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§1 Differentiation

We say Ω ⊂ ℝ𝑛 a domain if it is open and connected.

↪︎Definition 1.1 (Differentiation):  Let 𝑓 = (𝑓1, …, 𝑓𝑚)𝑇 : Ω → ℝ𝑚, Ω a domain in ℝ𝑛 and 𝑓𝑗 :
Ω → ℝ. We say 𝑓  differentiable at 𝑥0 ∈ Ω if there exists a linear map 𝐿 : ℝ𝑛 → ℝ𝑚 such that

lim𝑥→𝑥0

‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐿(𝑥 − 𝑥0)‖
‖𝑥 − 𝑥0‖ = 0.

Remark 1.1 : Note that the first norm on ℝ𝑚, the second on ℝ𝑛.

Remark 1.2 : In terms of 𝜀, 𝛿, the definition says that ∀ 𝜀 > 0, ∃ 𝛿 > 0 such that if 𝑥 ∈ Ω ∩
𝐵(𝑥0, 𝛿), then ‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐿(𝑥 − 𝑥0)‖ < 𝜀‖𝑥 − 𝑥0‖.

↪︎Theorem 1.1 :  𝐿 as above is unique if it exists.

Proof. Suppose 𝐿1 ≠ 𝐿2 both satisfy the definition. Then, for all 𝜀 > 0, there exists 𝛿 >
0 such that if 0 < ‖𝑥 − 𝑥0‖ < 𝛿, then

‖(𝐿1 − 𝐿2)(𝑥 − 𝑥0)‖ ≤ ‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐿1(𝑥 − 𝑥0)‖ + ‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐿2(𝑥 − 𝑥0)‖

≤ 𝜀‖𝑥 − 𝑥0‖,

by differentiability (and the previous remark). In particular, ‖(𝐿1 − 𝐿2)𝑢‖ < 𝜀 for all 

unit vectors 𝑢, which implies ‖(𝐿1 − 𝐿2)𝑢‖ = 0 and thus 𝐿1 = 𝐿2. ■

↪︎Definition 1.2 : If 𝑓  differentiable at 𝑥0, we’ll write 𝐷𝑓 (𝑥0) = 𝐿 for the differential of 𝑓  at 𝑥0.

↪︎Proposition 1.1 : 𝑓  differentiable at 𝑥0 implies 𝑓  continuous at 𝑥0. In fact, 𝑓  is Lipschitz at 𝑥0.

Proof. Let 𝛿 > 0 such that ‖𝑥 − 𝑥0‖ < 𝛿 implies ‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)‖ < ‖𝑥 −
𝑥0‖, which implies

‖𝑓 (𝑥) − 𝑓 (𝑥0)‖ ≤ ‖𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)‖ + ‖𝑥 − 𝑥0‖ ≤ (‖𝐿‖ + 1)‖𝑥 − 𝑥0‖,

which readily proves the statement. ■

↪︎Proposition 1.2 :  𝑓  differentiable at a point 𝑥0 iff each of its component functions are 

differentiable at 𝑥0.

↪︎Definition 1.3 :  For 𝑓 : Ω ⊂ ℝ𝑛 → ℝ𝑚, define the partial derivative

𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑥1, …, 𝑥𝑚) ≔ lim
ℎ→0

[𝑓𝑗(𝑥1, …, 𝑥𝑖 + ℎ, …, 𝑥𝑚) − 𝑓𝑗(𝑥1, …, 𝑥𝑖, …, 𝑥𝑚)]
ℎ ,

if the limit exists.

1 Differentiation 2



↪︎Proposition 1.3 :  Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ𝑚 be differentiable at 𝑥0. Then, 
𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0) exists for each 

𝑖 = 1, …, 𝑛 and 𝑗 = 1, …, 𝑚, and

𝐿 = 𝐷𝑓 (𝑥0) =
(


𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑥0)
)


1 ≤ 𝑖 ≤ 𝑛
1 ≤ 𝑗 ≤ 𝑚

.

We call this matrix the Jacobian or derivative of 𝑓  at 𝑥0.

Proof. Write 𝐿 = (𝑎𝑗𝑖) in the standard basis 𝑒1, …, 𝑒𝑛 for ℝ𝑛. Let 𝜀 > 0, fix some 𝑖 with 

1 ≤ 𝑖 ≤ 𝑛, and set 𝑥 ≔ 𝑥0 + ℎ𝑒𝑖, with |ℎ| < 𝛿 sufficiently small. By differentiability,

‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐿(𝑥 − 𝑥0)‖
‖𝑥 − 𝑥0‖ =

(

∑

𝑚

𝑗=1 [


𝑓𝑗(𝑥) − 𝑓𝑗(𝑥0)
ℎ − 𝑎𝑗𝑖

]


2

)



1/2

.

Since the limit as ℎ → 0 of the above ratio must be zero, the limit of each term in the 

summation as ℎ → 0 must be zero as well (being a sum of nonnegative terms), i.e.

lim
ℎ→0

𝑓𝑗(𝑥) − 𝑓𝑗(𝑥0)
ℎ = 𝑎𝑗𝑖 ∀ 𝑗 = 1, …, 𝑚.

But the limit on the left is just 
𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0), which proves all of the claims in turn. ■

Remark 1.3 :  This proposition says that 𝑓  differentiable at 𝑥0 implies 
𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0) exists for all 𝑖, 𝑗. 

The converse need not be true. Consider

𝑓 (𝑥, 𝑦) ≔
{

 𝑥𝑦

√𝑥2+𝑦2
(𝑥, 𝑦) ≠ 0

0 else
.
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⊛ Example 1.1 :  Another counterexample as in the previous remark is the function

𝑓 (𝑥, 𝑦) ≔
{

 𝑥2𝑦

𝑥2+𝑦2 (𝑥, 𝑦) ≠ (0, 0)
0 (𝑥, 𝑦) = (0, 0)

.

Claim 1: 𝑓  continuous at (0, 0). We have, for (𝑥, 𝑦) ≠ (0, 0),

|𝑓 (𝑥, 𝑦) − 𝑓 (0, 0)| =
|
 𝑥2𝑦
𝑥2 + 𝑦2 |



=
𝑥2|𝑦|

𝑥2 + 𝑦2

≤ |𝑦| → 0 as (𝑥, 𝑦) → (0, 0),

so we have continuity indeed.

