Louis Meunier

Course Outline:

Introductory abstract algebra. Sets, functions, relations. Methods of proof. Arithmetic on integers. Fields, rings; groups, subgroups, cosets.

Texts:
Abstract Algebra, Hungerford; Algebra, Artin.
Based on Lectures from Fall, '23 by Prof. Eyal Goren.

Contents

1 Sets 31.1 Definition1.2 Set operations33
1.3 Indexed sets 3
1.4 Cartesian product 4
2 Methods of Proof 5
2.1 Proving equality via two inequalities 5
2.2 Contradiction (bwoc) 5
2.3 Proving the contrapositive 5
2.4 Induction 6
2.5 Pigeonhole principle 6
3 Functions7
3.1 Types of Functions 7
3.2 Cardinality 8
4 Relations 12
4.1 Definitions 12
4.2 Orders, Equivalence Relations and Classes, Partitions 13
5 Number Systems 17
5.1 Complex Numbers 17
5.2 Fundamental Theorem of Algebra, Etc 18
6 Rings (A Brief Introduction) 21
6.1 Definitions 21
7 Division 23
7.1 With Residue 23
7.2 Without Residue 23
7.3 Greatest Common Divisor (gcd) 24
7.4 Euclidean Algorithm 25
7.5 Primes 278 Congruences, Modular Arithmetic31
8.1 Definitions 31
8.2 Binomial Coefficients 35
8.3 Solving Equations in $\mathbb{Z} / n \mathbb{Z}$ 35
8.3.1 Linear Equations 35
8.4 Fermat's Little Theorem 36
9 Arithmetic of Polynomials 37
9.1 Definitions 37
9.2 GCD 39
10 Rings 46
10.1 Ideals 46
10.2 Homomorphism 50
10.3 Cosets 54
10.4 Quotient Rings: The Ring R / I 55
10.5 Isomorphisms 60
11 Groups 62
11.1 Definitions 62
11.2 Symmetric Group 65
11.3 Dihedral Groups D_{n} 68
11.4 Cosets and Lagrange's Theorem 70
11.5 Homomorphisms/Isomorphisms 72
11.6 Group Actions on Sets 76
11.7 More on the Dihedral Group 81

1 Sets

1.1 Definition

A set can be considered as a collection of elements; more intuitively, you can consider something a set if you can determine whether a given object belongs to it. Typically sets are defined as $A=\{1,2, \ldots\}$, by a property $A=\{x \mid x \% 2=0\}$, or with an appropriate verbal description.

1.2 Set operations

There are a number of ways to "combine" sets:

- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Difference: $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

\hookrightarrow Lemma 1.1

$$
A=(A \backslash B) \cup(A \cap B)
$$

 ing, the LHS and RHS are subsets of each other, and are thus equal.

First, to prove LHS \subseteq RHS, let $a \in A$. If $a \notin B$, then $a \in A \backslash B$, and $a \in$ RHS. Else, if $a \in B$, then $a \in A \cap B$ and $a \in$ RHS. Thus, LHS \subseteq RHS.

Next, to prove RHS \subseteq LHS, let $a \in$ RHS. If $a \in A \backslash B$, then $a \in A=$ LHS. Else, $a \in A \cap B$, and thus $a \in A=$ LHS. Thus, RHS \subseteq LHS. Since LHS \subseteq RHS and RHS \subseteq LHS, LHS $=$ RHS.

1.3 Indexed sets

Let I be a set. If for every $i \in I$, we have a set B_{i}, we say that we have a collection of sets B_{i} indexed by I. We write $\left\{B_{i}: i \in I\right\}$.

Example 1.1

Let $I=\{1,2,3\}$, and $B_{i}=\{1,2,3,4\} \backslash\{i\}$ (B_{i} is the set of all numbers from 1 to 4 , excluding i), for $i \in I$. We thus have $B_{1}=\{2,3,4\}$ (etc.).

This concept of indexing allows us to introduce repeated unions/intersections. For
instance, we can write

$$
\bigcup_{i \in I} B_{i}=B_{1} \cup B_{2} \cup B_{3}=\{1,2,3,4\}
$$

Similarly,

$$
\bigcap_{i \in I} B_{i}=\{4\} \cdot{ }^{1}
$$

Example 1.2

Let $I=\mathbb{R}$, and $B_{i}=[i, \infty]=\{r \in \mathbb{R}: r \geq i\}$. Then, $\bigcup_{i \in \mathbb{R}} B_{i}=\mathbb{R}$ and $\bigcap_{i \in \mathbb{R}} B_{i}=\emptyset$.
${ }^{1}$ You can somewhat consider these "large" unions/intersections as analogous to summations Σ and products Π.

1.4 Cartesian product

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. We define the Cartesian product

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in A_{i}, \text { for } 1 \leq i \leq n\right\}
$$

For instance,

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Example 1.3

Let $A=B=\mathbb{R} . A \times B=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}\}=\mathbb{R}^{2}$ is the set of all points in the Cartesian plane.

We can also define Cartesian products over an index set. Let I be an index set, with A_{i} for all $i \in I$. Then, we can write

$$
\prod_{i \in I} A_{i}=\left\{\left(a_{i}\right)_{i \in I}: a_{i} \in A_{i}\right\}
$$

Example 1.4

$$
\begin{aligned}
I & =\mathbb{N}, A_{0}=\{0,1,2, \ldots\}, A_{1}=\{1,2,3, \ldots\}, \ldots, A_{i}=\{i, i+1, i+2, \ldots\} \\
Y & :=\prod_{i \in I} A_{i}=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots\right): a_{i} \in \mathbb{N}, a_{i} \geq i\right\}
\end{aligned}
$$

We can say that a particular vector $\left(b_{0}, b_{1}, \ldots\right) \in Y$ if for each $b_{i}, b_{i} \geq i$ (and $b_{i} \in \mathbb{N}$, of course). In other words, a particular item of the vector must be greater than or
equal to its index. Thus, we can say

$$
(0,1,2,3, \ldots) \in Y
$$

while

$$
(2,2,2,2, \ldots) \notin Y
$$

since $a_{3}=2 \Longrightarrow i=3$, and $2 \nsupseteq 3$.

2 Methods of Proof

2.1 Proving equality via two inequalities

In short, say $x, y \in \mathbb{R} . x=y \Longleftrightarrow x \leq y$ and $y \leq x$. Similarly, in the context of sets, we can say that, for two sets $X, Y, X=Y \Longleftrightarrow X \subseteq Y$ and $Y \subseteq X$.

2.2 Contradiction (bwoc)

Given a statement P, we can prove P true by assuming P false ($\equiv \neg P$), then arriving to a contradiction (this contradiction is often a violated axiom or basic rule of the system at hand.)

Example 2.1

Show that there are no solutions to $x^{2}-y^{2}=1$ in the positive integers.

Proof (bwoc). Assume there are, so $x, y \in \mathbb{Z}_{+} \cdot{ }^{2}$ We can then write

$$
1=x^{2}-y^{2}=(x-y)(x+y)
$$

$x-y$ and $x+y$ must be integers, and so we have two cases, $\left\{\begin{array}{l}x-y=1 \\ x+y=1\end{array}\right.$ and $\left\{\begin{array}{l}x-y=-1 \\ x+y=-1\end{array}\right.$. In either case, y must be zero, contradicting our initial assumption and thus proving the statement.
${ }^{2} \mathbb{Z}_{+}$is used to denote positive integers; similarly, \mathbb{Z}_{-}denotes negative integers.

2.3 Proving the contrapositive

Logically, $A \Longrightarrow B \Longleftrightarrow \neg B \Longrightarrow \neg A^{3}$.
${ }^{3 "} \mathrm{I}$ am hungry therefore I will eat" \Longleftrightarrow "I will not eat therefore I am not hungry." Notice too that B need not imply A ("I will eat therefore I am hungry"). If $A \Longrightarrow B \Longleftrightarrow B \Longrightarrow A$,

\circledast Example 2.2

Let X, Y be sets. Prove $X=X \backslash Y \Longrightarrow X \cap Y=\emptyset$.

Proof. Prove contrapositive: $X \cap Y \neq \emptyset \Longrightarrow X \neq X \backslash Y . X \cap Y \neq \emptyset \Longrightarrow \exists t \in$ $\overline{X \cap Y} \Longrightarrow t \in X$ and $t \in Y$, thus $t \notin X \backslash Y$, but $t \in X$, so $X \neq X \backslash Y$.

2.4 Induction

\hookrightarrow Axiom 2.1: Well-Ordering Principle

Every $S \subseteq \mathbb{N}$, where $S \neq \emptyset$, has a minimal element, ie $\exists a \in S$ s.t. $\forall b \in S, a \leq b$.

\hookrightarrow Theorem 2.1: Principle of Induction

Let $n_{0} \in \mathbb{N}$. Say that for every $n \in \mathbb{Z}, n \geq n_{0}$, we are given a statement P_{n}. Assume
(a) $P_{n_{0}}$ is true
(b) if P_{n} is true, then P_{n+1} is true
then P_{n} is true for all $n \geq n_{0}$.

Proof (bwoc). Assume not. ${ }^{4}$ Then, we define $S=\left\{n \in \mathbb{N}: n \geq n_{0}, P_{n}\right.$ false $\}$. By the WellOrdering Principle, there exists a minimal element $a \in S$. By definition, $a \geq n_{0}$, and as $P_{n_{0}}$ is taken to be true, then $a>n_{0}$ since $n_{0} \notin S$. Thus, $a-1 \notin S$, as a is the minimal element of S, and therefore P_{a-1} is true. However, by (b), this implies P_{a} is also true, and thus $a \notin P$, contradicting our initial assumption.

2.5 Pigeonhole principle

\hookrightarrow Axiom 2.2

If there are more pigeons than pigeonholes, then at least one pigeonhole must contain more than one pigeon. ${ }^{5}$

\circledast Example 2.3

Consider $n_{1}, \ldots, n_{6} \in \mathbb{N}$. There exist at least two of these n 's s.t. $n_{i}-n_{j}$ is evenly divisible by 5 .

Proof. Let us rewrite each n_{i} as $n_{i}=5 k_{i}+r_{i}$, where $k_{i}, r_{i} \in \mathbb{N}, k_{i}$ is the quotient, and r_{i} is the residual. $r_{i} \in\{0,1,2,3,4\}$ (the only possible remainders when a number is divided by 5), and so there are 5 possible values of r_{i}, but 6 different n_{i}. Thus, two n_{i}
${ }^{4}$ note that (a) and (b) of the Principle of Induction are still taken to be true; it is simply the conclusion that is assumed to be false.
${ }^{5}$ Alternatively, you can consider fractional pigeons (though a little gruesome); given $n+1$ pigeons and n holes, each hole will contain, on average, $1+\frac{1}{n}$ pigeons.
must have the same r_{i}, and we can write:

$$
\begin{aligned}
n_{i}=5 k_{i}+r ; & n_{j}=5 k_{j}+r \\
n_{i}-n_{j} & =\left(5 k_{i}+r\right)-\left(5 k_{j}+r\right) \\
& =5\left(k_{i}-k_{j}\right)
\end{aligned}
$$

$\left(k_{i}-k_{j}\right) \in \mathbb{Z}$, and so $n_{i}-n_{j}$ is evenly divisible by 5.

3 Functions

3.1 Types of Functions

\hookrightarrow Definition 3.1: Function

Given 2 sets A, B, a function $f: A \rightarrow B$ is a rule such that $\forall a \in A, \exists!f(a) \in B$, where \exists ! denotes "there exists a unique".

\hookrightarrow Definition 3.2: Graph

Given a function $f: A \rightarrow B$, a graph $\Gamma_{f}=\{(a, f(a)): a \in A\} \subseteq A \times B$. We can say that, $\forall a \in A, \exists!b \in B$ such that $(a, b) \in \Gamma_{f}$.

Example 3.1

Consider the Cartesian plane, denoted \mathbb{R}^{2}. It is simply a graph Γ_{f} where $f: \mathbb{R} \rightarrow \mathbb{R}$ is the identity function, $f(x)=x$.

\hookrightarrow Definition 3.3: Injective

A function is an injection iff $\forall a_{1}, a_{2} \in A, f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}$.

\hookrightarrow Definition 3.4: Surjective

A function is a surjection iff $\forall b \in B, \exists a \in A$ such that $f(a)=b$. In other words, every element of B is mapped to by at least one element of A; you can pick any element in the range and it will have a preimage.

\hookrightarrow Definition 3.5: Bijective

Both.

The fibre of some $y \in Y$ is $f^{-1}(y)=f^{-1}(y)$

3.2 Cardinality

\hookrightarrow Definition 3.7: Cardinality

The cardinality of a set A, denoted $|A|$, is the number of elements in A, if A is finite, or a more abstract notion of size if A is infinite.

We say that two sets A, B have the same cardinality $(|A|=|B|)$ if \exists a bijection $f: A \rightarrow$ $B .{ }^{6}$ This necessitates the question, however: if two sets are not equal in cardinality, how do we compare their sizes?

We write

$$
|A| \leq|B| \Longleftarrow \exists f: A \rightarrow B \text { where } f \text { is injective }
$$

and

$$
|A| \geq|B| \Longleftarrow \exists f: A \rightarrow B \text { where } f \text { is surjective. }{ }^{7}
$$

Note that $|B| \leq|A|$ if either $A=\varnothing$ or, as above, $\exists f: B \rightarrow A$ surjective.

\hookrightarrow Definition 3.8: Composition

Given two functions $f: A \rightarrow B, g: B \rightarrow C$, the composition is the function $g \circ f: A \rightarrow C$

\hookrightarrow Proposition 3.1

$$
\text { If }|A|=|B| \text { and }|B|=|C| \text { then }|A|=|C|
$$

Proof. $\exists f: A \rightarrow B$ bijective, and $\exists g: B \rightarrow C$ bijective. We desire to show that $\exists h: A \rightarrow C$ that is bijective. We can write $h=g \circ f$, where $h(a)=g(f(a))$.

To show that h bijective:

- injective: Suppose $h\left(a_{1}\right)=h\left(a_{2}\right)$, then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, and since g is injective, $f\left(a_{1}\right)=f\left(a_{2}\right)$. Since f is injective, $a_{1}=a_{2}$, and thus h is injective.
- surjective: Let $c \in C$. Since g is surjective, $\exists b \in B$ such that $g(b)=c$. Since f is surjective, $\exists a \in A$ such that $f(a)=b$. Thus, $h(a)=g(f(a))=g(b)=c$, and thus h is surjective.

Thus, h is bijective, and $|A|=|C|$.

\hookrightarrow Lemma 3.1

If $g \circ f$ injective, f injective. If $g \circ f$ surjective, g surjective.

\hookrightarrow Definition 3.9: Image

The image of a function $f: A \rightarrow B$ is the set $\operatorname{Im}(f)=\{f(a): a \in A\}$, ie the set of all elements in B that are mapped to by f. Note that $\operatorname{Im}(f) \subseteq B$, and $\operatorname{Im}(f)=B$ if f is surjective.
\hookrightarrow Proposition 3.2
$|A| \leq|B|$ if $|B| \geq|A|$

Proof. If $A=\varnothing,|B| \geq|A|$ clearly.
If $A \neq \varnothing$, we are given $\exists f: A \rightarrow B$ injective. Let us choose some $a_{0} \in A$. We define $g: B \rightarrow A$ as

$$
g(b)= \begin{cases}a_{0} & b \notin \operatorname{Im}(f) \\ a & b=f(a) \in \operatorname{Im}(f)^{8}\end{cases}
$$

Note that $g(f(a))=g(b)=a$, so g is surjective. Thus, $|B| \geq|A|$.

\hookrightarrow Proposition 3.3

$$
|B| \geq|A| \text { if }|A| \leq|B|
$$

\hookrightarrow Theorem 3.1: Cantor-Bernstein Theorem

$$
|A| \leq|B| \text { and }|B| \leq|A| \Longrightarrow|A|=|B| .{ }^{9}
$$

Equivalently, if $\exists f: A \rightarrow B$ injective and $\exists g: B \rightarrow A$ injective, then $\exists h: A \rightarrow B$ bijective.

\hookrightarrow Proposition 3.4

$$
\text { If }\left|A_{1}\right|=\left|A_{2}\right| \text { and }\left|B_{1}\right|=\left|B_{2}\right| \text { then }\left|A_{1} \times B_{1}\right|=\left|A_{2} \times B_{2}\right| \text {. }
$$

Proof. The first two statements define bijections $f: A_{1} \rightarrow A_{2}$ and $g: B_{1} \rightarrow B_{2}$, and we desire to have $f \times g: A_{1} \times B_{1} \rightarrow A_{2} \times B_{2}$. We define $f \times g\left(a_{1}, b_{1}\right):=\left(f\left(a_{1}\right), g\left(b_{1}\right)\right)$. We must show that $f \times g$ is bijective.
${ }^{9}$ It is often very difficult to define an arbitrary bijective function between two sets in order to prove their cardinality is equal. The Cantor-Bernstein Theorem allows us to prove that two sets have the same cardinality by proving that there exists an injection from A to B and an injection from B to A, which is typically far easier.

\circledast Example 3.2

Consider A as the set of all points in the unit circle centered at $(0,0)$ in \mathbb{R}^{2}, and B as the set of all points in the square of side length 2 centered at $(0,0)$ in \mathbb{R}^{2} (ie, the circle is inscribed in the square). We wish to prove that $|A|=|B|$.

Proof. Let $f: A \rightarrow B, f(x)=x . f$ is injective, and thus $|A| \leq|B|$. Let $g: A \rightarrow B$, $g(x)=\left\{\begin{array}{l}0 ; \sqrt{2} x \notin B \\ \sqrt{2} x ; \sqrt{2} x \in B\end{array}\right.$. In simpler terms, consider this as multiplying points of A by $\sqrt{2}$; any point in this new "expanded" circle that lies within B maps to itself, and any that lies outside maps to 0 . This is thus a surjection, and thus $|B| \leq|A|$. By the Cantor-Bernstein Theorem, $|A|=|B|$.

\hookrightarrow Proposition 3.5

$A=\{0,1,4,9, \ldots\} .|A|=|\mathbb{N}|$.

Proof. Define $f: \mathbb{N} \rightarrow A, f(n)=n^{2}$. This is clearly injective ${ }^{10}$, and thus $|A| \leq|\mathbb{N}|$.

\hookrightarrow Definition 3.10: Countable/enumerable

A set A is countable if $|A|=|\mathbb{N}|$, or A is finite.
If A is finite of size n, \exists a bijection $f:\{0,1,2, \ldots, n-1\} \rightarrow A$.
If A is infinite, \exists a bijection $f: \mathbb{N} \rightarrow A$.
$\hookrightarrow \underline{\text { Proposition } 3.6}$
$|\mathbb{N}|=|\mathbb{Z}|$

Proof. We aim to find a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$, ie one that maps integers to natural numbers. Consider the function

$$
f(x)= \begin{cases}2 x & x \geq 0 \\ -2 x-1 & x<0\end{cases}
$$

This function is an injection because if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$ (positive case: $2 x_{1}=$ $2 x_{2} \Longrightarrow x_{1}=x_{2}$, negative case: $-2 x_{1}-1=-2 x_{2}-1 \Longrightarrow x_{1}=x_{2}$, and $2 x_{1} \neq-2 x_{2}-1$ for any integer). It is also a surjection (there is no natural number that cannot be mapped to by an integer). Thus, the function is a bijection and $|\mathbb{N}|=|\mathbb{Z}| .{ }^{11}$
${ }^{10}$ Notice that f is only injective if we restrict the domain to \mathbb{N}; if we were to consider \mathbb{Z}, for instance, $f(-1)=f(1)=1$.
${ }^{11}$ Note what would happen if f was defined as $-2 x$ for $x<0$; then, f would not be surjective (eg, $f(-1)=2=f(1)$.)
\hookrightarrow Proposition 3.7
$|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$

Remark 3.1. It is possible to construct a bijective $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$; see assignment 1 .

Proof. Let $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, f(n)=(n, 0)$, clearly an injection $(\Longrightarrow|\mathbb{N}| \leq|\mathbb{N} \times \mathbb{N}|)^{12}$. The function $g(m, n)=2^{n} 3^{m}$ is also injective, and thus $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$.

$$
\begin{aligned}
& \hookrightarrow \text { Corollary } 3.1 \\
& |\mathbb{Z}|=|\mathbb{Z} \times \mathbb{Z}|
\end{aligned}
$$

Proof. Consider $h: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, a bijection ${ }^{13}$, and $f: \mathbb{N} \rightarrow \mathbb{Z}$. Let $g=(f, f): \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z} \times \mathbb{Z}$. The composition $g \circ h \circ f^{-1}: \mathbb{Z} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is also a bijection, and thus $|\mathbb{Z}|=|\mathbb{Z} \times \mathbb{Z}|$.

\circledast Example 3.3

Show that $|\mathbb{N}|=|\mathbb{Q}|$.

Proof. First, we find an injection $\mathbb{Q} \rightarrow \mathbb{N}$. Let $f: \mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{Z}, f(n)=(p, q)$ where $\frac{p}{q}=n($ by definition of $\mathbb{Q})$. Using the same function definitions as in corollary 3.1, the composition $h^{-1} \circ g^{-1} \circ f: \mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. This is a composition of injections, and is thus an injection itself, and thus $|\mathbb{Q}| \leq|\mathbb{N}|$. The identity function $1: \mathbb{N} \rightarrow \mathbb{Q}, 1(n)=n$ is clearly an injection as well as all naturals are rationals, and thus $|\mathbb{N}| \leq|\mathbb{Q}|$. By the Cantor-Bernstein Theorem, $|\mathbb{N}|=|\mathbb{Q}|$.

\hookrightarrow Definition 3.11

We say $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$, ie $\exists f: A \rightarrow B$ is injective, but no such bijective.

Remark 3.2. We denote an injective function as $\mathbb{N} \hookrightarrow \mathbb{Z}$, and a surjective function as $\mathbb{Z} \rightarrow \mathbb{N}$. We say that a particular element n maps to some other element n^{\prime} by $n \mapsto n^{\prime}$

$$
\begin{aligned}
& \hookrightarrow \text { Theorem 3.2: Cantor } \\
& |\mathbb{N}|<|\mathbb{R}|
\end{aligned}
$$

Proof(Cantor's Diagonal Argument). We clearly have an injection $\mathbb{N} \hookrightarrow \mathbb{R}, n \mapsto n$, thus $|\mathbb{N}| \leq$ $|\mathbb{R}|$.

Now, suppose $|\mathbb{N}|=|\mathbb{R}|$. Then, we can enumerate the real numbers as a_{0}, a_{1}, \ldots with signs ϵ_{i}. We denote the decimal expansion of each number as ${ }^{14}$

$$
\begin{aligned}
a_{0} & =\epsilon_{0} 0 \cdot a_{00} a_{01} a_{02} \cdots \\
a_{1} & =\epsilon_{1} 0 \cdot a_{10} a_{11} a_{12} \cdots \\
a_{2} & =\epsilon_{2} 0 \cdot a_{20} a_{21} a_{22} \cdots \\
& \vdots
\end{aligned}
$$

Consider the number $0 . e_{0} e_{1} e_{2} \ldots$, where $e_{i}=\left\{\begin{array}{ll}3 & a_{i i} \neq 3 \\ 4 & a_{i i}=3\end{array}\right.$. This number is different than any given a_{i} at the $i+1$-th decimal place, and is thus not in the enumeration, contradicting our initial assumption.

Remark 3.3 (Continuum Hypothesis). Cantor claimed that there's no set $|A|$ such that $|\mathbb{N}|<$ $|A|<|\mathbb{R}|$. It has been proven today that this is "undecidable".

\hookrightarrow Definition 3.12: Algebra on Cardinalities

If α, β are cardinalities $\alpha=|A|, \beta=|B|$, Cantor defined:

$$
\begin{aligned}
\alpha+\beta & =|A \sqcup B| \text { (disjoint union) } \\
\alpha \cdot \beta & =|A \times B| \\
\alpha^{\beta} & =\left|B^{A}\right| \text { (set of all functions from } A \text { to } B \text {) }
\end{aligned}
$$

4 Relations

4.1 Definitions

\hookrightarrow Definition 4.1: Relation

A relation on a set A is a subset $S \subseteq A \times A(=\{(x, y): x, y \in A\})$.
We say that x is related to y if $(x, y) \in S$, where we denote $x \sim y$.
Conversely, if we are given $x \sim y$, we can define an $S=\{(x, y): x \sim y\}$.

Example 4.1

Following are examples of relations on A.

1) Let $S=A \times A$; any $x \sim$ any y because $(x, y) \in S$ for all (x, y).
2) Let $S=\varnothing$; no $x \sim$ any y (even to itself).
3) $S=$ diag. $=\{(a, a): a \in A\} ; x \sim x \forall x$, but $x \nsim y$ if $y \neq x$.
4) $A=[0,1](\in \mathbb{R})$. Say $x \sim y$ if $x \leq y$. Thus, $S=\{(x, y): x \leq y\}$ (the diagonal, and everything above).
5) $A=\mathbb{Z}, x \sim y$ if $5 \mid(x-y)$, ie x and y have same residue $\bmod 5 .{ }^{15}$
[^0]
\hookrightarrow Definition 4.2: Reflexive

A relation is reflexive if for any $x \in A, x \sim x$.
This includes examples 1), 2) (iff A is empty), 3), 4), and 5) above.

\hookrightarrow Definition 4.3: Symmetric

A relation is symmetric if $x \sim y \Longrightarrow y \sim x$.
This includes 1), 2), 3), and 5) above.

\hookrightarrow Definition 4.4: Transitive

A relation is transitive if $x \sim y$ and $y \sim z$ implies $x \sim z$.
This includes 1), 2), 3), 4), and 5) above.

4.2 Orders, Equivalence Relations and Classes, Partitions

\hookrightarrow Definition 4.5: Partial Order

A partial order on a set A is a relation $x \sim y$ s.t.

