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1 Sets

1.1 Definition

A set can be considered as a collection of elements; more intuitively, you can consider some-
thing a set if you can determine whether a given object belongs to it. Typically sets are defined
asA = {1, 2, . . . }, by a propertyA = {x |x%2 = 0}, or with an appropriate verbal description.

1.2 Set operations

There are a number of ways to “combine” sets:

• Union: A ∪B = {x |x ∈ A or x ∈ B}

• Intersection: A ∩B = {x |x ∈ A and x ∈ B}

• Difference: A \B = {x |x ∈ A and x /∈ B}

↪→ Lemma 1.1

A = (A \B) ∪ (A ∩B)

Proof. To prove set equivalencies, we must prove that both RHS⊆ LHS and LHS⊆ RHS; mean-
ing, the LHS and RHS are subsets of each other, and are thus equal.

First, to prove LHS⊆ RHS, let a ∈ A. If a /∈ B, then a ∈ A\B, and a ∈ RHS. Else, if a ∈ B,
then a ∈ A ∩B and a ∈ RHS. Thus, LHS ⊆ RHS.

Next, to prove RHS ⊆ LHS, let a ∈ RHS. If a ∈ A \B, then a ∈ A = LHS. Else, a ∈ A ∩B,
and thus a ∈ A = LHS. Thus, RHS⊆ LHS. Since LHS⊆ RHS and RHS⊆ LHS, LHS = RHS. ■

1.3 Indexed sets

Let I be a set. If for every i ∈ I , we have a set Bi, we say that we have a collection of sets Bi

indexed by I . We write {Bi : i ∈ I}.

⊛ Example 1.1

Let I = {1, 2, 3}, and Bi = {1, 2, 3, 4} \ {i} (Bi is the set of all numbers from 1 to 4,
excluding i), for i ∈ I . We thus have B1 = {2, 3, 4} (etc.).

This concept of indexing allows us to introduce repeated unions/intersections. For

§1.3 Sets: Indexed sets p. 3



instance, we can write ⋃
i∈I

Bi = B1 ∪B2 ∪B3 = {1, 2, 3, 4}.

Similarly, ⋂
i∈I

Bi = {4}.1

1You can somewhat
consider these “large”
unions/intersections as
analogous to summations Σ
and products Π.

⊛ Example 1.2

Let I = R, and Bi = [i,∞] = {r ∈ R : r ≥ i}. Then,
⋃

i∈RBi = R and
⋂

i∈RBi = ∅.

1.4 Cartesian product

Let A1, A2, . . . , An be sets. We define the Cartesian product

A1 × A2 × · · · × An = {(x1, x2, . . . , xn) : xi ∈ Ai, for 1 ≤ i ≤ n}.

For instance,
A×B = {(a, b) : a ∈ A, b ∈ B}.

⊛ Example 1.3

Let A = B = R. A×B = {(x, y) : x ∈ R, y ∈ R} = R2 is the set of all points in the
Cartesian plane.

We can also define Cartesian products over an index set. Let I be an index set, with Ai for
all i ∈ I . Then, we can write ∏

i∈I

Ai = {(ai)i∈I : ai ∈ Ai}

⊛ Example 1.4

I = N, A0 = {0, 1, 2, . . . }, A1 = {1, 2, 3, . . . }, ..., Ai = {i, i+ 1, i+ 2, . . . }

Y :=
∏
i∈I

Ai = {(a0, a1, a2, . . . ) : ai ∈ N, ai ≥ i}

We can say that a particular vector (b0, b1, . . . ) ∈ Y if for each bi, bi ≥ i (and bi ∈ N,
of course). In other words, a particular item of the vector must be greater than or
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equal to its index. Thus, we can say

(0, 1, 2, 3, . . . ) ∈ Y

while
(2, 2, 2, 2, . . . ) /∈ Y

since a3 = 2 =⇒ i = 3, and 2 ≱ 3.

2 Methods of Proof

2.1 Proving equality via two inequalities

In short, say x, y ∈ R. x = y ⇐⇒ x ≤ y and y ≤ x. Similarly, in the context of sets, we can
say that, for two sets X, Y , X = Y ⇐⇒ X ⊆ Y and Y ⊆ X .

2.2 Contradiction (bwoc)

Given a statement P , we can prove P true by assuming P false (≡ ¬P ), then arriving to a
contradiction (this contradiction is often a violated axiom or basic rule of the system at hand.)

⊛ Example 2.1

Show that there are no solutions to x2 − y2 = 1 in the positive integers.

Proof (bwoc). Assume there are, so x, y ∈ Z+.2We can then write

1 = x2 − y2 = (x− y)(x+ y).

x − y and x + y must be integers, and so we have two cases,

x− y = 1

x+ y = 1
andx− y = −1

x+ y = −1
. In either case, y must be zero, contradicting our initial assumption

and thus proving the statement. ■
2Z+ is used to denote

positive integers; similarly,
Z− denotes negative integers.

2.3 Proving the contrapositive

Logically, A =⇒ B ⇐⇒ ¬B =⇒ ¬A3. 3“I am hungry therefore I
will eat” ⇐⇒ “I will not eat
therefore I am not hungry.”
Notice too that B need not
imply A (“I will eat therefore I
am hungry”). If
A =⇒ B ⇐⇒ B =⇒ A,
A ≡ B

§2.3 Methods of Proof: Proving the contrapositive p. 5



⊛ Example 2.2

Let X, Y be sets. Prove X = X \ Y =⇒ X ∩ Y = ∅.

Proof. Prove contrapositive: X ∩ Y ̸= ∅ =⇒ X ̸= X \ Y . X ∩ Y ̸= ∅ =⇒ ∃t ∈
X ∩ Y =⇒ t ∈ X and t ∈ Y , thus t /∈ X \ Y , but t ∈ X , so X ̸= X \ Y . ■

2.4 Induction

↪→ Axiom 2.1: Well-Ordering Principle

Every S ⊆ N, where S ̸= ∅, has a minimal element, ie ∃a ∈ S s.t. ∀b ∈ S, a ≤ b.

↪→Theorem 2.1: Principle of Induction

Let n0 ∈ N. Say that for every n ∈ Z, n ≥ n0, we are given a statement Pn. Assume

(a) Pn0 is true

(b) if Pn is true, then Pn+1 is true

then Pn is true for all n ≥ n0.

Proof (bwoc). Assume not.4 Then, we define S = {n ∈ N : n ≥ n0, Pn false}. By the Well- 4note that (a) and (b) of
the Principle of Induction are
still taken to be true; it is
simply the conclusion that is
assumed to be false.

Ordering Principle, there exists a minimal element a ∈ S. By definition, a ≥ n0, and as Pn0

is taken to be true, then a > n0 since n0 /∈ S. Thus, a − 1 /∈ S, as a is the minimal element
of S, and therefore Pa−1 is true. However, by (b), this implies Pa is also true, and thus a /∈ P ,
contradicting our initial assumption. ■

2.5 Pigeonhole principle

↪→ Axiom 2.2

If there are more pigeons than pigeonholes, then at least one pigeonhole must contain more
than one pigeon.5

5Alternatively, you can
consider fractional pigeons
(though a little gruesome);
given n+ 1 pigeons and n
holes, each hole will contain,
on average, 1 + 1

n
pigeons.

⊛ Example 2.3

Consider n1, . . . , n6 ∈ N. There exist at least two of these n’s s.t. ni − nj is evenly
divisible by 5.

Proof. Let us rewrite each ni as ni = 5ki+ri, where ki, ri ∈ N, ki is the quotient, and
ri is the residual. ri ∈ {0, 1, 2, 3, 4} (the only possible remainders when a number is
divided by 5), and so there are 5 possible values of ri, but 6 different ni. Thus, two ni

§2.5 Methods of Proof: Pigeonhole principle p. 6



must have the same ri, and we can write:

ni = 5ki + r;nj = 5kj + r

ni − nj = (5ki + r)− (5kj + r)

= 5(ki − kj)

(ki − kj) ∈ Z, and so ni − nj is evenly divisible by 5. ■

3 Functions

3.1 Types of Functions

↪→ Definition 3.1: Function

Given 2 sets A,B, a function f : A → B is a rule such that ∀a ∈ A,∃!f(a) ∈ B, where ∃!
denotes “there exists a unique”.

↪→ Definition 3.2: Graph

Given a function f : A→ B, a graph Γf = {(a, f(a)) : a ∈ A} ⊆ A×B. We can say that,
∀a ∈ A, ∃!b ∈ B such that (a, b) ∈ Γf .