Claim 2: 𝜕𝑥𝑓 , 𝜕𝑦𝑓  exist at the origin, and are equal to zero. Note that 𝑓 (𝑥, 0) = 0 for 𝑥 ≠ 0, and 

𝑓 (0, 0) = 0, so it follows that 𝜕𝑥𝑓 (0, 0) = 0. Similarly for 𝜕𝑦𝑓 (0, 0).

Claim 3: 𝑓  is not differentiable at (0, 0). Suppose otherwise. Then, 𝐿 = 𝐷𝑓 (0, 0) = (0, 0), so

0 = lim
(𝑥,𝑦)→(0,0)

|𝑓 (𝑥, 𝑦) − 𝑓 (0, 0) − 𝐷𝑓 (0, 0)(𝑥, 𝑦)|
‖(𝑥, 𝑦)‖

= lim
(𝑥,𝑦)→(0,0)

|𝑓 (𝑥, 𝑦)|
‖(𝑥, 𝑦)‖

= lim
(𝑥,𝑦)→(0,0)

𝑥2|𝑦|

(𝑥2 + 𝑦2) ⋅ √𝑥2 + 𝑦2

= lim
(𝑥,𝑦)→(0,0)

𝑥2|𝑦|

(𝑥2 + 𝑦2)3/2 .

Suppose 𝑦 = 𝑥 in the final term (i.e., we approach the limit on a diagonal), and 𝑥 > 0, then this 

ratio simplifies

𝑥3

(2𝑥2)3/2 =
1

23/2 ≠ 0,

so we have a contradiction.

We can get a partial converse, however, if we assume continuity.

↪︎Theorem 1.2 :  Let 𝑓 = (𝑓1, …, 𝑓𝑚) : Ω ⊂ ℝ𝑛 → ℝ𝑚. Suppose each 
𝜕𝑓𝑗

𝜕𝑥𝑖
 is continuous at some 

𝑥0 ∈ Ω. Then, 𝑓  is differentiable at 𝑥0.

Proof. We use MVT, and suppose 𝑛 = 2, 𝑚 = 1 for simplicity of notation, so that 𝑓 :
Ω ⊂ ℝ2 → ℝ. We write 𝑥 = (𝑥1, 𝑥2) ∈ Ω, 𝑥0 = (𝑥0

1, 𝑥0
2). Let 𝜀 > 0. By assumption, there 

exists a 𝛿 > 0 such that

1 Differentiation 4



‖𝑦 − 𝑥0‖ < 𝛿 ⇒ |
𝜕𝑓
𝜕𝑥𝑖

(𝑦) −
𝜕𝑓
𝜕𝑥𝑖

(𝑥0)| ≤
𝜀
2, 𝑖 = 1, 2.

We write

𝑓 (𝑥) − 𝑓 (𝑥0) = 𝑓 (𝑥1, 𝑥2) − 𝑓 (𝑥0
1, 𝑥2) + 𝑓 (𝑥0

1, 𝑥2) − 𝑓 (𝑥0
1, 𝑥0

2)

(MVT, coordinate-wise) =
𝜕𝑓

𝜕𝑥1
(𝑧1, 𝑥2)(𝑥1 − 𝑥0

1) +
𝜕𝑓

𝜕𝑥2
(𝑥0

1, 𝑧2)(𝑥2 − 𝑥0
2),

for some 𝑧1 between 𝑥1 and 𝑥0
1 and some 𝑧2 between 𝑥2 and 𝑥0

2. Thus,

𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐷𝑓 (𝑥0)(𝑥 − 𝑥0) = 𝑓 (𝑥) − 𝑓 (𝑥0) − (𝜕𝑥1
𝑓 (𝑥0), 𝜕𝑥2

𝑓 (𝑥0)) ⋅ (𝑥 − 𝑥0)

=
𝜕𝑓

𝜕𝑥1
(𝑧1, 𝑥2)(𝑥1 − 𝑥0

1) +
𝜕𝑓

𝜕𝑥2
(𝑥0

1, 𝑧2)(𝑥2 − 𝑥0
2)

−
𝜕𝑓

𝜕𝑥1
(𝑥0)(𝑥1 − 𝑥0

1) −
𝜕𝑓

𝜕𝑥2
(𝑥0)(𝑥2 − 𝑥0

2)

= [𝜕𝑥1
𝑓 (𝑧1, 𝑥2) − 𝜕𝑥1

𝑓 (𝑥0
1, 𝑥0

2)](𝑥1 − 𝑥0
1)

+[𝜕𝑥2
(𝑥0

1, 𝑧2) − 𝜕𝑥2
𝑓 (𝑥0

1, 𝑥0
2)](𝑥2 − 𝑥0

2).

By choice of 𝑧1, 𝑧2 and for (𝑥1, 𝑥2) in 𝐵(𝑥0, 𝛿), we know (𝑧1, 𝑥2) ∈ 𝐵(𝑥0, 𝛿) and 

(𝑥0
1, 𝑧2) ∈ 𝐵(𝑥0, 𝛿) as well, so we can appeal to continuity. In addition, its clear that 

|𝑥𝑖 − 𝑥0
𝑖 | ≤ ‖𝑥 − 𝑥0‖. Thus, using continuity, we find

|𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)| ≤ (
𝜀
2 +

𝜀
2)‖𝑥 − 𝑥0‖ = 𝜀‖𝑥 − 𝑥0‖,

so dividing both sides by ‖𝑥 − 𝑥0‖ immediately gives the result. ■

↪︎Definition 1.4 :  Suppose 𝑓 : Ω ⊂ ℝ𝑛 → ℝ has continuous 
𝜕𝑓
𝜕𝑥𝑖

 at all points in Ω. Then, we 

say 𝑓  is continuously differentiable (in Ω), and we write 𝑓 ∈ 𝐶1(Ω).

Remark 1.4 :  Continuity of partial derivatives is sufficient, but not necessary, for 

differentiability. For instance,

𝑓 (𝑥, 𝑦) =
{

 𝑥2𝑦2

𝑥2+𝑦4 (𝑥, 𝑦) ≠ (0, 0)
0 (𝑥, 𝑦) = (0, 0)

.