1. $x \sim x$ (reflexive)
2. if $x \sim y$ and $y \sim x, x=y$ (antisymmetric)
3. $x \sim y$ and $y \sim z \Longrightarrow x \sim z$ (transitive)

It is common to use \leq in place of \sim for partial orders.
We call a set on which a partial order exists a partially ordered set (poset).
This is called partial, as it is possible that for some $x, y \in A$ we have $x \nsim y$ and $y \nsim x$, ie x, y are not comparable. A partial order is called linear/total if for every $x, y \in A$, either $x \leq y$ or $y \leq x$, eg., $A=[0,1], \mathbb{R}, \mathbb{Z}, \ldots$, with $x \leq y$. Consider the above examples:

1) is not total, if A has at least two element, because $\exists x \neq y$ but both $x \sim y$ and $y \sim x$, and thus not antisymmetric.
2) yes
3) no, as this is symmetric, since $5|(x-y) \Longrightarrow 5|(y-x)$, and thus $x \sim y, y \sim$ $x \Longrightarrow y=x$

Example 4.2

Let $^{16} A=\mathbb{N}_{+}=\{1,2,3,4 \ldots\}$, and define $a \sim b$ if $a \mid b$. We verify:

- $a \sim a($ since $a \mid a)$
- $a \sim b, b \sim a \Longrightarrow a=b$, since in $\mathbb{N}_{+}, a \mid b \Longrightarrow a \leq b$, and we thus have $a \leq b$ and $b \leq a$, and thus $a=b$.
- suppose $a \sim b$ and $b \sim c$, then $a \mid b$ and $b \mid c$. We can write $b=a \cdot m$ and $c=b \cdot n$ for $n, m \in \mathbb{N}$. This means that $c=b n=a m n=a(m n)$, which means that $a \mid c$, so $a \sim c$.

Thus, A is a poset. Note that this is not a linear order, as $2 \nsim 3$, and $3 \nsim 2$ (not all a, b are comparable).
${ }^{16}$ Try this with integers, see where it fails

\hookrightarrow Definition 4.6: Equivalence Relation

We aim to, abstractly, define some \sim such that if $x \sim x, x \sim y$, then $y \sim x$, and if $x \sim$ $y, y \sim z$, then $x \sim z$.

Specifically, an equivalence relation \sim on the set A is a relation $x \sim y$ s.t. it is

- reflexive;
- symmetric;
- transitive. ${ }^{17}$

\circledast Example 4.3

1. Let $n \geq 1$ be an integer. A permutation σ of n elements is a bijection σ : $\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$. Their number is $n!$, ie there are n ! permutations of n elements. The collection of all permutations of n elements is denoted S_{n}, which we call the "symmetric group" on n elements. We aim to define an equivalence relation on S_{n}.
Let us define $\sigma \sim \tau$ if $\sigma(1)=\tau(1)$. We verify that this is an equivalence relation:
(a) $\sigma \sim \sigma, \sigma(1)=\sigma(1)$, so yes
(b) $\sigma \sim \tau$ means $\sigma(1)=\tau(1)$, so yes
(c) $\sigma \sim \tau, \tau \sim \rho, \sigma(1)=\tau(1), \tau(1)=\rho(1)$, so $\sigma(1)=\rho(1)$, hence $\sigma \sim \rho$, so yes.

Thus, \sim is an equivalence relation on S_{n}.

Example 4.4

Define a relation on \mathbb{Z} by saying that $x \sim y$ if $x-y$ even, ie $2 \mid(x-y)$. This is reflexive, as $2 \mid(x-x)=0, x \sim x$, symmetric, since $(y-x)=-(x-y)$, and transitive $x-z=\underbrace{(x-y)}_{\text {even }}+\underbrace{(y-z)}_{\text {even }} \Longrightarrow x \sim z$.

Example 4.5

We say two sets $A \sim B$ if $|A|=|B| .1_{A}=$ Id : $A \rightarrow A, a \mapsto a$ shows $A \sim A$. $A \sim B \Longrightarrow \exists f: A \rightarrow B$ bijective, then $f^{-1}: B \rightarrow A$ also bijective so $B \sim A$. If $A \sim B, B \sim A$ then $A \sim C$ (since $|A|=|B|,|B|=|C| \Longrightarrow|A|=|C|$ as proved earlier).

\hookrightarrow Definition 4.7: Disjoint Union

Let S be a set, and $S_{i}, i \in I, \subseteq S$. S is the disjoint union of the S_{i} 's if $S=\cap_{i \in I} S_{i}$, and for any $i \neq j, S_{i} \cap S_{j}=\varnothing^{18}$; we denote $S=\amalg_{i \in I} S_{i}$. We can say that $\left\{S_{i}\right\}$ for a partition of S.

Example 4.6

Let $S=\{1,2\}$. Partitions are $\{1,2\}$, and $\{1\},\{2\}$.
Let $S=\{1,2,3\}$. Partitions are $\{1,2,3\},\{1\},\{2\},\{3\}, \ldots$

\hookrightarrow Definition 4.8: Equivalence Class

Given an equivalence relation \sim of A and some $x \in A$, the equivalence class of x is $[x]=$ $\{y \in A: x \sim y\} \subseteq S$.

\hookrightarrow Theorem 4.1

The following theorems are related to equivalence classes:
(1) the equivalence classes of A form a partition of A;
(2) conversely, any partition of A defines an equivalence relation on A given by the partition.
${ }^{18}$ ie, no S_{i} 's share elements; think of "partitioning" S such that no subsets overlap.

\hookrightarrow Lemma 4.1

Let X be an equivalence class; $a \in X$, then $X=[a]$.

Proof of lemma 4.1. If X is an equivalence class, $X=[x]$ for some $x \in A$, by definition. Let $a \in X$. If $b \in[a]$ then $b \sim a$ and as $a \in[x]$ then $a \sim x \Longrightarrow b \sim x \Longrightarrow b \in[x] \Longrightarrow[a] \subseteq[x]$.

Otoh, $a \sim x \Longrightarrow x \in[a]$, so $[x] \subseteq[a]$, and thus $[x]=[a]$.

Proof of theorem 4.1. We prove (1), (2) individually.
(1) We aim to show that if the equivalence classes are $\left\{X_{i}\right\}_{i \in I}$ then $A=\amalg_{i \in I} X_{i}$. We say the following:

1. Every $a \in A$ is in some equivalence class ($a \in[a]$).
2. Two different equivalence classes are disjoint \Longleftrightarrow if X, Y equiv. classes s.t. $X \cap Y \neq \varnothing$ then $X=Y .{ }^{19}$

Let $a \in X \cap Y \stackrel{\text { lemma }}{\Longrightarrow}[a]=X,[a]=Y \Longrightarrow X=Y$.
Here, consider the examples above;

- example 4.3; S_{n} : there are n equiv classes $X_{i}=\left\{\sigma \in S_{n}: \sigma(1)=i\right\} . S_{n}=X_{1} \sqcup X_{2} \sqcup$ $\ldots X_{n} . \sigma \in S_{n}$ and $\sigma(1)=i$, then $\sigma \in X_{i}$.
- example 4.4; \mathbb{Z} : two equiv. classes; $X=$ even integers $=[0], Y=$ odd integers $=[1]$, so $\mathbb{Z}=$ even \sqcup odd
- example 4.5; sets: an equivalence is a cardinality. $n:=[\{1,2, \ldots n\}]=$ all sets with n elements. Similarly, we often write that $\aleph_{0}:=[\mathbb{N}]=$ inf. countable sets $=$ sets un bijection with \mathbb{N}, and $2^{\aleph_{0}}:=[\mathbb{R}]$.
(2) We are given a partition $A=\amalg_{i \in I} X_{i}$. We say $x \sim y$ if $\exists i \in I$ s.t. x and y belong to X_{i} (noting that such an i is unique if it exists by definition of a partition).
- $x \sim x$, clearly, since $x \in X_{i} \Longrightarrow x \in X_{i}$
- $x \sim y \Longrightarrow y \sim x$, by similar logic
- $x \sim y, y \sim z$ means that x and y in some same X_{i}, and y and z in some same X_{j}. So, $y \in X_{i} \cap X_{j}$, but we are working with a partition so X_{i} and X_{j} are disjoint and so this intersection is either \varnothing, or the sets are equal; since we know it is not empty, $X_{i}=X_{j}$, and so $x \sim z$.

Thus, \sim is an equivalence relation. ${ }^{20}$

\circledast Example 4.7

Let $A=$ students in this class. $x \sim y$ if x, y have the same birthday. The equivalence classes in this case are the dates s.t. \exists some student with that birthday.

\hookrightarrow Definition 4.9: Complete set of representatives

If is an equiv. relation on A, a subset $\left\{a_{i}: i \in I\right\} \subseteq A$ is called a complete set of representatives if the equivalence classes are $\left[a_{i}\right], i \in I$ with no repetitions.

You find such a subset by choosing from every equiv class one element.Considering our examples:

- For example 4.3, $S_{n}=X_{1} \sqcup \ldots X_{n}, X_{i}=\{\sigma: \sigma(1)=i\}$. We define

$$
\sigma_{i}(j)=\left\{\begin{array}{ll}
i & j=1 \\
1 & j=i \\
j & \text { otherwise }
\end{array}=\left[\sigma_{i}\right]\right.
$$

(switch i, j and leave all others intact). $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are a complete set of representatives.

- For example 4.4 (even/odd in \mathbb{Z}), a complete set of reps could be $\{0,1\}$, ie $\mathbb{Z}=[0] \sqcup[1]$.

5 Number Systems

5.1 Complex Numbers

\hookrightarrow Definition 5.1: Complex Numbers

$\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$. Equivalently, we can consider complex numbers as the points $(a, b) \in \mathbb{R}^{2} .{ }^{21}$

Given some $z=a+b i$, we can write $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$.

\hookrightarrow Definition 5.2: Algebra on Complex Numbers

${ }^{21}$ We can define the

Given $z_{i}=x_{i}+y_{i} i$, we define:

- Addition: $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$. This is associative and commutative.
- Multiplication: $z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) i$
- Inverse: $z \neq 0, \frac{1}{z}:=\frac{\bar{z}}{|z|^{2}}$, noting that $z \cdot \frac{1}{z}=z \cdot \frac{\bar{z}}{|z|^{2}}=1$

\hookrightarrow Definition 5.3: Complex Conjugate

Given $z=a+b i$, the complex conjugate of z is $\bar{z}=a-b i$.

\hookrightarrow Lemma 5.1

The following hold for complex conjugates: ${ }^{22}$
(a) $\overline{\bar{z}}=z$.
(b) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}, \overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$.
(c) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \operatorname{Im}(z) i=\frac{z-\bar{z}}{2}$.
(d) Given $|z|=\sqrt{a^{2}+b^{2}}$,
(i) $|z|^{2}=z \cdot \bar{z}$
(ii) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(iii) $\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$

5.2 Fundamental Theorem of Algebra, Etc

\hookrightarrow Theorem 5.1: Fundamental Theorem of Algebra

Any polynomial $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ for $a_{i} \in \mathbb{C}, n>0, a_{n} \neq 0$, has a root in \mathbb{C}.

Example 5.1: Roots of Unity

Let $n \geq 1, n \in \mathbb{Z}$. $x^{n}=1$ has n solutions in \mathbb{C}, called the roots of unity of order n. They are given as $\left(1, \frac{2 \pi k}{n}\right), k=0,1,2, \ldots, n-1$ in polar notation.
${ }^{22}$ (a), (b), and (c) are simply algebraic rearrangements of two complex numbers. (d.i) and (d.iii) follow from similar arguments, and finally (ii) is the triangle inequality restated in terms of complex numbers.

\hookrightarrow Theorem 5.2

Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a complex polynomial of degree n. Then, there are complex numbers $z_{1}, \ldots z_{n}$ s.t.

$$
\begin{equation*}
f(x)=a_{n} \prod_{i=1}^{n}\left(x-z_{i}\right) \tag{i}
\end{equation*}
$$

each (ii) $f\left(z_{j}\right)=0 \forall j=1, \ldots, n$, and (iii) $f(\lambda)=0 \Longrightarrow \lambda=z_{j}$ for some $j{ }^{23}$

Proof(by induction). If $n=1, f(x)=a_{1} x+a_{0}=a_{1}\left(x-\frac{-a_{0}}{a_{1}}\right)=a_{1}\left(x-z_{1}\right)$. Clearly, $f\left(z_{1}\right)=0$.

Assume that true for polynomials of degree $\leq n$ and prove for $n+1$; let f be a polynomial of degree $n+1, f(x)=a_{n+1}+x^{n+1}+\cdots$. Let z_{n+1} be a root of $f: f\left(z_{n+1}\right)=0$. Such exists by the Fund'l Thm. We introduce the following lemma:

\hookrightarrow Lemma 5.2

Let g be a polynomial with complex coefficients. Let $\lambda \in \mathbb{C}$; then we can write $g(x)=$ $(x-\lambda) h(x)+r, r \in \mathbb{C}, h$ a polynomial with complex coefficients as well.

Proof of Sub-Lemma. By induction; we can write $g(x)=a_{n} x^{n}+\cdots a_{1} x+a_{0}$. If $\operatorname{deg}(g)=0$, then $g=a_{0} \Longrightarrow h(x)=0, a_{0}=r$.
${ }^{23}$ Proof sketch: we prove by induction. First, we prove the base case of polynomials of $\operatorname{deg}=1$, then we assume it holds for deg $\leq n$. We then prove a separate lemma (also by induction) that allows us to rewrite our polynomial as the product of some $(x-\lambda)$ factor, another polynomial, and some residual. We then rewrite our original polynomial as the product of some linear term and another polynomial, plus some residual, then show that this residual is 0 , and thus show that our polynomial of degree $n+1$ is simply the product of some linear term and a polynomial of degree n, the inductive assumption, and thus the general statement is true.
The "sub"-claims follow naturally.

Assume this is true for degrees $\leq n$, and that g has degree $\leq n+1$.

$$
g(x)=(x-\lambda) a_{n+1} x^{n}+b(x),
$$

where $b(x)=g(x)-(x-\lambda) a_{n+1} x^{n}=a_{n}^{\prime} x^{n}+a_{n-1}^{\prime} x^{n-1}+\cdots$, for some $a_{n}^{\prime}, \ldots, a_{0}^{\prime} \in \mathbb{C}$. We can apply induction to $b(x)$ (that has $\operatorname{deg} \leq n) ; b(x)=(x-\lambda) h_{1}(x)+r$, so

$$
g(x)=(x-\lambda) \underbrace{\left(a_{n+1} x^{n}+h_{1}(x)\right)}_{h(x)}+r,
$$

as desired.

Now, we write our $f(x)$ as

$$
f(x)=\left(x-z_{n+1}\right) h(x)+r,
$$

using the lemma. Then,

$$
\begin{aligned}
0 & =f\left(z_{n+1}\right)=\left(z_{n+1}-z_{n+1}\right) h\left(z_{n+1}\right)+r \\
& =0+r+0 \Longrightarrow r=0
\end{aligned}
$$

$$
f(x)=\left(x-z_{n+1}\right) h(x) .
$$

Comparing the highest terms:

$$
\begin{aligned}
a_{n+1} x^{n+1}+\cdots & =\left(x-z_{n+1}\right)\left(* x^{n}+\ldots\right) \\
& \Longrightarrow \text { leading coefficient of } h(x) \text { also } a_{n+1} .
\end{aligned}
$$

By induction,

$$
\begin{aligned}
h(x) & =\underbrace{a_{n+1}}_{\text {lead coef of } h} \cdot \prod_{i=1}^{n}\left(x-z_{i}\right) \\
& \Longrightarrow f(x)=a_{n+1} \prod_{i=1}^{n+1}\left(x-z_{i}\right) \quad(i) \text { holds }
\end{aligned}
$$

Further:

- (ii): $f\left(z_{j}\right)=a_{n+1} \prod_{i=1}^{n+1}\left(z_{j}-z_{i}\right)=0$ when $i=j$.
- (iii): if $f(\lambda)=0$, then $a_{n+1} \prod_{i=1}^{n+1}\left(\lambda-z_{i}\right)=0$. But if a product of two complex numbers is 0 , then one of them is $0 . a_{n+1} \neq 0$, so some $\lambda-z_{i}=0$, ie $\lambda=z_{i}$ for some i^{24}

\hookrightarrow Definition 5.4: Complex Exponential

The complex exponential, $e^{z}=1+\frac{z}{1}+\frac{z^{2}}{2!}+\ldots$ can be Taylor expanded and we have that

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

[^1]
Example 5.2

If $z=e^{x+y i}=e^{x} \cdot e^{y i}=e^{x}(\cos y+i \sin y)$, then $z=\left(e^{x}, y\right)$ in polars.
We can apply this idea to prove some trigonometric formulas. Consider $e^{2 i \theta}$;

$$
\begin{aligned}
e^{2 i \theta} & =(\cos \theta+i \sin \theta)^{2}=\underbrace{\cos ^{2} \theta-\sin ^{2} \theta}_{\mathrm{Re}}+\underbrace{2 \sin \theta \cos \theta}_{\mathrm{Im}} i \\
e^{2 i \theta} & =\underbrace{\cos (2 \theta)}_{\mathrm{Re}}+i \underbrace{\sin (2 \theta)}_{\mathrm{Im}} \\
& \Longrightarrow \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& \Longrightarrow \sin (2 \theta)=2 \sin \theta \cos \theta
\end{aligned}
$$

6 Rings (A Brief Introduction)

6.1 Definitions

\hookrightarrow Definition 6.1: Ring
A ring R is a set with two operations ${ }^{25}$

- Addition: $R \times R \xrightarrow{+} R, \quad(a, b) \mapsto a+b$
- Multiplication: $R \times R \longrightarrow R, \quad(a, b) \mapsto a \cdot b$

The following hold:

1. (+ is commutative) $a+b=b+a, \forall a, b \in R$.
2. $(+$ is associative) $a+(b+c)=(a+b)+c, \forall a, b, c \in R$.
3. (0) \exists a zero element, 0 , s.t. $0+a=a+0=a, \forall a \in R$.
4. (negative) $\forall a \in R, \exists b \in R$ s.t $a+b=0$.
5. (• associative) $a(b c)=(a b) c, \forall a, b, c \in R$.
6. (1, multiplicative identity) $\exists 1 \in R$ s.t. $1 \cdot a=a \cdot 1=a, \forall a \in R .{ }^{26}$
7. (distributive) $\forall a, b, c \in R, a(b+c)=a b+a c$
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}[i]:=\left\{a+b_{i}: a, b \in \mathbb{Z}\right\}, M_{2}(\mathbb{Z}):=\left\{\begin{array}{ll}a & b \\ c & d\end{array}: a, b, c, d \in \mathbb{Z}\right\}, \ldots$ are all examples of rings.

Remark 6.1. We do not require multiplication to be commutative; if it is, we call R a commutative ring (eg $M_{2}(\mathbb{Z}), M_{2}(\mathbb{R})$ are not commutative).

We also do not require inverse for multiplication (eg 2 doesn't have an inverse in \mathbb{Z}).

\hookrightarrow Definition 6.2: Field

A commutative, non-zero, ring R s.t. $\forall x \in R$ and $x \neq 0(\Longleftrightarrow 1 \neq 0$ in R, ie R is not a zero ring), $\exists y \in R$ s.t. $x y=y x=1$ is a field.

Fields include $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}[i]$
${ }^{26}$ Though not always explicitly stated, it is often specified that rings are closed under addition/multiplication; $a, b \in R \Longrightarrow$ $a+b$ and $a \cdot b \in R$.
${ }^{26}$ Some texts (Hungerford) do not require the multiplicative identity to exist in a ring; those with this property are called "rings with identity". In general, these are all relatively arbitrary conventions - they are defined as such to make other operations/observations clearer; they are not steadfast, natural definitions.

\hookrightarrow Definition 6.3: Zero Ring

$\{0\}$ with $0+0=0,0 \cdot 0=0$, where $1=0$ (identity element is 0).

Example 6.1

Show that $\mathbb{Q}[i]$ is a field.
If $x \in \mathbb{Q}[i], x=a+b i \neq 0$ then

$$
\frac{1}{a+b i}=\frac{a-b i}{(a+b i)(a-b i)}=\underbrace{\frac{a}{a^{2}+b^{2}}}_{\in \mathbb{Q}}-\underbrace{\frac{b}{a^{2}+b^{2}}}_{\in \mathbb{Q}} i \in \mathbb{Q}[i],
$$

and thus $\mathbb{Q}[i]$ has multiplicative inverses in $\mathbb{Q}[i]$.

\hookrightarrow Corollary 6.1

Note the following consequences of the above axioms:

1. 0 is unique; if $x \in R$ has the property that $x+a=a+x=a \forall a \in R$, then $x=0$.
2. 1 is unique; if $x \in R$ has the property that $x \cdot a=a \cdot x=a \forall a \in R$, then $x=1$.
3. The element b s.t. $a+b=b+a=0$ is uniquely determined by a; if $x \in R$ and $x+a=a+x=0$, then $x=b$. We denote such b as $-a$, ie

$$
-a+a=a+(-a)=a-a=0
$$

4. $-(-a)=a$.
5. $-(x+y)=-x-y$.
6. $x \cdot 0=0 \cdot x=0 \forall x \in R$.

\hookrightarrow Definition 6.4: Subring

Let R be a ring. A subset $S \subseteq R$ is a subring if

1. $0,1 \in S$.
2. $x, y \in S \Longrightarrow x+y,-x, x \cdot y \in S$.

Then, S is a ring itself.
$\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ are subrings; $\mathbb{Z} \subseteq \mathbb{Z}[i] \subseteq \mathbb{Q}[i] \subseteq \mathbb{C}$ are subrings; $M_{2}(\mathbb{Z}) \subseteq M_{2}(\mathbb{R})$ are subrings.

7 Division

7.1 With Residue

\hookrightarrow Theorem 7.1

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. There exist unique integers q (quotient) and r s.t.

$$
a=q \cdot b+r, 0 \leq r<|b| .
$$

Proof. Assume $b>0$ (similar proof applies for $b<0$). Consider the set $S=\{a-b x: x \in$ $\mathbb{Z}, a-b x \geq 0\}$. Note that $S \neq \varnothing$. If $a \geq 0$, take $x=0$. If $a<0$, take $x=a$ to get $a-b x=a-b a=a(1-b) \geq 0$.
Thus, S has a minimal element; let $r=\min (S)$. Because $r \in S, r \geq 0$, and

$$
r=a-b q \text { some } q \in \mathbb{Z} \Longrightarrow a=b q-r .
$$

Here, we claim $r<b$. If $r \geq b$, then $0 \leq r-b=a-b(q+1) \in S$, contradicting the minimality of r. Thus, $0 \leq r<b$.
We wish to show that q, r are unique, meaning that if $a=b q^{\prime}+r^{\prime}, q^{\prime} \in \mathbb{Z}, 0 \leq r<b \Longrightarrow q=$ $q^{\prime}, r=r^{\prime}$ 。
If $q=q^{\prime}$, then $r=a-b q=a-b q^{\prime}=r^{\prime} \checkmark$.
Otherwise, wlog, say $q>q^{\prime}$. We then have

$$
\begin{aligned}
0 & =a-a=(b q+r)-\left(b q^{\prime}+r^{\prime}\right) \\
& =b\left(q-q^{\prime}\right)+\left(r-r^{\prime}\right) \\
& \Longrightarrow r^{\prime}=r+b\left(q-q^{\prime}\right) \geq b, \perp\left(0 \leq r^{\prime}<|b|\right)
\end{aligned}
$$

7.2 Without Residue

\hookrightarrow Definition 7.1

Let $a, b \in \mathbb{Z}$. We say a divides $b, a \mid b$ if $b=a \cdot c$, some $c \in \mathbb{Z}$ (If $a \neq 0$, this is the case \Longleftrightarrow the residue of dividing b by a is 0).

\hookrightarrow Lemma 7.1: Properties of Division

1. 0 is divisible by any integer a
2. 0 only divides 0
3. $a|b \Longrightarrow a|(-b)$
4. $a \mid b$ and $a|d \Longrightarrow a|(b \pm d)$
5. $a|b \Longrightarrow a| b d \forall d$
6. $a \mid b$ and $b \mid a \Longrightarrow a= \pm b$
Proof.
7. $0=a \cdot 0 \forall a \checkmark$
8. $0 \mid b$, then $b=0 \cdot c$ some $c \Longrightarrow b=0 \quad \checkmark$
9. $b=a c \Longrightarrow-b=a \cdot(-c) \quad \checkmark$
10. $b=a \cdot c_{1}, d=a \cdot c_{2} . b \pm d=a\left(c_{1} \pm c_{2}\right) \in \mathbb{Z} \quad \checkmark$
11. $b=a c$, so $b d=a \cdot(c d) \quad \checkmark$
12. $a|b \Longrightarrow b=a \cdot c, b| a \Longrightarrow a=b \cdot d$. If either $a=0$ or $b=0$, both are 0 , so $a= \pm b$. Assume $a \neq 0, b \neq 0$. Then, we have that $a=b d=a c d \stackrel{a \neq 0}{\Longrightarrow} c d=1$. Either, $c=d=1 \Longrightarrow a=b$, or $c=d=-1 \Longrightarrow a=-b \quad \checkmark$

Example 7.1

Which integers could divide both n and $n^{3}+n+1$?
Suppose d does. then $d \mid n$ and $d \mid\left(n^{3}+n+1\right)$, then $d\left|n^{3} \Longrightarrow d\right|\left(n^{3}+n\right) \Longrightarrow$ $d \mid\left(\left(n^{3}+n+1\right)-\left(n^{3}+n\right)\right)$, and so $d \mid 1$ so $d= \pm 1$.

7.3 Greatest Common Divisor (gcd)

\hookrightarrow Definition 7.2: GCD

Let a, b be integers, not both 0 . The gcd of a, b denoted $\operatorname{gcd}(a, b)$ is the greatest positive number divided both a and b.

Remark 7.1. Note that if both a, b are not 0 , then $d=\operatorname{gcd}(a, b) \leq \min \{|a|,|b|\}$ because if $d \mid a$ then $a=d \cdot c \Longrightarrow|a|=|d| \cdot|c| \Longrightarrow|d|=d \leq|a|$.
Similarly, $|d| \leq|b|$.

