MATH358 - Advanced Calculus

Based on lectures from Winter 2026 by Prof. John Toth.
Notes by Louis Meunier
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§1 DIFFERENTIATION
We say () C R" a domain if it is open and connected.
= Definition 1.1 (Differentiation): Let f = (f1, ...,fm)T : Q) > R™, ()adomainin R"” and f; :
O — R. We say f differentiable at x, € Q) if there exists a linear map L : R” — R" such that

lim [If (x) — f(x0) — L(x — xp)l _o.
=y [lx — ol

Remark 1.1: Note that the first norm on R, the second on R”.

Remark 1.2: In terms of ¢, J, the definition says that Ve >0, 36 > Osuch thatifx € QN
B(xq, 6), then [[f (x) — f (xg) — L(x — xp)|| < €lx — xo]|-

—Theorem 1.1: L as above is unique if it exists.

Proor. Suppose Ly # L, both satisfy the definition. Then, for all ¢ > 0, there exists § >
0 such that if 0 < ||x — xg|| < 4, then

[(Lq = Ly) (x = xp)|l S [If (x) = f(x0) — Ly (x = x0)[| + [lf (x) = f (x0) — Lo (x — xp)|

< gllx = xoll,

by differentiability (and the previous remark). In particular, ||(L; — L,)u|| < ¢ for all
unit vectors u, which implies ||(L1 — L,)u|| = 0 and thus L = L,. [ |

< Definition 1.2:If f differentiable at x,, we’ll write Df (x) = L for the differential of f at x.

= Proposition 1.1: f differentiable at x, implies f continuous at x. In fact, f is Lipschitz at x,.

Proor. Let § > 0 such that ||x — x| < ¢ implies ||f (x) — f(xg) — Df (xg) (x — xg)|| < |Jx —
x|, which implies

If ) = £ (xo) | < IDf (x0) (x = xo) | + [lx = xoll < (LI + Dl — xol,

which readily proves the statement. [

—Proposition 1.2: f differentiable at a point x iff each of its component functions are
differentiable at x.

< Definition 1.3: For f : O C R"” —» R, define the partial derivative
of; . it oer i By X)) = i1 oy Xy s Xy |
;LTI o h ’

1

if the limit exists.
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f
—Proposition 1.3: Letf : 3 C R” — R be differentiable at x,. Then, a—ﬁ(xo) exists for each

i=1,..,nandj=1,...,m and

of
L = Df(xo) = (a—ﬁ(xo))l ;

]

n
m

INIA
INIA

We call this matrix the Jacobian or derivative of f at x.

Proor. Write L = (aj-) in the standard basis ey, ..., ¢,, for R". Let ¢ > 0, fix some i with
1 <i < n,and set x := xy + he;, with || < 6 sufficiently small. By differentiability,

IFeo £ () ~Lx—xo)l _ (& [0 ~f0) )"
- Z T 4 .

e — ol 4 2

Since the limit as & — 0 of the above ratio must be zero, the limit of each term in the

summation as 1 — 0 must be zero as well (being a sum of nonnegative terms), i.e.

]lll—>0 7 ‘ij‘ \V/]: 1,...,m.
of
But the limit on the left is just a_f. (xg), which proves all of the claims in turn. [ |

of
Remark 1.3: This proposition says that f differentiable at x; implies a_f. (xg) exists for all 7, j.

The converse need not be true. Consider

xy

(x,y) #0

fx,y) = { Ja2+y? :
0 else
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® Example 1.1: Another counterexample as in the previous remark is the function

x2y
fry) = |Prp WP FO0
(x,y) = (0,0)
Claim 1: f continuous at (0,0). We have, for (x,y) # (0,0),
Xy
X2 +y?

If (x,y) = f(0,0)] =

_ Xl
x? + y?

< |y| - 0as (x,y) - (0,0),
so we have continuity indeed.

Claim 2: d,f, d,f exist at the origin, and are equal to zero. Note that f (x,0) = 0 for x # 0, and
£(0,0) =0, so it follows that d,f (0,0) = 0. Similarly for ayf(O, 0).