On readily computes 𝜕𝑥𝑓 (0, 0) = 𝜕𝑦𝑓 (0, 0) = 0, but along the parabola 𝑥 = 𝑡2, 𝑦 = 𝑡 (𝑡 ≠ 0),

𝜕𝑥𝑓 (𝑡2, 𝑡) =
1
2,

so 𝜕𝑥𝑓  can’t be continuous. However, 𝑓  is still differentiable at (0, 0): we claim 𝐿 = 0, then

|𝑓 (𝑥, 𝑦) − 𝑓 (0, 0) − 𝐿(𝑥, 𝑦)|
‖(𝑥, 𝑦)‖ =

|𝑓 (𝑥, 𝑦)|

(𝑥2 + 𝑦2)
1
2

=
𝑥2𝑦2

(𝑥2 + 𝑦4)(𝑥2 + 𝑦2)
1
2

≤
𝑦2

|𝑥2 + 𝑦2|
1
2

≤ |𝑦| →
(𝑥,𝑦)→0

0.
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↪︎Proposition 1.4 (Basic Properties of Differentiation):

1. If 𝑓 , 𝑔 : Ω → ℝ𝑚 both differentiable at 𝑥0 ∈ Ω, then so is 𝐹 = 𝑓 + 𝑔, and

𝐷(𝑓 + 𝑔)(𝑥0) = 𝐷𝑓 (𝑥0) + 𝐷𝑔(𝑥0).

2. If 𝑓 , 𝑔 : Ω → ℝ𝑚 both differentiable at 𝑥0 ∈ Ω, then so is 𝐹 = 𝑓 𝑔 : Ω → ℝ, and

𝐷𝐹(𝑥0) = 𝑓 (𝑥0)𝐷𝑔(𝑥0) + 𝑔(𝑥0)𝐷𝑓 (𝑥0).

3. 𝑓 , 𝑔 : Ω → ℝ both differentiable at 𝑥0 with 𝑔(𝑥0) ≠ 0, then so is 𝐹 = 𝑓
𝑔 , and

𝐷𝐹(𝑥0) =
𝐷𝐹(𝑥0)
𝑔(𝑥0)

−
𝑓 (𝑥0)𝐷𝑔(𝑥0)

𝑔2(𝑥0)
.

4. (Chain Rule) Given 𝑓 : Ω ⊂ ℝ𝑛 → Ω̃ ⊂ ℝ𝑚 and 𝑔 : Ω̃ → ℝ𝑘, with 𝑓  differentiable at 𝑥0 and 

𝑔 differentiable at 𝑦0 = 𝑓 (𝑥0), then 𝐻 = 𝑔 ∘ 𝑓 : Ω ⊂ ℝ𝑛 → ℝ𝑘 is differentiable at 𝑥0, and

𝐷𝐻(𝑥0) = 𝐷𝑔(𝑦0) ⋅ 𝐷𝑓 (𝑥0),

in which one should read the “⋅” as matrix multiplication.

Proof. 1., 2., 3. left as an exercise. We prove 4., the Chain Rule, for it is realistically the 

most interesting. Set 𝐿 ≔ 𝐷𝑔(𝑦0) ⋅ 𝐷𝑓 (𝑥0), and we’ll write 𝑦 = 𝑓 (𝑥) (so in particular 

𝑦0 = 𝑓 (𝑥0), as in the statement). We need to show

lim𝑥→𝑥0

‖𝐻(𝑥) − 𝐻(𝑥0) − 𝐿(𝑥 − 𝑥0)‖
‖𝑥 − 𝑥0‖ = 0.

Let us work the numerator:

𝐻(𝑥) − 𝐻(𝑥0) − 𝐿(𝑥 − 𝑥0) = 𝑔(𝑦) − 𝑔(𝑦0) − 𝐷𝑔(𝑦0)𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)

= 𝑔(𝑦) − 𝑔(𝑦0) − 𝐷𝑔(𝑦0)(𝑦 − 𝑦0)

+𝐷𝑔(𝑦0)(𝑦 − 𝑦0) − 𝐷𝑔(𝑦0)𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)

= 𝑔(𝑦) − 𝑔(𝑦0) − 𝐷𝑔(𝑦0)(𝑦 − 𝑦0)

+𝐷𝑔(𝑦0)(𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)).

This means

‖𝐻(𝑥) − 𝐻(𝑥0) − 𝐿(𝑥 − 𝑥0)‖ ≤
≕(𝐴)

⏞‖𝑔(𝑦) − 𝑔(𝑦0) − 𝐷𝑔(𝑦0)(𝑦 − 𝑦0)‖

+‖𝐷𝑔(𝑦0)‖
≕(𝐵)

⏞‖𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐷𝑓 (𝑥0)(𝑥 − 𝑥0)‖.

By differentiability of 𝑓  at 𝑥0, (𝐵) → 0 as ‖𝑥 − 𝑥0‖ → 0. We also have that, since 𝑓  

differentiable it is Lipschitz continuous, there is some 𝐶 > 0 such that for ‖𝑥 − 𝑥0‖ 

sufficiently small,

(𝐴) = ‖𝑦 − 𝑦0‖ ⋅
(𝐴)

‖𝑦 − 𝑦0‖ ≤ 𝐶‖𝑥 − 𝑥0‖
𝐴

‖𝑦 − 𝑦0‖ .
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By differentiability of 𝑔, the ratio 
‖𝐴‖

‖𝑦−𝑦0‖ → 0 as ‖𝑦 − 𝑦0‖ → 0. By continuity of 𝑓 , ‖𝑦 −
𝑦0‖ = ‖𝑓 (𝑥) − 𝑓 (𝑥0)‖ will become small as ‖𝑥 − 𝑥0‖ → 0, so that we have in all 𝐴

‖𝑥−𝑥0‖ → 0 

as ‖𝑥 − 𝑥0‖ → 0. ■

Exercise 1.1 :  Let 𝑓  differentiable in ℝ2 and 𝑔(𝑟, 𝜃) ≔ (𝑟 cos 𝜃, 𝑟 sin 𝜃) with (𝑟, 𝜃) ∈ (0, ∞) ×
[0, 2𝜋). Let 𝐹(𝑟, 𝜃) = 𝑓 (𝑔(𝑟, 𝜃)). Compute 𝜕𝐹

𝜕𝜃  and 𝜕𝐹
𝜕𝑟 .