\hookrightarrow Theorem 7.2

Let $a, b \in \mathbb{Z}$, not both 0 . Let $d=\operatorname{gcd}(a, b)$. Then,

1. $\exists u, v \in \mathbb{Z}$ s.t. $d=u a+v b$;
2. d is the minimal positive integer of the form $u a+v b, u, v \in \mathbb{Z}$;
3. every common divisor of a, b divides d.

Proof. Let $S=\{m a+n b: m, n \in \mathbb{Z}, m a+n b>0\} . S \neq \varnothing$ because $a \cdot a+b \cdot b=a^{2}+b^{2}>0$, so $a^{2}+b^{2} \in S$.
Let $D=\min (S)$, so $D=u a+v b, u, v \in \mathbb{Z}$. We claim that this D equals $d=\operatorname{gcd}(a, b)$.
We claim first that $D \mid a$. We can write

$$
\begin{aligned}
a & =D \cdot q+r, 0 \leq r<D \\
r & =a-D q=a-(u a+v b) q \\
& =a(1-u q)+b(-v q) \\
& \Longrightarrow r>0 \Longrightarrow r \in S, \text { contradicts minimality of } D
\end{aligned}
$$

Thus, D divides both a and b, and so $D \leq d$ (any common divisor is leq gcd).
Let e be any common divisor of a, b. We have

$$
e|a \Longrightarrow e| u a \quad \text { and } \quad e|b, \Longrightarrow e| v b \Longrightarrow e \mid(u a+v b)=D .
$$

In particular, $d \mid D \Longrightarrow d \leq D$. It follows that $D=d$.

Example 7.2

$\operatorname{gcd}(7611,592)=1$
One can write $1=195 \times 7611-2507 \times 592$. How do we know? Mathematica.

7.4 Euclidean Algorithm

Remark 7.2. $\operatorname{gcd}(-a, b)=\operatorname{gcd}(a, b)=\operatorname{gcd}(a,-b)=\cdots$

\hookrightarrow Theorem 7.3: Euclidean Algorithm

Let a, b be positive integers $a \geq b$.
If $b \mid a$, then $\operatorname{gcd}(a, b)=b$.
Else, perform the following:

$$
\begin{aligned}
a & =b \cdot q_{0}+r_{0}, \quad 0<r_{0}<b \\
b & =r_{0} \cdot q_{1}+r_{1}, \quad 0<r_{1}<r_{0} \\
r_{0} & =r_{1} \cdot q_{2}+r_{2} \\
\vdots & \vdots \\
r_{t-2} & =r_{t-1} \cdot q_{t}+r_{t}, \quad 0<r_{t}<r_{t-1} \\
r_{t-1} & =r_{t} \cdot q_{t+1}+\underbrace{0}_{r_{t+1}}
\end{aligned}
$$

Because the residues are non-negative decreasing integers, the process must stop; there is a first t s.t. $r_{t+1}=0$. Then, $\operatorname{gcd}(a, b)=r_{t}$, the last non-zero residue. ${ }^{27}$

Proof. We first prove by induction that for all $0 \leq i \leq t+1, r_{t}$ divides both r_{t-i} and r_{t-i-1}. $\left(\Longrightarrow r_{t}\left|r_{-1}=b, r_{t}\right| r_{-2}=a\right.$.
(1) $i=0$, then $r_{t} \mid r_{t}$ and $r_{t} \mid r_{t-1}\left(\right.$ as $\left.r_{t-1}=r_{t} \cdot q_{t+1}\right)$
(2) Suppose $r_{t} \mid r_{t-i}$ and $r_{t} \mid r_{t-i-1}$ for some $0 \leq i<t+1$. We have that

$$
r_{t-i-2}=r_{t-i-1} \cdot q_{t-i}+r_{t-i}
$$

We then have that

$$
r_{t} \mid\left(r_{t-i}+r_{t-i-1} q_{t-i}\right)=r_{t-i-2}
$$

so $r_{t} \mid \underbrace{r_{t-i-1}}_{r_{t-(i+1)}}$ and $r_{t} \mid \underbrace{r_{t-i-2}}_{r_{t-(i+1)-1}}$. Then, $r_{t} \mid \operatorname{gcd}(a, b)$.

Next we show that if $e \mid a$ and $e \mid b$ then $r \mid r_{t}\left(\Longrightarrow \operatorname{gcd}(a, b) \mid r_{t}\right.$, then we would have $r_{t}=$ $\operatorname{gcd}(a, b))$. We prove by induction on $0 \leq i \leq t+1$ that $e \mid r_{i-2}$ and $e \mid r_{i-1}$.
(1) $i=0$, then $e \mid r_{-2}=a$ and $e \mid r_{-1}=b$, base case holds
(2) Suppose $e \mid r_{i-2}$ and $e \mid r_{i-1}$ for some $i<t+1$. We have that

$$
r_{i-2}=r_{i-1} \cdot q_{i}+r_{i}, \quad e \mid\left(r_{i-2}-r_{i-1} \cdot q_{i}\right)=r_{i}
$$

So,

Remark 7.3 (Extended Euclidean Algorithm). After completing the algorithm, one can then "work backwards" to write any $d=\operatorname{gcd}(a, b)$ as $d=u a+v b$.
Start by writing $d=r_{t-2}-r_{t-1} \cdot q_{t}$; then, substitute in preceding residuals, simplifying along the way (but making sure to leave the quotients from each substitution, as these are what you will substitute in the next step), and continue until you have the desired form. Consider the following example:

$$
a=48, b=27, d=\operatorname{gcd} 48,27=?
$$

$$
\begin{aligned}
48 & =27 \cdot 1+21 \\
27 & =21 \cdot 1+6 \\
21 & =6 \cdot 3+3 \\
6 & =3 \cdot 2+0 \\
& \Longrightarrow \operatorname{gcd}(48,27)=3 \\
& \Longrightarrow 3=21-6 \cdot 3 \\
& =21-(27-21) 3 \\
& =21 \cdot 4-27 \cdot 3 \\
& =(48-27) \cdot 4-27 \cdot 3 \\
& =48 \cdot 4-7 \cdot 27
\end{aligned}
$$

7.5 Primes

\hookrightarrow Definition 7.3: Prime

An integer $n \neq 0,1,-1$ is called prime if its only divisors are $\pm 1, \pm n$.
A positive integer n is prime iff its only positive divisors are $1, n$.

Remark 7.4. The goal of this section is to prove theorem 7.5, of unique prime factorization; we then extend it to the rationals. We introduce a number of lemmas/auxiliary results regarding primes to build up to the proof.

\hookrightarrow Lemma 7.2

Every natural number $n>1$ is a product of prime numbers.

Proof. We prove by induction.
Base case; $n=2,2$ is prime, done.
Suppose it is true for all integers $1<r \leq n$; we will prove for $n+1 .{ }^{28}$

- If $n+1$ is prime, we are done.
- Else, $n+1$ has a non-trivial factorization, $n+1=r \cdot s$, where $1<r \leq n, 1<s \leq n$. By induction, there exists primes p_{i}, q_{i} such that $r=p_{1} \cdots p_{a}$ and $s=q_{1} \cdots q_{b}$. We can then write

$$
n+1=r \cdot s=p_{1} \cdots p_{a} q_{1} \cdots q_{b}
$$

a product of primes, and so we are done.

\hookrightarrow Definition 7.4: Empty Product

1; when we say $n=p_{1} \cdots p_{a}, 0 \leq a$, a product of primes, $\mathrm{a}=0$, empty product, means $n=1$.

\hookrightarrow Corollary 7.1

Any non-zero integer n is of the form

$$
\epsilon \cdot p_{1} \cdots p_{a}, \quad \epsilon \in\{ \pm 1\}
$$

where p_{i} are primes numbers, $a \geq 0$.

Proof. If $n>1$, this is the lemma 7.2 where $\epsilon=1$. If $n<-1$, the by lemma 7.2,

$$
-n=p_{1} \cdots-p_{n}
$$

so $n=-1 p_{1} \cdots p_{a}=-p_{1} \cdots p_{a}$.

\hookrightarrow Theorem 7.4: Sieve of Eratosthenes

Let $n>1$ be an integer. If n is not prime, then n is divisible by some prime $1<p \leq \sqrt{n}$.

Sketch Proof. $n=p_{1} \cdots p_{a}$. n not prime, $a \geq 2$. If each $p_{i}>\sqrt{n}$, then $p_{1} p_{2} \cdots p_{a}<\sqrt{n} \cdot \sqrt{n}=$ n, \perp
\hookrightarrow Lemma 7.3
Let $p>1$ be an integer. The following are equivalent:

1. p is prime
2. If $p \mid a b$, product of two nonzero integers, then $p \mid a$ or $p \mid b$.

Proof. Assume 2., suppose $p=s t \in \mathbb{Z}$. wlog, $s, t>0$ (else replace s by $-s, t$ by $-t$). $p \mid s t$, so by 2., say $p \mid s$, wlog. We can write $s=p \times w$, then $p=s \cdot t=p \cdot w \cdot t$, which are all positive integers. It must be that $w=t=1$, and thus $s=p$. Therefore, p has no non-trivial factorizations and is thus prime.
Assume now that 1 . holds; $p \mid a b$. If $p \mid a$, we are done.
Suppose $p \nmid a$. Then, $\operatorname{gcd}(p, a)=1$ (since only divisors of p are $1, p$, so gcd could only be $1, p$, but if gcd $=p$ then $p \mid a$ which is not the case). From a property of gcd's, we can write $1=u p+v a$ for some $u, v \in \mathbb{Z}$. Multiplying this by b, we have $b=u p b+v a b$.

We have

$$
\begin{aligned}
p \mid a b & \Longrightarrow p \mid v a b \\
p \mid p & \Longrightarrow p \mid u p b \\
& \Longrightarrow p \mid(u p b+v a b), \text { so } p \mid b
\end{aligned}
$$

\hookrightarrow Corollary 7.2

Let p be prime. Suppose $p \mid a_{1} a_{2} a_{3} \cdots a_{m}$ where $a_{i} \in \mathbb{Z}, m \geq 1$. Then, $p \mid a_{i}$ for some i

Proof. By induction; we just showed the case $m=2$. Suppose it is true for $m \geq 2$ and $p \mid a_{1} a_{2} \cdots a_{m+1}$; then, $p \mid \underbrace{\left(a_{1} a_{2} \cdots a_{m}\right)}_{(i)} \cdot \underbrace{a_{m+1}}_{(i i)}$. Then, either $p \mid(i)$ or $p \mid(i i)$, so $p \mid a_{m+1}$ or $p \mid a_{i}, 1 \leq$ $i \leq m$, as required.

\hookrightarrow Theorem 7.5: Fundamental Theorem of Arithmetic

Let $n \in \mathbb{Z}, n \neq 0$. There exists $\epsilon \in\{ \pm 1\}$ and prime numbers $p_{1}, \cdots, p_{a}, a \geq 0$ such that $n=\epsilon \cdot p_{1} \cdots p_{a}$, uniquely. ${ }^{29}$

Proof. First, it is clear that the sign is unique, so wlog, we only consider positive n. We have already proved that \exists such a factorization by lemma 7.2 ; we now aim to show that this is unique. We proceed by induction.
Base case: $n=1 ; p_{i}, q_{j} \geq 2$, only option is the empty product $a=b=0$.
Assumption: say holds for integers $1 \leq m \leq n-1, n \geq 2$ (numbers smaller than n). We are given

$$
n=p_{1} \cdots p_{a}=q_{1} \cdots q_{b} .
$$

- Suppose $p_{1}=q_{1}$. Then $m=\frac{n}{p_{1}}=p_{2} \cdots p_{a}=q_{2} \cdots q_{b} \Longrightarrow a=b$ and $p_{i}=q_{i}$ for $2 \leq i \leq a$ (and also, $p_{1}=q_{1}$) (covered by inductive hypothesis)
- Otherwise, $p_{1} \neq q_{1}$, and wlog (symmetric) $p_{1}<q_{1}$. We have $p_{1} \mid n$ so $p_{1} \mid q_{1} \cdots q_{b} \stackrel{p \text { prime }}{\Longrightarrow}$ $p_{1} \mid q_{i}$ for some $1 \leq i \leq b$ (by lemma 7.3, extended to the product of any number of numbers). As p_{i} prime, $p_{1}=q_{i}$, implying $p_{1}<q_{1} \leq q_{2} \leq \cdots q_{i}=p_{1}$, a contradiction to the assumption that $p_{1}<q_{1}$. Thus, $p_{1}=q_{1}$.

Alternatively, we could write $n=\epsilon p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}$ where p_{i} are distinct prime numbers and $a_{i}>0$ (ie, we are "collecting" the identical primes, and raising them to the power of how many times they appear) where p_{i} and a_{i} are unique.

[^2]
\hookrightarrow Theorem 7.6: Version of FTA for Rationals

Let $q \neq 0$ be a rational number. Then, \exists a unique sign $\epsilon \in\{ \pm 1\}$, integer s, primes p_{1}, \ldots, p_{a} and exponents $a_{i} \in \mathbb{Z}, a_{i} \neq 0$ s.t.

$$
q=\epsilon \cdot p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}
$$

$$
m=\epsilon_{m} \cdot p_{1}^{b_{1}} \cdots p_{s}^{b_{s}} ; \quad n=\epsilon_{n} \cdot p_{1}^{c_{1}} \cdots p_{s}^{c_{s}}
$$

Remark 7.5. If we allow 0 as an exponents, we can write these such that the same primes appear in both n and m.

We can then write

$$
\frac{m}{n}=\frac{\epsilon_{m}}{\epsilon_{n}} p_{1}^{b_{1}-c_{1}} \cdots p_{s}^{b_{s}-c_{s}} .
$$

We can now omit the primes with $b_{i}-c_{i}=0$ to get only non-zero exponentiated primes. We have thus shown existence
To show uniqueness, we can disregard the sign as before. Say $0<q=p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}=p_{1}^{a_{1}^{\prime}} \cdots p_{s}^{a_{s}^{\prime}}$. If these are equivalent representations, then letting $c_{i}=a_{i}-a_{i}^{\prime}$, we get that $1=p_{1}^{c_{1}} \cdots p_{s}^{c_{s}}$; thus, we aim to show that $c_{1}=\cdots c_{s}=0$. wlog, we can rearrange these c 's such that $c_{1}, \cdots, c_{t}<$ $0, c_{t+1}, \cdots, c_{s} \geq 0$. This implies that $p_{1}^{-c_{1}} \cdots p_{t}^{-c_{t}}=p_{t+1}^{c_{t+1}} \cdots p_{s}^{c_{s}}$. This is an equality on integers, and as given by FTA, this is only possible if $c_{i}=0 \forall i$.

$$
\begin{aligned}
& \hookrightarrow \text { Proposition } 7.1 \\
& \sqrt{2} \notin \mathbb{Q}
\end{aligned}
$$

Proof. Suppose it is. Then $\sqrt{2}=p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}, a_{i} \neq 0, p_{i}$ distinct primes. Then, we have

$$
2=\left(p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}\right)^{2}=p_{1}^{2 a_{1}} \cdots p_{s}^{2 a_{s}}
$$

But, $2=2^{1}$, and by uniqueness of factorization, we get a contradiction because $1 \neq 2 a_{i}$ for any i.
\hookrightarrow Theorem 7.7
There exist infinitely many prime numbers.
 which is not one of these. Let $N=p_{1} p_{2} \cdots p_{n}+1>1$, so $\exists p \mid N$ where p prime. If $p=$ on of
$p_{1} \ldots p_{n}$, say some p_{i}; then, $p \mid N$ and $p\left|p_{1} p_{2} \cdots p_{n} \Longrightarrow p\right|\left(N-p_{1} \cdots p_{n}\right) \Longrightarrow p \mid 1$, which is a contradiction.

\hookrightarrow Proposition 7.2

Let $a, b \neq 0, a, b \in \mathbb{Z}$. Then $a|b \Longleftrightarrow a| \epsilon p_{1}^{a_{1}} \cdots p_{m}^{a_{m}}, a_{1}>0, p_{i}$ prime, $\epsilon \in\{ \pm 1\}$ and $b=\mu p_{1}^{a_{1}^{\prime}} \cdots p_{m}^{a_{m}^{\prime}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}, a_{i}^{\prime} \geq a_{i}, q_{i}$ primes, $b_{i}>0$.

Proof. If we can, then $\left.\frac{b}{a}=\underbrace{\frac{\mu}{\epsilon} \cdot p_{1}^{a_{1}^{\prime}-a_{1}} \cdots p_{m}^{a_{m}^{\prime}-a_{m}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}}_{:=c} \Longrightarrow b=a \cdot c \Longrightarrow a \right\rvert\, b$.
If $a \mid b$ so $b=a \cdot d$. We can write $a=\epsilon p_{1}^{a_{1}} \cdots p_{m}^{a_{m}}$, and $d=\epsilon^{\prime} p_{1}^{r_{1}} \cdots p_{m}^{r_{m}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}$, and let $b=\left(\epsilon \epsilon^{\prime}\right) p_{1}^{a_{1}+r_{1}} \cdots p_{m}^{a_{m}+r_{m}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}$ (where $r_{i}>0$), and let $a_{i}^{\prime}=a_{i}+r_{i} \geq a_{i}$.

\hookrightarrow Corollary 7.3

Let $n=\epsilon p_{1}^{a_{1}} \cdots p_{t}^{a_{t}} \in \mathbb{Z}, \epsilon= \pm 1, p_{i}$ distinct primes, $a_{i}>0$. Then the divisors of n are precisely the integers

$$
\mu p_{1}^{c_{1}} \cdots p_{t}^{c_{t}}, \quad \mu= \pm 1,0 \leq c_{i} \leq a_{i} .
$$

Remark 7.6. Let $a, b \in \mathbb{Z} \backslash\{0\}$; we write

$$
a=\epsilon p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}, b=\mu p_{1}^{b_{1}} \cdots p_{t}^{b_{t}} .
$$

We have $d=\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdots p_{t}^{\min \left(a_{t}, b_{t}\right)}$.
theorem 7.2 also follows naturally from this manner of thinking, and can be proved accordingly.

Example 7.4

$$
90=2 \cdot 3^{2} \cdot 5 \cdot 7^{0} ; 210=2 \cdot 3 \cdot 5 \cdot 7 \cdot \operatorname{gcd}(90,210)=2 \cdot 3 \cdot 5 \cdot 7^{0}=30 \checkmark .
$$

8 Congruences, Modular Arithmetic

8.1 Definitions

\hookrightarrow Definition 8.1
Fix $n \geq 1, n \in \mathbb{Z}$. We define a relation of \mathbb{Z} by $x \sim y$ if $n \mid(x-y)$.

* Example 8.1

$n=2 ; x \sim y$ if they have the same parity, ie both even or both odd.

\hookrightarrow Lemma 8.1

The above relation is an equivalence relation. We will denote the equivalence class of an integer r by \bar{r}. Then,

$$
\bar{r}=\{\ldots r-2 n, r-n, r, r+n, r+2 n, \ldots\} .
$$

The set

$$
\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}
$$

is a complete set of representatives.

Proof. We first show that the relation is an equivalence relation:
Reflexive: $x-x=0 \Longrightarrow n \mid(x-x) \forall n$, so $x \sim x$.
Symmetric: say $x \sim y \Longrightarrow n|(x-y) \Longrightarrow n|-(x-y) \Longrightarrow n \mid(y-x) \Longrightarrow y \sim x$.
Transitive: say $x \sim y, y \sim z \Longrightarrow n|(x-y), n|(y-z) \Longrightarrow n \mid((x-y)+(y-z)) \Longrightarrow$ $n \mid(x-z) \Longrightarrow x \sim z$.
Now, we show that the described set is a complete set of representatives, ie we aim to show

1. any $x \in \mathbb{Z}$ belongs to some $\bar{r}, 0 \leq r \leq n-1$.

Proof of 1 : Given $x \in \mathbb{Z}$, we can write $x=q \cdot n+r, 0 \leq r \leq n-1$, and $x-r=q \cdot n \Longrightarrow$ $n \mid(x-r)$, so $x \sim r$. Ie, $x \in \bar{r}$.
2. if $0 \leq r \leq s \leq n-1$ and $\bar{r}=\bar{s}$, then $r=s$ (no repetitions, ie "repeat representation"). Proof of 2: If $\bar{r}=\bar{s}$, then $r \in \bar{r}$ and $r \in \bar{s}$, so $r \sim s$. So, $n \mid(s-r)$; but $0 \leq s-r \leq n-1<n$, implying $s-r=0 \Longrightarrow s=r$ (since it must be a multiple of n, but less than n).

Example 8.2

For $n=2$, we have two equivalence classes, $\overline{0}=$ evens $=\{2 x: x \in \mathbb{Z}\}, \overline{1}=$ odds $=$ $\{2 x+1 s: x \in \mathbb{Z}\}$.
For $n=3$, we have three; $\overline{0}=\{3 x: x \in \mathbb{Z}\}, \overline{1}=\{1+3 x: x \in \mathbb{Z}\}, \overline{2}=\{2+3 x$: $x \in \mathbb{Z}\}$.

\hookrightarrow Definition 8.2

$x \sim y$, we say x is congruent to y modulo n, and write

$$
x \equiv y \quad \bmod n
$$

We use $\mathbb{Z} / n \mathbb{Z}$ or \mathbb{Z}_{n} to denote the collection of congruence classes $\bmod n$, ie $\mathbb{Z} / n \mathbb{Z}=$ $\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$.

\hookrightarrow Theorem 8.1

$\mathbb{Z} / n \mathbb{Z}$ is a commutative ring with n elements. It is a field iff n is prime.
We often denote $\mathbb{Z} / p \mathbb{Z}$ where p prime as \mathbb{F}_{p}.

Proof. We define $\bar{r}+\bar{s}=\overline{r+s}, \bar{r} \cdot \bar{s}=\overline{r s}$. This is well defined; meaning if we use other representatives r^{\prime}, s^{\prime}, we'll get the same result. Ie, given $r \sim r^{\prime}, s \sim s^{\prime}$, we need to show $\overline{r^{\prime}+s^{\prime}}=\overline{r+s}, \overline{r^{\prime} \cdot s^{\prime}}=\overline{r \cdot s}$, ie $n\left|\left((r+s)-\left(r^{\prime}+s^{\prime}\right)\right), n\right|\left(r s-r^{\prime} s^{\prime}\right)$.
$(r+s)-\left(r^{\prime}+s^{\prime}\right)=\left(r-r^{\prime}\right)+\left(s-s^{\prime}\right)$; both $r-r^{\prime}$ and $s-s^{\prime}$ are divisible by n, so we can write $r s-r^{\prime} s^{\prime}=r\left(s-s^{\prime}\right)+s^{\prime}\left(r-r^{\prime}\right)$; this whole thing is divisible by n. Now, we can verify the axioms:

1. $\bar{r}+\bar{s}=\bar{s}+\bar{r} ; \bar{r}+\bar{s}=\overline{r+s}=\overline{s+r}=\bar{s}+\bar{r} \quad$ (commutativity of addition)
2. ...
3. $\overline{0}$ is the neutral element; $\overline{0}+\bar{r}=\overline{0+r}=\bar{r} \quad$ (neutral addition element)
4. $\overline{(r)}+\overline{(-r)}=\overline{(-r)}+\bar{r}=\overline{0} \quad$ (inverse wrt addition)
5. ...
6. $\overline{1} \cdot \bar{r}=\bar{r}$
7. ...

We now aim to show that $\mathbb{Z} / n \mathbb{Z} \Longleftrightarrow n \in \mathbb{P}$. Suppose n composite, namely $n a \cdot b$, $1<a<n, 1<b<n$. Note that $\bar{a}, \bar{b} \neq \overline{0}$; but, $\bar{a} \cdot \bar{b}=\overline{a \cdot b}=\bar{n}=\overline{0}$. If $\mathbb{Z} \backslash n \mathbb{Z}$ is a field, then $\exists \bar{y}$ s.t. $\bar{y} \cdot \bar{a}=\overline{1}$. We have $(\bar{y} \cdot \bar{a}) \cdot \bar{b}=\overline{1} \cdot \bar{b}=\bar{b}$, but $\bar{y} \cdot(\bar{a} \cdot \bar{b})=\bar{y} \cdot \overline{0}=\overline{0}$, a contradiction.
Suppose, now, $n \in \mathbb{P}$. To show $\mathbb{Z} / n \mathbb{Z}$ is a field; let $\bar{a} \neq \overline{0} \in \mathbb{Z} / n \mathbb{Z}$, that is $n \nmid a$. But n is prime, so $\operatorname{gcd}(a, n)=1$, so $\exists u, v \in \mathbb{Z}$ such that $1=u a+v n$. But this means

$$
n \mid(1-u a) \Longrightarrow u a \equiv 1 \quad \bmod n \Longrightarrow \bar{u} \cdot \bar{a}=\overline{1} \in \mathbb{Z} / n \mathbb{Z}
$$

and we have thus found a multiplicative inverse.

Example 8.3

$n=2$; we have | + | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 1 | 1 | 0 | and | \times | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |$; \overline{1}+\overline{1}=\overline{2}=\overline{0}$.

Example 8.4

$n=3$; we have | + | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 2 | 0 |
| 2 | 2 | 0 | 1 | and \quad| \times | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 |
| 2 | 0 | 2 | 1 |$; \overline{2}+\overline{2}=\overline{4}=\overline{1}$.

\hookrightarrow Lemma 8.2

Let R be a commutative ring. If R has zero divisors then R is not a field.

Proof. Let $x \neq 0$ be a zero divisor, and $y \neq 0$ s.t. $x y=0$. If R a field, then $\exists z \in R$ s.t. $z x=$ 1. But then, $z(x y)=z \cdot 0=0$, and $z(x y)=(z x) y=1 \cdot y=y$, hence y must be 0 , a contradiction.

\hookrightarrow Definition 8.4: Unit

An element x in a ring R is called a unit if $\exists y \in R$ such that $x y=y x=1$.

Example 8.5

If R a field, then any nonzero $x \in R$ is a unit. If $R=\mathbb{Z} / 6 \mathbb{Z}$, then $2,3,4$ are not units, but 1 and 5 are units.