⊛ Example 3.1

Consider the Cartesian plane, denoted R2. It is simply a graph Γf where f : R→ R
is the identity function, f(x) = x.

↪→ Definition 3.3: Injective

A function is an injection iff ∀a1, a2 ∈ A, f(a1) = f(a2) =⇒ a1 = a2.

↪→ Definition 3.4: Surjective

A function is a surjection iff ∀b ∈ B, ∃a ∈ A such that f(a) = b. In other words, every
element of B is mapped to by at least one element of A; you can pick any element in the
range and it will have a preimage.

↪→ Definition 3.5: Bijective

Both.
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↪→ Definition 3.6: Fibre

The fibre of some y ∈ Y is f−1(y) = f−1(y)

3.2 Cardinality

↪→ Definition 3.7: Cardinality

The cardinality of a set A, denoted |A|, is the number of elements in A, if A is finite, or a
more abstract notion of size if A is infinite.

We say that two sets A,B have the same cardinality (|A| = |B|) if ∃ a bijection f : A →
B.6This necessitates the question, however: if two sets are not equal in cardinality, how do we 6Consider this in the

finite case: a bijection
indicates that all elements in
the domain map uniquely to a
single element in the range,
and the range is completely
“covered” sts by the function.

compare their sizes?

We write
|A| ≤ |B| ⇐= ∃f : A→ B where f is injective

and

|A| ≥ |B| ⇐= ∃f : A→ B where f is surjective.7

Note that |B| ≤ |A| if either A = ∅ or, as above, ∃f : B → A surjective. 7Consider this
intuitively; if your domain is
smaller than your range, then
you will “run out” of things to
map from the domain to the
range before you “run out” of
things in the range, hence, you
have a injection. Similarly, if
your domain is larger than
your range, then you will have
“leftover” elements in the
domain (that will map to
“already mapped to” elements
in the range), hence, you have
a surjection.

↪→ Definition 3.8: Composition

Given two functions f : A→ B, g : B → C , the composition is the function g ◦ f : A→ C

↪→ Proposition 3.1

If |A| = |B| and |B| = |C| then |A| = |C|

Proof. ∃f : A → B bijective, and ∃g : B → C bijective. We desire to show that ∃h : A → C

that is bijective. We can write h = g ◦ f , where h(a) = g(f(a)).

To show that h bijective:

• injective: Suppose h(a1) = h(a2), then g(f(a1)) = g(f(a2)), and since g is injective,
f(a1) = f(a2). Since f is injective, a1 = a2, and thus h is injective.

• surjective: Let c ∈ C . Since g is surjective, ∃b ∈ B such that g(b) = c. Since f is
surjective, ∃a ∈ A such that f(a) = b. Thus, h(a) = g(f(a)) = g(b) = c, and thus h is
surjective.

Thus, h is bijective, and |A| = |C|. ■

§3.2 Functions: Cardinality p. 8



↪→ Lemma 3.1

If g ◦ f injective, f injective. If g ◦ f surjective, g surjective.

↪→ Definition 3.9: Image

The image of a function f : A → B is the set Im(f) = {f(a) : a ∈ A}, ie the set of
all elements in B that are mapped to by f . Note that Im(f) ⊆ B, and Im(f) = B if f is
surjective.

↪→ Proposition 3.2

|A| ≤ |B|if |B| ≥ |A|

Proof. If A = ∅, |B| ≥ |A| clearly.

If A ̸= ∅, we are given ∃f : A → B injective. Let us choose some a0 ∈ A. We define
g : B → A as

g(b) =

a0 b /∈ Im(f)

a b = f(a) ∈ Im(f)8

Note that g(f(a)) = g(b) = a, so g is surjective. Thus, |B| ≥ |A|. ■ 8Note that a is unique in
A, as f is injective.

↪→ Proposition 3.3

|B| ≥ |A| if |A| ≤ |B|

↪→Theorem 3.1: Cantor-Bernstein Theorem

|A| ≤ |B| and |B| ≤ |A| =⇒ |A| = |B|. 9

Equivalently, if ∃f : A → B injective and ∃g : B → A injective, then ∃h : A → B

bijective.
9It is often very difficult

to define an arbitrary bijective
function between two sets in
order to prove their
cardinality is equal. The
Cantor-Bernstein Theorem
allows us to prove that two
sets have the same cardinality
by proving that there exists an
injection from A to B and an
injection from B to A, which
is typically far easier.

↪→ Proposition 3.4

If |A1| = |A2| and |B1| = |B2| then |A1 ×B1| = |A2 ×B2|.

Proof. The first two statements define bijections f : A1 → A2 and g : B1 → B2, and we desire
to have f × g : A1×B1 → A2×B2. We define f × g(a1, b1) := (f(a1), g(b1)). We must show
that f × g is bijective. ■

§3.2 Functions: Cardinality p. 9



⊛ Example 3.2

Consider A as the set of all points in the unit circle centered at (0, 0) in R2, and B as
the set of all points in the square of side length 2 centered at (0, 0) inR2 (ie, the circle
is inscribed in the square). We wish to prove that |A| = |B|.

Proof. Let f : A → B, f(x) = x. f is injective, and thus |A| ≤ |B|. Let g : A → B,

g(x) =

0;
√
2x /∈ B

√
2x;
√
2x ∈ B

. In simpler terms, consider this as multiplying points of

A by
√
2; any point in this new “expanded” circle that lies within B maps to itself,

and any that lies outside maps to 0. This is thus a surjection, and thus |B| ≤ |A|. By
the Cantor-Bernstein Theorem, |A| = |B|. ■

↪→ Proposition 3.5

A = {0, 1, 4, 9, . . . }. |A| = |N|.

Proof. Define f : N→ A, f(n) = n2. This is clearly injective 10, and thus |A| ≤ |N|. ■ 10Notice that f is only
injective if we restrict the
domain to N; if we were to
consider Z, for instance,
f(−1) = f(1) = 1.↪→ Definition 3.10: Countable/enumerable

A set A is countable if |A| = |N|, or A is finite.

If A is finite of size n, ∃ a bijection f : {0, 1, 2, . . . , n− 1} → A.

If A is infinite, ∃ a bijection f : N→ A.

↪→ Proposition 3.6

|N| = |Z|

Proof. We aim to find a bijection f : Z → N, ie one that maps integers to natural numbers.
Consider the function

f(x) =

2x x ≥ 0

−2x− 1 x < 0
.

This function is an injection because if f(x1) = f(x2), then x1 = x2 (positive case: 2x1 =

2x2 =⇒ x1 = x2, negative case: −2x1 − 1 = −2x2 − 1 =⇒ x1 = x2, and 2x1 ̸= −2x2 − 1

for any integer). It is also a surjection (there is no natural number that cannot be mapped to
by an integer). Thus, the function is a bijection and |N| = |Z|. 11 ■ 11Note what would

happen if f was defined as
−2x for x < 0; then, f would
not be surjective (eg,
f(−1) = 2 = f(1).)
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↪→ Proposition 3.7

|N| = |N× N|

Remark 3.1. It is possible to construct a bijective f : N× N→ N; see assignment 1.

Proof. Let f : N → N × N, f(n) = (n, 0), clearly an injection ( =⇒ |N| ≤ |N × N|)12. The 12Note that this function
is not surjective!function g(m,n) = 2n3m is also injective, and thus |N| = |N× N|. ■

↪→ Corollary 3.1

|Z| = |Z× Z|

Proof. Consider h : N→ N×N, a bijection13, and f : N→ Z. Let g = (f, f) : N×N→ Z×Z. 13Which must exist by the
proof of the previous
proposition.The composition g ◦ h ◦ f−1 : Z → N → N × N → Z × Z is also a bijection, and thus

|Z| = |Z× Z|. ■

⊛ Example 3.3

Show that |N| = |Q|.

Proof. First, we find an injection Q → N. Let f : Q → Z × Z, f(n) = (p, q) where
p
q
= n (by definition of Q). Using the same function definitions as in corollary 3.1,

the composition h−1 ◦ g−1 ◦ f : Q→ Z×Z→ N×N→ N. This is a composition of
injections, and is thus an injection itself, and thus |Q| ≤ |N|. The identity function
1 : N → Q, 1(n) = n is clearly an injection as well as all naturals are rationals, and
thus |N| ≤ |Q|. By the Cantor-Bernstein Theorem, |N| = |Q|. ■

↪→ Definition 3.11

We say |A| < |B| if |A| ≤ |B| but |A| ≠ |B|, ie ∃f : A → B is injective, but no such
bijective.