§1.1 Aside on Tangent Planes

Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ differentiable on Ω. Then 𝐷𝑓 (𝑥) = ( 𝜕𝑓
𝜕𝑥1

(𝑥), …, 𝜕𝑓
𝜕𝑥2

(𝑥)) ≕ ∇𝑓 (𝑥), called 

the gradient of 𝑓 . Let 𝑆 ≔ {(𝑥, 𝑧) ∈ Ω × ℝ : 𝑧 = 𝑓 (𝑥)} be the graph of 𝑓 . Then, for 𝑥0 ∈ ℝ,

𝑇𝑥0
𝑆 =

{



(𝑥, 𝑧) ∈ ℝ𝑛 × ℝ : 𝑧 = 𝑓 (𝑥0) + ∑
𝑛

𝑗=1

𝜕𝑓
𝜕𝑥𝑗

(𝑥0)(𝑥𝑗 − 𝑥0
𝑗 )

}



is the tangent plane to 𝑆 at 𝑥0.

To see this, let 𝑣 ∈ ℝ𝑛 be a unit vector and 𝑥 ∈ Ω. Define 𝑔(𝑡) ≔ 𝑓 (𝑥 + 𝑡𝑣) for 𝑓 : Ω → ℝ 

differentiable (for 𝑡 sufficiently small, 𝑥 + 𝑡𝑣 remains in Ω by openness). We find

𝑔′(𝑡) = ⟨∇𝑓 (𝑥 + 𝑡𝑣), 𝑣⟩

for 𝑡 sufficiently small.

↪︎Proposition 1.5 : Suppose ∇𝑓 (𝑥) ≠ 0. Then, ∇𝑓 (𝑥) points in the direction of steepest increase 

of 𝑓 .

Proof. For 𝑣 a unit vector, the directional derivative in the direction of 𝑣 is 𝐷𝑣𝑓 (𝑥) =
⟨∇𝑓 (𝑥), 𝑣⟩ = ‖∇𝑓 (𝑥)‖ cos(𝜃) where 𝜃 the angle between ∇𝑓 (𝑥) and 𝑣. This is maximized 

when 𝜃 = 0, i.e. when 𝑣 = ∇𝑓 (𝑥0)
‖∇𝑓 (𝑥0)‖ . ■

We can rewrite the graph 𝑆 as the level set {(𝑥, 𝑧) ∈ Ω × ℝ | 𝑔(𝑥, 𝑧) = 0} where 𝑔(𝑥, 𝑧) ≔ 𝑧 − 𝑓 (𝑥). 

Heuristically, ∇𝑔(𝑥0, 𝑧0) should be normal to the surface 𝑆 at (𝑥0, 𝑧0) (for steepest increase). As 

such, we define

𝑇(𝑥0,𝑧0)𝑆 ≔ {∇𝑔(𝑥0, 𝑧0) ⋅ (𝑥 − 𝑥0, 𝑧 − 𝑧0) = 0}.

Note that

∇𝑔(𝑥0, 𝑧0) = (−𝜕𝑥1
𝑓 (𝑥0), …, −𝜕𝑥𝑛

𝑓 (𝑥0), 1),

so that

𝑇(𝑥0,𝑧0) = {𝑧 − 𝑧0 = ∇𝑓 (𝑥0) ⋅ (𝑥 − 𝑥0)},

which gives the definition from above.

§1.2 Clairault’s Theorem

Here, the question is, given 𝑓 : Ω ⊂ ℝ𝑛 → ℝ twice differentiable, when can we exchange 

order of second-order partial derivatives, i.e. when is
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𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

=
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
, ∀ 𝑖, 𝑗 = 1, …, 𝑛?

We need to establish first a generalization of the mean-value theorem. First, note that if

𝛾 : (𝑎, 𝑏) → ℝ𝑛, 𝑔 : Ω ⊂ ℝ𝑛 → ℝ

are two differentiable functions with 𝛾((𝑎, 𝑏)) ⊂ Ω, then by the chain rule, if we put 𝐻(𝑡) ≔
𝑔(𝛾(𝑡)),

𝜕𝐻
𝜕𝑡 = 𝐷𝑔(𝛾(𝑡)) ⋅ 𝐷𝛾(𝑡), 𝐷𝛾(𝑡) = (𝛾′

1(𝑡), …, 𝛾′
𝑛(𝑡)).

↪︎Theorem 1.3 (Mean-Value Theorem):  Let 𝐵 ⊂ ℝ𝑛 be a ball and 𝑓 : 𝐵 → ℝ be differentiable 

for all 𝑥 ∈ 𝐵. Then, for any 𝑥, 𝑦 ∈ 𝐵, there exists 𝑧 ∈ 𝐵 such that

𝑓 (𝑥) − 𝑓 (𝑦) = 𝐷𝑓 (𝑧) ⋅ (𝑥 − 𝑦).

In particular, |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ ‖𝐷𝑓 (𝑧)‖‖𝑥 − 𝑦‖.

Proof. Let 𝑥, 𝑦 ∈ 𝐵 fixed and let 𝛾(𝑡) ≔ 𝑡𝑥 + (1 − 𝑡)𝑦 for 𝑡 ∈ [0, 1]. We see that 𝛾(𝑡) ∈
𝐵 for all 𝑡 ∈ [0, 1], and that 𝐷𝛾(𝑡) = 𝑥 − 𝑦. Set 𝐹(𝑡) ≔ 𝑓 (𝛾(𝑡)) (i.e., we restrict 𝑓  to its 

values along the straight line along 𝑥 and 𝑦), noting 𝐹 : ℝ → ℝ. So, by 1-dimensional 

mean-value theorem, there is some 𝑡∗ ∈ [0, 1] such that

𝑓 (𝑥) − 𝑓 (𝑦) = 𝐹(1) − 𝐹(0) = 𝐹′(𝑡∗) = 𝐷𝑓
(

𝑡∗𝑥 + (1 − 𝑡∗)𝑦⏟

≕𝑧∈𝐵 )

 ⋅ 𝐷𝛾(𝑡)

= 𝐷𝑓 (𝑧) ⋅ (𝑥 − 𝑦).

■

Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ𝑚 differentiable. Remember that 𝐷𝑓 : Ω → ℝ𝑚×𝑛.