\hookrightarrow Proposition 8.1

Take $n>1$. An element $\bar{a} \in \mathbb{Z} / n \mathbb{Z}$ is a unit $\operatorname{iff} \operatorname{gcd}(a, n)=1$.

Proof. Note: $\operatorname{gcd}(a, n)=1$ depends only on the congruence class $\bar{a} ; \operatorname{gcd}(a+k n, n)=\operatorname{gcd}(a, n)$. Suppose \bar{a} is a unit, ie $\exists \bar{y} \in \mathbb{Z} / n \mathbb{Z}$ s.t. $\bar{y} \cdot \bar{a}=\overline{1} \Longrightarrow \overline{y a}=\overline{1} \Longrightarrow y a-1=k \cdot n$, for some $k \in \mathbb{Z}$, ie $y a-k n=1$. Thus, if $d \mid a$ and $d \mid n$, then $d \mid 1 \Longrightarrow d= \pm 1 \Longrightarrow \operatorname{gcd}(a, n)=1$.
Conversely, suppose $\operatorname{gcd}(a, n)=1$. Then, $\exists u, v \in \mathbb{Z}$ s.t. $u a+v n=1 \Longrightarrow \bar{u} \cdot \bar{a}+\overline{v n}=\overline{1}$. Now, $\bar{n}=\overline{0} \Longrightarrow \bar{v} \cdot \bar{n}=\overline{0}$, so $\bar{u} \cdot \bar{a}=1$, hence \bar{a} is a unit.

\hookrightarrow Corollary 8.1

If n is prime any $\bar{a} \neq \overline{0}$ is a unit.

8.2 Binomial Coefficients

\hookrightarrow Definition 8.5: Binomial Coefficient

Let $m \geq n$ be non-negative integers. $\binom{m}{n}$ (m choose n) ways to choose m objects among n objects, where order doesn't matter, where $\binom{m}{n}=\frac{m!}{n!(m-n)!}$.
We also have that

$$
\begin{aligned}
& \binom{n}{l}+\binom{n}{l-1}=\binom{n+1}{l} \\
& \binom{0}{0} \\
& \binom{1}{0} \quad\binom{1}{1} \\
& \binom{2}{0}\binom{2}{1} \quad\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}
\end{aligned}
$$

Pascal's Triangle

\hookrightarrow Lemma 8.3

Let $p \in \mathbb{P}$, and let $1 \leq n \leq p-1$. Then,

$$
p \left\lvert\,\binom{ p}{n}\right.
$$

$\underline{\text { Proof. First note that if } 1 \leq a \leq p-1, p \text { }}$ \a!. If $p \mid a!=1 \cdot 2 \cdot 3 \cdots a$, then $p \mid b$ where $b=$ $\{1,2, \ldots a\}$. But we have that $1 \leq b \leq p$, so this is not possible.
Now, we have $\binom{p}{n}=\frac{p!}{n!(p-n)!}=d \in \mathbb{Z} \Longrightarrow p!=d \cdot n!(p-n)$!. As $p \mid p$! and $p \nmid n!$ nor $(p-n)!$, (as shown above) since $n \leq p-1, p-n \leq-1$, so, since p prime, $p \mid d$.

8.3 Solving Equations in $\mathbb{Z} / n \mathbb{Z}$

\hookrightarrow Definition 8.6

8.3.1 Linear Equations

8.4 Fermat's Little Theorem

\hookrightarrow Theorem 8.2: Fermat's Little Theorem

Let p be a prime number. Let $a \not \equiv 0 \bmod p$ then

$$
a^{p-1} \equiv 1 \quad \bmod p .
$$

Remark 8.1. This implies that, for every $a, a^{p} \equiv a \bmod p$. Conversely, If $a \not \equiv 0 \bmod p$, then $a^{p} \equiv a \bmod p \quad \Longrightarrow \quad a^{p-1} \equiv 1 \bmod p$ by multiplying both sides with the congruence class b s.t. $b a \equiv 1 \bmod p$.

\hookrightarrow Lemma 8.4

Let R be a commutative ring and $x, y \in R$. Interpret $\binom{n}{i}$ as adding 1 to itself $\binom{n}{i}$ times. Then, the binomial formula holds in R, ie

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i} .
$$

Ie, $\binom{n}{j}$ means $1_{R}+\cdots+1_{R},\binom{n}{j}$ times.

Assume it holds for n. We write

$$
\begin{aligned}
(x+y)^{n+1}=(x+y)^{n}(x+y) & =\underbrace{\left(\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}\right)}_{\text {assumption }} \cdot(x+y) \\
& =\sum_{l=0}^{n+1} c_{l} x^{n+1-l} \cdot y^{l}
\end{aligned}
$$

where $c_{l}=\underbrace{\binom{n}{l}}+\underbrace{\binom{n}{l-1}}=\binom{n+1}{l}$, hence $(x+y)^{n+1}=\sum_{l=0}^{n+1}\binom{n+1}{l} x^{n+1-l} y^{l}$. from $\binom{n}{l} x^{n-l} y^{l} x \quad$ from $\binom{n}{l-1} x^{n-(l-1) y^{l-1} y}$

Proof. (Of Fermat's Little Theorem) We aim to show that $a^{p} \equiv a \bmod p$ for any a. It is sufficient to show that it holds for $1 \leq a \leq p-1$.
We prove by induction on $1 \leq a \leq p-1$. $a=1 \Longrightarrow 1^{p} \equiv 1 \bmod p$.

Suppose it holds for $1 \leq a \leq p-2$, and prove for $a+1$. Then, by lemma 8.4,

$$
\begin{align*}
(a+1)^{p} & =\sum_{i=0}^{p}\binom{p}{i} a^{i} \tag{1}\\
& \equiv a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+\cdots+\binom{p}{p-1} a+1 \tag{2}\\
& \equiv 1+a^{p} \quad(\text { by lemma 8.3) } \tag{3}\\
& \equiv 1+a \quad \text { by induction hypothesis } \tag{4}
\end{align*}
$$

Since $1+a \not \equiv 0 \bmod p$, it has an inverse in $y \in \mathbb{F}_{p}, y(1+a) \equiv 1$. Then, $y(1+a)^{p} \equiv y(1+a) \equiv 1$. Also, $y(1+a)^{p}=y(1+a)(1+a)^{p-1} \equiv(1+a)^{p-1}$, hence $(1+a)^{p-1} \equiv 1$.

\circledast Example 8.6: Application of Fermat's Little Theorem

Calculate $2^{2023} \cdot 3^{9} \bmod 7$. Divide 2023 by $6=7-1=p-1$ with residue. $2023=$ $6 \cdot 337+1$, and $9=1 \cdot 6+3$.
$2^{2023} \cdot 3^{9}=2\left(2^{6}\right)^{337} \cdot 3^{6} \cdot 3^{3}$. By FLT, this is equivalent to $2(1)^{337} \cdot 1 \cdot 3^{3} \equiv 2 \cdot 27 \equiv 54 \equiv 5$ $\bmod 7$.

9 Arithmetic of Polynomials

9.1 Definitions

\hookrightarrow Definition 9.1: Polynomial Ring

Let \mathbb{F} be a field, and let $\mathbb{F}[x]$ be the ring of polynomials with coefficients in \mathbb{F}, ie

$$
\mathbb{F}[x]=\left\{a_{n} x^{n}+\cdots a_{1} x+a_{0}: a_{i} \in \mathbb{F}\right\} .
$$

Operations of addition, multiplication are defined as is familiar.
\circledast Example 9.1
$\mathbb{F}=\mathbb{Z} / 3 \mathbb{Z}$. We have

$$
\begin{array}{r}
\left(x^{2}+x+1\right)(2 x+1)+2 x^{2}+5 \equiv 2 x^{3}+(1+2)^{0_{2}}+(1+2)^{0}+1+2 x^{2}+6 \\
\equiv 2 x^{3}+2 x^{2}+6 \bmod 3
\end{array}
$$

\hookrightarrow Definition 9.2: deg
If $f=a_{n} x^{n}+\cdots a_{1} x+a_{0}$ has $a_{n} \neq 0$, we say $\operatorname{deg} f=n$, unless $f=0$, where $\operatorname{deg} f$ undefined.

If f, g not zero, then $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$; thus, if f, g are not zero, $f \cdot g \neq 0$. If $f \cdot g=0$, we must have either that $f=0$ or $g=0$, or both. Thus, this is a commutative ring with no zero divisors.

\hookrightarrow Theorem 9.1: Division with Residue

Let $f, g \in \mathbb{F}[x], g \neq 0$. Then, \exists ! polynomials $g, r \in \mathbb{F}[x]$ s.t. $f=q \cdot g+r$, where either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$; furthermore, q, r are unique.
 existence by induction on $\operatorname{deg} f$.

- Base: $\operatorname{deg} f=0$: If $\operatorname{deg} g>0$, let $q=0, r=f$, hence $f=0 \cdot g+f$. Otherwise, if $\operatorname{deg} g=0$, then g is a constant, then $f=\left(f g^{-1}\right) \cdot g+0$.
- Assumption: suppose true for all polynomials $h \in \mathbb{F}[x]$ such that $\operatorname{deg} h \leq n$ and $\operatorname{deg} f=$ $n+1$. Say $f=a_{n+1} x^{n+1}+$ l.o.t. ${ }^{30}$, and $g=b_{m} x^{m}+$ l.o.t., where $b_{m} \neq 0$.
- If $n+1<m$, then $f=0 \cdot g+f, \operatorname{deg} f<\operatorname{deg} g$.
- If $n+1 \geq m$, then $f(x)=\underbrace{a_{n+1} b_{m}^{-1} x^{n+1-m} g}_{=a_{n+1} x^{n+1}+\text { l.o.t }}+h(x)$, where h is essentially the "difference" between the expression. Note that $\operatorname{deg} h \leq n$; hence, by induction $h(x)=\tilde{q}(x) \cdot g(x)+r(x)$, where either $r(x)=0$ or $\operatorname{deg} r<\operatorname{deg} g$. This implies that

$$
f(x)=\underbrace{\left(a_{n+1} b_{m}^{-1} x^{n+1-m}+\tilde{q}(x)\right)}_{q(x)} g(x)+r(x) .
$$

Thus, the proof holds for all deg f. We know show uniqueness. Suppose $f=q_{1} g+r_{1}=q_{2} g+r_{2}$, where $r_{i}=0$ or $\operatorname{deg} r_{i}<\operatorname{deg} g$. Consider

$$
\left(q_{1}-q_{2}\right) g=r_{2}-r_{1} .
$$

If RHS $\neq 0$, then the LHS $\neq 0$, hence $q_{1}-q_{2} \neq 0$. Since $g \neq 0$, then $\operatorname{deg}($ LHS $)=\operatorname{deg}\left(q_{1}-\right.$ $\left.q_{2}\right)+\operatorname{deg} g \geq \operatorname{deg} g$. But deg RHS $\leq \max \left(\operatorname{deg} r_{1}, \operatorname{deg} r_{2}\right)<\operatorname{deg} g$, and we have a contradiction. Hence, RHS $=0 \Longrightarrow$ LHS $=0$, hence $q_{1}-q_{2}=0$, so $r_{1}=r_{2}, q_{1}=q_{2}$, and the polynomial is thus unique.

\hookrightarrow Definition 9.3: Divisibility

We say $g \mid f$ if $r=0$; namely,

$$
f=q \cdot g \text { for some } q \in \mathbb{F}[x]
$$

As before, $g|f \Longrightarrow g| h f$ for any $h \in \mathbb{F}[x] ; g\left|f_{1}, g\right| f_{2} \Longrightarrow g \mid\left(f_{1} \pm f_{2}\right)$; etc. Many of the other consequences of divisibility in integers follow similarly.

9.2 GCD

\hookrightarrow Definition 9.4: GCD of Polynomials

Let $f, g \in \mathbb{F}[x]$ not both 0 . The greatest common divisor of f, g denoted $\operatorname{gcd}(f, g)$ is a monic polynomial of largest degree dividing both f and g.

\hookrightarrow Definition 9.5: Monic

$f=a_{n} x^{n}+\cdots+a_{0}, a_{n} \neq 0$ is monic if $a_{n}=1$ (leading term is one).

\hookrightarrow Theorem 9.2: GCD

$\operatorname{gcd}(f, g)$ exists and is unique. Furthermore, of the nonzero monic polynomials of the form

$$
u(x) f(x)+v(x) g(x)
$$

it has the minimal degree. Any common example of f, g divides the gcd.

Proof. - Existence: Let $S:=\{a(x): a(x)$ monic, nonzero; $a(x)=u(x) f(x)+v(x) g(x)$.$\} .$ $S \neq \varnothing$; if $f \neq 0$, rather $f=a_{n} x^{n}+$ l.o.t., then $a(x)=a_{n}^{-2} f(x) \cdot f(x)+0 \cdot g(x) \in S$ (if $f=0$, use g by same argument). Choose some $h(x) \in S$ have the minimal positive degree.

- Unique: suppose $h_{1}(x) \in S$ and $\operatorname{deg} h=\operatorname{deg} h_{1}=d, h=x^{d}+$ lot $=u f+v g$, $h_{1}=x^{d}+\log =u_{1} f+v_{1} g$. Now either:
- $h-h_{1}=0$ (done)
- $\operatorname{deg}\left(h-h_{1}\right)<\operatorname{deg} h$. However, $h-h_{1}=\left(u-u_{1}\right) f+\left(v-v_{1}\right) g . h-h_{1}=a_{e} x^{e}+$ lot, then $a e^{-1}\left(h-h_{1}\right)$ is monic of $\operatorname{deg}<\operatorname{deg} h$, and is in S, a contradiction.
Hence, h must be unique.
- $h|f, h| g:$ Write

$$
f=q \cdot h+r .
$$

If $r=0, h \mid f$. Else, $r=f-q \cdot h$, and thus $r \in S$, and we can write $r=f-q(u f+v g)=$ $(f-q u) f-(q v) g$. Thus, after normalization (ie "divide out" to make monic), $r \in S$, and has a smaller degree then h, and we thus have a contradiction, and so $r=0$. Thus, $h|f, h| g$.

- Maximality of $\operatorname{deg}(h)$: Suppose $t(x)|f, t(x)| g$, thus $t(x) \mid(u f+v g)$, so $t \mid h$. Thus, $\operatorname{deg} t \leq$ $\operatorname{deg} h$, and further h has the maximal possible degree, hence h is the monic common divisor of max degree.
- Uniqueness of GCD: Say h_{1} another common divisor of f, g of the same degree of h. We have that $\operatorname{deg} h=\operatorname{deg} h_{1}$ and $h_{1} \mid h$, and further h, h_{1} monic, then $h=h_{1}$.

\hookrightarrow Theorem 9.3: Euclidean Algorithm (Polynomials)

Each

$$
\begin{array}{cl}
f=q_{0} \cdot g+r_{0}, & r_{0}=0 \text { or } \operatorname{deg}\left(r_{0}\right)<\operatorname{deg}(g) \\
g=q_{1} \cdot r_{0}+r_{1}, \quad r_{1}=0 \text { or } \operatorname{deg}\left(r_{1}\right)<\operatorname{deg}\left(r_{0}\right) \\
r_{0}=q_{2} \cdot r_{1}+r_{2} & \cdots \\
\vdots & \\
r_{n-1}=q_{n+1} r_{n} &
\end{array}
$$

We have that r_{n}, once normalized, is the $\operatorname{gcd}(f, g)$ (ie if $r_{n}(x)=a_{n} x^{n}+$ lot, we normalize by dividing by a_{n}).

Proof.

Example 9.2

$f=x^{3}-x^{2}+2 x-2, g=x^{2}-4 x+3 \in \mathbb{Q}[x]$.

$$
\begin{array}{r}
f=\left(x^{2}-4 x+3\right)(x+3)+(11 x-11) \\
x^{2}-4 x+3=(11 x-11)\left(\frac{1}{11} x-\frac{3}{11}\right)
\end{array}
$$

Hence, $\operatorname{gcd}(f, g)=\frac{1}{11}(11 x-11)=x-1$. The same process follows to find u, v; we have $x-1=\frac{1}{11}(f-g(x+3))=\frac{1}{11} f-\frac{1}{11}(x+3) g$.

\circledast Example 9.3

$\mathbb{F}=\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ where $1+1=0$. Take $f=x^{5}+x^{3}+x^{2}+x, g=x^{3}+x^{2}+x$.

$$
\begin{array}{r}
f=\left(x^{3}+x^{2}+x\right)\left(x^{2}+x+1\right)+x^{2} \\
x^{3}+x^{2}+x=x^{2}(x+1)+x \\
x^{2}=x \cdot x
\end{array}
$$

Hence, $\operatorname{gcd}(f, g)=x$. We also have that $x=g-x^{2}(x+1)=g-\left(f-\left(x^{2}+x+\right.\right.$ 1) $g)(x+1)=g\left(1+\left(x^{2}+x+1\right)(x+1)\right)-(x+1) f=g \cdot x^{3}+f \cdot(x+1)$

\hookrightarrow Lemma 9.1

Let $f(x) \in \mathbb{F}[x]$ and $\alpha \in \mathbb{F}$ such that $f(\alpha)=0$. Then, $(x-\alpha) \mid f(x)$
 done. Now, substitute $\alpha ; 0=f(\alpha)=\underbrace{q(\alpha) \cdot(\alpha-\alpha)}_{=0}+r \Longrightarrow r=0$.

\hookrightarrow Corollary 9.1

If f has $\operatorname{deg} n>0$ and $f\left(\alpha_{i}\right)=0$ for distinct $\alpha_{1}, \ldots, \alpha_{n}$, then $f=c \cdot \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$. This implies that, if $\beta \neq \alpha_{i}$ for any i, then $f(\beta) \neq 0$. We can conclude that a polynomial of degree n has at most n distinct roots.

\circledast Example 9.4

Do the polynomials in $\mathbb{R}[x] f=x^{6}+x^{4}-x^{2}-1, g=x^{3}+2 x^{2}+x+2$ have a common solution? They do, iff $d=\operatorname{gcd}(f, g)$ has a real root. In this case, $\operatorname{gcd}(f, g)=$ $x^{2}+1=(x-i)(x+i)$, so f, g have no common real roots.

\hookrightarrow Definition 9.6: Associates

Two nonzero polynomials $f, g \in \mathbb{F}[x]$ are called associates if $\exists \alpha \in \mathbb{F}, \alpha \neq 0$, st $\alpha f=g$ (we commonly denote $\mathbb{F}^{\times}=\mathbb{F} \backslash\{0\}$)

Remark 9.1. Associate polynomials have the same degree.

\hookrightarrow Lemma 9.2

This is an equivalence relation and the representatives for the equivalence are the monic polynomials.

Proof. $f \sim f$, since $1 \cdot f=f$.
If $f \sim g$, we have $\alpha f=g \Longrightarrow \frac{1}{\alpha} g=f \Longrightarrow g \sim f$.
If $f \sim g, g \sim h$ ie $\alpha f=g$ and $\beta g=h$, then $(\alpha \beta) f=\beta g=h$, noting that $\alpha \beta \neq 0$. Thus, this is an equivalence relation.
If $f=a_{n} x^{n}+$ lot, $a_{n} \neq 0$, then $\frac{1}{a_{n}} f \sim f$, and $\frac{a_{n} f}{=} x^{n}+$ lot, a monic polynomial, hence any equivalence class has a representative which is a monic polynomial.
Further, if f, g monic and $\alpha f=g$, then $\alpha=1$, hence $f=g$.

\hookrightarrow Definition 9.7: Irreducible Polynomial

A non-constant polynomial $f(\operatorname{deg} f>0)$ is called irreducible if any $g \mid f$ satisfies $g 1$ (namely, a constant) or $g \sim f$ (namely, $g=\alpha f$ for some $\alpha \in \mathbb{F}^{\times}$). ${ }^{31}$

Remark 9.2. If $\operatorname{deg} f>1, f(x)$ irreducible $\Longrightarrow f$ has no root in \mathbb{F}; if $f(\alpha)=0$, then $f(x)=(x-\alpha) f_{1}(x), f_{1}(x) \in \mathbb{F}[x]$, hence we have a non-trivial factorization since $(x-\alpha) \nsim$ $1,(x-\alpha) \nsim f \Longrightarrow f$ reducible.
The converse does not hold; consider $x^{2}+1, x^{2}+2 \in \mathbb{R}[x] ; f(x)=\left(x^{2}+1\right)\left(x^{2}+2\right)$ is reducible, clearly, but has no real root.

Remark 9.3. Any linear polynomial, of the form $a x+b$ where $a \neq 0$, is irreducible.
Remark 9.4. Irreducibility depends on the field in question, eg $x^{2}+1$ is irreducible in $\mathbb{R}[x]$, but $x^{2}+1=(x-i)(x+i)$, so it is reducible in $\mathbb{C}[x]$.

\hookrightarrow Proposition 9.1

Suppose ${ }^{32} \operatorname{deg} f \geq 1$. The following are equivalent:

1. f irreducible;
2. $f|g h \Longrightarrow f| g$ or $f \mid h$.

Proof. 1. $\Longrightarrow 2 .:$ suppose f irreducible and $f \mid g h$. If $f \not \subset g$, then $\operatorname{gcd}(f, g)=1$. Then, we can write

$$
\begin{aligned}
1=u f & +v g, \text { some } u(x), v(x) \in \mathbb{F}[x] \\
& \Longrightarrow h=\underbrace{u f h}_{f \mid}+\underbrace{v g h}_{f \mid} \Longrightarrow f \mid h
\end{aligned}
$$

1. $\Longleftarrow 2 .: ~ s u p p o s e ~ f=g h$, and say wlog $f \mid g$. So, $f \mid g$ and $g \mid f \Longrightarrow \operatorname{deg} g=\operatorname{deg} f$ and so $g=f \cdot t$, and deg t must be 0 , therefore t constant, and thus h must be constant ie $h \sim 1$, hence f irreducible.

\hookrightarrow Lemma 9.3

Any non-zero polynomial $f \in \mathbb{F}[x]$ can be written as

$$
f=c \cdot f_{1} \cdot f_{2} \cdots f_{n}
$$

where all $f_{i} \in \mathbb{F}[x]$ are irreducible, monic, and $c \in \mathbb{F}[x]$.

Proof. (By induction on $\operatorname{deg} f$)

- $\operatorname{deg} f=0 \Longrightarrow f$ constant $(f=f)$
${ }^{31}$ This can be seen as an analog to primes; $p \in \mathbb{Z}$ prime if $m \mid p \Longrightarrow m= \pm 1$ or $m= \pm p$. Irreducible
polynomials are the "primes of the rings of polynomials."

[^3]- Suppose true for $0 \leq \operatorname{deg} g \leq n$ and let f be a polynomial of $\operatorname{deg} f=n+1$.

If f irreducible, $\exists c$ (leading coefficient, in fact) such that $f=c \cdot f_{1}$, with f_{1} monic and irreducible (if $f \sim h$, then f irreducible $\Longleftrightarrow h$ irreducible), and we are done.

Else, $f=f_{1} \cdot f_{2}$ is a non-trivial factorization ie $\operatorname{deg}\left(f_{1}\right)<\operatorname{deg} f, \operatorname{deg} f_{2}<\operatorname{deg} f$ (neither scalars). We can write, $f_{1}=c_{1} p_{1}(x) \cdots p_{a}(x)$ and $f_{2}=c_{2} p_{a+1}(x) \cdots p_{b}(x)$, where each p_{i} irreducible and monic, by our assumption, hence $f=f_{1} f_{2}=\left(c_{1} c_{2}\right) p_{1} \cdots p_{b}(x)$, and our inductive step is done and thus the statement holds.

\hookrightarrow Theorem 9.4: Unique Factorization for Polynomials

Let $f(x) \in \mathbb{F}[x]$ be a non-zero polynomial. Then, we have

$$
f=c \cdot p_{1}(x)^{a_{1}} \cdots p_{r}(x)^{a_{r}}
$$

where $c \in \mathbb{F}^{\times}, p_{i}(x)$ monic, distinct, irreducible polynomials, and $a_{i}>0$. Moreover, c, $p_{i}(x)$'s, and a_{i} 's are uniquely determined.

Remark 9.5. Existence follows from lemma 9.3 by collecting like polynomials under a_{i}. It remains to prove uniqueness.

Proof. Because $p_{i}(x)$ monic, leading coefficient of rhs c must be the leading coefficient of the lhs, ie c determined by f.
Suppose we have two decompositions, say

$$
f=c \cdot p_{1}(x)^{a_{1}} \cdots p_{r}(x)^{a_{r}}=\tilde{c} \cdot q_{1}(x)^{b_{1}} \cdots q_{s}(x)^{b_{s}} .
$$

We must have $c=\tilde{c}$. Then, $r=s$ and after renaming the q_{i}, we have that $q_{i}=p_{i}$ and $a_{i}=b_{i}$. We proceed by induction on $\operatorname{deg} f$.

- $\operatorname{deg} f=0$: since we have irreducible polynomials which must have positive degree ${ }^{33}$, hence the only option is $r=s=0$, hence $f=c=\tilde{c}$.
- Suppose true for polynomials $h(x)$ such that $0 \leq \operatorname{deg} h \leq n$, and $\operatorname{deg} f=n+1$. Note, first, that $r \geq 1, s \geq 1$ (else f constant). We have that

$$
p_{1}(x) \mid f=c \cdot q_{1}(x)^{b_{1}} \cdots q_{s}(x)^{b_{s}} \stackrel{\text { proposition } 9.1}{\Longrightarrow} \underbrace{p_{1}(x) \mid c}_{c \text { const, not possible }} \text { or } p_{1}(x) \mid q_{i}(x) \text { for some } i .
$$

We have that $q_{i}(x)$ irreducible, so $p_{1}(x) \sim q_{i}(x)$, but they are both monic, so $p_{1}(x)=$ $q_{i}(x)$. Rename, then, q_{i} as q_{1}, ie $p_{1}=q_{1}$. This implies, then that $c \cdot p_{1}^{a_{1}-1} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}=$ $c \cdot q_{1}^{b_{1}-1} q_{2}^{b_{2}} \cdots q_{s}^{b_{s}}$. Then, by induction, we can "rename" each of the q_{i}, if needed, hence $p_{i}=q_{i} \forall i$, and we are done.