Remark 3.2. We denote an injective function as N ↪→ Z, and a surjective function as Z ↠ N.
We say that a particular element n maps to some other element n′ by n 7→ n′

↪→Theorem 3.2: Cantor

|N| < |R|

Proof (Cantor’s Diagonal Argument). We clearly have an injection N ↪→ R, n 7→ n, thus |N| ≤
|R|.
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Now, suppose |N| = |R|. Then, we can enumerate the real numbers as a0, a1, . . . with signs
ϵi. We denote the decimal expansion of each number as14

a0 = ϵ00.a00a01a02 . . .

a1 = ϵ10.a10a11a12 . . .

a2 = ϵ20.a20a21a22 . . .

...

Consider the number 0.e0e1e2 . . . , where ei =

3 aii ̸= 3

4 aii = 3
.This number is different than any

given ai at the i + 1-th decimal place, and is thus not in the enumeration, contradicting our
initial assumption. ■

14We make the
clarification that, despite the
fact that
1.000 · · · = 0.999 . . . , we
will take the “infinite zeroes”
interpretation, and thus every
real number has a unique
decimal expansion. This is an
important, if subtle,
distinction.

Remark 3.3 (Continuum Hypothesis). Cantor claimed that there’s no set |A| such that |N| <
|A| < |R|. It has been proven today that this is “undecidable”.

↪→ Definition 3.12: Algebra on Cardinalities

If α, β are cardinalities α = |A|, β = |B|, Cantor defined:

α + β = |A ⊔B| (disjoint union)
α · β = |A×B|
αβ = |BA| (set of all functions from A to B)

4 Relations

4.1 Definitions

↪→ Definition 4.1: Relation

A relation on a set A is a subset S ⊆ A× A(= {(x, y) : x, y ∈ A}).

We say that x is related to y if (x, y) ∈ S, where we denote x ∼ y.

Conversely, if we are given x ∼ y, we can define an S = {(x, y) : x ∼ y}.

⊛ Example 4.1

Following are examples of relations on A.

1) Let S = A× A; any x ∼ any y because (x, y) ∈ S for all (x, y).

2) Let S = ∅; no x ∼ any y (even to itself).
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3) S = diag. = {(a, a) : a ∈ A}; x ∼ x∀x, but x ≁ y if y ̸= x.

4) A = [0, 1](∈ R). Say x ∼ y if x ≤ y. Thus, S = {(x, y) : x ≤ y} (the diagonal,
and everything above).

5) A = Z, x ∼ y if 5|(x− y), ie x and y have same residue mod 5.15
15Where a|b denotes that

b divides a.

↪→ Definition 4.2: Reflexive

A relation is reflexive if for any x ∈ A, x ∼ x.

This includes examples 1), 2) (iff A is empty), 3), 4), and 5) above.

↪→ Definition 4.3: Symmetric

A relation is symmetric if x ∼ y =⇒ y ∼ x.

This includes 1), 2), 3), and 5) above.

↪→ Definition 4.4: Transitive

A relation is transitive if x ∼ y and y ∼ z implies x ∼ z.

This includes 1), 2), 3), 4), and 5) above.

4.2 Orders, Equivalence Relations and Classes, Partitions

↪→ Definition 4.5: Partial Order

A partial order on a set A is a relation x ∼ y s.t.

1. x ∼ x (reflexive)

2. if x ∼ y and y ∼ x, x = y (antisymmetric)

3. x ∼ y and y ∼ z =⇒ x ∼ z (transitive)

It is common to use ≤ in place of ∼ for partial orders.

We call a set on which a partial order exists a partially ordered set (poset).

This is called partial, as it is possible that for some x, y ∈ A we have x ≁ y and y ≁ x,
ie x, y are not comparable. A partial order is called linear/total if for every x, y ∈ A, either
x ≤ y or y ≤ x, eg., A = [0, 1],R,Z, . . . , with x ≤ y. Consider the above examples:

1) is not total, if A has at least two element, because ∃x ̸= y but both x ∼ y and y ∼ x,

and thus not antisymmetric.
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3) yes

5) no, as this is symmetric, since 5|(x − y) =⇒ 5|(y − x), and thus x ∼ y, y ∼
x���=⇒ y = x

⊛ Example 4.2

Let16A = N+ = {1, 2, 3, 4 . . . }, and define a ∼ b if a|b. We verify:

• a ∼ a (since a|a)

• a ∼ b, b ∼ a =⇒ a = b, since in N+, a|b =⇒ a ≤ b, and we thus have a ≤ b

and b ≤ a, and thus a = b.

• suppose a ∼ b and b ∼ c, then a|b and b|c. We can write b = a ·m and c = b ·n
for n,m ∈ N. This means that c = bn = amn = a(mn), which means that a|c,
so a ∼ c.

Thus, A is a poset. Note that this is not a linear order, as 2 ≁ 3, and 3 ≁ 2 (not all a, b
are comparable).

16Try this with integers,
see where it fails

↪→ Definition 4.6: Equivalence Relation

We aim to, abstractly, define some ∼ such that if x ∼ x, x ∼ y, then y ∼ x, and if x ∼
y, y ∼ z, then x ∼ z.

Specifically, an equivalence relation ∼ on the set A is a relation x ∼ y s.t. it is

• reflexive;

• symmetric;

• transitive.17
17Note that, generally,

equivalence and order
relations are very different.

⊛ Example 4.3

1. Let n ≥ 1 be an integer. A permutation σ of n elements is a bijection σ :

{1, 2, . . . , n} → {1, 2, . . . , n}. Their number is n!, ie there are n! permuta-
tions of n elements. The collection of all permutations of n elements is denoted
Sn, which we call the “symmetric group” on n elements. We aim to define an
equivalence relation on Sn.

Let us define σ ∼ τ if σ(1) = τ(1). We verify that this is an equivalence
relation:

(a) σ ∼ σ, σ(1) = σ(1), so yes
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(b) σ ∼ τ means σ(1) = τ(1), so yes

(c) σ ∼ τ, τ ∼ ρ, σ(1) = τ(1), τ(1) = ρ(1), so σ(1) = ρ(1), hence σ ∼ ρ, so
yes.

Thus, ∼ is an equivalence relation on Sn.

⊛ Example 4.4

Define a relation on Z by saying that x ∼ y if x − y even, ie 2|(x − y). This is
reflexive, as 2|(x − x) = 0, x ∼ x, symmetric, since (y − x) = −(x − y), and
transitive x− z = (x− y)︸ ︷︷ ︸

even

+(y − z)︸ ︷︷ ︸
even

=⇒ x ∼ z.

⊛ Example 4.5

We say two sets A ∼ B if |A| = |B|. 1A = Id : A → A, a 7→ a shows A ∼ A.
A ∼ B =⇒ ∃f : A → B bijective, then f−1 : B → A also bijective so B ∼ A. If
A ∼ B,B ∼ A then A ∼ C (since |A| = |B|, |B| = |C| =⇒ |A| = |C| as proved
earlier).

↪→ Definition 4.7: Disjoint Union

Let S be a set, and Si, i ∈ I,⊆ S. S is the disjoint union of the Si’s if S = ∩i∈ISi, and for
any i ̸= j, Si ∩ Sj = ∅18; we denote S = ⨿i∈ISi.We can say that {Si} for a partition of S.

18ie, no Si’s share
elements; think of
“partitioning” S such that no
subsets overlap.⊛ Example 4.6

Let S = {1, 2}. Partitions are {1, 2}, and {1}, {2}.

Let S = {1, 2, 3}. Partitions are {1, 2, 3}, {1}, {2}, {3}, . . .

↪→ Definition 4.8: Equivalence Class

Given an equivalence relation ∼ of A and some x ∈ A, the equivalence class of x is [x] =
{y ∈ A : x ∼ y} ⊆ S.

↪→Theorem 4.1

The following theorems are related to equivalence classes:

(1) the equivalence classes of A form a partition of A;

(2) conversely, any partition of A defines an equivalence relation on A given by the par-
tition.
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↪→ Lemma 4.1

Let X be an equivalence class; a ∈ X , then X = [a].

Proof of lemma 4.1. If X is an equivalence class, X = [x] for some x ∈ A, by definition. Let
a ∈ X . If b ∈ [a] then b ∼ a and as a ∈ [x] then a ∼ x =⇒ b ∼ x =⇒ b ∈ [x] =⇒ [a] ⊆ [x].