↪︎Definition 1.5 :  We say 𝑓  twice differentiable at 𝑥 if 𝐷𝑓  exists locally to 𝑥 and 𝐷𝑓  is 

differentiable at 𝑥. We write

𝐷2𝑓 = 𝐷(𝐷𝑓 ),

and similarly

𝐷𝑘𝑓 ≔ 𝐷(𝐷𝑘−1𝑓 )

with an analogous definition.

↪︎Definition 1.6 :  Given 𝑓 : Ω ⊂ ℝ𝑛 → ℝ, we see that 𝑓 ∈ 𝐶𝑘(Ω) for 𝑘 ∈ ℤ+ if all the partial 

derivatives to order 𝑘 exist and are continuous in Ω.
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↪︎Definition 1.7 :  If 𝑓 : Ω ⊂ ℝ𝑛 → ℝ twice differentiable, the Hessian matrix is given by

𝐻𝑓 (𝑥) =

(



 𝜕2𝑓

𝜕𝑥1𝜕𝑥1
⋮

𝜕2𝑓
𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓
𝜕𝑥1𝜕𝑥2

⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2

⋯
⋱
⋯

𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑛

⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛 )





.

Exercise 1.2 :  Let 𝑓 (𝑥, 𝑦) ≔
{

(𝑥𝑦)(𝑥2−𝑦2)

𝑥2+𝑦2 (𝑥,𝑦)≠(0,0)

0 (𝑥,𝑦)=(0,0)
 and compute 𝐻𝑓 (𝑥, 𝑦).

↪︎Theorem 1.4 (Clairault) :  Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ be twice differentiable at 𝑥 ∈ Ω. Then,

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑥) =
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
(𝑥), ∀ 𝑖, 𝑗 = 1, …, 𝑛.

↪︎Corollary 1.1 :  If 
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
 are all continuous at 𝑥 ∈ Ω for 𝑖, 𝑗 = 1, …, 𝑛, then 

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑥) =
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
(𝑥).

Proof. (Of Clairault’s) It’s enough to consider 𝑛 = 2. Fix (𝑥, 𝑦) ∈ Ω, and note that for 

𝑠, 𝑡 ∈ ℝ sufficiently small, (𝑥 + 𝑠, 𝑦 + 𝑡) ∈ Ω by openness. Set

Δ(𝑠, 𝑡) ≔ 𝑓 (𝑥 + 𝑠, 𝑦 + 𝑡) − 𝑓 (𝑥, 𝑦 + 𝑡) − 𝑓 (𝑥 + 𝑠, 𝑦) + 𝑓 (𝑥, 𝑦)

= 𝑔𝑡(𝑥 + 𝑠) − 𝑔𝑡(𝑥), 𝑔𝑡(𝑢) ≔ 𝑓 (𝑢, 𝑦 + 𝑡) − 𝑓 (𝑢, 𝑦).

By the mean-value theorem, there is some 𝜉𝑠,𝑡 between 𝑥 and 𝑥 + 𝑠 suh that

Δ(𝑠, 𝑡) =
𝜕𝑔𝑡
𝜕𝑥 (𝜉𝑠,𝑡) ⋅ 𝑠 = [

𝜕𝑓
𝜕𝑥(𝜉𝑠,𝑡, 𝑦 + 𝑡) −

𝜕𝑓
𝜕𝑥(𝜉𝑠,𝑡, 𝑦)]𝑠. (‡)

By assumption, 
𝜕𝑓
𝜕𝑥  is differentiable at (𝑥, 𝑦), so

𝜕𝑓
𝜕𝑥(𝑧1, 𝑧2) =

𝜕𝑓
𝜕𝑥(𝑥, 𝑦)(𝑧1 − 𝑥) +

𝜕2

𝜕𝑥2 (𝑥, 𝑦)(𝑧2 − 𝑦) + 𝐸1(𝑧1, 𝑧2), (†)

where

|𝐸1(𝑧1, 𝑧2)|

√(𝑧1 − 𝑥)2 + (𝑧2 − 𝑦)2
→ 0, as (𝑧1, 𝑧2) → (𝑥, 𝑦).

Evaluating (†) at (𝑧1, 𝑧2) = (𝜉𝑠,𝑡, 𝑦 + 𝑡) and (𝜉𝑠,𝑡, 𝑦), and plugging into (‡) yields

Δ(𝑠, 𝑡) =
(
 𝜕2𝑓

𝜕𝑦𝜕𝑥(𝑥, 𝑦)𝑡 + 𝐸1(𝜉𝑠,𝑡, 𝑦 + 𝑡) − 𝐸1(𝜉𝑠,𝑡, 𝑦)
)
𝑠.

Let 𝑠 = 𝑡 and let 𝑡 → 0. We claim that

𝜕2𝑓
𝜕𝑦𝜕𝑥(𝑥, 𝑦) = lim

𝑠=𝑡→0

Δ(𝑠, 𝑡)
𝑠𝑡 =

𝜕2𝑓
𝜕𝑥𝜕𝑦(𝑥, 𝑦).
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The first equality is obvious from the assumptions on the error terms. On the other 

hand, we can switch the order of the middle terms in Δ(𝑠, 𝑡) and write

Δ(𝑠, 𝑡) = 𝑓 (𝑥 + 𝑠, 𝑦 + 𝑡) − 𝑓 (𝑥, 𝑦 + 𝑡) − 𝑓 (𝑥 + 𝑠, 𝑦) + 𝑓 (𝑥, 𝑦)

= ℎ𝑠(𝑦 + 𝑡) − ℎ𝑠(𝑦), ℎ𝑠(𝑢) ≔ 𝑓 (𝑥 + 𝑠, 𝑢) − 𝑓 (𝑥, 𝑢).

Repeating the same argument as above with 𝑔𝑡, we get that

Δ(𝑠, 𝑡) =
(
 𝜕2

𝜕𝑥𝜕𝑦(𝑥, 𝑦)𝑠 + 𝐸2(𝑥 + 𝑠, 𝜂𝑠,𝑡) − 𝐸2(𝑥, 𝜂𝑠,𝑡)
)
𝑡,

where 𝜂𝑠,𝑡 lies between 𝑦 and 𝑦 + 𝑡, and

|𝐸2(𝑥 + 𝑠, 𝜂𝑠,𝑡)| ≤ |𝑠2 + 𝑡2|, |𝐸2(𝑥, 𝜂𝑠,𝑡)| ≤ √𝑠2 + 𝑡2.