\hookrightarrow Theorem 9.5: Unique Factorization for Polynomials

Let $f(x) \in \mathbb{F}[x]$ be a non-zero polynomial. There exists a unique $c \in \mathbb{F}^{x}$ and distinct, monic, irreducible polynomials $f_{1}(x), \ldots, f_{r}(x)$ with $r \geq 0$ and positive integers a_{i} s.t.

$$
f(x)=c \cdot f_{1}(x)^{a_{1}} \cdots f_{r}(x)^{a_{r}} .
$$

\hookrightarrow Corollary 9.2

Let $f(x), g(x)$ be non-zero polynomials. Then, $f \mid g$ iff we can write

$$
f(x)=c f_{1}(x)^{a_{1}^{\prime}} \cdots f_{r}(x)^{a_{r}^{\prime}}, g(x)=d f_{1}(x)^{a_{1}} \cdots f_{r}(x)^{a_{r}}
$$

where $c, d \in \mathbb{F}^{x}, f_{i}$ are irreducible monic polynomials with $r \geq 0$, and $0 \leq a_{i}^{\prime} \leq a_{i}, 0<a_{i}$.

Proof. If we have such an expression, then $g=f \cdot h$ where $h=d c^{-1} \cdot f_{1}(x)^{a_{1}-a_{1}^{\prime}} \cdots f_{r}(x)^{a_{r}-a_{r}^{\prime}}$ is a polynomial as $a_{i}-a_{i}^{\prime} \geq 0$. Conversely, suppose $f \mid g$ so $g=f h$. Write

$$
\begin{array}{r}
f=c \cdot f_{1}(x)^{a_{1}^{\prime}} \cdots f_{s}(x)^{a_{s}^{\prime}}, c \in \mathbb{F}^{x}, a_{i}^{\prime}>0 \\
h=e \cdot f_{1}(x)^{b_{1}} \cdots f_{s}(x)^{b_{2}} f_{s h}(x)^{a_{s h}} \cdots f_{r}(x)^{a_{r}} \\
\Longrightarrow g=(c e) \cdot f_{1}(x)^{a_{1}^{\prime}+b_{1}} \cdots f_{s}(x)^{a_{s}^{\prime}+b_{s}} f_{s+1}(x)^{a_{s h}} \cdots f_{r}(x)^{a_{r}},
\end{array}
$$

and let $d=c \cdot e, a_{i}=a_{i}^{\prime}+b_{i}$ for $1 \leq i \leq s$.

\hookrightarrow Corollary 9.3: GCD, LCM

If f, g are non-zero polynomials $f(x)=c \cdot f_{1}(x)^{a_{1}} \cdots f_{r}(x)^{a_{r}}, g=d \cdot f_{1}(x)^{b_{1}} \cdots f_{r}(x)^{b_{r}}$, $c, d \in \mathbb{F}^{x}, a_{i} \geq 0, b_{i} \geq 0, f_{i}$ distinct monic irreducible. Then

$$
\begin{array}{r}
\operatorname{gcd}(f, g)=f_{1}^{\min \left(a_{1}, b_{1}\right)} \cdots f_{r}^{\min \left(a_{r}, b_{r}\right)} \\
\operatorname{lcm}(f, g)=f_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots f_{r}^{\max \left(a_{r}, b_{r}\right)}
\end{array}
$$

Remark 9.6. How does one tell if a polynomial is irreducible?

1. Any linear polynomial $a x+b, a \neq 0$ is irreducible.
2. If $f(x) \in \mathbb{F}[x]$ has degree 2 or $3, f(x)$ reducible iff $f(x)$ has a root in \mathbb{F}.
3. Over \mathbb{C}, the only irreducible polynomials are the linear polynomials (recall theorem 5.2)
4. Over \mathbb{R} any irreducible polynomial has degree 1 or 2 . ${ }^{34}$
5. Let $f(x) \in \mathbb{Q}[x]$ of degree d.
(a) $d=1$: $f(x)$ irreducible
(b) $d=2,3: f(x)$ reducible $\Longleftrightarrow f$ has a rational root.
(c) $d>3: f(x)$ reducible $\Longleftarrow f$ has a root.
6. Let $\mathbb{F}=\mathbb{F}_{p}$ where p prime. Let $g(x) \in \mathbb{F}$ be a non-constant polynomial. Then, $g(x)$ has a root in \mathbb{F} iff $\operatorname{gcd}\left(g, x^{p}-1\right) \neq 1$.

While no general method exists to determine reducibility, there is a general method to determine existence of roots.

\hookrightarrow Proposition 9.2

Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a non-constant polynomial with integer coefficients, $a_{n} \neq 0$. Let $f\left(\frac{a}{b}\right)=0$ where $(a, b)=1$. Then, $b\left|a_{n}, a\right| a_{0}$.

Proof. We have $\left(\frac{a}{b}\right)^{n} a_{n}+\left(\frac{a}{b}\right)^{n-1} a_{n-1}+\cdots+\left(\frac{a}{b}\right) a_{1}+a_{0}=0$. Multiple by b_{n} to get

$$
\underbrace{a^{n} \cdot a_{n}+\overbrace{a^{n-1} b a_{n-1}+\cdots+a b^{n-1} a_{1}}+a_{0} b^{n}}_{a \mid}=0
$$

Which implies

$$
\left\{\begin{array}{l}
a\left|a_{0} b^{n} \Longrightarrow a\right| a_{0} \\
b\left|a^{n} a_{n} \Longrightarrow b\right| a_{n}
\end{array}\right.
$$

\hookrightarrow Proposition 9.3

$f(x) \in \mathbb{F}[x]$ has a root $a \in \mathbb{F} \Longleftrightarrow(x-a) \mid f(x) \Longleftrightarrow \operatorname{gcd}\left(f(x), x^{p}-x\right) \neq 1$. Further, $f(x) \in \mathbb{F}[x]$ has a non-zero root $a \in \mathbb{F} \backslash\{0\} \Longleftrightarrow(x-a) \mid f(x) \Longleftrightarrow \operatorname{gcd}\left(f(x), x^{p-1}-1\right) \neq$ 1.

Example 9.5

Is -1 a square in \mathbb{F}_{113} ? ${ }^{35}$

Proof. This is equivalent to asking is $x^{2}+1$ irred in $\mathbb{F}_{113} \Longleftrightarrow \operatorname{gcd}\left(x^{2}+1, x^{112}-1\right) \neq 1$.

$$
\begin{aligned}
x^{112}-1= & \left(x^{2}+1\right)(x^{110}-x^{108}+x^{106}-\cdots+\underbrace{(-1)^{55}}_{\frac{p-3}{2}})-(\underbrace{(-1)^{55}}_{\frac{p-3}{2}}+1) \\
& \Longrightarrow\left(x^{2}+1\right) \mid x^{112}-1 \Longrightarrow \operatorname{gcd}\left(x^{2}+1, x^{112}-1\right)=x^{2}+1
\end{aligned}
$$

Hence, -1 is indeed a square $\left(-1 \equiv_{113} 15^{2}\right.$, in fact).

10 Rings

10.1 Ideals

\hookrightarrow Definition 10.1: Ideal
An ideal I of R is a subset of R such that

1. $0 \in I$;
2. $x, y \in I \Longrightarrow x+y \in I$;
3. $x \in R, y \in I \Longrightarrow x y \in I .{ }^{36}$

Remark 10.1. Typically, $1 \notin I$. If $I=R$, then it is; if $1 \in I$, then $\forall r \in R, r=r \in I$, hence $I=R$ (by criterion (3)). In other words, ideals are typically not subrings. ${ }^{37}$

Example 10.1

We consider some trivial examples:

- $I=\{0\}$
- $I=R$.
- $R=\mathbb{F}$ a field, and $I \neq\{0\}$, then $I=R$. That is, any non-zero ideals of a field are trivial and generally uninteresting.

\hookrightarrow Definition 10.2: Principal Ideals

Let $r \in R$ and let $(r)=\langle r\rangle:=R r=\{s r: s \in R\}=r R$. This is an ideal; $0=0 \cdot r$; $s_{1} r+s_{2} r=\left(s_{1}+s_{2}\right) r \in I ; s \cdot s_{1} r=\left(s s_{1}\right) \cdot r \in I$.

* Example 10.2

Any integer $m \in \mathbb{Z}, m \mathbb{Z}$ is an ideal of \mathbb{Z}.

\hookrightarrow Definition 10.3: Units of R

Consider a commutative ring R. We denote

$$
R^{\mathrm{x}}=\{u \in R: \exists v \in R \text { with } u v=v u=1\}
$$

${ }^{36}$ Consider 2. to state that I closed under addition. 3. can be considered as a sort-of "absorption" quality; thinking about this in the more concrete case of $n \mathbb{Z}$ may make more sense. Think about this $x \cdot y$ as a "multiple" in a sense of y.
${ }^{37}$ This is a direct result of our convention of requiring subrings to contain 1 ; many texts do not require subrings to contain the multiplicative elements, so in these cases ideals would then typically be subrings as well. We will not adopt this convention.
the units of R.
Remark 10.2. $1 \in R^{x}$. If $u_{1}, u_{2} \in R^{x}$ then $u_{1} u_{2} \in R^{x}$, because $\exists v_{i}$ s.t. $v_{i} u_{i}=1$ hence $\left.\left(v_{2} v_{1}\right)\left(u_{1} u_{2}\right)=v_{2}\left(v_{4} u_{1}\right)^{1} u_{2}\right)=\left(v_{2} u_{2}\right)=1$. That is, the product of units is a unit.

\circledast Example 10.3

Consider the following examples of units:

- $\mathbb{Z}^{x}=\{ \pm 1\}$
- $R=\mathbb{F}$ then $\mathbb{F}^{\mathrm{x}}=\mathbb{F} \backslash\{0\}$.
- $\mathbb{F}[x]^{\mathrm{x}}=\mathbb{F}^{\mathrm{x}}$ (the degree of the units must be zero, hence they are simply the constants of the field.)
- $\mathbb{Z}[\sqrt{2}]^{\mathrm{x}}=\left\{a+b \sqrt{2}: a^{2}-2 b^{2}= \pm 1\right\}^{38}$
${ }^{38}$ These (a, b) solve the
Pell Equations, $x^{2}-2 y^{2}= \pm 1$
${ }^{39} \mathrm{This}$ is an extension of the previous definition of associates for polynomials to an arbitrary ring.

Take $r_{1}, r_{2} \in R$. Then $r_{1} \sim r_{2}$ is an equivalence relation.

Proof.

\hookrightarrow Lemma 10.1

Let $r_{1}, r_{2} \in R$. If $r_{1} \sim r_{2}$ then $\left(r_{1}\right)=\left(r_{2}\right)$.

Remark 10.3. The converse does not always hold; it holds if R is an integral domain.

\hookrightarrow Definition 10.5: Integral Domain

A ring R is an integral domain if $x y=0 \Longrightarrow x=0$ or $y=0$.

Proof. Say $u r_{1}=r_{2}$; then $\left(r_{2}\right)=R r_{2}=\operatorname{Rur}_{1}=(R u) \cdot r_{1} \subseteq R \cdot r_{1}=\left(r_{1}\right)$. Then, $r_{1} \sim r_{2} \Longrightarrow$ $\left(r_{2}\right) \subseteq\left(r_{1}\right)$. Equivalence relation \Longrightarrow symmetric, hence $r_{2} \sim r_{1} \Longrightarrow\left(r_{1}\right) \subseteq\left(r_{2}\right)$, hence we have equality.
We consider the converse; $(r)=(s) \Longrightarrow r \sim s . r \in(r)=(s) \Longrightarrow r=u s$ for some $u \in R$, and $s \in(r) \Longrightarrow s=v r$ for some $v \in R$. This implies then that

$$
(1-u v) \cdot r=0 .
$$

This gives two possibilities: $r=0 \Longrightarrow s=v r=0$, or $r \neq 0 \Longrightarrow 1-u v=0 \Longrightarrow u v=$ $1 \Longrightarrow u, v$ units, hence $r=u \cdot s \Longrightarrow r \sim s$ by definition. This holds only if the ring is an integral domain.

\hookrightarrow Theorem 10.1

Every ideal of \mathbb{Z} is of the form $\langle m\rangle=m \cdot \mathbb{Z}$ for a unique non-negative integer m which implies the ideals of \mathbb{Z} are all principal and are exactly

$$
(0)=\{0\},(1)=\mathbb{Z},(2)=2 \mathbb{Z},(3)=3 \mathbb{Z},(4)=4 \mathbb{Z}, \ldots
$$

Proof. If ${ }^{40} I \triangleleft \mathbb{Z}$, if $I=\{0\}$ then $I=(0)$. If $I \neq\{0\}, \exists$ some $m \neq 0$ such that $m \in I$ and then also $-m=-1 \cdot m \in I \Longrightarrow I$ contains a positive integer. Let $n \in I$ be the minimal positive element belonging to I. We claim that $I=(n)$.
On the one hand, $n \in I \Longrightarrow k n \in I \forall k \in \mathbb{Z} \Longrightarrow(n) \subseteq I$. Conversely, let $t \in I$, and write

$$
t=k n+r, 0 \leq r<n
$$

If $r \neq 0$, note that $r=t-k n$, and since both t and $n \Longrightarrow-k n \in I$, then it must be that $r \in I$. But $r<n$, hence we have a contradiction, and it must be that $r=0 \Longrightarrow t=k n \in$ $(n) \Longrightarrow I \subseteq(n)$.

\hookrightarrow Theorem 10.2

${ }^{41}$ Let $I \triangleleft \mathbb{F}[x]$, \mathbb{F} a field. Then, $I=(0)$ or $I=(f)$ for a unique monic polynomial f. Moreover, if $f \neq g$ are monic polynomials, then $(f) \neq(g)$.

Proof. If $I=\{0\}$ then $I=(0)$. Else, $\exists f \in I, f \neq 0$. Then, for a suitable $\alpha \in \mathbb{F}^{\mathrm{x}}$, then αf monic, and it must be that $\alpha f \in I$. This implies that I contains some monic polynomial.
Let $g \in I$ be a monic polynomial of minimal degree among all nonzero polynomials of I. Note that $(g)=\mathbb{F}[x] \cdot g \subseteq I$. Let $h \in I$ and divide h by g with residue. Then, we have

$$
h=q \cdot g+r, r=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(g) .
$$

Note that $r=h-q g$ where $h \in I$ and $q \cdot g \in I$, hence if $r=\neq 0$, then $\operatorname{deg}(r)<\operatorname{deg}(g)$ and we found a smaller degree polynomial in the ideal and we have a contradiction of our choice of g. So, we must have

$$
r=0 \Longrightarrow h=q \cdot g \Longrightarrow h \in(g) \Longrightarrow I \subseteq(g) .
$$

It remains to show that f, g monic and $(f)=(g) \Longrightarrow f=g$. We have that $(f)=(g) \Longrightarrow$ $f \sim g$, as $\mathbb{F}[x]$ is an integral domain (lemma 10.1), so we can write $f=u \cdot g$ for some $u \in$
${ }^{41}$ This proof follows almost precisely from the logic of the previous proof.
${ }^{40}$ The symbol $I \triangleleft R$ denotes I is a principal ideal of R
$\mathbb{F}[x]=\mathbb{F}^{\mathrm{x}}=\mathbb{F}-\{0\}$, which implies

$$
f=u \cdot g \Longrightarrow x^{n}+\text { l.o.t. }=u \cdot\left(x^{n}+\text { l.o.t }\right) \Longrightarrow u=1 \Longrightarrow f=g \text {. }
$$

Example 10.4

Consider $x \in \mathbb{F}[x]$, and the ideal

$$
\begin{array}{r}
(x)=\left\{a_{n} x^{n}+\cdots+a_{1} x+\pi_{0}: a_{i} \in \mathbb{F}, a_{0}=0\right\} \\
=\{f \in \mathbb{F}[x]: f(0)=0\}
\end{array}
$$

Example 10.5

$I=\{f \in \mathbb{F}[x]: f(0)=0, f(1)=0\}$. Show that I is an ideal, and that $I=(x \cdot(x-1))$.

\hookrightarrow Definition 10.6: Generalized Way to Create Ideals

Let r_{1}, \ldots, r_{n} be elements of a ring R. We write

$$
\begin{array}{r}
\left\langle r_{1}, \ldots, r_{n}\right\rangle:=R r_{1}+R r_{2}+\cdots+R r_{n} \\
=\left\{\sum_{i=1}^{n} s_{i} r_{i}: s_{i} \in R\right\}
\end{array}
$$

For instance, $r_{1}=1 \cot r_{1}+0 \cdot r_{2}+\cdots+0 \cdot r_{n} \in\left\langle r_{1}, \ldots, r_{n}\right\rangle$. We call this ideal the "generalize ideal"; call it $I=\left\langle r_{1}, \ldots, r_{n}\right\rangle$. We show that it is indeed an ideal below.

Proof.

$$
\text { (1) } 0=0 \cdot r_{1}+\cdots+0 \cdot r_{n} \in I
$$

$$
\text { (2) } \sum_{i=1}^{n} s_{i} r_{i}+\sum_{i}^{n} r_{i} r_{i}
$$

$$
=\sum^{n}\left(s_{i}+t_{i}\right) r_{i} \in I
$$

(3) $s \cdots \sum s_{i} r_{i}=\sum\left(s s_{i}\right) r_{i} \in I$

Example 10.6

Let m, n be nonzero integers. Then, we can write $\langle m, n\rangle=\langle\operatorname{gcd}(m, n)\rangle$.

\circledast Example 10.7

Let $R=\mathbb{C}[x, y]=\left\{\sum_{i, j=0}^{N} a_{i j} x^{i} y^{j}: a_{i j}\right\}$. An ideal would be

$$
I=\langle x, y\rangle=\left\{f(x, y): f \text { has no constant term, ie } a_{00}=0\right\}
$$

This is because if $f \in$ LHS, then $f=f_{1} \cdot x+f_{2} \cdot y, f_{1}, f_{2} \in \mathbb{C}[x, y]$ (noting that it has no constant term), and conversely, if $f \in$ RHS, it does not have a constant term either, that is, $f=\sum a_{i, j} x^{i} y^{j}$ with $a_{00}=0$, so we can write $f=x \cdot \sum_{i \geq 1, j} a_{i j} x^{j-1} y^{j}+$ $y \sum_{i=0, j} a_{i j} x^{i} y^{j-1} ; i=0 \Longrightarrow j \geq 1$, and thus have " x times something plus y times something" and hence $f \in I$. We can equivalently write

$$
I=\{f(x, y) \in \mathbb{C}[x, y]: f(0,0)=0\}
$$

Note that this ideal is not a principal ideal, that is, \nexists polynomial $f(x, y)$ s.t. $\langle x, y\rangle=$ $\langle f(x, y)\rangle$.

10.2 Homomorphism

\hookrightarrow Definition 10.7: Homomorphism

Let R, S be commutative rings. ${ }^{42}$ A function $f: R \rightarrow S$ is called a ring homomorphism if 43

1. $f\left(1_{R}\right)=1_{S} \quad$ (identity)
2. $f(x+y)=f(x)+f(y) \quad$ (respects addition)
3. $f(x y)=f(x) f(y) \quad$ (respects multiplication)
$\forall x, y \in R$.

\hookrightarrow Proposition 10.2

These axioms imply the following consequences:
(i) $f\left(0_{R}\right)=0_{S}$
(ii) $-f(x)=f(-x)$
(iii) $f(x-y)=f(x)-f(y)$

Proof. (i) $f\left(0_{R}\right)=f\left(0_{R}+0_{R}\right)=f\left(0_{R}\right)+f\left(0_{R}\right)$. Adding $-f\left(0_{R}\right)$ to both sides, we get $0_{S}=$ $f\left(0_{R}\right)$.
(ii) We will aim to show that $f(x)+f(-x)=0_{S}$, equivalently. We have

$$
\begin{aligned}
f(x)+f(-x) & =f(x+(-x)) \quad \text { by axiom } 2 \\
& =f\left(0_{R}\right)=0_{S} \quad \text { by (1) }
\end{aligned}
$$

as desired.
(iii) $f(x-y)=f(x+(-y))=f(x)+f(-y)=f(x)+(-f(y))=f(x)-f(y)$.
\hookrightarrow Proposition 10.3
$\operatorname{Im}(f)=\{f(r): r \in R\}$ is a subring of S.

Remark 10.4. We need to check the following (ring axioms):
(i) $0,1 \in \operatorname{Im}(f)$
(ii) $x_{1}, x_{2} \in \operatorname{Im}(f) \Longrightarrow x_{1}+x_{2} \in \operatorname{Im}(f)$
(iii) $x_{1}, x_{2} \in \operatorname{Im}(f) \Longrightarrow x_{1} \cdot x_{2} \in \operatorname{Im}(f)$
(iv) $x \in \operatorname{Im}(f) \Longrightarrow-x \in \operatorname{Im}(f)$

Proof. (i) $f\left(0_{R}\right)=0_{S}, f\left(1_{R}\right)=1_{S}$, by the previous proposition and by definition resp.
(ii), (iii) Say $x_{i}=f\left(r_{i}\right)$; then $x_{1} \stackrel{+}{\times} x_{2}=f\left(r_{1}\right) \stackrel{+}{\times} f\left(r_{2}\right)=f\left(r_{1} \stackrel{+}{\times} r_{2}\right) \in \operatorname{Im}(f)$
(iv) If $x=f(r),-x=-f(r)=f(-r) \in \operatorname{Im}(f)$, from the previous proposition.

\hookrightarrow Definition 10.8: Kernel

Let $f: R \rightarrow S$ be a homomorphism. The kernel of f is defined as

$$
\operatorname{ker} F:=\left\{r \in R: f(r)=0_{S}\right\} \equiv f^{-1}(0)
$$

\hookrightarrow Proposition 10.4

The following propositions relate to the kernel of a homomorphism:
(i) $\operatorname{ker}(f) \triangleleft R$
(ii) f injective $\Longleftrightarrow \operatorname{ker}(f)=\left\{0_{R}\right\}$
(iii) $f(x)=f(y) \Longleftrightarrow x-y \in \operatorname{ker}(f)$

Remark 10.5. To show that some $t \in \operatorname{ker}(f)$, we need only to show that $f(t)=0_{S}$.

Proof. (i) We show each axiom: $f\left(0_{R}\right)=0_{S} \in \operatorname{ker}(f) ; x, y \in \operatorname{ker}(f) \Longrightarrow f(x)+f(y)=$ $0_{S}+0_{S}=0_{S} ; f(r x)=f(r) f(x)=f(r) \cdot 0_{S}=0_{S}$.
(ii) Suppose f injective. Then, 0_{R} is the unique element mapping to 0_{S}, by definition of an injective function. Hence, ker $f=\left\{0_{R}\right\}=\left(0_{R}\right)$. Conversely, suppose ker $f=\left\{0_{R}\right\}$ and that $f(x)=f(y)$. Note that $f(x-y)=f(x)-f(y)=f(x)-f(x)=0_{S} \Longrightarrow x-y \in$ $\operatorname{ker}(f) \Longrightarrow x-y=0_{R} \Longrightarrow x=y$.
(iii) $f(x)=f(y) \Longleftrightarrow f(x)-f(y)=0_{S} \Longleftrightarrow f(x-y)=0_{S} \Longleftrightarrow x-y \in \operatorname{ker}(f)$.

\hookrightarrow Corollary 10.1

Let $s \in S$ and let $f^{-1}(s)=\{r \in R: f(r)=s\}$. Then, either $f^{-1}(s)=\varnothing$, or $f^{-1}(s)=$ $x+\operatorname{ker}(f)=\{x+r: r \in \operatorname{ker}(f)\} \subseteq R$ for any x s.t. $f(x)=s$.

Proof. If $f^{-1}(s) \neq \varnothing, \exists x \in R$ s.t. $f(x)=s$. If $x+r \in x+\operatorname{ker} R$, then $f(x+r)=f(x)+f(r)=$ $s+0_{S}=s$. Hence, $f^{-1}(s) \supseteq x+\operatorname{ker}(f)$.

Suppose $y \in f^{-1}(s) \Longrightarrow f(x)=f(y)=s$. This implies $r=y-x \in \operatorname{ker} f$ (by previous proposition). Note that $x+r=y$; hence $y \in x+\operatorname{ker}(f) \Longrightarrow f^{-1}(s) \subseteq x+\operatorname{ker}(f)$.

Example 10.8

$R=\mathbb{Z}, S=\mathbb{Z} / n \mathbb{Z}$ where $n \geq 1 \in \mathbb{Z}$. Take $f: R \rightarrow S$ where $f(a)=a \bmod n=\bar{a}$. This is a ring homomorphism:

- $f(1) \equiv_{n} 1$, the identity of $\mathbb{Z} / n \mathbb{Z}$.
- $\overline{a+b}=\bar{a}+\bar{b}$.
- $\overline{a b}=\bar{a} \cdot \bar{b}$.

This is surjective, hence $\operatorname{Im}(f)=\mathbb{Z} / n \mathbb{Z}$. We have that $\operatorname{ker}(f)=\left\{a \in \mathbb{Z}: \bar{a} \equiv_{n} 0\right\}=$ $(n)=n \mathbb{Z}$.

Now what is $f^{-1}(\overline{1})$? Take some $x \in \mathbb{Z} . f(x)=\bar{x}=\overline{1}$; take $x=1$, then $f^{-1}(1)=1+n \mathbb{Z}$. Generally, then, we have $f^{-1}(\bar{r})=r+n \mathbb{Z}$.

Example 10.9

Let \mathbb{F} be a field and $b \in \mathbb{F}$ a fixed element. $\varphi: \mathbb{F}[x] \rightarrow \mathbb{F}$, where $\varphi(f(x))=f(b)$. So, $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}, \varphi(f(x))=a_{n} b^{n}+\cdots+a_{1} b+a_{0}$. This is a ring homomorphism.