Claim 3: f is not differentiable at (0, 0). Suppose otherwise. Then, L = Df (0,0) = (0,0), so
0— If (x,y) —£(0,0) — Df (0,0) (x, y)|
(x,y)—(0,0) I )l

If (x, )

= im
(xy)~0,0) [[(x,y)|

2
= lim ]
(x.y)—(0,0) (x2 +12) - [x2 + y2

_ e x2y|
 (xy)—(0,0 3/2°
() =00 (x2 4 y2)

Suppose y = x in the final term (i.e., we approach the limit on a diagonal), and x > 0, then this
ratio simplifies

o1 0

so we have a contradiction.

We can get a partial converse, however, if we assume continuity.

of.
—Theorem 1.2: Letf = (f,...,f,) : Q@ C R"” — R™. Suppose each a_f. is continuous at some
x0 € Q. Then, f is differentiable at x.

Proor. We use MVT, and suppose n = 2,m = 1 for simplicity of notation, so that f :
Q Cc R? - R. We writex = (x1,%,) € Q,x° = (x?,xg). Let ¢ > 0. By assumption, there
exists a § > 0 such that
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f of

d €
— 40 2 —_ (40 e —
v x||<5=‘axi(y) 5 ()| €5 i=12
We write
fQ) =f(x) = f(x1, %) —f(x?,xz) +f(x?,x2) —f(x(f,xg)
MVT dinate-wi - 0y 4+ L (0 9
( , coordinate-wise) = a—xl(zl,xz)(xl — xl) + a—xz(xl,zz)(xz - xz),

for some z; between x; and x! and some z, between x, and x3. Thus,

F = f(x%) = DF (x°) (x = 20) = f(x) = f(x°) = (94, f (x0), 05, f (x°) ) - (x = 20)
of of

= a—xl(Zl,x2><xl — x?) + a_x2<x(1)122><x2 - x%)

() =) = ) (12 - )

= [axlf(zyxz) — axlf(x?,xg)]<x1 - x?)

[ (82) - 9 (29)] (- 2).

By choice of z1, z, and for (xy,x,) in B(x?, ), we know (zq,x,) € B(x?,6) and
(x(l), 22) € B(xY,6) as well, so we can appeal to continuity. In addition, its clear that

|xl- — x?| < |x = xY||- Thus, using continuity, we find

[Feo) = F(x0) = DF () (x = 3)| < (5 + 5 ) = 2] = effe = °

7

so dividing both sides by ||x — x°|| immediately gives the result. |
of
F

say f is continuously differentiable (in ), and we write f € C1(Q).

< Definition 1.4: Suppose f : (3 C R” — R has continuous = at all points in (). Then, we

Remark 1.4: Continuity of partial derivatives is sufficient, but not necessary, for

differentiability. For instance,

flry) = [ N # OO0,
0 (xy) =00

On readily computes d,f (0,0) = 8yf (0,0) = 0, but along the parabola x = tz,y =t(t#0),

1
2 ——
axf (t 4 t) - 2’
so d,f can’t be continuous. However, f is still differentiable at (0, 0): we claim L = 0, then

) —£(0,0) — L(x, , 2y ’
f(xy) —f(0,0) ~L(x,y)l _ If(xy)llz x“y <_ Y _<lyl -

G, ) (x2 +12)2 (x2+y4)(x2+y2)% 2 + y2|2 (xy)=0
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= Proposition 1.4 (Basic Properties of Differentiation):
1. If f,g : QO - R™ both differentiable at x° € ), then sois F = f + ¢, and

D(f +)(x9) = DF (x2) + Dy (x9).
2. If f,g : O —» R™ both differentiable at x° € ), thensois F = fg: Q —» R, and
DF(x9) = £(x2)Dg(x0) + g (+)Df (x0).
3. f,g: Q — R both differentiable at x with ¢(x%) # 0, then so is F = ]:, and

DE(x° 0\D 0
DP(XO): <3(;)_f(x2 go(x)
8(x%) g2(x°)
4. (Chain Rule) Givenf : Q ¢ R" - Q) c R™ and g : QO — R, with f differentiable at x* and

g differentiable at y* = f (x0), then H = g o f : QO C R" — RF is differentiable at x°, and

DH(x%) = Dg(y°) - Df (x°),

“ 7

in which one should read the “-” as matrix multiplication.