Setting 𝑠 = 𝑡 here, we get

lim
𝑠,𝑡→0

𝑠=𝑡

Δ(𝑠, 𝑡)
𝑠𝑡 =

𝜕2

𝜕𝑥𝜕𝑦(𝑥, 𝑦).

This proves the claim. ■

§1.3 Inverse Function Theorem

↪︎Theorem 1.5 (In 1D):  If 𝑓 : (𝑎, 𝑏) → (𝑐, 𝑑) is differentiable with 𝑓 ′(𝑥) > 0, then there exists 𝑔 :
(𝑐, 𝑑) → (𝑎, 𝑏) differentiable such that 𝑦 = 𝑓 (𝑥) ⇔ 𝑥 = 𝑔(𝑦) (i.e. 𝑥 = 𝑔(𝑦)).

In higher dimensions, we recall some preliminaries before proving.

↪︎Theorem 1.6 :  Let (𝑋, 𝑑) a complete metric space and 𝑓 : 𝑋 → 𝑋 a contraction mapping, 

with 𝑑(𝑓 (𝑥2), 𝑓 (𝑥1)) ≤ 𝛼𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 for some 0 < 𝛼 < 1. Then, there exists a unique 

𝑥0 ∈ 𝑋 such that 𝑓 (𝑥0) = 𝑥0.

We will write 𝑀𝑛 ≔ {𝑛 × 𝑛 matrices} ≅ ℝ𝑛2
, and ‖𝐴‖ ≔ √∑𝑛

𝑖,𝑗=1 𝑎2
𝑖𝑗 where 𝐴 ≔ (𝑎𝑖𝑗) ∈ 𝑀𝑛. We 

use

GL(𝑛) ≔ {𝐴 ∈ 𝑀𝑛 : det(𝐴) ≠ 0} = det−1(ℝ \ {0}), det : 𝑀𝑛 → ℝ.

Remark that since ℝ \ {0} is open, and the map det is continuous (it can be written as a 

polynomial in the entries 𝑎𝑖𝑗’s of the matrix 𝐴), we know that GL(𝑛) an open subset of 𝑀𝑛.

Consider the map

𝑓 : GL(𝑛) → GL(𝑛), 𝑓 (𝐴) ≔ 𝐴−1.

↪︎Lemma 1.1 :  GL(𝑛) ⊂ 𝑀𝑛 open and 𝑓 ∈ 𝐶𝑘 for all 𝑘 = 1, 2, ….

Proof. We already proved the first statement in our remarks above.

Let 𝐴(𝑗|𝑖) be (𝑛 − 1) × (𝑛 − 1) matrix with its 𝑗th row and 𝑖th columns deleted, then 

recall
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adj(𝐴) = ((−1)𝑖+𝑗 det 𝐴(𝑗|𝑖)).

By Cramer’s formula from linear algebra,

𝑓 (𝐴) = 𝐴−1 1
det(𝐴) adj(𝐴),

which is in 𝐶𝑘 since det(𝐴) 𝐶𝑘 (being a polynomial in the coefficients of 𝐴) and 

det(𝐴) ≠ 0. ■

↪︎Theorem 1.7 (Inverse Function Theorem):  Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ𝑛 be 𝐶1. Let 𝑥0 ∈ Ω and 

assume 𝐷𝑓 (𝑥0) ∈ GL(𝑛). Then, there exist domains 𝑈 and 𝑉 of 𝑥0 and 𝑓 (𝑥0) resp. such that 

𝑓 (𝑈) = 𝑉 and 𝑓 |𝑈 has a 𝐶1 inverse map 𝑓 −1 : 𝑉 → 𝑈. Moreover, for any 𝑦 ∈ 𝑉 and 𝑥 = 𝑓 −1(𝑦), 

𝐷𝑓 −1(𝑦) = [𝐷𝑓 (𝑥)]−1.

Remark 1.5 :  By the first lemma above, if 𝑓 ∈ 𝐶𝑘, 𝑘 ≥ 1, we get the same regularity for 𝑓 −1.

Proof. By translation, its enough to assume 𝑥0 = 𝑓 (𝑥0) = 𝑦0 = 0 and 𝐷𝑓 (𝑥0) = Id by 

replacing 𝑓  with [𝐷𝑓 (0)]−1𝑓 , so we have a mapping

𝑓 : Ω → ℝ𝑛, 𝑓 (0) = 0, 𝐷𝑓 (0) = Id.

Fix 𝑦 ∈ 𝑉 and set

𝑔𝑦(𝑥) ≔ 𝑦 + 𝑥 − 𝑓 (𝑥),

remark that

𝑔𝑦(𝑥) = 𝑥 ⇔ 𝑦 = 𝑓 (𝑥),

so it suffices to show 𝑔𝑦 as a mapping ℝ𝑛 → ℝ𝑛 is a contraction mapping, and

𝐷𝑔𝑦(0) = Id − Id = 0.

If 𝑓 ∈ 𝐶1(𝑈), then 𝑔𝑦 ∈ 𝐶1(𝑈) so that 𝐷𝑔𝑦 ∈ 𝐶0(𝑈) (similar if 𝑓 ∈ 𝐶𝑘 ⇒ 𝑔𝑦 ∈ 𝐶𝑘). 

Since 𝐷𝑔0 ∈ 𝐶0(𝑈), there exists some 𝛿 > 0 sufficiently small such that ‖𝐷𝑔0(𝑥)‖ ≤ 1
2 , 

for all 𝑥 ∈ 𝐵𝛿(0). By mean-value theorem, there exists some 𝑧 ∈ 𝐵𝛿(0) such that

‖𝑔0(𝑥)‖ =
‖



𝑔0(𝑥) − 𝑔0(0)⏟

=0 ‖




≤ ‖𝐷𝑔0(𝑧)‖‖𝑥‖

≤
‖𝑥‖
2 <

𝛿
2,

which implies we can view

𝑔0 : 𝐵𝛿(0) → 𝐵𝛿/2(0).