Otoh, a ∼ x =⇒ x ∈ [a], so [x] ⊆ [a], and thus [x] = [a]. ■

Proof of theorem 4.1. We prove (1), (2) individually.

(1) We aim to show that if the equivalence classes are {Xi}i∈I then A = ⨿i∈IXi. We say
the following:

1. Every a ∈ A is in some equivalence class (a ∈ [a]).

2. Two different equivalence classes are disjoint ⇐⇒ ifX, Y equiv. classes s.t. X∩Y ̸= ∅
then X = Y .19

Let a ∈ X ∩ Y lemma
=⇒ [a] = X, [a] = Y =⇒ X = Y .

Here, consider the examples above;

- example 4.3; Sn: there are n equiv classes Xi = {σ ∈ Sn : σ(1) = i}. Sn = X1 ⊔X2 ⊔
. . . Xn. σ ∈ Sn and σ(1) = i, then σ ∈ Xi.

- example 4.4; Z: two equiv. classes; X = even integers = [0], Y = odd integers = [1], so
Z = even ⊔ odd

- example 4.5; sets: an equivalence is a cardinality. n := [{1, 2, . . . n}] = all sets with n
elements. Similarly, we oftenwrite thatℵ0 := [N] = inf. countable sets = sets un bijection
with N, and 2ℵ0 := [R].

(2) We are given a partition A = ⨿i∈IXi. We say x ∼ y if ∃i ∈ I s.t. x and y belong to Xi

(noting that such an i is unique if it exists by definition of a partition).

• x ∼ x, clearly, since x ∈ Xi =⇒ x ∈ Xi

• x ∼ y =⇒ y ∼ x, by similar logic

• x ∼ y, y ∼ z means that x and y in some same Xi, and y and z in some same Xj . So,
y ∈ Xi ∩Xj , but we are working with a partition so Xi and Xj are disjoint and so this
intersection is either ∅, or the sets are equal; since we know it is not empty, Xi = Xj ,
and so x ∼ z.

Thus, ∼ is an equivalence relation.20 ■
20Contrapositive…
20This whole

proof/theorem can sound
pretty confusing. Abstractly,
and non-rigorously, consider
this: we define some “notion”
of equivalence. Intuitively, if a
set of items in, say, A, are
equivalent, then they
shouldn’t be equivalent to any
other items outside of that set
(by our particular definition of
equivalence). Thus, no
“subsetting” of A into
equivalence classes will cause
any subset to overlap; thus, we
have a partition. This works in
reverse through similar logic,
where we even more
concretely say that the very
act of begin in the same
partitioning of A is to be
equivalent.
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⊛ Example 4.7

Let A = students in this class. x ∼ y if x, y have the same birthday. The equivalence
classes in this case are the dates s.t. ∃ some student with that birthday.

↪→ Definition 4.9: Complete set of representatives

If is an equiv. relation on A, a subset {ai : i ∈ I} ⊆ A is called a complete set of represen-
tatives if the equivalence classes are [ai], i ∈ I with no repetitions.

You find such a subset by choosing from every equiv class one element.Considering our
examples:

• For example 4.3, Sn = X1 ⊔ . . . Xn, Xi = {σ : σ(1) = i}. We define

σi(j) =


i j = 1

1 j = i

j otherwise

= [σi]

(switch i, j and leave all others intact). {σ1, . . . , σn} are a complete set of represen-
tatives.

• For example 4.4 (even/odd inZ), a complete set of reps could be {0, 1}, ieZ = [0]⊔[1].

5 Number Systems

5.1 Complex Numbers

↪→ Definition 5.1: Complex Numbers

C = {a + bi : a, b ∈ R}. Equivalently, we can consider complex numbers as the points
(a, b) ∈ R2.21

Given some z = a+ bi, we can write Re (z) = a, Im (z) = b.
21We can define the

function f : C →
R2, f(a+ bi) = (a, b), a
bijection.↪→ Definition 5.2: Algebra on Complex Numbers

Given zi = xi + yii, we define:

• Addition: z1 + z2 = (x1 + x2) + (y1 + y2)i. This is associative and commutative.

• Multiplication: z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i
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• Inverse: z ̸= 0, 1
z
:= z

|z|2 , noting that z ·
1
z
= z · z

|z|2 = 1

↪→ Definition 5.3: Complex Conjugate

Given z = a+ bi, the complex conjugate of z is z = a− bi.

↪→ Lemma 5.1

The following hold for complex conjugates:22

(a) z = z.

(b) z1 + z2 = z1 + z2, z1 · z2 = z1 · z2.

(c) Re (z) = z+z
2
, Im (z) i = z−z

2
.

(d) Given |z| =
√
a2 + b2,

(i) |z|2 = z · z

(ii) |z1 + z2| ≤ |z1|+ |z2|

(iii) |z1 · z2| = |z1| · |z2|
22(a), (b), and (c) are

simply algebraic
rearrangements of two
complex numbers. (d.i) and
(d.iii) follow from similar
arguments, and finally (ii) is
the triangle inequality restated
in terms of complex numbers.

5.2 Fundamental Theorem of Algebra, Etc

↪→Theorem 5.1: Fundamental Theorem of Algebra

Any polynomial anxn + · · ·+ a1x+ a0 for ai ∈ C, n > 0, an ̸= 0, has a root in C.

⊛ Example 5.1: Roots of Unity

Let n ≥ 1, n ∈ Z. xn = 1 has n solutions in C, called the roots of unity of order n.
They are given as (1, 2πk

n
), k = 0, 1, 2, . . . , n− 1 in polar notation.
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↪→Theorem 5.2

Let f(x) = anx
n + · · · + a1x + a0 be a complex polynomial of degree n. Then, there are

complex numbers z1, . . . .zn s.t.

f(x) = an

n∏
i=1

(x− zi) (i)

each (ii) f(zj) = 0∀j = 1, . . . , n, and (iii) f(λ) = 0 =⇒ λ = zj for some j.23
23Proof sketch: we prove

by induction. First, we prove
the base case of polynomials
of deg = 1, then we assume it
holds for deg ≤ n. We then
prove a separate lemma (also
by induction) that allows us to
rewrite our polynomial as the
product of some (x− λ)
factor, another polynomial,
and some residual. We then
rewrite our original
polynomial as the product of
some linear term and another
polynomial, plus some
residual, then show that this
residual is 0, and thus show
that our polynomial of degree
n+ 1 is simply the product of
some linear term and a
polynomial of degree n, the
inductive assumption, and
thus the general statement is
true.
The “sub”-claims follow
naturally.

Proof (by induction). If n = 1, f(x) = a1x + a0 = a1

(
x− −a0

a1

)
= a1(x − z1). Clearly,

f(z1) = 0.

Assume that true for polynomials of degree ≤ n and prove for n+1; let f be a polynomial
of degree n+ 1, f(x) = an+1 + xn+1 + · · · . Let zn+1 be a root of f : f(zn+1) = 0. Such exists
by the Fund’l Thm. We introduce the following lemma:

↪→ Lemma 5.2

Let g be a polynomial with complex coefficients. Let λ ∈ C; then we can write g(x) =

(x− λ)h(x) + r, r ∈ C, h a polynomial with complex coefficients as well.

Proof of Sub-Lemma. By induction; we can write g(x) = anx
n + · · · a1x + a0. If deg(g) = 0,

then g = a0 =⇒ h(x) = 0, a0 = r.

Assume this is true for degrees ≤ n,and that g has degree ≤ n+ 1.

g(x) = (x− λ)an+1x
n + b(x),

where b(x) = g(x)− (x− λ)an+1x
n = a′nx

n + a′n−1x
n−1 + · · · , for some a′n, . . . , a′0 ∈ C. We

can apply induction to b(x) (that has deg ≤ n); b(x) = (x− λ)h1(x) + r, so

g(x) = (x− λ) (an+1x
n + h1(x))︸ ︷︷ ︸
h(x)

+r,

as desired. ■

Now, we write our f(x) as

f(x) = (x− zn+1)h(x) + r,

using the lemma. Then,

0 = f(zn+1) = (zn+1 − zn+1)h(zn+1) + r

= 0 + r + 0 =⇒ r = 0,
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so
f(x) = (x− zn+1)h(x).

Comparing the highest terms:

an+1x
n+1 + · · · = (x− zn+1)(∗xn + . . . )

=⇒ leading coefficient of h(x) also an+1.

