatments. Each subject is a block, and
the experimental units are the repeat assessments on the same subject. The order of the treatments should be
randomly assigned to each subject.

The Friedman test is based on the rank sums for each treatment.
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The first step is to rank the observations within blocks.

Then, for each j ∈ {1, . . . , K}, Rj := sum of the ranks within the jth treatment. Then, let

R̄j = Rj/B

be the average of the ranks within the jth treatment (across all blocks.) This gives us the ranks:

Treatment
Block 1 · · · K

1 R11 · · · R1K

2 R21 · · · R2K

... ... . . . ...
B RB1 · · · RBK

Totals R1 =
∑B

i=1Ri1 · · · RK =
∑B

i=1RiK

Means R̄1 = R1/B · · · R̄K = RK/B

Note: within each block, the sum of ranks is K(K + 1)/2. Thus, the total sum of ranks is BK(K + 1)/2,
and the total aerage of ranks is

R̄ =
B[K(K + 1)/2]

BK
= (K + 1)/2.

UnderH0, we expect
R̄1 ≈ · · · ≈ R̄K ≈ R̄ = (K + 1)/2.

The hypotheses of interest:

H0 : The K p.d.’s are identical;

Ha : At least two of the K p.d.’s differ in location.

The Friedman Statistic measures how much R̄1, . . . , R̄K deviate from R̄:

Fr =
12B

K(K + 1)

K∑
j=1

(R̄j − R̄)2.

Under H0, Fr is approximately distributed as χ2 with (K − 1) degrees of freedom. The necessary conditions
are:

• Treatments are randomly assigned to the experimental units within the blocks.

• The measurements can be ranked within blocks.

• The K p.d.’s from which the samples are drawn are continuous.

• Either B or K is bigger than 5.
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4.5 Spearman Rank Correlation

Assume that we have n mutually independent and identically distributed random pairs of variables

(X1, Y1), . . . , (Xn, Yn)

. The first step of this test is to rank each observation within each variable (i.e., within the X’s and the Y ’s).

Let ui and vi be the ranks of observations xi and yi, respectively. From here, there are two ways to compute
the Spearman rank correlation. First: just take the sample correlation coefficient of the ranks:

rs =
SSuv√
SSuuSSvv

,

where

SSuv =
n∑

i=1

(ui − ū)(vi − v̄) =
n∑

i=1

uivi − nūv̄,

SSuu =
n∑

i=1

(ui − ū)2 =
n∑

i=1

u2
i − nū2,

SSvv =
n∑

i=1

(vi − v̄)2 =
n∑

i=1

v2i − nv̄2.

If there are no ties in neither the X’s nor the Y ’s, we can use

rs = 1− 6

n(n2 − 1)

n∑
i=1

d2i ,

where di = ui − vi, the difference in the ranks of Xi and Yi.

Generally, −1 ≤ rs ≤ 1, where:

• rs = −1 =⇒ perfect negative correlation;

• rs = 0 =⇒ no correlation;

• rs = 1 =⇒ perfect positive correlation.

These are all under the standard condition that random samples are drawn from continuous probability
distributions.

4.5.1 Creating a Confidence Interval

A (1 − α)100% confidence interval for ρs can be constructed using the previously discussed Fisher’s variance
stabilizing z-transformation. In short; transform z = 1

2
ln
(

1+rs
1−rs

)
, created a c.i. for z with (cL, cU) = z ± zα/s√

n−3
,

then transform back to ρs with
[
e2cL−1
e2cL+1

, e
2cU−1
e2cU+1

]
.
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4.6 Analysis of Variance

ANOVA is a way of testing the quality of means of a response variable inK populations;

H0 : µ1 = · · · = µK ,

Ha : At least one of the µj differs from the others.

This will assume the data are from a CRD.

When K = 2, H0 : µ1 = µ2, which can simply be done with a Student t-statistic. When K > 2, we could
theoretically look at all pair-wise differences of means; however, this makes it very difficult to find a standard
test statistic, and further, would take a long time to compute for large K .

If we instead assume that

• the variances of the response variable are the same for each treatment (homoscedasticity: σ2
1 = · · · = σ2

K)
and

• the response variable is Normally distributed,

the p.d. of the response variable is then the same in each group; except (perhaps) for the mean.