It follows that

𝑔𝑦 : 𝐵𝛿(0) → 𝐵𝛿(0), ∀ 𝑦 ∈ 𝐵𝛿/2(0),
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using the fact 𝑔𝑦 = 𝑦 + 𝑔0 and the triangle inequality. By MVT once again for any 

𝑥, 𝑥′ ∈ 𝐵𝛿(0), there exists 𝑦 ∈ 𝐵𝛿/2(0) such that

‖𝑔𝑦(𝑥) − 𝑔𝑦(𝑥′)‖ = ‖𝑔0(𝑥) − 𝑔0(𝑥′)‖

≤ ‖𝐷𝑔0(𝑦)‖‖𝑥 − 𝑥′‖

≤
‖𝑥 − 𝑥′‖

2

hence 𝑔𝑦 : 𝐵𝛿 → 𝐵𝛿 is a contraction mapping. By the fixed-point theorem, there exists a 

unique point 𝑥 ∈ 𝐵𝛿(0) such that 𝑔𝑦(𝑥) = 𝑥 ⇔ 𝑦 = 𝑓 (𝑥). That is, there exists an inverse 

map 𝑓 −1 : 𝐵𝛿/2(0) → 𝐵𝛿(0). Moreover, for any 𝑥, 𝑥′ ∈ 𝐵𝛿(0),

‖𝑥 − 𝑥′‖ ≤ ‖𝑓 (𝑥) − 𝑓 (𝑥′)‖ + ‖𝑔0(𝑥) − 𝑔0(𝑥)‖

≤ ‖𝑓 (𝑥) − 𝑓 (𝑥′)‖ +
1
2‖𝑥 − 𝑥′‖,

i.e.

‖𝑥 − 𝑥′‖ ≤ 2‖𝑓 (𝑥) − 𝑓 (𝑥′)‖.

From here, we know that for 𝑦, 𝑦′ ∈ 𝐵𝛿/2(0),

‖𝑓 −1(𝑦) − 𝑓 −1(𝑦′)‖ ≤ 2‖𝑦 − 𝑦′‖ ⇒ 𝑓 −1 ∈ 𝐶0(𝐵𝛿/2(0)).

Next, we need to show that 𝐷𝑓 −1(𝑦) exists for 𝑦 ∈ 𝐵𝛿/2(0) for small 𝛿 > 0. Since 

𝐷𝑓 (0) ∈ GL(𝑛), we know 𝐷𝑓 (𝑥) ∈ GL(𝑛) if 𝑥 ∈ 𝐵𝛿(0) (possible after shrinking 𝛿 > 0). 

Set

𝑊 ≔ 𝑓 −1(𝐵𝛿/2(0)),

and choose 𝑅 > 0 suff. small so that

𝐵𝑅(0) ⊂ 𝑊.

Since [𝐷𝑓 ]−1 ∈ 𝐶0(𝐵𝑅) and 𝐵𝑅(0) is compact,

‖[𝐷𝑓 (𝑥)]−1‖ ≤ 𝐾, 𝑥 ∈ 𝐵𝑟(0).

Then, given 𝑦, 𝑦′ ∈ 𝐵𝛿/2(0) and with 𝑥 = 𝑓 −1(𝑦), 𝑥′ = 𝑓 −1(𝑦′), we find

‖𝑓 −1(𝑦) − 𝑓 −1(𝑦′) − [𝐷𝑓 (𝑥′)]−1(𝑦 − 𝑦′)‖
‖𝑦 − 𝑦′‖ =

‖𝑥 − 𝑥′ − [𝐷𝑓 (𝑥′)]−1(𝑓 (𝑥) − 𝑓 (𝑥′))‖
‖𝑓 (𝑥) − 𝑓 (𝑥′)‖

=
‖𝑥 − 𝑥′‖

‖𝑓 (𝑥) − 𝑓 (𝑥′)‖
‖𝐷𝑓 (𝑥′)−1(𝑓 (𝑥) − 𝑓 (𝑥′) − 𝐷𝑓 (𝑥′)(𝑥 − 𝑥′))‖

‖𝑥 − 𝑥′‖

≤ 2𝐾
‖𝑓 (𝑥) − 𝑓 (𝑥′) − 𝐷𝑓 (𝑥′)(𝑥 − 𝑥′)‖

‖𝑥 − 𝑥′‖ ,

which converges to zero by differentiability of 𝑓 . This proves the claim 𝐷𝑓 −1(𝑦) =
[𝐷𝑓 (𝑥)]−1 where 𝑦 = 𝑓 (𝑥). ■
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Remark 1.6 :  The inverse function theorem is local. In general we can’t expect to find a single 

global inverse. For instance, let

𝑓 (𝑥, 𝑦) ≔ (𝑒𝑦 cos(𝑥), 𝑒𝑦 sin(𝑥)).

One easily verifies

det(𝐷𝑓 (𝑥, 𝑦)) = 𝑒−𝑦 ≠ 0.

However,

𝑓 (𝑥 + 2𝑘𝜋, 𝑦) = 𝑓 (𝑥, 𝑦), ∀ 𝑘 ∈ ℤ,

so there is certainly no hope of a global inverse, for 𝑓  is not even injective.

↪︎Theorem 1.8 (Implicit Function Theorem):  Let 𝐹 : Ω ⊂ ℝ𝑛
𝑥 × ℝ𝑚

𝑦 → ℝ𝑚
𝑦  be a 𝐶𝑘 map. 

Denote 𝑋 = (𝑥, 𝑦) ∈ ℝ𝑛 × ℝ𝑚, and let 𝑋0 = (𝑥0, 𝑦0) ∈ Ω with 𝐹(𝑋0) = 0. Writing 𝐹 =
(𝐹1, …, 𝐹𝑚), assume that

𝐷𝑦𝐹(𝑋0) =

(




 𝜕𝐹1

𝜕𝑦1
⋮

𝜕𝐹𝑚
𝜕𝑦1

…
⋱
…

𝜕𝐹1
𝜕𝑦𝑚

⋮
𝜕𝐹𝑚
𝜕𝑦𝑚 )







(𝑋0)

is invertible. Then, there exist neighborhoods 𝑈 and 𝑉 of 𝑥0 ∈ ℝ𝑛 and 𝑦0 ∈ ℝ𝑚 resp. and a 

unique 𝐶𝑘 map 𝑓 : 𝑈 → 𝑉 such that

𝐹(𝑥, 𝑓 (𝑥)) = 0, ∀ 𝑥 ∈ 𝑈.