By induction,

h(x) = an+1︸︷︷︸
lead coef of h

·
n∏

i=1

(x− zi)

=⇒ f(x) = an+1

n+1∏
i=1

(x− zi) (i) holds

Further:

• (ii): f(zj) = an+1

∏n+1
i=1 (zj − zi) = 0 when i = j.

• (iii): if f(λ) = 0, then an+1

∏n+1
i=1 (λ− zi) = 0. But if a product of two complex numbers

is 0, then one of them is 0. an+1 ̸= 0, so some λ− zi = 0, ie λ = zi for some i24

■
24This claim relies on the

claim that
s1 · s2 = 0 ⇐⇒ s1 or
s2 = 0 for s1, s2 ∈ C. This is
fairly straightforward to
prove, and can be extended to
any number of complex
numbers, ie

∏n
i=1 si =

0 ⇐⇒ some si = 0

↪→ Definition 5.4: Complex Exponential

The complex exponential, ez = 1 + z
1
+ z2

2!
+ . . . can be Taylor expanded and we have that

eiθ = cos θ + i sin θ.

⊛ Example 5.2

If z = ex+yi = ex · eyi = ex(cos y + i sin y), then z = (ex, y) in polars.

We can apply this idea to prove some trigonometric formulas. Consider e2iθ;

e2iθ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ︸ ︷︷ ︸
Re

+2 sin θ cos θ︸ ︷︷ ︸
Im

i

e2iθ = cos(2θ)︸ ︷︷ ︸
Re

+i sin(2θ)︸ ︷︷ ︸
Im

=⇒ cos(2θ) = cos2 θ − sin2 θ

=⇒ sin(2θ) = 2 sin θ cos θ
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6 Rings (A Brief Introduction)

6.1 Definitions

↪→ Definition 6.1: Ring

A ring R is a set with two operations25

• Addition: R×R +−→ R, (a, b) 7→ a+ b

• Multiplication: R×R ·−→ R, (a, b) 7→ a · b

The following hold:

1. (+ is commutative) a+ b = b+ a,∀a, b ∈ R.

2. (+ is associative) a+ (b+ c) = (a+ b) + c,∀a, b, c ∈ R.

3. (0) ∃ a zero element, 0, s.t. 0 + a = a+ 0 = a,∀a ∈ R.

4. (negative) ∀a ∈ R, ∃b ∈ R s.t a+ b = 0.

5. (· associative) a(bc) = (ab)c, ∀a, b, c ∈ R.

6. (1, multiplicative identity) ∃1 ∈ R s.t. 1 · a = a · 1 = a, ∀a ∈ R.26

7. (distributive) ∀a, b, c ∈ R, a(b+ c) = ab+ ac

Z,Q,R,C,R[i] := {a + bi : a, b ∈ Z},M2(Z) := {
a b

c d
: a, b, c, d ∈ Z}, . . . are all

examples of rings.
26Though not always

explicitly stated, it is often
specified that rings are closed
under addition/multiplication;
a, b ∈ R =⇒
a+ b and a · b ∈ R.

26Some texts
(Hungerford) do not require
the multiplicative identity to
exist in a ring; those with this
property are called “rings with
identity”. In general, these are
all relatively arbitrary
conventions - they are defined
as such to make other
operations/observations
clearer; they are not steadfast,
natural definitions.

Remark 6.1. We do not require multiplication to be commutative; if it is, we call R a commu-
tative ring (egM2(Z),M2(R) are not commutative).

We also do not require inverse for multiplication (eg 2 doesn’t have an inverse in Z).

↪→ Definition 6.2: Field

A commutative, non-zero, ring R s.t. ∀x ∈ R and x ̸= 0 ( ⇐⇒ 1 ̸= 0 in R, ie R is not a
zero ring), ∃y ∈ R s.t. xy = yx = 1 is a field.

Fields include Q,R,C,Q[i]
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↪→ Definition 6.3: Zero Ring

{0} with 0 + 0 = 0, 0 · 0 = 0, where 1 = 0 (identity element is 0).

⊛ Example 6.1

Show that Q[i] is a field.

If x ∈ Q[i], x = a+ bi ̸= 0 then

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a

a2 + b2︸ ︷︷ ︸
∈Q

− b

a2 + b2︸ ︷︷ ︸
∈Q

i ∈ Q[i],

and thus Q[i] has multiplicative inverses in Q[i].

↪→ Corollary 6.1

Note the following consequences of the above axioms:

1. 0 is unique; if x ∈ R has the property that x+ a = a+ x = a∀a ∈ R, then x = 0.

2. 1 is unique; if x ∈ R has the property that x · a = a · x = a∀a ∈ R, then x = 1.

3. The element b s.t. a + b = b + a = 0 is uniquely determined by a; if x ∈ R and
x+ a = a+ x = 0, then x = b. We denote such b as −a, ie

−a+ a = a+ (−a) = a− a = 0.

4. −(−a) = a.

5. −(x+ y) = −x− y.

6. x · 0 = 0 · x = 0∀x ∈ R.

↪→ Definition 6.4: Subring

Let R be a ring. A subset S ⊆ R is a subring if

1. 0, 1 ∈ S.

2. x, y ∈ S =⇒ x+ y,−x, x · y ∈ S.

Then, S is a ring itself.

Z ⊆ Q ⊆ R ⊆ C are subrings; Z ⊆ Z[i] ⊆ Q[i] ⊆ C are subrings;M2(Z) ⊆M2(R) are
subrings.
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7 Division

7.1 With Residue

↪→Theorem 7.1

Let a, b ∈ Z with b ̸= 0. There exist unique integers q (quotient) and r s.t.

a = q · b+ r, 0 ≤ r < |b|.

Proof. Assume b > 0 (similar proof applies for b < 0). Consider the set S = {a − bx : x ∈
Z, a − bx ≥ 0}. Note that S ̸= ∅. If a ≥ 0, take x = 0. If a < 0, take x = a to get
a− bx = a− ba = a(1− b) ≥ 0.
Thus, S has a minimal element; let r = min(S). Because r ∈ S, r ≥ 0, and

r = a− bq some q ∈ Z =⇒ a = bq − r.

Here, we claim r < b. If r ≥ b, then 0 ≤ r− b = a− b(q+1) ∈ S, contradicting the minimality
of r. Thus, 0 ≤ r < b.
We wish to show that q, r are unique, meaning that if a = bq′+ r′, q′ ∈ Z, 0 ≤ r < b =⇒ q =

q′, r = r′.
If q = q′, then r = a− bq = a− bq′ = r′✓.
Otherwise, wlog, say q > q′. We then have

0 = a− a = (bq + r)− (bq′ + r′)

= b(q − q′) + (r − r′)
=⇒ r′ = r + b(q − q′) ≥ b, ⊥(0 ≤ r′ < |b|)

■

7.2 Without Residue

↪→ Definition 7.1

Let a, b ∈ Z. We say a divides b, a|b if b = a · c, some c ∈ Z (If a ̸= 0, this is the case ⇐⇒
the residue of dividing b by a is 0).

↪→ Lemma 7.1: Properties of Division

1. 0 is divisible by any integer a

2. 0 only divides 0
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3. a|b =⇒ a|(−b)

4. a|b and a|d =⇒ a|(b± d)

5. a|b =⇒ a|bd∀d

6. a|b and b|a =⇒ a = ±b

Proof. 1. 0 = a · 0∀a✓

2. 0|b, then b = 0 · c some c =⇒ b = 0 ✓

3. b = ac =⇒ −b = a · (−c) ✓

4. b = a · c1, d = a · c2. b± d = a(c1 ± c2) ∈ Z ✓

5. b = ac, so bd = a · (cd) ✓

6. a|b =⇒ b = a · c, b|a =⇒ a = b · d. If either a = 0 or b = 0, both are 0, so
a = ±b. Assume a ̸= 0, b ̸= 0. Then, we have that a = bd = acd

a̸=0
=⇒ cd = 1. Either,

c = d = 1 =⇒ a = b, or c = d = −1 =⇒ a = −b ✓

■

⊛ Example 7.1

Which integers could divide both n and n3 + n+ 1?
Suppose d does. then d|n and d|(n3 + n + 1), then d|n3 =⇒ d|(n3 + n) =⇒
d|((n3 + n+ 1)− (n3 + n)), and so d|1 so d = ±1.

7.3 Greatest Common Divisor (gcd)

↪→ Definition 7.2: GCD

Let a, b be integers, not both 0. The gcd of a, b denoted gcd(a, b) is the greatest positive
number divided both a and b.