Proor. 1,2, 3. left as an exercise. We prove 4., the Chain Rule, for it is realistically the
most interesting. Set L := Dg(y,) - Df (xg), and we’'ll write y = f (x) (so in particular
Yo = f(xp), as in the statement). We need to show

[H (x) — H(xp) — L(x = xo)l _0

lim
X=Xo [l — ol

Let us work the numerator:
H(x) = H(xo) = L(x = x0) = 8(y) — 8(¥o) — Dg(¥o)Df (x0) (x = xo)
=8) —8Wo) — Dg(¥o) (¥ = ¥o)
+Dg(Y0) (¥ — Yo) — Dg(yo) Df (x0) (x — x0)
=8) —8Wo) — Dg(¥o) (¥ = ¥o)
+Dg (yo) (f (x) — f (x0) — Df (x0) (x — x0))-
This means
=:(A)

IH (x) — H(xq) — L(x —x0)ll < llg(v) — &Wo) — Dg(y0) (v — yo)l
=:(B)

+IDg (o) lllf (x) — f (xg) — Df (x0) (x — x0)|-

By differentiability of f at x(, (B) — 0 as ||x — x| — 0. We also have that, since f

differentiable it is Lipschitz continuous, there is some C > 0 such that for |jx — x|

sufficiently small,

(A)

— < (Cllx—=x
e

(A) =y = ol - Ty = ol
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Yoll = IIf (x) — f (x)]|| will become small as |jx — xg|| = 0, so that we have in all ”_—O” -0

as ||x — xg|| — 0. [ |

By differentiability of g, the ratio — 0as |ly — yoll = 0. By continuity of f, ||y —

Exercise 1.1: Let f differentiable in R2 and g(r,0) := (rcos8,rsin @) with (r,0) € (0, 00) x
[0,27r). Let F(r,0) = f(g(r,8)). Compute 9F and &£ aF
§1.1 Aside on Tangent Planes
Letf : O Cc R" — R differentiable on (). Then Df (x) = (;Tf(x), .y %(x)) =: Vf (x), called
1 2
the gradient of f. Let S := {(x,z) € QA x R : z = f (x)} be the graph of f. Then, for x* € R,

TxOS:{(x,z)eR”xR:z_ ia—f ) (% _x].O)}

is the tangent plane to S at x°.

To see this, let v € R” be a unit vector and x € Q). Define g(t) := f(x + tv) forf : 3 - R
differentiable (for t sufficiently small, x + tv remains in () by openness). We find

g'(t) = (Vf(x + tv),v)

for t sufficiently small.

= Proposition 1.5: Suppose Vf (x) # 0. Then, Vf (x) points in the direction of steepest increase

of f.

Proor. For v a unit vector, the directional derivative in the direction of v is D f (x) =

(Vf (x),v) = |[Vf(x)||cos(8) where 0 the angle between Vf (x) and v. This is maximized

_ . _ Vf(xp)
when 6 = 0, i.e. whenv = Gl [ |

We can rewrite the graph S as the level set {(x,z) € O x R | g(x,z) = 0} where g(x,z) := z — f (x).
Heuristically, Vg (x, zg) should be normal to the surface S at (xg, zy) (for steepest increase). As
such, we define

T(xy20)S = {Vg(xo,20) - (x —xp,2 —2z9) = O}
Note that
Vg(xo,20) = ( Iy, f (X0), -+ =9y, f (x0), )
so that
Tixyz0) = {z—29=Vf(xg) - (x —x0)},
which gives the definition from above.

§1.2 Clairault’s Theorem

Here, the question is, given f : (3 C R" — R twice differentiable, when can we exchange
order of second-order partial derivatives, i.e. when is

1.2 Clairault’s Theorem



82f 82f
= i,i=1,...,n?
ax]'axi axiax]'l v Z’] 1, M

We need to establish first a generalization of the mean-value theorem. First, note that if
y:(ab)->R", ¢:QCR" >R

are two differentiable functions with y((a,b)) C (), then by the chain rule, if we put H(t) :=
g(r(®),

oH

= = Dg(y®) -Dy(®), Dy®) = (11(5), -, 10 (D)

—Theorem 1.3 (Mean-Value Theorem): Let B C R" be aball and f : B — R be differentiable
for all x € B. Then, for any x,y € B, there exists z € B such that

fx) = f(y) =Df (@) - (x —y).
In particular, [f (x) — f (y)| < [Df @)llllx — yl.
Proor. Let x,y € B fixed and let 7y () := tx + (1 — t)y for t € [0, 1]. We see that y(t) €
Bforallt € [0,1], and that Dy (t) = x —y. Set F(t) := f(y(t)) (i.e., we restrict f to its

values along the straight line along x and y), noting F : R — R. So, by 1-dimensional
mean-value theorem, there is some t* € [0, 1] such that

fx)=f(y) =FQ1) —F(0) = F(t") = Df(t*x +(1- t*)y) Dy (b)

=:zEB

=Df(z) - (x —y).