- $f(1)=1$

We have too that φ is surjective; given $c \in \mathbb{F}$, we can show that $\varphi(x+(c-b))=$ $b+(c-b)=c$.
$\operatorname{ker} \varphi=(x-b)$

Example 10.10

Let R, S be rings. Then, $R \times S$ is a ring.

Example 10.11

Consider the map

$$
R \rightarrow R \times S, \quad r \mapsto(r, 0)
$$

This is not a ring homomorphism since $f(1)=(1,0) \neq(1,1)$ (that is, unless $0_{s}=1_{s}$, that is, S is the zero ring).

OTOH , take

$$
\begin{array}{ll}
\varphi: R \times S \rightarrow R, & (r, s) \mapsto r \\
\psi: R \times S \rightarrow S, & (r, s) \mapsto s
\end{array}
$$

These are indeed ring homomorphisms.
We also have

$$
\operatorname{ker} \varphi=\{0\} \times S, \operatorname{ker} \psi=R \times\{0\}
$$

Example 10.12

Take a polynomial in $\mathbb{R}[x]$ and fix $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n} \in \mathbb{R}$. Take

$$
\varphi: \mathbb{R}[x] \mapsto \mathbb{R}^{n}, \quad f(x) \mapsto\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{n}\right)\right)
$$

This is a homomorphism. We also have that φ is surjective. Let

$$
e_{i}=\cdots(0, \ldots, 0,1,0, \ldots, 0),
$$

ie a unit vector where the i th entry is 1 . Take

$$
f_{i}(x)=\prod_{j=1, j \neq i}^{n}\left(x-\alpha_{j}\right) / \prod_{j=1, j \neq i}^{n}\left(\alpha_{i}-\alpha_{j}\right)
$$

Note that $f_{i}\left(\alpha_{i}\right)=1$ and 0 for all other α_{j}, and thus $\varphi\left(f_{i}\right)=e_{i}$. Further, $\varphi\left(r_{1} f_{1}+\right.$ $\left.\cdots+r_{n} f_{n}\right)=\sum_{i=1}^{n} \varphi\left(r_{i} f_{i}\right)=\sum_{i=1}^{n} \varphi\left(r_{i}\right) \varphi\left(f_{i}\right)=\sum_{i=1}^{n} r_{i} e_{i}=\left(r_{1}, \ldots, r_{n}\right)$, hence φ
surjective.
Finally, we have that $\operatorname{ker} \varphi=\left\langle\prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right\rangle$.

10.3 Cosets

\hookrightarrow Definition 10.9: Coset

Let R be a ring and $I \triangleleft R$. A coset of I is a subset of R of the form

$$
a+I=\{a+i: i \in I\}
$$

where $a \in R$.

Remark 10.6. Note that the coset, while defined with respect to I, need not be a subset of I, but is by definition a subset of the ring R.

\hookrightarrow Definition 10.10: Relation on Cosets

Let R be a commutative ring and $I \triangleleft R$. Define a relation on R as $x \sim y$ if $x-y \in I$.

\hookrightarrow Lemma 10.2

The following relate to relation defined previously.

1. This is an equivalence relation.
2. Every equivalence class is of the form $x+I$, where $x+I$ is called a coset of I, for some $x \in R$.
3. $x+I=y+I \Longleftrightarrow x-y \in I$.
4. Either $(x+I) \cap(y+I)=\varnothing$ or $x+I=y+I$.

Proof. 1. (i) $x \sim x \Longleftarrow x-x=0 . x-x=0 \in I$ by definition. (ii) $x \sim y \Longrightarrow x-y \in$ $I \Longrightarrow-1(x-y) \in I \Longrightarrow y-x \in I \Longrightarrow y \sim x$, again by definition. (iii) $x \sim y$, $y \sim z \Longrightarrow x-y, y-z \in I \Longrightarrow x-y+y-z \in I \Longrightarrow x-z \in I \Longrightarrow x \sim z$, as the ideal is closed under addition, hence \sim is an equivalence relation.
2. $x+I=\{x+t: t \in I\} \subseteq R$. Suppose $y \in x+I$, then $y=x+t$ then $x-y=x-(x+t)=$ $-1 \cdot t \in I$. That is, $x \sim y$. Suppose $y \sim x$. Then, $y-x=: t \in I \Longrightarrow y=x+(y-x)=$ $x+t \in x+I \Longrightarrow$ equivalence class of x is $x+I$.
3. This is equivalent to saying the equivalence class of x is the equivalence class of y iff $x \sim y$, which follows by definition.
4. Follows by the fact that equivalence classes partition the set they are defined on (recall theorem 4.1).

Example 10.13

Say $R=\mathbb{Z}, I=n \mathbb{Z}$. Then, the cosets are just the congruence classes $(n \mathbb{Z}, 1+$ $n \mathbb{Z}, \ldots,(n-1)+n \mathbb{Z}) \quad \bmod n$.

10.4 Quotient Rings: The Ring R / I

\hookrightarrow Definition 10.11: Quotient Ring

Consider ${ }^{44} R / I$. We define operations as

$$
(x+I)+(y+I):=(x+y)+I, \quad(x+I) \cdot(y+I):=(x \cdot y)+I .
$$

Equivalently, letting $\bar{x}=x+I$, we write

$$
\bar{x}+\bar{y}=\overline{x+y}, \quad \bar{x} \cdot \bar{y}=\overline{x \cdot y} .
$$

${ }^{44}$ Recall how we defined the elements of the ring $\mathbb{Z} / n \mathbb{Z}$. This can be seen as a generalization of this idea; read "R" mod "I".

[^4]${ }^{46}$ For instance, in $\mathbb{Z} / 8 \mathbb{Z}$, we have that
$\overline{3}+\overline{10}=\overline{3+10}=\overline{13}=\overline{5}$, which is equivalent to saying $\overline{3}+\overline{2}=\overline{3+2}=\overline{5}$. We aim to show this holds for general R / I.
hence the operations are well defined. We now verify (some of) the ring axioms:
\[

$$
\begin{aligned}
x-x_{1} \in I, y-y_{1} \in I \Longrightarrow & (x+y)-\left(x_{1}+y_{1}\right)=\underbrace{\left(x-x_{1}\right)}_{\in I}+\underbrace{\left(y-y_{1}\right)}_{\in I} \in I \\
& x y-x_{1} y_{1}=\underbrace{x}_{\in R}(\underbrace{y-y_{1}}_{\in I})+\underbrace{y_{1}}_{\in R} \underbrace{x-x_{1}}_{\in I}) \in I,
\end{aligned}
$$
\]

Proof. (Of theorem 10.3) We first sow that the operations are well defined, that is, if $\bar{x}=\bar{x}_{1}, \bar{y}=$ \bar{y}_{1}, then $\overline{x+y}=\overline{x_{1}+y_{1}}$, and $\bar{x} \cdot \bar{y}=\overline{x_{1} \cdot y_{1}} \cdot{ }^{46}$ We have, then,

1. $\bar{x}+\bar{y}=\overline{x+y}=\overline{y+x}=\bar{y}+\bar{x}$
2. $\overline{0}+\bar{x}=\overline{0+x}=\bar{x}$
3. $\bar{x}+(\overline{-x})=\overline{x+(-x)}=\overline{0} \Longrightarrow \bar{x}$ has an inverse for addition, $-\bar{x}=\overline{-x}$
4. \cdot.
5. ...
6. \cdot.
7. ...
8. $\bar{x}(\bar{y}+\bar{z})=\bar{x} \cdot \overline{x+y}=\overline{x(y+z)}=\overline{x y+y z}=\overline{x y}+\overline{x z}=\bar{x} \cdot \bar{y}+\bar{x} \cdot \bar{z}$,
hence, it is a commutative ring.
Now consider the map $\pi: R \rightarrow R / I, \pi(x)=\bar{x}$. We verify it is indeed a ring homomorphism:
9. $\pi(1)=\overline{1}=1_{R / I}$
10. $\pi(x+y)=\overline{x+y}=\bar{x}+\bar{y}=\pi(x)+\pi(y)$
11. $\pi(x \cdot y)=\overline{x \cdot y}=\bar{x} \cdot \bar{y}=\pi(x) \cdot \pi(y)$

Hence, π is indeed a ring homomorphism. Its kernel is:
$\operatorname{ker}(\pi)=\{x \in R: \pi(x)=\overline{0}\}=\{x \in R: x+I=0+I=I\}=\{x \in R: x \sim 0\}=\{x \in R: x \in I\}=I$.

Example 10.14: Of R / I 's

1. $R=\mathbb{Z}, I=n \mathbb{Z}, a+n \mathbb{Z}=\bar{a}=a \bmod n$, that is, this is modular arithmetic on the integers. The homomorphism is $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}, a \mapsto \bar{a}$, which has a kernel of $n \mathbb{Z}$.
2. $R=\mathbb{F}[x], I=\langle f(x)\rangle, f(x)$ monic, non-constant polynomial. (We have that $\langle f(x)\rangle=\langle\alpha f(x)\rangle \forall \alpha \in \mathbb{F}^{\times}$, so monic wlog; a constant polynomial $f=\alpha, \alpha \in$ \mathbb{F}^{\times}would have $I=\mathbb{F}[x]$ so $R / I=\{0\}$, an uninteresting case, so we require non-constant f.)
In this context, $g(x) \sim h(x) \Longleftrightarrow g(x)-f(x) \in\langle f(x)\rangle \Longleftrightarrow f(x) \mid(g(x)-$ $h(x))$, that is, $\bar{g}=\bar{h} \Longleftrightarrow f \mid(g-h)$.

\circledast Example 10.15

Consider $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$. We claim that $\overline{a_{1}+b_{1} x}=\overline{a_{2}+b_{2} x} \Longrightarrow a_{1}=a_{2}, b_{1}=b_{2}$. We can check:

$$
\overline{a_{1}+b_{1} x}=\overline{a_{2}+b_{2} x} \Longleftrightarrow\left(x^{2}+1\right) \mid\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) x,
$$

but this is impossible, since the RHS is linear and the LHS is quadratic, unless the RHS is 0 , hence, that $a_{1}-a_{2}=0 \Longleftrightarrow a_{1}=a_{2}$ and $b_{1}-b_{2}=0 \Longleftrightarrow b_{1}=b_{2}$, as desired.

Further, we claim that any coset is represented by some $a+b x$. Suppose \bar{g} a coset. Then,

$$
\begin{array}{r}
g=q \cdot\left(x^{2}+1\right)+r(x), \quad, r(x)=0 \text { or } \operatorname{deg}(r(x))<2 \\
\Longrightarrow r(x)=a, a \in \mathbb{R} \text { or } r(x)=a+b x, a, b \in \mathbb{R} \\
\Longrightarrow r(x)=a+b x, a, b \in \mathbb{R},
\end{array}
$$

that is, $r(x)$ can be written as $a+b x$ for a, b in the field or zero. Hence, we have $g(x)-r(x)=q \cdot\left(x^{2}+1\right)$, and since $\left(x^{2}+1\right) \mid q \cdot\left(x^{2}+1\right)$, then $g(x) \sim r(x) \Longrightarrow$ $\bar{g}=\bar{r}$. Hence, we can conclude that every element of $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$ is of the form $\overline{a+b x}, a, b \in \mathbb{R}$, for unique a, b.

Operations in this case would work as:

$$
\begin{aligned}
\overline{a_{1}+b_{1} x}+\overline{a_{2}+b_{2} x} & =\overline{\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) x} \\
\overline{a_{1}+b_{1} x} \cdot \overline{a_{2}+b_{2} x} & =\overline{\left(a_{1}+b_{1} x\right)\left(a_{2}+b_{2} x\right)}=\overline{a_{1} a_{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) x+b_{1} b_{2} x^{2}}
\end{aligned}
$$

But note that $x^{2}=\left(x^{2}+1\right)-1 \Longrightarrow \overline{x^{2}}=\overline{-1}$, so $b_{1} b_{2} x^{2}=-b_{1} b_{2}$, so this simplifies to

$$
\overline{a_{1} a_{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) x-b_{1} b_{2}}=\overline{\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) x}
$$

But note the similarity to multiplication in \mathbb{C}. In this way, we can define a bijection ${ }^{47}$

$$
\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}, \quad a+b i \mapsto \overline{a+b x}
$$

Remark 10.8. This concept works generally.

[^5]
\hookrightarrow Lemma 10.3

Suppose $n=\operatorname{deg}(f) \geq 1$. Then, a complete set of representatives for the cosets is

$$
\circledast=\{g(x): \operatorname{deg} g<n\}=\left\{b_{n-1} x^{n-1}+\cdots+b_{0}: b_{i} \in \mathbb{F}\right\} .
$$

Proof. Take $h(x) \in \mathbb{F}[x]$, and write $h(x)=q(x) f(x)+r(x)$, where either $r(x)=0$ or $\operatorname{deg} r<$ n. Then, $h(x)-r(x)=q(x) f(x) \in I \Longrightarrow h(x)+I=r(x)+I$ (that is, h and r are \sim). So,
any coset is represented as an element of \circledast. It remains to show that this holds for any coset, that is, if $g_{1}, g_{2} \in \circledast$ and $g_{1}+I=g_{2}+I \Longrightarrow g_{1}=g_{2}$. We have that $g_{1}-g_{2} \in I=f(x) \cdot \mathbb{F}[x]$ for any nonzero $f, \operatorname{deg} f \leq n$. Moreover, $\operatorname{deg}\left(g_{1}-g_{2}\right)<n$, hence, $g_{1}=g_{2}$.

\circledast Example 10.16

Take $f(x)=x^{2}+1$; here, $\circledast=\{a x+b: a, b \in \mathbb{F}\}$.

Remark 10.9. Consider the analog to integer modular arithmetic. For addition, we have that $\overline{g_{1}}+\overline{g_{2}}=\overline{g_{1}+g_{2}}$, $\operatorname{deg} g_{1}+g_{2}<n$. For multiplication, we have $\overline{g_{1}} \cdot \overline{g_{2}}=\overline{g_{1} g_{2}}$. But now, $\operatorname{deg} g_{1} g_{2}$ is potentially $\geq n$, so we write $\overline{g_{1} g_{2}}=\bar{r}$, where r the residue of dividing $g_{1} g_{2}$ by f (which then must have degree $<n$).

\hookrightarrow Theorem 10.4

Let \mathbb{F} be a field. Let $f(x) \in \mathbb{F}$ be a non-constant irreducible polynomial. Then, $R=$ $\mathbb{F}[x] /(f(x))$ is a field containing \mathbb{F}.

Moreover, if $\# \mathbb{F}=q, \operatorname{deg}(f)=n$, then $\# R=q^{n}$.

\circledast Example 10.17

Take, \mathbb{F}_{2}, and consider $\mathbb{F}[x] /\left(x^{2}+x+1\right)$; this is a field with 4 elements. Namely, they are $0,1, x, 1+x$; these are the only polynomials of deg <2 with coefficients in \mathbb{F}_{2}. We can write operations in the field:

(Addition)	+	0		1	x	$1+x$
	0	0		1	x	$x+1$
	1	1		0	$x+1$	x
	x	x		$x+1$	0	1
	$1+x$	$x+$		x	1	0
(Multiplication)		.	0	1	x	$x+1$
		0	0	0	0	0
	on)	1	0	1	x	$x+1$
		x	0	x	$x+1$	1
		+1	0	$x+1$	1	x

Proof. (Of theorem 10.4) We have shown previously that $\mathbb{F}[x] / I$ a commutative ring; further, $\overline{0} \neq \overline{1}$, because of the set \circledast above. Hence it remains to show that there exists inverses. ${ }^{48}$

Let $\bar{g} \in \mathbb{F}[x] /(f(x)), \bar{g} \neq \overline{0}$, that is, $f \quad \wedge g$. This implies, moreover, that $\operatorname{gcd}(f, g)=1$, since f irreducible (the divisors of f are thus 1 and $f ; f$ does not divide g as shown, hence the gcd is 1). This implies that $\exists u(x), v(x) \in \mathbb{F}[x]$ s.t. $1=u(x) f(x)+v(x) g(x) \Longrightarrow \overline{1}=$ $\overline{u(x) f(x)}+\overline{v(x) g(x)}$. But $u(x) f(x)$ a multiple of $f(x)$ hence $\in I \Longrightarrow \overline{u(x) f(x)} \in \overline{0} \Longrightarrow$
$\overline{1}=\overline{0}+\overline{v(x) g(x)} \Longrightarrow \overline{v(x) g(x)}=\overline{1}$, that is, $v(x)$ is the inverse wrt multiplication of $g(x)$, as desired.

Example 10.18

We construct a field with 25 elements. Take $\mathbb{F}_{5}=\mathbb{Z} / 5 \mathbb{Z}$ and $f(x)=x^{2}-2$ (irreducible $\bmod 5)$. Take $\mathbb{L}=\mathbb{F}_{5}[x] /\left(x^{2}-2\right)$, which is then a field with 25 elements by theorem 10.4 , spec, of the form $\left\{a+b x: a, b \in \mathbb{F}_{5}\right\}$.

Remark 10.10. The polynomial $t^{2}-2$ is irreducible in \mathbb{F}_{5}, but it actually has a root in \mathbb{L} as defined above. Namely, the root is $x(\bar{x})$. To check: $\bar{x}^{2}-\overline{2}=\overline{x^{2}-2}=\overline{0}{ }^{49}$

Remark 10.11. We could have defined $\tilde{\mathbb{L}}=\mathbb{F}_{5}[x] /\left(x^{2}-3\right)$; these are isomorphic fields, that is, $\tilde{\mathbb{L}} \cong \mathbb{L}$. Moreover, we have that $t^{2}-3$ has a root in $\tilde{\mathbb{L}}$, so it must have a root in \mathbb{L} as well.

Take $(a x+b) \in \mathbb{L}$. We want that $(a x+b)^{2}=3$. That is,

$$
\begin{array}{r}
(a x+b)^{2}=a^{2} x^{2}+2 a b x+b^{2} \\
=2 a^{2}+2 a b x+b^{2} \\
=2 a b x+\left(b^{2}+2 a^{2}\right)=3 \Longrightarrow a=0 \text { or } b=0
\end{array}
$$

In the case $a=0$, we have that $b^{2}=3 \Longrightarrow 3$ a square, which is not true in \mathbb{F}_{5}. Taking $b=0$, then, we have $2 a^{2}=3 \Longrightarrow a= \pm 2$. We can verify:

$$
\overline{3}=(\overline{2} \bar{x})^{2} \in \mathbb{L}
$$

Remark 10.12. L contains \mathbb{F} is not very precise; more specifically, we have that \exists a map $\mathbb{F} \rightarrow L$, $\alpha \mapsto \bar{\alpha}=\alpha+\langle f(x)\rangle$. This an injective ring homomorphism, and thus $\mathbb{F} \cong \Im(\mathbb{F})$, that is, \mathbb{F} is isomorphic to the image of \mathbb{F}.

\hookrightarrow Theorem 10.5

Let $g(t) \in \mathbb{F}[t]$ be a non-constant polynomial. Then, \exists a field $L \supseteq \mathbb{F}$ s.t. g has a root in L.

Proof. WLOG, assume $g(t)$ irreducible. Take another variable x, and let $L=\mathbb{F}[x] /\langle g(x)\rangle$; this is a field as g irreducible, and again, it contains \mathbb{F} (that is, a field isomorphic to \mathbb{F}). Then, in L, the element \bar{x} solves $g(t)=a_{n} t^{n}+\cdots+a_{0}, a_{i} \in \mathbb{F}$. We have, $g(\bar{x})=\overline{a_{n} x^{n}}+\cdots+\overline{a_{0}}=$ $\overline{a_{n} x^{n}+\cdots a_{0}}=\overline{g(x)}=g(x)+\langle g(x)\rangle=\langle g(x)\rangle=0_{L}$.

\circledast Example 10.19

$\mathbb{F}=\mathbb{R}, g(t)=t^{2}+1 . L=\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle, \bar{x}$ a root of $t^{2}+1$. In this case, we can denote $\bar{x}=i$, that is, $i=\sqrt{-1} ; L \cong \mathbb{C}$.

10.5 Isomorphisms

\hookrightarrow Definition 10.12: Isomorphism

Let $f: R \rightarrow S$ be a ring homomorphism. If f bijective, we say that R is isomorphic to S, and denote $R \cong S$. We say that f is an isomorphism between R and S.

\hookrightarrow Theorem 10.6: First Isomorphism Theorem

Let $\varphi: R \rightarrow S$ be a surjective homomorphism of rings. Let $I=\operatorname{ker} \varphi$. Then, $R / I \cong S$.

Proof. Denote the elements of R / I by \bar{r}. Define $\Phi: R / I \rightarrow S, \Phi(\bar{r})=\varphi(r)$. We show this is a ring homomorphism:

- (Well defined) if $\bar{r}=\overline{r_{1}}$, we aim to show that $\varphi(r)=\varphi\left(r_{1}\right) \cdot \bar{r}=\overline{r_{1}} \Longrightarrow r-r_{1}=a \in$ $I=\operatorname{ker} \varphi \cdot \varphi(r)=\varphi\left(a+r_{1}\right)=\varphi(a)+\varphi\left(r_{1}\right)=0+\varphi\left(r_{1}\right)=\varphi\left(r_{1}\right)$.
- (Homomorphism) $\Phi(\bar{r}+/ \cdot \bar{s})=\Phi(\overline{r+/ \cdot \bar{s}})=\varphi(r+/ \cdot s)=\varphi(r)+/ \cdot \varphi(s)=$ $\Phi(\bar{r})+/ \cdot \Phi(\bar{s})$.

To show Φ bijective:

- (Surjective) Given $s \in S, \exists r \in R$ s.t. $\varphi(r)=s$, since φ surjective. Then, $\Phi(\bar{r})=\varphi(r)=$ $s \Longrightarrow \Phi$ surjective.
- (Injective) This is equivalent to showing $\operatorname{ker} \Phi=\{\overline{0}\}$. Suppose $\Phi(\bar{r})=0_{S} \Longrightarrow \varphi(r)=$ $0_{S} \Longrightarrow r \in \operatorname{ker} \varphi=I \Longrightarrow \bar{r}=0_{R / I}$

Hence, Φ a bijective ring homomorphism and so $R / I \cong S$.

\circledast Example 10.20

Let $R=\mathbb{R}[x], S=\mathbb{C}$. Let $\varphi: R \rightarrow S, \varphi(f(x))=f(i) . \varphi$ is a homomorphism of rings:

$$
\varphi(f+/ \cdot g)=(f+/ \cdot g)(i)=f(i)+/ \cdot g(i) ; \quad \varphi(1)=1
$$

Let $I=\operatorname{ker} \varphi$. Note that $x^{2}+1 \in I\left(i^{2}+1=0\right), \Longrightarrow\left\langle x^{2}+1\right\rangle \subseteq I$. We know, further, that $I=\langle g(x)\rangle$ for some $g(x) \in \mathbb{R}[x]$ (any ideal of $\mathbb{R}[x]$ principal), so $x^{2}+1 \in$ $I \Longrightarrow g(x) \mid\left(x^{2}+1\right)$. But $x^{2}+1$ is irreducible, hence $g(x) \sim 1 \Longrightarrow I=\mathbb{R}[x]$ or $g(x) \sim x^{2}+1 \Longrightarrow I=\left\langle x^{2}+1\right\rangle$. This first case is not possible, since this implies
$1 \in \mathbb{R}[x]$, since $\varphi(1)=1 \neq 0$, hence $g(x)=x^{2}+1 \Longrightarrow I=\left\langle x^{2}+1\right\rangle$, and thus by First Isomorphism Theorem, $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$.

\hookrightarrow Theorem 10.7: Chinese Remainder Theorem

Let m, n be relatively prime positive integers. Then, $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.

Proof. Define a function $\varphi: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}, \varphi(a)=(a \bmod m, a \bmod n)$. We show φ a ring homomorphism:

$$
\left.\begin{array}{r}
\varphi(a+/ \cdot b)=(a+/ \cdot b \quad \bmod m, a+/ \cdot b \quad \bmod n) \\
=\left(\begin{array}{lr}
a \quad \bmod m+/ \cdot b & \bmod m, a
\end{array} \bmod n+/ \cdot b \quad \bmod n\right.
\end{array}\right)
$$

We also have

$$
\begin{array}{r}
\operatorname{ker} \varphi=\{a \in \mathbb{Z}: \varphi(a)=(a \bmod m, b \bmod n)=(0,0)\} \\
=\{a: m \mid a \text { and } n \mid a\}=\{a: \operatorname{lcm}(m, n) \mid a\}=\{a: m n \mid a\}=m n \mathbb{Z}
\end{array}
$$

Let $S=\operatorname{Im}(\varphi)$ which is a subring of $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. Then, $\varphi: \mathbb{Z} \rightarrow S$ is a surjective ring homomorphism with kernel $m n \mathbb{Z}$, and so by First Isomorphism Theorem, $\mathbb{Z} / m n \mathbb{Z} \cong S$. Note that the LHS has $m \cdot n$ elements, hence S must have $m \cdot n$ elements as well, and thus $S=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. Thus, $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.

We can alternatively prove surjectivity directly. Since $\operatorname{gcd}(m, n)=1, \exists u, v \in \mathbb{Z}$ s.t. $1=$ $u m+v n$, hence we have

$$
\varphi(u m)=(u m \quad \bmod m, 1-v n \quad \bmod n)=(0,1)
$$

and

$$
\varphi(v n)=(1-u m \quad \bmod m, v n \quad \bmod n)=(1,0)
$$

Hence,

$$
\begin{array}{r}
\varphi(a u m+b v n)=\varphi(a u m)+\varphi(b v n)=\varphi(\underbrace{u m+\cdots+u m}_{a \text { times }})+\varphi(\underbrace{v n+\cdots+v n}_{b \text { times }}) \\
=a \varphi(u m)+b \varphi(v n) \\
=a(0,1)+b(1,0) \\
=(0, a)+(b, 0)=(b, a),
\end{array}
$$

hence φ surjective. Again, the kernel is $\operatorname{ker} \varphi=m n \mathbb{Z}$ and so $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$

\circledast Example 10.21: Application of Chinese Remainder Theorem

Let $m=11, n=13$. Find an integer x s.t. $x \equiv_{11} 2$ and $x \equiv_{13} 3$.