Remark 7.1. Note that if both a, b are not 0, then d = gcd(a, b) ≤ min{|a|, |b|} because if d|a
then a = d · c =⇒ |a| = |d| · |c| =⇒ |d| = d ≤ |a|.
Similarly, |d| ≤ |b|.

↪→Theorem 7.2

Let a, b ∈ Z, not both 0. Let d = gcd(a, b). Then,

1. ∃u, v ∈ Z s.t. d = ua+ vb;

2. d is the minimal positive integer of the form ua+ vb, u, v ∈ Z;
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3. every common divisor of a, b divides d.

Proof. Let S = {ma+nb : m,n ∈ Z,ma+nb > 0}. S ̸= ∅ because a · a+ b · b = a2+ b2 > 0,
so a2 + b2 ∈ S.
Let D = min(S), so D = ua+ vb, u, v ∈ Z. We claim that this D equals d = gcd(a, b).
We claim first that D|a. We can write

a = D · q + r, 0 ≤ r < D,

r = a−Dq = a− (ua+ vb)q

= a(1− uq) + b(−vq)
=⇒ r > 0 =⇒ r ∈ S, contradicts minimality of D

Thus, D divides both a and b, and so D ≤ d (any common divisor is leq gcd).
Let e be any common divisor of a, b. We have

e|a =⇒ e|ua and e|b, =⇒ e|vb =⇒ e|(ua+ vb) = D.

In particular, d|D =⇒ d ≤ D. It follows that D = d. ■

⊛ Example 7.2

gcd(7611, 592) = 1.
One can write 1 = 195× 7611− 2507× 592. How do we know? Mathematica.

7.4 Euclidean Algorithm

Remark 7.2. gcd(−a, b) = gcd(a, b) = gcd(a,−b) = · · ·

↪→Theorem 7.3: Euclidean Algorithm

Let a, b be positive integers a ≥ b.
If b|a, then gcd(a, b) = b.
Else, perform the following:

a = b · q0 + r0, 0 < r0 < b

b = r0 · q1 + r1, 0 < r1 < r0

r0 = r1 · q2 + r2
... ...

rt−2 = rt−1 · qt + rt, 0 < rt < rt−1

rt−1 = rt · qt+1 + 0︸︷︷︸
rt+1

§7.4 Division: Euclidean Algorithm p. 25



Because the residues are non-negative decreasing integers, the process must stop; there is
a first t s.t. rt+1 = 0. Then, gcd(a, b) = rt, the last non-zero residue.27

27Sketch: we show the
equivalence by proving that
they each divide each other,
and are thus equal by
lemma 7.1. This is done by
induction on the residuals
dividing “each other”, and
working “backwards”
essentially, then by induction
on an arbitrary element
dividing the residuals to show
that it must then divide the
gcd.

Proof. We first prove by induction that for all 0 ≤ i ≤ t + 1, rt divides both rt−i and rt−i−1.
( =⇒ rt|r−1 = b, rt|r−2 = a.)

(1) i = 0, then rt|rt and rt|rt−1 (as rt−1 = rt · qt+1)

(2) Suppose rt|rt−i and rt|rt−i−1 for some 0 ≤ i < t+ 1. We have that

rt−i−2 = rt−i−1 · qt−i + rt−i

We then have that
rt|(rt−i + rt−i−1qt−i) = rt−i−2,

so rt| rt−i−1︸ ︷︷ ︸
rt−(i+1)

and rt| rt−i−2︸ ︷︷ ︸
rt−(i+1)−1

.Then, rt| gcd(a, b).

Next we show that if e|a and e|b then r|rt ( =⇒ gcd(a, b)|rt, then we would have rt =

gcd(a, b)). We prove by induction on 0 ≤ i ≤ t+ 1 that e|ri−2 and e|ri−1.

(1) i = 0, then e|r−2 = a and e|r−1 = b, base case holds

(2) Suppose e|ri−2 and e|ri−1 for some i < t+ 1. We have that

ri−2 = ri−1 · qi + ri, e|(ri−2 − ri−1 · qi) = ri.

So,
e| ri︸︷︷︸

r(i+1)−2

and e| ri︸︷︷︸
r(i+1)−1

■

Remark 7.3 (Extended Euclidean Algorithm). After completing the algorithm, one can then
“work backwards” to write any d = gcd(a, b) as d = ua+ vb.
Start by writing d = rt−2− rt−1 · qt; then, substitute in preceding residuals, simplifying along the
way (but making sure to leave the quotients from each substitution, as these are what you will
substitute in the next step), and continue until you have the desired form. Consider the following
example:

⊛ Example 7.3
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a = 48, b = 27, d = gcd 48, 27 =?

48 = 27 · 1 + 21

27 = 21 · 1 + 6

21 = 6 · 3 + 3

6 = 3 · 2 + 0

=⇒ gcd(48, 27) = 3

=⇒ 3 = 21− 6 · 3
= 21− (27− 21)3

= 21 · 4− 27 · 3
= (48− 27) · 4− 27 · 3
= 48 · 4− 7 · 27

7.5 Primes

↪→ Definition 7.3: Prime

An integer n ̸= 0, 1,−1 is called prime if its only divisors are ±1,±n.
A positive integer n is prime iff its only positive divisors are 1, n.

Remark 7.4. The goal of this section is to prove theorem 7.5, of unique prime factorization; we
then extend it to the rationals. We introduce a number of lemmas/auxiliary results regarding
primes to build up to the proof.

↪→ Lemma 7.2

Every natural number n > 1 is a product of prime numbers.

Proof. We prove by induction.
Base case; n = 2, 2 is prime, done.
Suppose it is true for all integers 1 < r ≤ n; we will prove for n+ 1.28

• If n+ 1 is prime, we are done.

• Else, n + 1 has a non-trivial factorization, n + 1 = r · s, where 1 < r ≤ n, 1 < s ≤ n.
By induction, there exists primes pi, qi such that r = p1 · · · pa and s = q1 · · · qb. We can
then write

n+ 1 = r · s = p1 · · · paq1 · · · qb,

a product of primes, and so we are done.

■
28Complete induction…
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↪→ Definition 7.4: Empty Product

1; when we say n = p1 · · · pa, 0 ≤ a, a product of primes, a = 0, empty product, means
n = 1.

↪→ Corollary 7.1

Any non-zero integer n is of the form

ϵ · p1 · · · pa, ϵ ∈ {±1},

where pi are primes numbers, a ≥ 0.

Proof. If n > 1, this is the lemma 7.2 where ϵ = 1. If n < −1, the by lemma 7.2,

−n = p1 · · · − pn

so n = −1p1 · · · pa = −p1 · · · pa. ■

↪→Theorem 7.4: Sieve of Eratosthenes

Let n > 1 be an integer. If n is not prime, then n is divisible by some prime 1 < p ≤
√
n.

Sketch Proof. n = p1 · · · pa. n not prime, a ≥ 2. If each pi >
√
n, then p1p2 · · · pa <

√
n ·
√
n =

n,⊥ ■

↪→ Lemma 7.3

Let p > 1 be an integer. The following are equivalent:

1. p is prime

2. If p|ab, product of two nonzero integers, then p|a or p|b.

Proof. Assume 2., suppose p = st ∈ Z. wlog, s, t > 0 (else replace s by −s, t by −t). p|st,
so by 2., say p|s , wlog. We can write s = p × w, then p = s · t = p · w · t, which are all
positive integers. It must be that w = t = 1, and thus s = p. Therefore, p has no non-trivial
factorizations and is thus prime.
Assume now that 1. holds; p|ab. If p|a, we are done.
Suppose p��|a. Then, gcd(p, a) = 1 (since only divisors of p are 1, p, so gcd could only be 1, p, but
if gcd = p then p|a which is not the case). From a property of gcd’s, we can write 1 = up+ va

for some u, v ∈ Z. Multiplying this by b, we have b = upb+ vab.
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We have

p|ab =⇒ p|vab
p|p =⇒ p|upb

=⇒ p|(upb+ vab), so p|b

■

↪→ Corollary 7.2

Let p be prime. Suppose p|a1a2a3 · · · am where ai ∈ Z,m ≥ 1. Then, p|ai for some i

Proof. By induction; we just showed the case m = 2. Suppose it is true for m ≥ 2 and
p|a1a2 · · · am+1; then, p| (a1a2 · · · am)︸ ︷︷ ︸

(i)

· am+1︸ ︷︷ ︸
(ii)

. Then, either p|(i) or p|(ii), so p|am+1 or p|ai, 1 ≤

i ≤ m, as required. ■

↪→Theorem 7.5: Fundamental Theorem of Arithmetic

Let n ∈ Z, n ̸= 0. There exists ϵ ∈ {±1} and prime numbers p1, · · · , pa, a ≥ 0 such that
n = ϵ · p1 · · · pa, uniquely.29

29Sketch: this shows only
uniqueness, existence is
proven by lemma 7.2. Use
induction; base case, n = 2
trivial. Use complete
induction, and proceed by
contradiction (kind of).
Assume that n has two
distinct prime factorizations.
Then, break down by cases;
p1 = q1 or not. If they are,
then take some smallm
covered by inductive
assumption, set equal to n

p1
,

meaning that if p1 = q1, the
remaining pi = qi.
For inequality, show that
p1 < q1 =⇒ p1 < p1 by
showing that p1|q1 · · · , and
thus p1 = qi for some i, so
p1 < q1 ≤ · · · qi = p1, and
thus you have a contradiction.