Letf : O c R" —» R™ differentiable. Remember that Df : () - R"",

< Definition 1.5: We say f twice differentiable at x if Df exists locally to x and Df is
differentiable at x. We write

D*f = D(Df),
and similarly
D¥f := D(DF-1f)

with an analogous definition.

< Definition 1.6: Givenf : Q) C R" —» R, we see that f € C*(Q) for k € Z, if all the partial

derivatives to order k exist and are continuous in Q).

1.2 Clairault’s Theorem



< Definition 1.7: If f : O C R” — R twice differentiable, the Hessian matrix is given by

0%f 0%f 0%f
0x10x1 0x10x5 o 9x4 0x,,
He(x) = : : :
0%f 23%f 03%f
0x,,0x1 0x,0xy o 0x,,0x,,
(xy) (x2-y2) (x,1)£(0,0)
Exercise 1.2: Letf(x,y) := { ™ 2?2 YFET and compute Hy (%, ).
0 (x,y)=(0,0)

—Theorem 1.4 (Clairault): Letf : O C R" — R be twice differentiable at x € (). Then,

82f 82f
axian ax]'axi

(x) = x), Vij=1,..,n

2

—Corollary 1.1: If gx are all continuous at x € Q fori,j =1,...,n, then ajgx (x) =
82f ] L=y
ax ax; (x).

Proor. (Of Clairault’s) It’s enough to consider n = 2. Fix (x,y) € (), and note that for
s,t € R sufficiently small, (x + s,y + t) € () by openness. Set

A, t)y:==f(x+s,y+t)—f(x,y+t)—f(x+sy)+f(xy)
=g(x+5) —g(x), &) :=f(u,y+1t)—f(uy).

By the mean-value theorem, there is some ¢ ; between x and x + s suh that

d
A(S/t) - (és t) f(és t/ ) a_£<§s,t/y> 5. (:l:)
By assumption, a—{c is differentiable at (x,y), so
of of 02

ax(zlr 2) = a(xry)(zl —x) + @(xr]/)(zz —y) +Ei(z1,22), (1)

where
|E1(21,22)|

Vi 02 + (22— )

-0, as(z1,22) = (%, y).

Evaluating (1) at (z1,2,) = (& s,y + t) and (& 1, ), and plugging into (1) yields

92
A(s, t) = (8 g (Xt +E (& py +1t) — E1<§s,tf.’/))s'

Lets =t and let t — 0. We claim that

2f A(s ty 0%
(x y) = l st 8x8y

(x, ).

1.2 Clairault’s Theorem



The first equality is obvious from the assumptions on the error terms. On the other
hand, we can switch the order of the middle terms in A(s, t) and write

Aty =f(x+s,y+t)—f(x,y+t)—f(x+5s,y)+f(x,y)
=hs(y +1t) —hs(y), hg(u):=f(x+su)—f(xu.

Repeating the same argument as above with g;, we get that

82
A(s, t) = (W(X,y)s + E2(x + 5, Hs,t) - EZ(xl Us,t))t’

where 7, ; lies between y and y + ¢, and

Ex(x+5s,15¢)| < s>+ 12, |Ea(x,7754)| < V% + 12,

Setting s = t here, we get

i 60 0? (x,7)
sis0 st dxay * Y-
s=t
This proves the claim. |

§1.3 Inverse Function Theorem

—Theorem 1.5 (In 1D): If f : (a,b) — (c,d) is differentiable with f'(x) > 0, then there exists g :
(c,d) — (a,b) differentiable such thaty = f(x) & x = g(y) (i.e.x = g(y)).

In higher dimensions, we recall some preliminaries before proving.