UnderH0 : µ1 = · · · = µK , all observations are from the same distribution (N (µ, σ2)), where

µ = µ1 = · · · = µk and σ2 = σ2
1 = · · · = σ2

K .

We thus have the following setup:

Group 1: Y11, . . . , Y1n1 ∼ N (µ1, σ
2),

Group 2: Y21, . . . , Y2n2 ∼ N (µ2, σ
2),

... ... ...
Group K : YK1, . . . , YKnK

∼ N (µK , σ
2).

We take n = n1 + · · ·+ nK , the total number of observations. For each k ∈ {1, . . . , K}, we can estimate µk

given the group sample mean:
Ȳk =

1

nk

(Yk1 + · · ·+ Yknk
) = µ̂k

Under H0 : µ1 = · · · = µK = µ, an estimate of the common mean µ is given by the average of the
observations, over all groups:

µ̂ = Ȳ =
1

n

K∑
k=1

nk∑
i=1

Yki.

IfH0 is true, ie the treatment means are all the same, then each of the Ȳk should be close to Ȳ . What does “close”
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mean? One way to measure the distance of all of the treatment means from the overall mean is via

SST =
K∑
k=1

nk(µ̂K − µ̂)2 =
K∑
k=1

nk(Ȳk − Ȳ )2,

the sum of the squared deviations from the overall mean, weighted by the number of observations in each group.

When SST is large, this indicates evidence against H0, i.e., there would be evidence that at least one of the
means differs from the others, and conversely, if SST is small, it would not indicate evidence against H0. This
naturally leads to the question of what makes a particular SST large vs small.

First, note that a measure of sampling variability can be given by the sum of squares associated with the
errors, specifically,

SSE =
K∑
k=1

nk∑
i=1

(Yki − Ȳk)
2 =

K∑
k=1

(nk − 1)S2
k ,

where S2
j is the sample variance in group j. To compare SST and SSE, we have to convert “sum of squares” to

“mean of squares” by dividing each sum of squares by its degrees of freedom.

We define:
MST =

SST
(K − 1)

; MSE =
SSE

(n−K)
,

and from here we define our test-statistic,

F =
MST
MSE =

SST/(K − 1)

SSE/(n−K)
.

If H0 is true, then both MST and MSE should be close to each other, i.e., F should be close to 1.

We can interpret this as the differences in treatment means should attributable to sampling error, providing
little support againstH0. IfH0 is not true, then MST will be large on average, and so we will want to reject only
for large F .

Overall, we have, underH0 and the previously stated assumptions,

F =
MST
MSE ∼ FK−1,n−K .

This gives us a rejection region at a significance of α of

RR = {F > Fα,K−1,n−K}.

4.7 Comparing Multiple Means

ANOVA is limited by the fact that it only “detects” when at least one mean is significantly different than the rest.
We may, perhaps, want to compare the means between any combination of two means. ForK means, there are
C = K(K−1)

2
possible pair-wise comparisons that we can make. When K = 2, with n1 and n2 observations in
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each group respectively, we can measure the difference in the means using

(Ȳ1 − Ȳ2)± tα/2,n1+n2−2

√
S2
p/n1 + S2

p/n2,

where S2
p =

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2
is the pooled variance.

Assuming the population variances are equal between groups, we can use theMSEmeasure to better estimate
common variance, ie

(Ȳi − Ȳj)± t(α/2,n−K)

√
MSE/ni +MSE/nj.

There is a problem with this method however; for each individual confidence interval we create, we can be
100× (1−α)% confident that the true difference in means will be contained in our interval, but we do not have
the same confidence that all of the mean differences, overall, will be contained in their respective intervals. For
a pseudo-math explanation:

Pr(at least one ”bad” interval) = 1− Pr(All ”good intervals”)

= 1− Pr(1 is good, . . . ,C is good)

= 1− Pr(1 is good)× · · · × Pr(C is good)

= 1− [(1− α)× · · · × (1− α)] = 1− (1− α)C

(where a “good” interval contains the true difference, and a “bad” one does not.) Even for K = 3, this gives us
a “bad” error rate of 14% for α = 0.05, and becomes far worse as K increases; this is known as the problem of
multiple comparisons. We can say thatwe have a comparison-wise error rate (CER) ofα, and a experiment-
wise error rate (EER) of 1− (1− α)C .