Proof. First, it is clear that the sign is unique, so wlog, we only consider positive n. We have
already proved that ∃ such a factorization by lemma 7.2; we now aim to show that this is unique.
We proceed by induction.
Base case: n = 1; pi, qj ≥ 2, only option is the empty product a = b = 0.
Assumption: say holds for integers 1 ≤ m ≤ n − 1, n ≥ 2 (numbers smaller than n). We are
given

n = p1 · · · pa = q1 . . . qb.

• Suppose p1 = q1. Then m = n
p1

= p2 · · · pa = q2 · · · qb =⇒ a = b and pi = qi for
2 ≤ i ≤ a (and also, p1 = q1) (covered by inductive hypothesis)

• Otherwise, p1 ̸= q1, and wlog (symmetric) p1 < q1. We have p1|n so p1|q1 · · · qb
p prime
=⇒

p1|qi for some 1 ≤ i ≤ b (by lemma 7.3, extended to the product of any number of
numbers). As pi prime, p1 = qi, implying p1 < q1 ≤ q2 ≤ · · · qi = p1, a contradiction to
the assumption that p1 < q1. Thus, p1 = q1.

Alternatively, we could write n = ϵpa11 · · · pass where pi are distinct prime numbers and
ai > 0 (ie, we are “collecting” the identical primes, and raising them to the power of how many
times they appear) where pi and ai are unique. ■
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↪→Theorem 7.6: Version of FTA for Rationals

Let q ̸= 0 be a rational number. Then, ∃ a unique sign ϵ ∈ {±1}, integer s, primes p1, . . . , pa
and exponents ai ∈ Z, ai ̸= 0 s.t.

q = ϵ · pa11 · · · pass

Proof. Write q = m
n
, wherem,n ∈ Z. Then, we can writem as

m = ϵm · pb11 · · · pbss ; n = ϵn · pc11 · · · pcss

Remark 7.5. If we allow 0 as an exponents, we can write these such that the same primes appear
in both n andm.

We can then write
m

n
=
ϵm
ϵn
pb1−c1
1 · · · pbs−cs

s .

We can now omit the primes with bi − ci = 0 to get only non-zero exponentiated primes. We
have thus shown existence
To show uniqueness, we can disregard the sign as before. Say 0 < q = pa11 · · · pass = p

a′1
1 · · · p

a′s
s .

If these are equivalent representations, then letting ci = ai−a′i, we get that 1 = pc11 · · · pcss ; thus,
we aim to show that c1 = · · · cs = 0. wlog, we can rearrange these c’s such that c1, · · · , ct <
0, ct+1, · · · , cs ≥ 0. This implies that p−c1

1 · · · p−ct
t = p

ct+1

t+1 · · · pcss . This is an equality on integers,
and as given by FTA, this is only possible if ci = 0∀i. ■

↪→ Proposition 7.1
√
2 /∈ Q

Proof. Suppose it is. Then
√
2 = pa11 · · · pass , ai ̸= 0, pi distinct primes. Then, we have

2 = (pa11 · · · pass )2 = p2a11 · · · p2ass .

But, 2 = 21, and by uniqueness of factorization, we get a contradiction because 1 ̸= 2ai for any
i. ■

↪→Theorem 7.7

There exist infinitely many prime numbers.

Proof. Suppose p1, . . . , pn are distinct prime numbers. Then, there exists a prime number pn+1

which is not one of these. Let N = p1p2 · · · pn + 1 > 1, so ∃p|N where p prime. If p = on of
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p1 . . . pn, say some pi; then, p|N and p|p1p2 · · · pn =⇒ p|(N − p1 · · · pn) =⇒ p|1, which is a
contradiction. ■

↪→ Proposition 7.2

Let a, b ̸= 0, a, b ∈ Z. Then a|b ⇐⇒ a|ϵpa11 · · · pamm , a1 > 0, pi prime, ϵ ∈ {±1} and
b = µp

a′1
1 · · · p

a′m
m qb11 · · · qbtt , a′i ≥ ai, qi primes, bi > 0.

Proof. If we can, then b
a
=
µ

ϵ
· pa

′
1−a1

1 · · · pa′m−am
m qb11 · · · qbtt︸ ︷︷ ︸

:=c

=⇒ b = a · c =⇒ a|b.

If a|b so b = a · d. We can write a = ϵpa11 · · · pamm , and d = ϵ′pr11 · · · prmm qb11 · · · qbtt , and let
b = (ϵϵ′)pa1+r1

1 · · · pam+rm
m qb11 · · · qbtt (where ri > 0), and let a′i = ai + ri ≥ ai. ■

↪→ Corollary 7.3

Let n = ϵpa11 · · · patt ∈ Z, ϵ = ±1, pi distinct primes, ai > 0. Then the divisors of n are
precisely the integers

µpc11 · · · pctt , µ = ±1, 0 ≤ ci ≤ ai.

Remark 7.6. Let a, b ∈ Z \ {0}; we write

a = ϵpa11 · · · patt , b = µpb11 · · · pbtt .

We have d = gcd(a, b) = p
min(a1,b1)
1 · · · pmin(at,bt)

t .
theorem 7.2 also follows naturally from this manner of thinking, and can be proved accordingly.

⊛ Example 7.4

90 = 2 · 32 · 5 · 70; 210 = 2 · 3 · 5 · 7. gcd(90, 210) = 2 · 3 · 5 · 70 = 30✓.

8 Congruences, Modular Arithmetic

8.1 Definitions

↪→ Definition 8.1

Fix n ≥ 1, n ∈ Z. We define a relation of Z by x ∼ y if n|(x− y).

⊛ Example 8.1

n = 2; x ∼ y if they have the same parity, ie both even or both odd.
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↪→ Lemma 8.1

The above relation is an equivalence relation. We will denote the equivalence class of an
integer r by r. Then,

r = {. . . r − 2n, r − n, r, r + n, r + 2n, . . . }.

The set
{0, 1, · · · , n− 1}

is a complete set of representatives.

Proof. We first show that the relation is an equivalence relation:
Reflexive: x− x = 0 =⇒ n|(x− x)∀n, so x ∼ x.
Symmetric: say x ∼ y =⇒ n|(x− y) =⇒ n| − (x− y) =⇒ n|(y − x) =⇒ y ∼ x.
Transitive: say x ∼ y, y ∼ z =⇒ n|(x − y), n|(y − z) =⇒ n|((x − y) + (y − z)) =⇒
n|(x− z) =⇒ x ∼ z.
Now, we show that the described set is a complete set of representatives, ie we aim to show

1. any x ∈ Z belongs to some r, 0 ≤ r ≤ n− 1.

Proof of 1: Given x ∈ Z, we can write x = q ·n+ r, 0 ≤ r ≤ n−1, and x− r = q ·n =⇒
n|(x− r), so x ∼ r. Ie, x ∈ r.

2. if 0 ≤ r ≤ s ≤ n− 1 and r = s, then r = s (no repetitions, ie “repeat representation”).

Proof of 2: If r = s, then r ∈ r and r ∈ s, so r ∼ s. So, n|(s−r); but 0 ≤ s−r ≤ n−1 < n,
implying s− r = 0 =⇒ s = r (since it must be a multiple of n, but less than n).

■

⊛ Example 8.2

For n = 2, we have two equivalence classes, 0 = evens = {2x : x ∈ Z}, 1 = odds =
{2x+ 1s : x ∈ Z}.
For n = 3, we have three; 0 = {3x : x ∈ Z}, 1 = {1 + 3x : x ∈ Z}, 2 = {2 + 3x :

x ∈ Z}.