—Theorem 1.6: Let (X,d) a complete metric space and f : X — X a contraction mapping,
with d(f(x;),f(x1)) < ad(x,y) for all x,y € X for some 0 < & < 1. Then, there exists a unique
xo € X such that f (xy) = xo.
We will write M,, := {n x n matrices} = R"*, and Al == 1/2?,7:1 azzj where A := (al-]-) e M,,. We
use
GL(n) := {A € M,, : det(A) # 0} = det™ (R \ {0}), det: M, — R.
Remark that since R \ {0} is open, and the map det is continuous (it can be written as a
polynomial in the entries ai]»’s of the matrix A), we know that GL(n) an open subset of M,,.

Consider the map
f:GL(n) - GL(n), f(A):=A"L
<Lemma 1.1: GL(n) C M,, openand f € C¥forallk = 1,2, ....

Proor. We already proved the first statement in our remarks above.

Let A(jli) be (n — 1) x (n — 1) matrix with its jth row and ith columns deleted, then
recall

1.3 Inverse Function Theorem
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adj(A) = ((=1)" det A(jli)).

By Cramer’s formula from linear algebra,

fA) =A"1

1 .
Jet(A) I,

which is in C* since det(A) C¥ (being a polynomial in the coefficients of A) and
det(A) # 0. [ ]

<Theorem 1.7 (Inverse Function Theorem): Letf : QO C R"” — R” be C. Let x, € Q and
assume Df (xy) € GL(n). Then, there exist domains U and V of x; and f (x() resp. such that
f(U) =V and f|;; has a C! inverse map f~! : V — U. Moreover, forany y € V and x = f =1 (y),

Df~'(y) = [Df (x)]7 1.

Remark 1.5: By the first lemma above, if f € Ck k> 1, we get the same regularity for f -1,

Proor. By translation, its enough to assume xy = f (xy) = Yo = 0 and Df (xy) = Id by
replacing f with [Df 0]t f, so we have a mapping

f:Q-R" f(0)=0,Df(0)=1d.
Fix y € V and set
gy () ==y +x—f(x),
remark that
gy(x) =x ey =[fx),
so it suffices to show g, as a mapping R" — R" is a contraction mapping, and
Dg,(0) =1d —1d = 0.
Iff € C'(U), then g, € C'(U) so that Dg, € CO(U) (similar if f € C* = ¢, € C¥).

Since Dgy € C%(U), there exists some 6 > 0 sufficiently small such that | Dgq (x)|| < Y
for all x € B;(0). By mean-value theorem, there exists some z € B5(0) such that

80(x) — 80(0)
=0
< [|Dgo () |llxl
Ixll o
<

—_ 2 2/

g0 (|| =

which implies we can view
80 : B5(0) = B;s/2(0).
It follows that
8y : Bs(0) = B5(0), Vy € Bs)2(0),

1.3 Inverse Function Theorem 11



using the fact g, = y + go and the triangle inequality. By MVT once again for any
x,x" € Bs(0), there exists y € Bs,,(0) such that

= |lgo(x) = go(x")l
< [IDgo(y)llllx — x|

8y x) = g, (x")

=)
- 2

hence g, : Bs — Bj is a contraction mapping. By the fixed-point theorem, there exists a
unique point x € Bs(0) such that gy(x)=xey= f(x). That is, there exists an inverse
mapf‘1 : Bs,2(0) = B;(0). Moreover, for any x,x" € Bs(0),

e = X[ < [If () = f ()1 + 110 () — go (X))
<@ —f @)l + 5~
i.e.
[l = x| < 2[f (x) = f(x)].
From here, we know that for y,y" € B;,,(0),
") =@l <2ly -yl = f € CO(Bs2(0)).

Next, we need to show that Df 71 (y) exists for y € B, (0) for small § > 0. Since
Df (0) € GL(n), we know Df (x) € GL(n) if x € B5(0) (possible after shrinking § > 0).
Set

W = f~1(Bs/2(0)),
and choose R > 0 suff. small so that
Br(0) C W.
Since [Df]‘1 e CY (%) and B (0) is compact,
I[Df )]~ < K, x € B,(0).