Proof. We can express $1=\operatorname{gcd}(11,13)=u m+v n=11 u+13 v$. Working out the Euclidean algorithm, this yields $u=6$ and $v=5$, that is, $1=6 \cdot 11-5 \cdot 13=66-65$. We have

$$
66 \mapsto(0,1) \in \mathbb{Z} / 11 \mathbb{Z} \times \mathbb{Z} / 13 \mathbb{Z}
$$

and

$$
-65 \mapsto(1,0) \in \mathbb{Z} / 11 \mathbb{Z} \times \mathbb{Z} / 13 \mathbb{Z}
$$

Hence, $3 \cdot 66+2 \cdot-65 \mapsto(2,3) \in \mathbb{Z} / 11 \mathbb{Z} \times \mathbb{Z} / 13 \mathbb{Z}$, so $x=3 \cdot 66+2 \cdot-65=68$.

11 Groups

11.1 Definitions

\hookrightarrow Definition 11.1: Group

A group G is a non-empty set with an operation

$$
G \times G \rightarrow G, \quad(a, b) \mapsto a * b
$$

s.t.

1. (Associative) $a *(b * c)=(a * b) * c$
2. (Two-Sided Identity) \exists an element of G, denoted 1_{G} s.t. $\forall a \in G, 1_{G} * a=a * 1_{G}=a$
3. (Two-Sided Unit) $\forall a \in G, \exists b \in G$ s.t. $a * b=b * a=1_{G}$

\hookrightarrow Proposition 11.1: Basic Properties of Groups

The following are direct consequences of the definition of a group:

1. 1_{G} unique: if $c \in G$ s.t. $a \cdot c=c \cdot a=a \forall a \in G$, then $c=1_{G}$
2. Given $a \in G, b$ s.t. $a * b=b * a=1_{G}$ is unique: if $a * c=c * a=1_{G}$, then $c=b$. We denote $b=a^{-1}$.
3. $\left(a_{1} * a_{2}\right)^{-1}=a_{2}^{-1} * a_{1}^{-1}$.
4. $a b=a c \Longrightarrow b=c$
5. Define for $a \in G, n \in \mathbb{Z}$,

$$
a^{n}:= \begin{cases}1_{G} & n=0 \\ \underbrace{a * \cdots * a}_{a \text { times }} & n>0 \\ \underbrace{a^{-1} * \cdots * a^{-1}}_{-n \text { times }} & n<0\end{cases}
$$

Then, $a^{n+m}=a^{n} a^{m}$.

Proof. 1. $c=c * 1_{G}=1_{G}$
2. $b=b * 1_{G}=b *(a * c)=(b * a) * c=1_{G} * c=c \Longrightarrow b=c$
3. $\left(a_{1} a_{2}\right)\left(a_{2}^{-1} a_{1}^{-1}\right)=a_{1} a_{2}^{-1} a_{2} a_{1}^{-1}=a_{1} 1_{G} a_{1}^{-1}=a_{1} a_{1}^{-1}=1_{G}$. The converse follows.
4. $a b=a c \Longrightarrow a^{-1} a b=a^{-1} a c \Longrightarrow 1_{G} b=1_{G} c \Longrightarrow b=c$
5.
\hookrightarrow Proposition 11.2: What "Doesn't Hold" in Groups

1. Only one operation, *.
2. Typically, $a b \neq b a$, that is, not commutative (see definition 11.2).

\hookrightarrow Definition 11.2: Commutative/Abelain Group

If $\forall a, b \in G, a b=b a, G$ is called commutative or abelian. Sometimes, if G abelian, we write the operation as + and the neutral element as 0 .

Example 11.1: Basic Examples of Groups

- $G=\{1\}$, where $1 * 1=1$.
- $G=\mathbb{Z}$ or $G=\mathbb{Z} / n \mathbb{Z}$, where $*=+$. Moreover, if R a ring, then R is an abelian group with addition.
- For a field $\mathbb{F},(\mathbb{F},+)$ is an abelian group, as is $\left(\mathbb{F}^{\times}, \cdot\right)$.
- If R a ring (need not be commutative), then $R^{\times}=\{u \in R: \exists v \in R$, $u v=$ $v u=1\}$ (the units) is a group with multiplication.
- $\mathbb{Z}, \mathbb{Z}^{\times}=\{ \pm 1\}$ is a group.
- $R=M_{2}(\mathbb{R})$. The units R^{\times}are all the invertible matrices, that is, with non-zero determinant. $(R,+)$ and (R, \cdot) are both groups.
- More generally, $R=M_{2}(\mathbb{F})$, a ring, has units $R^{\times}=M_{2}(\mathbb{F})^{\times}=: G L_{2}(\mathbb{F})$. Note that this is a non-abelian group under multiplication (as matrix multiplication not commutative).
\hookrightarrow Definition 11.3: Subgroup
A subgroup H of G is a subset $H \subseteq G$ s.t.

1. (Identity) $1 \in H$
2. (Closed under Multiplication) $a, b \in H \Longrightarrow a \cdot b \in H$
3. (Closed under Inverses) $a \in H \Longrightarrow a^{-1} \in H$

Moreover, H a group itself. We denote $H<G$ or $H \leqslant G$.

\hookrightarrow Definition 11.4: Cyclic Subgroup

Take any $g \in G$, and form

$$
\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}=\left\{\ldots, g^{-2}, g^{-1}, 1, g, g^{2}, \ldots\right\} .
$$

This is called the cyclic subgroup generated by g. G is itself cyclic if $G=\langle g\rangle$ for some $g \in G$.
If we use additive notation rather than multiplicative, we have

$$
\langle g\rangle=\{n g: n \in \mathbb{Z}\}=\{\ldots,-2 g,-g, 0, g, 2 g, \ldots\} .
$$

* Example 11.2: Cyclic Groups

For example, $\mathbb{Z} / n \mathbb{Z}$ and \mathbb{Z} are cyclic; we have $\mathbb{Z} / n \mathbb{Z}=\langle\overline{1}\rangle$ and $\mathbb{Z}=\langle 1\rangle$. Note that cyclic \Longrightarrow abelian, hence any non-abelian group is not cyclic.

\hookrightarrow Definition 11.5: Order of g / G

The order of G, denoted $\sharp G$ or $|G|$, is the number of elements in G. If G infinite, it is denoted ∞.

The order of an element $g \in G$ is the minimal positive $n \in \mathbb{Z}_{+}$s.t. $g^{n}=1$. If not such n exists, we say that the order of g is ∞. We denote $\operatorname{ord}(G)$.

\circledast Example 11.3: Orders

1. $\mathbb{Z}, k \neq 0$, then $\operatorname{ord}(k)=\infty$, since $n k=0 \Longrightarrow n=0$
2. $\mu_{n}=n$th roots of 1 in \mathbb{C} (that is, the nth roots of unity). This is a group with n
elements, under multiplication, and is cyclic, with $\left\langle\mu_{n}\right\rangle=\left\langle e^{\frac{2 \pi i}{n}}\right\rangle$.
3. $G L_{2}\left(\mathbb{F}_{2}\right)$ is a non-abelian group of 6 elements. We have, for instance,

$$
\operatorname{ord}\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right)=2 ; \quad \operatorname{ord}\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right)=3
$$

Multiplying the first by itself once yields the identity $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$; the second requires two multiplications by itself (that is, you cube the matrix) to yield the identity.
\hookrightarrow Proposition 11.3
$\operatorname{ord}(g)=|\langle g\rangle|$. That is, the order of an element is the order of the cyclic subgroup it generates.

Proof. Suppose $\operatorname{ord}(g)=\infty$ and $|\langle g\rangle|<\infty$. This means that there must be repetitions in the subgroup; $\exists a>b \geq 0$ s.t. $g^{a}=g^{b}$. This implies, then, that $g^{a-b}=g^{b} \cdot g^{-b}=1$, but $a-b>0$ so ord $g<\infty$ (as we have found some power n such that $g^{n}=1$) and thus we have a contradiction. Hence, if the order of ord $g=\infty$, then $|\langle g\rangle|=\infty$ as well.

Suppose ord $g=n, 0<n<\infty$. We note that $\forall a \in \mathbb{Z}, a=q \cdot n+r, 0 \leq r<n$, and so we can write

$$
g^{a}=g^{q \cdot n+r}=\left(g^{n}\right)^{q} \cdot g^{r}=1^{q} \cdot g^{r}=g^{r} \Longrightarrow\langle g\rangle=\left\{1, g, \ldots, g^{n-1}\right\},
$$

that is, g to any power can be reduced to g of a power $\leq n-1$.
We now aim to show these are distinct. Suppose they are not; that is, $\exists 0 \leq b<a \leq n-1$ such that $g^{a}=g^{b}$. We can write

$$
g^{a-b}=1,
$$

but $0<a-b<n$, so this is a contradiction, as, by definition, n the minimal positive integer such that $g^{n}=1$, and this implies that we have a smaller element. Hence, these elements are indeed distinct and we thus have precisely n elements, which is equivalent to the order ord g, and the proof is complete.

11.2 Symmetric Group

\hookrightarrow Definition 11.6: Symmetric Group S_{n}
A group with n ! elements, non-abelian if $n \geq 3$ (S_{1} trivial, S_{2} only two elements so abelian). We often denote $[1, n]=\{1,2, \ldots, n\}$. The permutations of $[1, n]$ is a bijective function
$\sigma:[1, n] \rightarrow[1, n]$. We write:

$$
S_{n}:=\{\sigma:[1, n] \rightarrow[1, n]: \sigma \text { bijective }\} .
$$

This is a group under composition of functions; if σ, τ, ρ are permutations, then we have

$$
\sigma \circ \tau \text { bijective, so } \in S_{n} ; \quad \rho \circ(\sigma \circ \tau)=(\rho \circ \sigma) \circ \tau
$$

The identity function and inverses follow similarly
$\sharp S_{n}=n$! since we have n choices for $\sigma(1), n-1$ choices for $\sigma(2), \ldots, 2$ choices for $\sigma(n-1)$, and 1 choice for $\sigma(n)$, yield n ! choices and hence $\sharp S_{n}=n$!.
\circledast Example 11.4: Permutations, $n=5$
Consider the following (we denote $[1, \ldots, n] \mapsto[1, \ldots, n]$ as the top \mapsto bottom line of the matrix):

$$
\underbrace{\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 4 & 1 & 3
\end{array}\right)}_{\sigma} \underbrace{\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 5 & 3 & 4
\end{array}\right)}_{\tau}=\underbrace{\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 3 & 4 & 1
\end{array}\right)}_{\sigma \tau} .
$$

This is cumbersome notation.

\hookrightarrow Definition 11.7: Cycles

Let ${ }^{50} 1 \leq a \leq n$ and $i_{1}, i_{2}, \ldots, i_{a}$ distinct elements of $[1, n]$. We denote $\sigma=\left(i_{1} i_{2} \cdots i_{a}\right)$ as a cycle of length a, equal to the permutation σ such that $\sigma\left(i_{j}\right)=i_{j+1} \forall j=1, \ldots, a$ and $\sigma(t)=t \forall t \notin\left\{i_{1}, \ldots, i_{a}\right\}$. For instance, for $n=7$,

$$
(516)=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 2 & 3 & 4 & 1 & 5 & 7
\end{array}\right)
$$

Example 11.5: $n=3$

$$
\begin{aligned}
\sigma=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \tau & =(12)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) . \text { Consider: } \\
\sigma \tau & =(123)(12)=(13)(2)=(13) \\
\tau \sigma & =(12)(123)=(1)(23)=(23)
\end{aligned}
$$

Hence, since these are not equal, S_{3} not commutative; moreover, S_{n} for $n \geq 3$ is not commutative.
${ }^{50}$ Note that indices j here should be read $\bmod a$. That is, if you have $\left(i_{1} i_{2}\right)$, then this would "read" as $i_{1} \mapsto i_{2}$ and $i_{2} \mapsto i_{3} \bmod 2=i_{1}$.

More generally, consider $\sigma=\left(i_{1}, \ldots, i_{a}\right)$. Let $k \geq 1$ Then,

$$
\begin{array}{r}
\sigma^{k}=\sigma \circ \cdots \circ \sigma \\
\sigma^{2}=\left(i_{1}, i_{2}, i_{3}, i_{4}, \ldots\right) \quad k=2 \\
\sigma^{k}\left(i_{j}\right)=i_{j+k} \\
\sigma^{k}(t)=t \forall t \notin\left\{i_{1}, \ldots, i_{a}\right\} \\
\sigma^{k}=1 \text { for } k=a,
\end{array}
$$

that is, the order of a cycle of length a is a.

\hookrightarrow Proposition 11.4: Facts about Cycles

1. Disjoint cycles commute. Say $\sigma=\left(i_{1}, \ldots, i_{a}\right)$ and $\tau=\left(i_{a+1}, \ldots, i_{b}\right)$, and $\left\{i_{1}, \ldots, i_{a}\right\} \cap$ $\left\{i_{a+1}, \ldots, i_{b}\right\}=\varnothing$. Then, $\sigma \tau=\tau \sigma$.
2. Any permutation can be written as a product of disjoint cycles.

Proof. 1. If $t \notin\left\{i_{1}, \ldots, i_{b}\right\}, \sigma \tau(t)=\sigma(\tau(t))=\sigma(t)=t$. Else, we have

$$
\sigma \tau\left(i_{s}\right)=\left\{\begin{array}{ll}
\sigma\left(i_{s+1}\right) & a+1 \leq s \leq b \\
i_{a+1} & s=b \\
\sigma\left(i_{s}\right) & 1 \leq s \leq a
\end{array}= \begin{cases}i_{s+1} & a+1 \leq s \leq b \\
i_{a+1} & s=b \\
i_{s+1} & 1 \leq s \leq a\end{cases}\right.
$$

(where indices are read mod a) Calculating $\tau \sigma$ yields the same result.
2. We won't prove. Consider the following example.

Example 11.6

Let We can write

$$
\sigma=(1572)(3)(412)(6910118)
$$

Example 11.7: Composition of Disjoint Permutations

Given $\sigma \in S_{n}$, write $\sigma=\tau_{1} \tau_{2} \cdots \tau_{r} . \tau_{i}$ is a cycle of length a_{i} where the τ_{i} disjoint. Then, we can write

$$
\begin{array}{r}
\sigma^{2}=\tau_{1} \cdots \tau_{r} \tau_{1} \cdots \tau_{r} \\
=\tau_{1}^{2} \cdots \tau_{r}^{2} \\
\sigma^{k}=\tau_{1}^{k} \tau_{2}^{k} \cdots \tau_{r}^{k}
\end{array}
$$

Hence, we have that $\sigma^{k}=1 \Longleftrightarrow \tau_{1}^{k}=\tau_{2}^{k}=\cdots=\tau_{r}^{k}=1 \Longleftrightarrow a_{1}\left|k, a_{2}\right| k, \ldots, a_{r} \mid k$ (this follows from lemma 11.1). Hence, $\operatorname{lcm}\left(a_{1}, \cdots a_{r}\right) \mid k$ and thus $\operatorname{ord}(\sigma)=\operatorname{lcm}\left(a_{1}, \ldots, a_{r}\right)$. Note that, if the cycles not disjoint, this usually fails.

\hookrightarrow Lemma 11.1

Say $g \in G$ has order a. Let $k \geq 1$, then $g^{k}=1 \Longrightarrow a \mid k$.
 $a \mid k$.

\circledast Example 11.8: Subgroups of S_{n}

Let $T \subseteq[1, n], \sharp T=t, A_{T}=\left\{\sigma \in S_{n}: \sigma(b)=b \forall b \in T\right\}$ (that is, all elements in T are fixed.), and $B_{T}=\left\{\sigma \in S_{n}: \sigma(T)=T\right\}$. We have that $A_{T}<B_{T}<S_{N}$. Moreover, $\sharp A_{T}=(n-t)$! and $\sharp B_{T}=t$! $(n-t)$!.

11.3 Dihedral Groups D_{n}

\hookrightarrow Definition 11.8: D_{n}

D_{n} or the dihedral group is the group of symmetries of a regular n-gon in the plane, where $n \geq 3$ (that is $n=3$ a triangle, $n=4$ a square, etc).

Let x represent a planar rotation (about the z axis), and y a rotation about y. Then, ord $x=n$ and ord $y=2$.

\hookrightarrow Proposition 11.5

Every symmetry $\sigma \in D_{n}$ is uniquely determined by $\sigma(1)$ and $\sigma(2)$. That is, $\sigma=\tau \Longleftrightarrow$ $\sigma(1)=\tau(1), \sigma(2)=\tau(2)$.

Moreover, the elements of D_{n} are precisely

$$
D_{n}=\left\{e, x, \ldots, x^{n-1}, y, x y, x^{2} y, \ldots, x^{n-1} y\right\},
$$

that is, D_{n} has precisely $2 n$ elements. Further, D_{n} not abelian. ${ }^{51}$

Proof. We have, for a s.t. $0 \leq a \leq n-1,$| | 1 | 2 |
| :---: | :---: | :---: | . \(\begin{gathered}a

x^{a}\end{gathered} 1+a \quad 2+a\). We claim these are distinct: if | $x^{a} y$ | $1+a$ |
| :--- | :--- |$\quad a$

$\sigma \in D_{n}$, then $\sigma(1)=1+a$, then either $\sigma(2)=a$ or $2+a$, and so either $\sigma=x^{a} y$ or $\sigma=x^{a}$, respectively.
${ }^{51}$ Read: "an n-gon has precisely $2 n$ distinct symmetries". Note that $e \equiv \nVdash$, that is, the identity element (no rotations).

To show $x y x y=1$:
To show that D_{n} not abelian we have that

$$
\begin{aligned}
x y x y=1 \Longrightarrow & x y x=y^{-1}=y \\
& \Longrightarrow x y=y x^{-1}
\end{aligned}
$$

In this case, if D_{n} abelian, then $x y=y x \Longrightarrow x=x^{-1} \Longrightarrow x^{2}=1$, which is a contradiction.
Moreover, we have then that $x y=y x^{-1}$, and so we can write

$$
\begin{aligned}
x^{a} y=y x^{-a} & \Longrightarrow x^{a+1} y=x\left(x^{a} y\right)=x\left(y x^{-a}\right) \\
& =(x y) x^{-a}=y x^{-1} x^{-a}=y x^{-(a+1)}
\end{aligned}
$$

that is, $\forall a, x^{a} y=y x^{-a}$.

\circledast Example 11.9: In D_{5}

What is, in D_{5}, the element $x^{3} y x y x^{2} y x^{4}$?

Proof.

$$
\begin{array}{r}
x^{3} y(x y) x^{2} y x^{4}=x^{3} y\left(y x^{-1}\right) x^{2} y x^{4} \\
=x^{3} y^{\not} x^{-1} x^{2} y x^{4} \\
=\left(x^{4} y\right) x^{4} \\
=\left(y x^{-4}\right) x^{4} \\
=y
\end{array}
$$

\hookrightarrow Definition 11.9: Direct Product
If G_{1}, G_{2} are groups, $G_{1} \times G_{2}$ also a group, where

- $\left(x_{1}, y_{1}\right)\left(x_{2} y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right)$.
- $1=(1,1)$
- $(x, y)^{-1}=\left(x^{-1}, y^{-1}\right)$

11.4 Cosets and Lagrange's Theorem

\hookrightarrow Definition 11.10: Left Coset

Let $H<G$. A left coset of H in G is a subset of G of the form

$$
g H:=\{g h: h \in H\} .
$$

\hookrightarrow Lemma 11.2: Facts about Cosets

1. The cosets are equivalence classes for the relation on G defined $x \sim y$ if $y^{-1} x \in H$.
2. Two cosets are either equal or disjoint; $G=\amalg_{\left\{g_{i}: i \in I\right\}} g_{i} H$ for a suitable $\left\{g_{i}: i \in I\right\} \subseteq$ G (I some index set).
3. $x H=y H \Longleftrightarrow y^{-1} x \in H \Longleftrightarrow x^{-1} y \in H \Longleftrightarrow \exists h \in H$ s.t. $x=y h$.
4. $x H=H \Longleftrightarrow x \in H$.

* Example 11.10: S_{3}

Let $G=S_{3}, H=\{1,(123),(132)\}=\langle(123)\rangle$. Examples of cosets of H would then be

$$
\begin{aligned}
& H=\{1,(123),(132)\} \\
& (12) H=(13) H=(23) H=\{(12),(23),(13)\}
\end{aligned}
$$

We can write, then,

$$
G=H \amalg(12) H .
$$

Example 11.11: $\mathbb{Z} / 6 \mathbb{Z}$
Let $G=\mathbb{Z} / 6 \mathbb{Z}, H=\langle 3\rangle=\{0,3\}$.

$$
\begin{aligned}
& 1+H=\{1,4\} \\
& 2+H=\{2,5\} \\
& 3+H=\{3,0\}=H
\end{aligned}
$$

\hookrightarrow Definition 11.11: Index of a Subgroup

Let G be finite, $H<G$. We define the index of H in G, denoted $[G: H$] as the number of distinct left cosets of H in G.

1. (Equivalence relation)
(a) $x \sim x \Longleftarrow x^{-1} x=1 \in H$
(b) $x \sim y \Longrightarrow y^{-1} x \in H \Longrightarrow x^{-1} y=\left(y^{-1} x\right)^{-1} \in H$
(c) $x \sim y, y \sim z \Longrightarrow y^{-1} x \in H, z^{-1} y \in H \Longrightarrow z^{-1} y \cdot y^{-1} x \in H \Longrightarrow z^{-1} x \in$ $H \Longrightarrow x \sim y$
(Equivalence class of x) If $x \in y, y^{-1} x \in H \Longrightarrow x^{-1} y \in H \Longrightarrow y=x\left(x^{-1} y\right) \in x H$. Conversely, if $y \in x H \Longrightarrow y=x h$, some $y \in H . y^{-1} x=(x h)^{-1} x=h^{-1} x^{1} x=h^{-1} \in$ $H \Longrightarrow x \sim y$.
2. (Cosets equal/disjoint) This follows directly from 1 . by properties of equivalence relations.
3. (Equivalence) $x H=y H \Longrightarrow x, y$ have same equivalence class and so $x \sim y \Longrightarrow$ $x^{-1} y \in H$. Then, $x H=y H \Longrightarrow y H=x H$, so the same logic follows symmetrically. $x^{-1} y \in H \Longrightarrow x \sim y \Longrightarrow x=y h$, some $h \in H$.
4. $(x H=H \Longleftrightarrow x \in H)$ Let $y=1$. This then follows directly from 3 .

\hookrightarrow Theorem 11.1: Lagrange's Theorem

Let G be finite, $H<G$. Then,

$$
[G: H]|H|=|G|,
$$

and in particular,

$$
|H|||G|
$$

\hookrightarrow Corollary 11.1

Let G be a finite group, $g \in G$. Then, ord $g||G|$.

Proof. ord $g=|\langle g\rangle|| | G \mid$, by Lagrange's Theorem.

Proof. (Of Lagrange's Theorem) Let G be a finite group, $H<G$. Since the cosets of a subgroup form a disjoint union of the group itself, we can write

$$
G=\amalg_{i \in I} g_{i} H,
$$

for some index set I. Let $a, b \in G$, and define the function

$$
f: a H \rightarrow b H, \quad x \mapsto b a^{-1} x .
$$

We claim this is a well-defined, bijective function.

- (Well-Defined) Let $x=a h$ for some $h \in H$. Then, $b a^{-1} x=b a^{-1} a h=b h \in b H$, hence the map is well-defined.
- (Surjective) Take $y \in b H, y=b h$. This is the image of $a h$ (where a fixed as defined), that is, $b a^{-1} a h=b h$ as desired.
- (Injective) Consider $b a^{-1} x_{1}=b a^{-1} x_{2}$. Multiplying both sides by $a b^{-1} \Longrightarrow x_{1}=x_{2}$.

Thus, this is indeed well-defined bijective map, moreover, each coset of $g_{i} H$ has the same number of elements. Specifically, we have

$$
\sharp G=\sum_{i \in I}\left|g_{i} H\right|=\sum_{i \in I}|H|=|I| \cdot|H| .
$$

Thus, we have that

$$
|G|=|H| \cdot|I|,
$$

moreover, in the language of the theorem,

$$
|G|=|H| \cdot[G: H] .
$$

Remark 11.1 (Applications of Lagrange's Theorem). 1. Let G be a finite group of primer order p; then, G is cyclic, moreover, every element of $G, \neq e$, generates G.
2. Every element of a group must have an order that divides the order of the group. This follows from Lagrange's combined with the fact that ord $g=\mid\langle g\rangle$. For instance, a group of order 6 cannot have an element of order 4 nor 5.

Remark 11.2. Note that ifn $||G|$, this does not imply that \exists an element of G of order n. Indeed, taking $n=|G|$, this would imply that group G would be cyclic.

11.5 Homomorphisms/Isomorphisms

\hookrightarrow Definition 11.12: Group Homorphism

Let G, H be groups, and define $f: G \rightarrow H . f$ is called a group homomorphism if

$$
f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right),
$$

$\forall g_{1}, g_{2} \in G$.
The kernel of f is taken

$$
\operatorname{ker} f=\left\{g \in G: f(g)=e_{H}\right\}
$$

\hookrightarrow Lemma 11.3: Consequences of Homomorphisms

Let $f: G \rightarrow H$ be a group homomorphism.