In other words, the level set of 𝐹 is locally to 𝑥0 the graph of some function 𝑓  of the same 

regularity as 𝐹.

Proof. Define 𝐺 : Ω → ℝ𝑛 × ℝ𝑚 by

𝐺(𝑥, 𝑦) ≔ (𝑥, 𝐹(𝑥, 𝑦)).

Obviously 𝐺 is 𝐶𝑘. We can apply the inverse function theorem to 𝐺 near 𝑋0; indeed,

𝐷𝐺(𝑋0) =
(
 𝐼𝑛×𝑛

𝐷𝑥𝐹(𝑋0)
0

𝐷𝑦𝐹(𝑋0))
,

which means

det 𝐷𝐺(𝑋0) = det 𝐷𝑦𝐹(𝑋0) ≠ 0,

by assumption. Thus there exist neighborhoods 𝑊1, 𝑊2 of 𝑋0, (𝑥0, 0) respectively 

(since (𝑥0, 0) = 𝐺(𝑋0)) for which 𝐺−1 exists (and is 𝐶𝑘) from 𝑊2 → 𝑊1. Then, there are 

neighborhoods 𝑈 ⊂ ℝ𝑛 of 𝑥0 and 𝑉 ⊂ ℝ𝑚 of 𝑦0 such that 𝑈 × 𝑉 ⊂ 𝑊1; set 𝑍 = 𝐺(𝑈 ×
𝑉) (which is also open, with 𝑍 ⊂ 𝑊2). Thus we can view

𝐺 : 𝑈 × 𝑉 → 𝑍, 𝐺−1 : 𝑍 → 𝑈 × 𝑉,

which are both 𝐶𝑘 maps. Since 𝐺(𝑥, 𝑦) = (𝑥, 𝐹(𝑥, 𝑦)), we know that 𝐺−1(𝑥, 𝑤) =
(𝑥, 𝐻(𝑥, 𝑤)) for all (𝑥, 𝑤) ∈ 𝑍. Here, 𝐻 : 𝑍 → 𝑉 is 𝐶𝑘 since 𝐺 is. Thus,
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(𝑥, 𝐹(𝑥, 𝐻(𝑥, 𝑤))) = 𝐺(𝑥, 𝐻(𝑥, 𝑤)) = (𝑥, 𝑤),

using the definition of 𝐺 in the first equality and the inverse fact in the second line. 

Thus, it follows that

𝐹(𝑥, 𝐻(𝑥, 𝑤)) = 𝑤, ∀ (𝑥, 𝑤) ∈ 𝑍,

thus taking 𝑓 (𝑥) ≔ 𝐻(𝑥, 0) gives the proof. ■

↪︎Corollary 1.2 :  Let 𝐹 : Ω ⊂ ℝ𝑛 → ℝ be a 𝐶𝑘(Ω) function. Let 𝑋 = (𝑥′, 𝑦) ∈ ℝ𝑛−1 × ℝ and 

suppose (𝑥′
0, 𝑦0) ∈ Ω with 

𝜕𝑓
𝜕𝑦(𝑥′

0, 𝑦0) ≠ 0. Then, there exist neighborhoods 𝑈 and 𝑉 of 𝑥′
0 ∈

ℝ𝑛−1 and 𝑦0 ∈ ℝ and a unique 𝐶𝑘(𝑈) function 𝑓 : 𝑈 → 𝑉 such that

{𝐹(𝑥′, 𝑦) = 0} = {𝑦 = 𝑓 (𝑥′)}, (𝑥′, 𝑦) ∈ 𝑈 × 𝑉.

↪︎Theorem 1.9 (Morse Lemma):  Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ be a 𝐶𝑘 function with 𝑘 ≥ 3. Let 0 ∈ Ω 

be a critical point, i.e. ∇𝑓 (0) = 0. Assume further 𝑓 (0) = 0 and ∇2𝑓 (0) is invertible. There exist 

open sets 𝑈, 𝑉 of 0 ∈ 𝑈 ∩ 𝑉 and 𝑔 ∈ 𝐶𝑘−2(𝑈), 𝑔 : 𝑈 → 𝑉 with 𝑔−1 : 𝑉 → 𝑈, 𝑔−1 ∈ 𝐶2(𝑉), 

such that

𝑓 (𝑔(𝑦)) = 𝑦2
ℓ+1 + ⋯ + 𝑦2

𝑛 − (𝑦2
1 + ⋯ + 𝑦2

ℓ ),

for some ℓ ∈ ℤ ∩ [0, 𝑛].

§1.4 Taylor’s Theorem in ℝ𝑛

Let 𝑓 : Ω ⊂ ℝ𝑛 → ℝ, 𝑓 ∈ 𝐶𝑘+1(Ω). Let 𝑥0 ∈ Ω and |𝑡| small. Consider

𝑔(𝑡) ≔ 𝑓 (𝑥0 + 𝑡
𝑥 − 𝑥0

‖𝑥 − 𝑥0‖), 𝑥 ≠ 𝑥0, 𝑔(0) = 𝑓 (𝑥0).

Since 𝑥0 ∈ Ω and Ω open, 𝑥0 + 𝑡 𝑥−𝑥0
‖𝑥−𝑥0‖ ∈ Ω for 𝑡 sufficiently small. By Taylor in 1-dimension,

𝑔(𝑡) = 𝑔(0) + 𝑔′(0)𝑡 +
𝑔″(0)𝑡2

2! + ⋯ +
𝑔(𝑘)(0)𝑡𝑘

𝑘! + 𝑅𝑘(𝑔)(𝑡),
|𝑅𝑘(𝑔)(𝑡)|

|𝑡|𝑘
≤ 𝑀 |𝑡| as 𝑡 → 0.

To get Taylor expansion for 𝑓 (𝑥) around 𝑥0, we set 𝑡 = |𝑥 − 𝑥0| and apply chain rule to 𝑔(𝑡). First, 

we compute 𝑔(𝑗)(0); we get

𝑔(0) = 𝑓 (𝑥0),

𝑔(𝑡) = 𝑔(‖𝑥 − 𝑥0‖) = 𝑔(𝑥).

By chain rule,

𝑔′(0) = ∑
𝑛

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(𝑥0)
𝑥𝑗 − 𝑥0

𝑗

‖𝑥 − 𝑥0‖ .

Similarly, ….
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