Then, giveny,y’ € B;/»(0) and with x = f~1(y),x" = f~1(y’), we find
I =) - IDF T =y v = DO e = £ ()|

ly = vl If x) = f (x|
C —x) |PrE (o —f () = DF @) (=)
TIfGO) = fD]| Ix — x|
< ol —F) ~ D) =)
flx — x']|

which converges to zero by differentiability of f. This proves the claim Df ~(y) =
[Df (x)]~! where y = f(x). m

1.3 Inverse Function Theorem 12



Remark 1.6: The inverse function theorem is local. In general we can’t expect to find a single

global inverse. For instance, let

f(x,y) := (&Y cos(x),e’ sin(x)).
One easily verifies

det(Df (x,y)) =e Y #0.

However,

f(x+2km,y) =f(x,y),Vk € Z,
so there is certainly no hope of a global inverse, for f is not even injective.
< Theorem 1.8 (Implicit Function Theorem): Let F: ) C R} x Rj¥ — Ry’ bea C* map.

Denote X = (x,y) € R" x R™, and let Xy = (xg,yo) € Q with F(X,) = 0. Writing F =
(F4,...,F,,), assume that

oF, oF,

a_;Vl cee a;y_m
D,F(Xo)=| : =~ i [(Xo0)

oF,  OF,

a_yl cee aym

is invertible. Then, there exist neighborhoods U and V of x; € R" and y; € R™ resp. and a
unique C¥ map f : U — V such that

F(x,f(x)) =0, Vxel.

In other words, the level set of F is locally to x, the graph of some function f of the same
regularity as F.

Proor. Define G : () —» R" x R™ by
G(x,y) = (%, F(x,y))-
Obviously G is CK. We can apply the inverse function theorem to G near X,; indeed,
I 0
DG X — nxn ,
(o) (DXHXo) DyF(Xo))

which means

det DG(Xy) = det D,F(Xy) # 0,
by assumption. Thus there exist neighborhoods W, W, of X, (xq, 0) respectively
(since (xp,0) = G(X,)) for which G exists (and is C) from W, — Wj. Then, there are

neighborhoods U C R"” of xy and V C R" of yy such that U x V C Wy;set Z = G(U x
V) (which is also open, with Z C W,). Thus we can view

G:UxV->Z Gl:Z->UxV,

which are both Ck maps. Since G(x,y) = (x,F(x,y)), we know that G l(x,w) =
(x,H(x,w)) for all (x,w) € Z.Here, H : Z - V is Ck since G is. Thus,

1.3 Inverse Function Theorem

13



(x,F(x,H(x,w))) = G(x,H(x,w)) = (x,w),

using the definition of G in the first equality and the inverse fact in the second line.
Thus, it follows that

F(x, Hx,w)) =w, V(x,w)€Z
thus taking f (x) := H(x,0) gives the proof. [ ]
—Corollary 1.2: Let F: QO C R" - R bea Ck(Q) function. Let X = (x',y) € R"1 xR and

suppose (X, o) € Q with g—J;(xb, Yo) # 0. Then, there exist neighborhoods U and V of x €
R"~! and y, € R and a unique C*(U) function f : U — V such that

{F(x,y) =0} ={y=f(x")}, (x,y)eUxV.
<Theorem 1.9 (Morse Lemma): Letf : Q C R” — R be a C* function with k > 3. Let 0 € O
be a critical point, i.e. Vf(0) = 0. Assume further f(0) = 0 and sz (0) is invertible. There exist

opensets U,Vof0e UNnVand g Ck_z(ll),g U - Vwi’chg_1 V- U, g_1 e CZ(V),
such that

FEW) =i+ +y2— (i ++47)
for some L € Z N [0, n].

§1.4 Taylor’s Theorem in R”
Letf :QCR" - R, f € CH1(Q). Let X € Q) and [t| small. Consider

g(t) ::f(xo + t” 2”> x#x9, 80) =f(xp)-

Since x, € Q and Q open, x( + t——2 & Q) for ¢ sufficiently small. By Taylor in 1-dimension,

IRk () (D]
tk

[lx— ||
//( ) 2 g(k) (O)tk
2 eoe + T

g(t) =g0) +g'(0)t + + R (g) (1), <Mlitlast — 0.

To get Taylor expansion for f (x) around x(, we set t = |x — x| and apply chain rule to g(¢). First,

we compute g(7 )(0); we get

g(O) :f(xO)/
g(t) = g(llx — xoll) = g(x).

By chain rule,

X—XO

$O= Zﬁ( el

Similarly, ....

1.4 Taylor’s Theorem in R"
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