1. $f\left(e_{G}\right)=e_{H}{ }^{52}$;
2. $f\left(g^{-1}\right)=f(g)^{-1}$;
3. $\operatorname{Im}(f)<H$ (that is, the image of f is a subgroup of H)

Proof. 1.

$$
\begin{aligned}
& f\left(e_{G}\right)=f\left(e_{G} e_{G}\right)=f\left(e_{G}\right) f\left(e_{G}\right) \\
& \quad \Longrightarrow f\left(e_{G}\right)^{-1} f\left(e_{G}\right)=f\left(e_{G}\right)^{-1} f\left(e_{G}\right) f\left(e_{G}\right) \\
& \quad \Longrightarrow e_{H}=f\left(e_{G}\right)
\end{aligned}
$$

2.

$$
\begin{aligned}
& e_{H}=f\left(e_{G}\right)=f\left(g g^{-1}\right)=f(g) f\left(g^{-1}\right) \\
& \Longrightarrow f(g)^{-1} e_{H}=f(g)^{-1} f(g) f\left(g^{-1}\right) \\
& \Longrightarrow f\left(g^{-1}\right)=f(g)^{-1}
\end{aligned}
$$

3. $e_{H}=f\left(e_{G}\right) \in \operatorname{Im}(f)$. Let $h_{1}, h_{2} \in \operatorname{Im}(f)$, and let $h_{i}=f\left(g_{i}\right)$. Then, $h_{1} h_{2}=f\left(g_{1} g_{2}\right)$ and $h_{1}^{-1}=f\left(g_{1}\right)^{-1} \Longrightarrow e_{H}, h_{1} h_{2}, h_{1}^{-1} \in \operatorname{Im}(f)$, hence $\operatorname{Im}(f)$ a subgroup of H.

\hookrightarrow Definition 11.13: Group Isomorphism

A group homomorphism $f: G \rightarrow H$ is a isomorphism if it is bijective. We denote $G \cong H$ if such a function exists.

\hookrightarrow Proposition 11.6

Let $f: G \rightarrow H$ be an isomorphism. Then, $g=f^{-1}: H \rightarrow G$ also an isomorphism.

Proof. g bijective, as f bijective and thus its inverse is also bijective. It remains to show that $\forall x, y \in H, f^{-1}(x y)=f^{-1}(x) \cdot f^{-1}(y)$. We have:

$$
\begin{array}{r}
f\left(f^{-1}(x y)\right)=f\left(f^{-1}(x) f^{-1}(y)\right) \Longrightarrow f\left(f^{-1}(x y)\right)=x y \\
f\left(f^{-1}(x) f^{-1}(y)\right)=f\left(f^{-1}(x)\right) f\left(f^{-1}(y)\right)=x y \tag{6}
\end{array}
$$

noting that as both lines evaluate equivalently while computed in different orders, the claim holds, hence $g=f^{-1}$ a bijective homomorphism and is thus an isomorphism.
\cong is an equivalence relation on groups.

Proof. 1. (reflexive) $G \cong G$ by $f=e_{G}$
2. (symmetric) $G_{1} \cong G_{2} \Longrightarrow G_{1} \xrightarrow{f} G_{2} \Longrightarrow G_{2} \xrightarrow{f-1} G_{1} \Longrightarrow G_{2} \cong G_{1}$
3. (transitive) $f: G_{1} \rightarrow G_{2}, g: G_{2} \rightarrow G_{3}$, then consider $g \circ f: G_{1} \rightarrow G_{2}$. This is bijective (composition of bijections is bijective). Take $x, y \in G_{1}$, then $(g \circ f)(x y)=g(f(x y))=$ $g(f(x) f(y))=g(f(x)) g(f(y))=(g \circ f)(x)(g \circ f)(y)$, hence $g \circ f$ a homomorphism.
\hookrightarrow Proposition 11.8: Cyclic; $|G|=|H|=n \Longrightarrow G \cong H$
Let ${ }^{53} n \in \mathbb{Z}^{+}$. Then, any two cyclic groups of order n are isomorphic.

Proof. Suppose $G=\langle g\rangle, H=\langle h\rangle$ of order n. Define $f\left(g^{a}\right)=h^{a}$ for any integer a. This is well defined $\left(g^{a}=g^{b} \Longrightarrow g^{a-b}=e_{G} \Longrightarrow n \mid(a-b) \Longrightarrow f\left(g^{a}\right)=h^{a}=h^{b}\left(h^{n}\right)^{k}=h^{b}=f\left(g^{b}\right)\right.$). This is a surjective ($\left.h^{a}=f\left(g^{a}\right) \forall h, g\right)$ homomorphism $\left(f\left(g^{a} g^{b}\right)=f\left(g^{a+b}\right)=h^{a+b}=h^{a} h^{b}=\right.$ $f\left(g^{a}\right) f\left(g^{b}\right)$), and is also injective because $f\left(g^{a}\right)=h^{a}=e_{H} \Longrightarrow n \mid a \Longrightarrow g^{a}=e_{G}$. Thus, any cyclic group of order n is isomorphic. Moreover, any cyclic group of order n is isomorphic to $\mathbb{Z} / n \mathbb{Z}$ over addition.

\hookrightarrow Lemma 11.4

Let $f: G \rightarrow H$ be a group homomorphism. ker $f<G$, and f injective iff ker $f=\left\{e_{G}\right\}$.
 $\overline{f\left(g_{2}\right)}=e_{H} \quad \Longrightarrow f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)=e_{H} e_{H}=e_{H} \quad \Longrightarrow \quad g_{1} g_{2} \in \operatorname{ker} f$. Suppose $g \in \operatorname{ker} f \Longrightarrow f\left(g^{-1}\right)=f(g)^{-1}=e_{H}^{-1}=e_{H} \Longrightarrow g^{-1} \in \operatorname{ker} f$, hence all the group axioms hold and ker $f<G$.
(\Longrightarrow) Suppose f injective. Then, $f\left(e_{G}\right)=e_{H}$ uniquely, and so ker $f=\left\{e_{G}\right\}$.
(\Longleftarrow) Suppose ker $f=\left\{e_{G}\right\}$, and $f\left(g_{1}\right)=f\left(g_{2}\right)$. Then, $e_{H}=f\left(g_{1}\right)^{-1} f\left(g_{2}\right)=f\left(g_{1}^{-1}\right) f\left(g_{2}\right)=$ $f\left(g_{1}^{-1} g_{2}\right) \Longrightarrow g_{1}^{-1} g_{2} \in \operatorname{ker} f \Longrightarrow g_{1}^{-1} g_{2}=e_{G} \Longrightarrow g_{1}=g_{2} \Longrightarrow f$ injective.

\hookrightarrow Corollary 11.2

Let $p \in \mathbb{P}$. Then, any two groups of order p are isomorphic are cyclic, and isomorphic to $\mathbb{Z} / p \mathbb{Z}$. generally for non-finite groups.

Proof. Suppose $|G|=p$. Choose any $g \in G, g \neq e_{G}$. Let $H=\langle g\rangle$. By Lagrange's Theorem, $\overline{|H|}|G|=p$, so $|H|=1$ or p, but by construction, $|H|=p$ (since $g \neq e_{G}$), hence $|H|=|G|$. Thus, G a cyclic group of order p and is thus, by the previous example, we have that $G \cong$ $\mathbb{Z} / p \mathbb{Z}$.

\hookrightarrow Proposition 11.9

Let $f: G_{1} \rightarrow G_{2}$ be a homomorphism and $H<G_{1}$. Then, $f(H)<G_{2}$.

Proof. $\quad 1_{G_{2}} \in H \Longrightarrow 1_{G_{2}}=f\left(1_{G_{1}}\right) \in f(H)$

- $x, y \in f(H) \Longrightarrow \exists a, b \in H$ s.t. $x=f(a), y=f(b) \Longrightarrow x y=f(a) f(b)=f(a b)$. $a \cdot b \in H \Longrightarrow f(a b) \in f(H) \Longrightarrow x y \in f(H)$
- $x \in f(H) \Longrightarrow x^{-1}=f\left(a^{-1}\right)$ for $a \in H$. Then, $a^{-1} \in H \Longrightarrow f\left(a^{-1}\right) \in f(H)$.

Hence, $f(H)<G_{2}$

\hookrightarrow Lemma 11.5

Let $g \in G_{1}, f: G_{1} \rightarrow G_{2}$ a homomorphism. Then, ord $(f(g)) \mid \operatorname{ord}(g)$.
 $1_{G_{2}} \Longrightarrow \operatorname{ord}(f(g)) \mid n$.

\hookrightarrow Corollary 11.3

If $f: G_{1} \rightarrow G_{2}$ an isomorphism, f induces bijections between subgroups of $H<G_{1}$ and $K<G_{2}$, that is,

$$
G_{1}>H \mapsto f(H)<G_{2} ; \quad G_{1}>f^{-1}(K) \leftrightarrow K<G_{2}
$$

\hookrightarrow Theorem 11.2: Cayley

Let G be a finite group of order n. Then, G is isomorphic to a subgroup of S_{n}.

Proof. Let $g \in G$, and let $\sigma_{g}: G \rightarrow G, a \mapsto g a$. We claim that σ_{g} a permutation.
Note first that σ_{g} injective,

$$
\sigma_{g}(a)=\sigma_{g}(b) \Longrightarrow g a=g b \Longrightarrow a=b,
$$

and surjective, since

$$
\forall b \in G, \sigma_{g}\left(g^{-1} b\right)=b
$$

Now consider the map

$$
G \rightarrow S_{n}, \quad g \mapsto \sigma_{g}
$$

This map is a homomorphism:

$$
\sigma_{g h}(a)=g h a=\sigma_{g}\left(\sigma_{h}(a)\right) \Longrightarrow \sigma_{g h}=\sigma g \circ \sigma_{h}
$$

noting that the operation in S_{n} is \circ. This homomorphism is injective; let σ_{g} be the identity permutation. Then, $\sigma_{g}(e)=e \Longrightarrow g e=e \Longrightarrow g=e$. Thus, since the image of a homomorphism is a subgroup, the image of G under this map is a subgroup of S_{n}, that is, $G<S_{n}$ and the proof is complete.

\hookrightarrow Lemma 11.6

Let T, Z be sets, and $f: T \rightarrow Z$ a bijection. Then, the group of permutations of T and Z are isomorphic.

Proof. Let $\sigma \in S_{T}$. Then, $f \circ \sigma \circ f^{-1}: Z \rightarrow Z$ is a bijection. Hence, we have the map

$$
S_{T} \rightarrow S_{Z}, \quad \sigma \mapsto f \circ \sigma \circ f^{-1}
$$

This is a group homomorphism; given $\sigma_{1}, \sigma_{2} \in S_{T}$,

$$
f \circ \sigma_{1} \circ \sigma_{2} \circ f^{-1}=\left(f \sigma_{1} f^{-1}\right)\left(f \sigma_{2} f^{-1}\right)
$$

Similarly, given $\tau \in S_{Z}$, we can define the map

$$
S_{Z} \rightarrow S_{T}, \quad \tau \mapsto f^{-1} \circ \tau \circ f
$$

This is also a homomorphism, hence, there exists a bijective homomorphism between $S_{T} \rightarrow S_{Z}$ and thus the two are isomorphic.

11.6 Group Actions on Sets

\hookrightarrow Definition 11.14: Group Action

Let G a group, $S \neq \varnothing$. G acts on S if we have a function

$$
G \times S \rightarrow S, \quad(g, s) \mapsto g \star s
$$

where

1. $e \star s=s \forall s \in S$;
2. $\left(g_{1} g_{2}\right) \star s=g_{1} \star\left(g_{2} \star s\right) \forall g_{1}, g_{2} \in G, s \in S$.

* Example 11.12

D_{n} acts on the vertices of the n-gon;

$$
x^{a}(i)=i+a ; \quad y(i)=n-i+2
$$

Example 11.13: Conjugation
G acts on itself by

$$
G \times G \rightarrow G, \quad(g, h) \mapsto g h g^{-1} .
$$

* Example 11.14

Let $H<G$. H acts on G by

$$
H \times G \rightarrow G, \quad(h, g) \mapsto h g=h \star g .
$$

\circledast Example 11.15

D_{4} acts on the set S of 9 elements where the 9 elements form a 3×3 square. Now suppose we were to color each square by one of the three colors red, green, blue. Then, we'd have 3^{9} possible colored squares. A natural question would be to ask how many colored 3×3 squares exist, up to symmetries?

\circledast Example 11.16

\mathbb{R} acts on the sphere S; some $\theta \in \mathbb{R}$ rotates the sphere by θ.

\hookrightarrow Definition 11.15: Orbit

Let G, S be as defined above. Let $s \in S$. The orbit of s is defined

$$
\text { Orb } s=\{g \star s: g \in G\} \subseteq S
$$

Note that this is equal to all the images of s under \star.

Remark 11.3. In example 11.16, the orbit of $s \in S$ would be the latitude line; that is, all points with the same distance from the rotation axis.

In example 11.14, the orbit of $x \in H$ would be $\operatorname{Orb} x=H x=\{h x: h \in H\}$, a right coset of H in G.

Let G, S be as defined above. Let $s \in S$. The stabilizer is defined

$$
\text { Stab } s=\{g \in G: g \star s=s\} \subseteq G .
$$

Remark 11.4. In example 11.16, Stab $s=2 \pi \mathbb{Z}$; unless s at the pole, then $\operatorname{Stab} s=\mathbb{R}$.
In example 11.14, take $s \in G$. Then, Stab $s=\{h \in H: h \star s=h s=s\}=\{1\}$.
In example 11.13, Stab $s=\left\{g \in G: g s g^{-1}=g \star s=s\right\}=\{g \in G: g s=s g\}$, which is defined as the centralizer of s, that is, the elements that commute with s.

\hookrightarrow Definition 11.17: Collection of Cosets

If $H<G$ denote by $G \backslash H$ the collection of left cosets $x H$ of H in G. We have then

$$
|G \backslash H|=[G: H]=\frac{|G|}{|H|},
$$

if G finite (by Lagrange's Theorem).

\hookrightarrow Lemma 11.7: Properties of Group Actions

1. Let $s_{1}, s_{2} \in S$. $s_{1} \sim s_{2}$ if $\exists g \in G$ s.t. $g \star s_{1}=s_{2}$. This is an equivalence relation; the equivalence class of s_{1} is $\operatorname{Orb} s_{1}$.
2. Let $s \in S$. Stab $s<G$.

Proof. 1. - (Reflexive) $e \star s=s \Longrightarrow s \sim s$

- (Symmetric) $s_{1} \sim s_{2} \Longrightarrow \exists g \in G$ s.t. $g \star s_{1}=s_{2} \Longrightarrow g^{-1} \star\left(g \star s_{1}\right)=g^{-1} \star s_{2}$ and $\left(g^{-1} g\right) \star s_{1}=g^{-1} \star s_{2}$. Hence, $e \star s_{1}=g^{-1} \star s_{2} \Longrightarrow s_{1}=g^{-1} s_{2} \Longrightarrow s_{2} \sim s_{1}$.
- (Transitive) Suppose $s_{1} \sim s_{2}, s_{2} \sim s_{3}$. Then, $\exists g_{1}, g_{2} \in G$ s.t. $g_{1} \star s_{1}=s_{2}, g_{2} \star s_{2}=$ $s_{3} \Longrightarrow\left(g_{2} g_{1}\right) \star s_{1}=g_{2} \star\left(g_{1} \star s_{1}\right)=g_{2} \star s_{2}=s_{3} \Longrightarrow s_{1} \sim s_{3}$.

By definition, the equivalence class of some s_{1} is all elements such that $g \star s_{1}=s_{1}$ for some $g \in G$, the very definition of $\operatorname{Orb} s_{1}$.
2. Let $H=\operatorname{Stab} s$.

- (Identity) $e \star s=s \Longrightarrow e \in H$
- (Closure) Let $g_{1}, g_{2} \in H \Longrightarrow g_{1} \star s=s, g_{2} \star s=s \Longrightarrow\left(g_{1} g_{2}\right) \star s=g_{1} \star\left(g_{2} \star s\right)=$ $g_{1} \star s=s \Longrightarrow g_{1} g_{2} \in H$
- (Inverses) Let $g \in H \Longrightarrow g \star s=s \Longrightarrow g^{-1}(g \star s)=g^{-1} \star s \Longrightarrow\left(g^{-1} g\right) \star s=$ $g^{-1} \star s \Longrightarrow e \star s=g^{-1} \star s \Longrightarrow s=g^{-1} \star s \Longrightarrow g^{-1} \in H$
\hookrightarrow Proposition 11.10: Orbit-Stabilizer Formula
There exists a bijection $G \backslash \operatorname{Stab} s \rightarrow \operatorname{Orb} s$, that is, between the left cosets of Stab s in G (see definition 11.17) and the orbit of s.

Proof. Let $H:=\operatorname{Stab} s$. Define a function $\Psi: G \backslash H \rightarrow \operatorname{Orb} s$, where $\Psi(g H):=g \star s$.

- (Well-defined) Suppose $g H=g_{1} H$; then, $g_{1}=g h, h \in H \Longrightarrow g_{1} \star s=g \star(h \star$ s) $\underbrace{=}_{h \in \text { Stab }} g \star s$.
- (Surjective) Any element of $\operatorname{Orb} s$ is of the form $g \star s$ for some g, namely, of the form $\Psi(g H)$
- (Injective) Suppose $\psi(g H)=\psi\left(g_{1} H\right)$. Then, we have

$$
g \star s=g_{1} \star s \xrightarrow{\times g^{-1}} s=g^{-1} g_{1} \star s \Longrightarrow g^{-1} g_{1} \in \operatorname{Stab} s=H \Longrightarrow g_{1} H=g H
$$

\hookrightarrow Corollary 11.4
Suppose G finite. Then,

$$
|\operatorname{Orb} s|=|G \backslash H|=[G: H]=\frac{|G|}{|\operatorname{Stab} s|}=\frac{|G|}{|H|}
$$

Proof. Follows from Orbit-Stabilizer Formula and Lagrange's Theorem.

\hookrightarrow Definition 11.18: Fix, I, N

Let G be a group acting on S. Then, for $g \in G, s \in S$, we have

$$
\text { Fix } g:=\sharp\{s \in S: g \star s=s\}=\sharp \text { fixed pts of } g \text {. }
$$

Define too

$$
I(g, s):= \begin{cases}1 & g \star s=s \\ 0 & \text { else }\end{cases}
$$

and

$$
N:=\sharp \text { Orb of } G \text { in } S .
$$

\hookrightarrow Theorem 11.3: Burnside's Lemma

Assume S, G finite.

$$
N=\frac{1}{\sharp G} \sum_{g \in G} \operatorname{Fix} g .
$$

Proof. We will evaluate

$$
\begin{array}{r}
\sum_{s \in S} \sum_{g \in G} I(g, s)=\sum_{s \in S}|\operatorname{Stab} s| \\
\stackrel{\text { proposition }}{=} 11.10 \\
\sum_{s \in S} \frac{|G|}{|\operatorname{Orb} s|} \\
=|G| \sum_{s \in S} \frac{1}{|\operatorname{Orb} s|} \\
\stackrel{\star}{=}|G| \cdot N
\end{array}
$$

\star : any orbit Orb s of size t contributes $\frac{1}{t}=\frac{1}{|\operatorname{Orb} s|} t$ times.
OTOH,

$$
\begin{array}{r}
\sum_{s \in S} \sum_{g \in G} I(g, s)=\sum_{g \in G} \sum_{s \in S} I(g, s) \\
\sum_{g \in G} \operatorname{Fix} g \\
\Longrightarrow \sum_{g \in G} \operatorname{Fix} g=|G| \cdot N \\
\Longrightarrow N=\frac{1}{|G|} \sum_{g \in G} \operatorname{Fix} g
\end{array}
$$

Remark 11.5. Recall example 11.15; we had asked how many possibilities of a 3×3 square (S), colored with three different colors, existed up to symmetries by D_{4}. This is equivalent to asking for the number of orbits that exists for S.

We have
Fix $1=\sharp S=3^{9} \quad$ anything times 1 brings it to itself
Fix $x=3^{3}$
Fix $x^{-1}=3^{3}$
Fix $x^{2}=3^{5}$

For general D_{n}, all the elements in $D_{n} \backslash\langle x\rangle=\left\{x^{a} y: a=0, \ldots, n-1\right\}$ are reflections. They are also orientation reversing and order two $\left(x^{a} y \cdot x^{a} y=y x^{-a} x^{a} y=y^{2}=1\right)$.

Hence, we have that Fix $y=3^{6}=\operatorname{Fix} x^{2} y=\operatorname{Fix} x y=\operatorname{Fix} x^{3} y$.

Hence, we have from Burnside's,

$$
N=\frac{1}{8}\left(3^{9}+2 \cdot 3^{3}+3^{5}+4 \cdot 3^{6}\right)=2862 .
$$

11.7 More on the Dihedral Group

\hookrightarrow Lemma 11.8
Let $x \in D_{n}$. Then, ord $x^{a}=\frac{n}{\operatorname{gcd} a, n}$. As a permutation of the n vertices of the corresponding n-gon, we have $x^{a}=$ product of disjoint cycles, where all of the elements $\{1, \ldots, n\}$ appear, each of this same length.

Example 11.17: $n=8$

x^{a}	$\amalg \sigma_{i}$	a	ord
x	(12345678)	1	8
x^{2}	$(1357)(2468)$	2	4
x^{3}	(14625836)	3	8
x^{4}	$(15)(26)(37)(48)$	4	2
x^{5}	\ldots	5	8
x^{6}	$(1753)(2864)$	6	4
x^{7}	\ldots	7	8

Proof. Write x^{a} as a product of disjoint cycles, in which every $1 \leq i \leq n$ appears. Then, consider the cycle in which i appears (take i as the first element, since we can simply rearrange any permutation such that this holds):

$$
(i, i a, i+2 a, \ldots, i+(k-1) a),
$$

where k is the minimal positive integer such that $i+k a \equiv_{n} i$; ie, the first time that this cycle closes. But this means that $k a \equiv_{n} 0$, that is, this k does not depend on the particular i we are considering; it remains to show that this k is as given in the lemma.

We have that,

$$
\begin{aligned}
\forall k^{\prime} \in \mathbb{Z}, n \mid k^{\prime} a & \Longleftrightarrow \frac{n}{(a, n)} \left\lvert\, k^{\prime} \cdot \frac{a}{(a, n)}\right. \\
& \left.\Longleftrightarrow \frac{n}{(a, n)} \right\rvert\, k^{\prime} \\
& \Longleftrightarrow \text { min. possible } k^{\prime} \text { is } \frac{n}{(a, n)}
\end{aligned}
$$

The \sharp of elements $y \in\langle x\rangle$ s.t. $\langle x\rangle=\langle y\rangle$ is $\varphi(n)$. Such $y=x^{a}$ and of ord n . The \sharp of such y 's is $\sharp\{1 \leq a \leq n$ s.t. $(a, n)=1\}=: \varphi(n)$.

\hookrightarrow Corollary 11.6

For any $d \mid n, \exists$ elt of ord $=d \in\langle x\rangle$.

Proof. $x^{n / d}$
Remark 11.6. In fact, there $\exists \varphi(d)$ elts of order d in $\langle x\rangle$.

\hookrightarrow Proposition 11.11

Every element on $D_{n} \backslash\left\{1, x, \ldots, x^{n-1}\right\}$ is a reflection. If n odd, the reflection has exactly 1 fixed vertex. If n even, the symmetries $y, x^{2} y, \ldots, x^{n-2} y$ have 2 fixed vertices; the symmetries $x y, \ldots, x^{n-1} y$ have none.

\circledast Example 11.18

Consider necklaces with 8 beads, with 4 Blue, 2 Green, 2 Red. How many combinations, up to D_{8} symmetries, exist?

Proof. We will approach this using the C-F formula; we have $N=\frac{1}{16} \sum_{g \in D_{8}}$ Fix g. Note first that Fix $1=\sharp$ designs $=\binom{8}{4}\binom{4}{2}=420$.

First, we claim that for $a=1,3,5,7$, Fix $x^{a}=0$; indeed, any x^{a} for these a would necessitate every bead to be of the same color.

Next, we claim that Fix $x^{2}=\operatorname{Fix} x^{6}=0$; indeed, we have two disjoint cycles of order 4 , so any element in these "gaps" would have to be of the same color, hence, suppose one of these were green, then all 4 would be green; this is possible.

Next, Fix $x^{4}=\binom{4}{2}$ (that is, we choose which of the four pairs of 2 elements we take to be blue) times $\cdot 2$ (which of the 2 remain pairs are green), which gives Fix $x^{4}=12$.

Now, take $\sigma=$ reflection, with no fixed vertices; there exist 4 such σ. Fix $\sigma=\binom{4}{2}$ (which of the four vertices are blue) $\cdot 2$ (which of the 2 remaining vertices are red (or green, wlog) $)=12$.

Now, take $\sigma=$ reflection with 2 fixed vertices; there exist 4 . We have Fix $\sigma=$ $3+3+6=12$.

$$
\text { Thus, } N=\frac{1}{16}(420+9 \cdot 12)=33
$$

[^0]: ${ }^{15}$ Where $a \mid b$ denotes that b divides a.

[^1]: ${ }^{24}$ This claim relies on the claim that $s_{1} \cdot s_{2}=0 \Longleftrightarrow s_{1}$ or $s_{2}=0$ for $s_{1}, s_{2} \in \mathbb{C}$. This is fairly straightforward to prove, and can be extended to any number of complex numbers, ie $\prod_{i=1}^{n} s_{i}=$ $0 \Longleftrightarrow$ some $s_{i}=0$

[^2]: ${ }^{29}$ Sketch: this shows only uniqueness, existence is proven by lemma 7.2. Use induction; base case, $n=2$ trivial. Use complete induction, and proceed by contradiction (kind of). Assume that n has two distinct prime factorizations. Then, break down by cases; $p_{1}=q_{1}$ or not. If they are, then take some small m covered by inductive assumption, set equal to $\frac{n}{p_{1}}$, meaning that if $p_{1}=q_{1}$, the remaining $p_{i}=q_{i}$. For inequality, show that $p_{1}<q_{1} \Longrightarrow p_{1}<p_{1}$ by showing that $p_{1} \mid q_{1} \cdots$, and thus $p_{1}=q_{i}$ for some i, so $p_{1}<q_{1} \leq \cdots q_{i}=p_{1}$, and thus you have a contradiction.

[^3]: ${ }^{32}$ Recall lemma 7.3, in the integers

[^4]: ${ }^{45}$ Direct consequence of

[^5]: ${ }^{47}$ Note that $A \cong B$ means that A is isomorphic to B.