The general solution to address this issue is to adjust the CER to get a reasonable EER. One such method is
the Boneferroni method, which is the most general, and conservative. To obtain a EER of αE , then we should
choose our CER to be

α = αF/C.

For instance, if we have C = 5 and αF = 0.05, then we should choose α = 0.01; if we build five 99% confidence
intervals, then the probability that they all contain their true target parameters will be about 95%.

Other methods include

• Tukey’s Honest Significant Difference: only applicable when groups are of equal sizes, and is only
really helpful in making pair-wise comparisons.

• Scheffé’s Method: helpful for linear combinations of means (“contrasts”), or for pairs of means.

4.8 ANOVA with Randomized Block Designs

Recall that an RBD occurs when treatments are randomly assigned to units within each block. Let B be the
number of blocks and K the number of treatments/groups; thus, there are n = B × K observations in total.
Ideally, each possible ordering of treatments should appear an equal number of times in the analysis, and the
orderings should be randomized to the subjects. This gives a general data structure:
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Treatment
Block 1 · · · K Total Mean
1 Y11 · · · Y1K Y1• =

∑K
i=1 Y1i Ȳ1•

2 Y21 · · · Y2K Y2• =
∑K

i=1 Y2i Ȳ2•
... ... . . . ... ... ...
B YB1 · · · YBK YB• =

∑K
i=1 YBi ȲB•

Total Y•1 =
∑B

j=1 Yj1 · · · Y•K =
∑B

j=1 YjK

Mean Ȳ•1 · · · Ȳ•K

We can define:

SST = B[(Ȳ•1 − Ȳ )2 + · · ·+ (Ȳ•K − Ȳ )2] = B
K∑
i=1

(Ȳ•i − Ȳ )2

SSB = K[(Ȳ1• − Ȳ )2 + · · ·+ (ȲB• − Ȳ )2] = K

B∑
j=1

(Ȳj• − Ȳ )2

SS(Total) =
K∑
i=1

B∑
j=1

(Yij − Ȳ )2

SSE = SS(Total)− SST− SSB

From here, we can create an ANOVA table for RBDs:

Source df SS MS F
Treat K − 1 SST MST = SST/(K − 1) MST

MSE

Block B − 1 SSB MSB = SSB/(B − 1) MSB
MSE

Error n−K −B + 1 SSE MSE = SSE/(n−K −B + 1)

Total n− 1 SS(Total)

4.8.1 F-test for Treatment Means

We can perform an ANOVA F -test to compare treatment means;

H0 : µ1 = · · · = µK ; vs. Ha : At least two of these means differ.

We have a test-statistic of
F =

SST/(K − 1)

SSE/(n−K −B + 1)
=

MST
MSE .

UnderH0, F ∼ F(K − 1, n−K −B + 1). We have a rejection region of

RR = {F > Fα,K−1,n−K−B+1}.
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Finally, we have a p-value of p = Pr(FK−1,n−K−B+1 > Fobs).

The necessary conditions for this test are that:

• The B blocks are randomly selected and the K treatments (groups) are randomly assigned to the experi-
mental units within the blocks.

• The probability distribution of responses for each BK block-treatment combinations is normal.

• The BK block-treatment distributions have equal variances.

When H0, we can proceed with a multiple comparison of means (see previous section).

We can also conduct an F -test for block means, though this is typically of little interest; this gives

H0 : τ1 = · · · = τB vsHa : at least one mean differs,

where τj represents the true mean response of block j, where j ∈ (1, . . . , B). We have:

F =
MSB
MSE

RR = {F > Fα,B−1,n−K−B+1}

p = Pr(FB−1,n−K−B+1 > Fobs).

The only factor that changes is the degrees of freedom; we now have the first degree of freedom = B − 1.

4.9 Two-Way ANOVA

Suppose we wish to investigate how two factors, A andB, affect a response variable; this is done with factorial
experiments. If, say, A and B have J and K levels respectively, a complete factorial experiment is one
in which every factor-level combination is used. Specifically, there must be observations at each of the J ×K
combinations of levels.

The R observations per “treatment” or “group” are called replications; when J = K , we have a balanced
complete factorial experiment. If there are R replications for each of the groups, it follows that we have
n = J ×K ×R observations. This specific design can be analyzed through the use of a two-way ANOVA.
Definition 6 (Balanced Complete Factorial Experiment)

A factorial experiment is one in which there are J levels of factorA andK levels of factorB; it becomes complete
when every possible J ×K combination of levels is used; it becomes balanced when there are R replications for
each of the J ×K groups.

This results in a data table resembling the following:
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Factor B
Factor A 1 · · · k K

1 (Y111, . . . , Y11R) · · · (Y1k1, . . . , Y1kR) (Y1K1, . . . , Y1KR)
... ... . . . ... ...
j (Yj11, . . . , Yj1R) · · · (Yjk1, . . . , YjkR) (YjK1, . . . , YjKR)
... ... . . . ... ...
J (YJ11, . . . , YJ1R) · · · (YJk1, . . . , YJkR) (YJK1, . . . , YJKR)

where Yjkr is the response value for factor A at level j (j ∈ {1, . . . , J}) and factor B at level k (k ∈ {1, . . . , K})
and replication r (r ∈ {1, . . . , R}).

As previously discussed, interaction is often a trend we must test for in statistical analysis. In the case of
two-way ANOVA, this is always the first test we must conduct, and in the case that no interaction exists, we
can then test if the main effects are significant.

4.9.1 Steps for Two-Way ANOVA

Step 1: Test for interaction between factors A and B. If there is evidence of an interaction, we can then use afore-
mentioned methods of multiple comparison. IF not:

Step 2: Test for a main effect of factor A. If one exists, we can then use aforementioned methods of multiple
comparison.

Step 3: Repeat step 2 for factor B.

The necessary conditions for ANOVA tests are as follows:

• Random and independent samples.

• The probability distribution of responses for each JK factor-level combinations is approximately normal.

• The JK factor-level distributions have equal variances.

4.9.2 Test Statistics

The overall sum of squares for treatments is defined as

SST = R

J∑
j=1

K∑
k=1

(Ȳjk• − Ȳ )2,

where Ȳij• is the mean of the (j, k)th treatment group, and Ȳ is the sample mean.
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We break SST into three sources:

SSA = RK

J∑
j=1

(Ȳj•• − Ȳ )2;MSA =
SSA
J − 1

SSB = RJ
K∑
k=1

(Ȳ•k• − Ȳ )2;MSB =
SSB

K − 1

SS(AB) = SST− SSA− SSB;MS(AB) = SS(AB)
(J − 1)(K − 1)

,

where SSA is the SS due to A, SSB is the SS due to B, and SS(AB) is the SS due to the interaction between A and
B.

For any given treatment group (j, k), its sample variance is

S2
jk =

1

R− 1

R∑
r=1

(Yjkr − Ȳjk•)
2.

The sum of squares of errors is defined

SSE =
J∑

j=1

K∑
k=1

R∑
r=1

(Yjkr − Ȳjk•)
2 =

J∑
j=1

K∑
k=1

(R− 1)S2
jk

MSE =
SSE

n− JK
.

Putting this all together, the two-way ANOVA table is as follows:

Source df SS MS F

A J − 1 SSA MSA = SSA
J−1

MSA
MSE

B K − 1 SSB MSB = SSB
K−1

MSB
MSE

AB (J − 1)(K − 1) SS(AB) MS(AB) = SS(AB)
(J−1)(K−1)

MS(AB)
MSE

Error n− JK SSE MSE = SSE
n−JK

Total n− 1 SST

4.9.3 Interactions

We have the following hypotheses:

H0 : A and B do not interaction to affect the response

Ha : A and B do interact to affect the response

This has a test-statistic of

F =
SS(AB)/ [(J − 1)(K − 1)]

SSE/(n− JK)
=

MS(AB)
MSE .
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UnderH0, we have:

F ∼ F(J−1)(K−1), n−JK

RR = {F > F(J−1)(K−1), n−JK}

p = Pr(Fobs ∈ RR)

4.9.4 Interpreting Main Effects

Take an experimental set up with J levels of factor A and K levels of factor B, and R replications for each of
the J ×K groups (ie, n = J ×K × R). Say we did not reject the null hypothesis of no interaction (no strong
evidence of an interaction). We then have to test the main effects of both A and B.

For A:

H0 : No difference among the J population mean responses due to A

Ha : At least two of the population means differ

We have a test-statistic of
F =

SSA/(J − 1)

SSE/(n− JK)
=

MSA
MSE ,

where F has a F-distribution with J − 1 and n− JK degrees of freedom; thus:

RR = {F > Fα, J−1, n−JK}

p = Pr(FJ−1,n−JK > Fobs)

For B:

H0 : No difference among the K population mean responses due to B

Ha : At least two of the population means differ

We have a test-statistic of
F =

SSB/(K − 1)

SSE/(n− JK)
=

MSB
MSE ,

where F has a F-distribution with K − 1 and n− JK degrees of freedom; thus:

RR = {F > Fα,K−1, n−JK}

p = Pr(FK−1,n−JK > Fobs)

As always, all of these tests and related conclusions are based on the assumptions of normality, constant
variance, and random sampling.
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5 Appendix

5.1 (Possible) Interpretations of p-values

p-value Evidence against H0

p < 0.001 Extremely Strong
0.001 ≤ p < 0.01 Very Strong
0.01 ≤ p < 0.05 Strong
0.05 ≤ p < 0.10 Modest

p ≥ 0.10 Weak

5.2 Interpreting Outputs

5.2.1 Regression Summary

Calling summary() on a simple linear regressionmodel (lm(y ˜ x, data)); only showing the coefficients section
of the table.

Estimate Std. Error t-value p-value
(Intercept) β0 SEβ0 Tobs 0 = β0/SEβ0 2 ∗ pt(−Tobs 0, df)

x β1 SEβ1 Tobs 1 = β1/SEβ1 2 ∗ pt(−Tobs 1, df)

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 (≡ p < α)
Residual standard error: σ̂ on df degrees of freedom
Multiple R-squared: R2, Adjusted R-squared: R2

adj

F-statistic: R2/K
(1−R2)/(n−(K+1))

on K and n− (K + 1) DF, p-value: pf(F,K, n− (K + 1), lower.tail = FALSE)

5.2.2 ANOVA

Simple case, calling anova() on a linear regression model.

DF Sums of Squares Mean Squares F p

X 1 Sxx Sxx/1 Sxx/(SSE/(n− 2)) p

Residuals n− 2 SSE SSE/(n− 2)
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5.2.3 Two-Way ANOVA

Source df SS MS F

A J − 1 SSA MSA = SSA
J−1

MSA
MSE

B K − 1 SSB MSB = SSB
K−1

MSB
MSE

A:B (J − 1)(K − 1) SS(AB) MS(AB) = SS(AB)
(J−1)(K−1)

MS(AB)
MSE

Error n− JK SSE MSE = SSE
n−JK

Total n− 1 SST

5.3 Glossary

Definition 1 (Simple Linear Regression)
Modeling of the relationship between two variables X and Y , which assumes that Y is a linear function of X .
We can denote this:

E(Y |X = x) = f(x)

Y = f(x) + ε,X = x

where ε is the error of the model.

Definition 2 (Unbiasedness)

β̂1 is unbiased for β1 if it gives a good estimate over large number of samples, on average.

Definition 3 (Analysis of Variance)
Short-handed as “anova”, this is a statistical method used to analyze the differences between groups, and specif-
ically, compare the variance caused by error to the variance caused by estimation.

Definition 4 (Correlation)
A measure of association between two random variables.

Definition 5 (Determination)
A measure of the proportion of variance in Y explained by the model (by X , that is).

Definition 6 (Balanced Complete Factorial Experiment)
A factorial experiment is one in which there are J levels of factorA andK levels of factorB; it becomes complete
when every possible J ×K combination of levels is used; it becomes balanced when there are R replications for
each of the J ×K groups.

5.4 Summary of R Code

Available here.
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