↪→ Definition 8.2

x ∼ y, we say x is congruent to y modulo n, and write

x ≡ y mod n.
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↪→ Definition 8.3

We use Z/nZ or Zn to denote the collection of congruence classes mod n, ie Z/nZ =

{0, 1, . . . , n− 1}.

↪→Theorem 8.1

Z/nZ is a commutative ring with n elements. It is a field iff n is prime.
We often denote Z/pZ where p prime as Fp.

Proof. We define r + s = r + s, r · s = rs. This is well defined; meaning if we use other
representatives r′, s′, we’ll get the same result. Ie, given r ∼ r′, s ∼ s′, we need to show
r′ + s′ = r + s, r′ · s′ = r · s, ie n|((r + s)− (r′ + s′)), n|(rs− r′s′).
(r + s) − (r′ + s′) = (r − r′) + (s − s′); both r − r′ and s − s′ are divisible by n, so we can
write rs− r′s′ = r(s− s′) + s′(r − r′); this whole thing is divisible by n. Now, we can verify
the axioms:

1. r + s = s+ r; r + s = r + s = s+ r = s+ r (commutativity of addition)

2. . . .

3. 0 is the neutral element; 0 + r = 0 + r = r (neutral addition element)

4. (r) + (−r) = (−r) + r = 0 (inverse wrt addition)

5. . . .

6. 1 · r = r

7. . . .

We now aim to show that Z/nZ ⇐⇒ n ∈ P. Suppose n composite, namely na · b,
1 < a < n, 1 < b < n. Note that a, b ̸= 0; but, a · b = a · b = n = 0. If Z \ nZ is a field, then
∃y s.t. y · a = 1. We have (y · a) · b = 1 · b = b, but y · (a · b) = y · 0 = 0, a contradiction.
Suppose, now, n ∈ P. To show Z/nZ is a field; let a ̸= 0 ∈ Z/nZ, that is n��|a. But n is prime,
so gcd(a, n) = 1, so ∃u, v ∈ Z such that 1 = ua+ vn. But this means

n|(1− ua) =⇒ ua ≡ 1 mod n =⇒ u · a = 1 ∈ Z/nZ,

and we have thus found a multiplicative inverse. ■

⊛ Example 8.3
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n = 2; we have
+ 0 1
0 0 1
1 1 0

and
× 0 1
0 0 0
1 0 1

; 1 + 1 = 2 = 0.

⊛ Example 8.4

n = 3; we have

+ 0 1 2
0 0 0 0
1 1 2 0
2 2 0 1

and

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

; 2 + 2 = 4 = 1.

↪→ Lemma 8.2

Let R be a commutative ring. If R has zero divisors then R is not a field.

Proof. Let x ̸= 0 be a zero divisor, and y ̸= 0 s.t. xy = 0. If R a field, then ∃z ∈ R s.t. zx =

1. But then, z(xy) = z · 0 = 0, and z(xy) = (zx)y = 1 · y = y, hence y must be 0, a
contradiction. ■

↪→ Definition 8.4: Unit

An element x in a ring R is called a unit if ∃y ∈ R such that xy = yx = 1.

⊛ Example 8.5

If R a field, then any nonzero x ∈ R is a unit. If R = Z/6Z, then 2, 3, 4 are not units,
but 1 and 5 are units.

↪→ Proposition 8.1

Take n > 1. An element a ∈ Z/nZ is a unit iff gcd(a, n) = 1.

Proof. Note: gcd(a, n) = 1 depends only on the congruence class a; gcd(a+kn, n) = gcd(a, n).
Suppose a is a unit, ie ∃y ∈ Z/nZ s.t. y · a = 1 =⇒ ya = 1 =⇒ ya − 1 = k · n, for some
k ∈ Z, ie ya− kn = 1. Thus, if d|a and d|n, then d|1 =⇒ d = ±1 =⇒ gcd(a, n) = 1.
Conversely, suppose gcd(a, n) = 1. Then, ∃u, v ∈ Z s.t. ua + vn = 1 =⇒ u · a + vn = 1.
Now, n = 0 =⇒ v · n = 0, so u · a = 1, hence a is a unit. ■

↪→ Corollary 8.1

If n is prime any a ̸= 0 is a unit.
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8.2 Binomial Coefficients

↪→ Definition 8.5: Binomial Coefficient

Letm ≥ n be non-negative integers.
(
m
n

)
(m choose n) ways to choosem objects among n

objects, where order doesn’t matter, where
(
m
n

)
= m!

n!(m−n)!
.

We also have that (
n

l

)
+

(
n

l − 1

)
=

(
n+ 1

l

)

(
0

0

)
(
1

0

) (
1

1

)
(
2

0

) (
2

1

) (
2

2

)
(
3

0

) (
3

1

) (
3

2

) (
3

3

)
Pascal’s Triangle

↪→ Lemma 8.3

Let p ∈ P, and let 1 ≤ n ≤ p− 1. Then,

p|

(
p

n

)
.

Proof. First note that if 1 ≤ a ≤ p − 1, p ̸ |a!. If p|a! = 1 · 2 · 3 · · · a, then p|b where b =

{1, 2, . . . a}. But we have that 1 ≤ b ≤ p, so this is not possible.

Now, we have
(
p

n

)
= p!

n!(p−n)!
= d ∈ Z =⇒ p! = d · n!(p − n)!. As p|p! and p ̸ |n! nor

(p− n)!, (as shown above) since n ≤ p− 1, p− n ≤ −1, so, since p prime, p|d. ■

8.3 Solving Equations in Z/nZ

↪→ Definition 8.6

8.3.1 Linear Equations
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8.4 Fermat’s Little Theorem

↪→Theorem 8.2: Fermat’s Little Theorem

Let p be a prime number. Let a ̸≡ 0 mod p then

ap−1 ≡ 1 mod p.

Remark 8.1. This implies that, for every a, ap ≡ a mod p. Conversely, If a ̸≡ 0 mod p, then
ap ≡ a mod p =⇒ ap−1 ≡ 1 mod p by multiplying both sides with the congruence class
b s.t. ba ≡ 1 mod p.

↪→ Lemma 8.4

Let R be a commutative ring and x, y ∈ R. Interpret
(
n

i

)
as adding 1 to itself

(
n

i

)
times.

Then, the binomial formula holds in R, ie

(x+ y)n =
n∑

i=0

(
n

i

)
xiyn−i.

Ie,
(
n

j

)
means 1R + · · ·+ 1R,

(
n

j

)
times.

Proof. (Of lemma 8.4) We proceed by induction. Case n = 1, clear; (x+ y)1 = x1 + y1✓.
Assume it holds for n. We write

(x+ y)n+1 = (x+ y)n(x+ y) =

(
n∑

j=0

(
n

j

)
xn−jyj

)
︸ ︷︷ ︸

assumption

·(x+ y)

=
n+1∑
l=0

clx
n+1−l · yl

where cl =
(
n

l

)
︸ ︷︷ ︸

from

n
l

xn−lylx

+

(
n

l − 1

)
︸ ︷︷ ︸

from

 n

l − 1

xn−(l−1)yl−1y

=

(
n+ 1

l

)
, hence (x+y)n+1 =

∑n+1
l=0

(
n+ 1

l

)
xn+1−lyl.

■

Proof. (Of Fermat’s Little Theorem) We aim to show that ap ≡ a mod p for any a. It is suffi-
cient to show that it holds for 1 ≤ a ≤ p− 1.
We prove by induction on 1 ≤ a ≤ p− 1. a = 1 =⇒ 1p ≡ 1 mod p.
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Suppose it holds for 1 ≤ a ≤ p− 2, and prove for a+ 1. Then, by lemma 8.4,

(a+ 1)p =

p∑
i=0

(
p

i

)
ai (1)

≡ ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·+

(
p

p− 1

)
a+ 1 (2)

≡ 1 + ap (by lemma 8.3) (3)
≡ 1 + a by induction hypothesis (4)

Since 1+a ̸≡ 0 mod p, it has an inverse in y ∈ Fp, y(1+a) ≡ 1. Then, y(1+a)p ≡ y(1+a) ≡ 1.
Also, y(1 + a)p = y(1 + a)(1 + a)p−1 ≡ (1 + a)p−1, hence (1 + a)p−1 ≡ 1. ■

⊛ Example 8.6: Application of Fermat’s Little Theorem

Calculate 22023 · 39 mod 7. Divide 2023 by 6 = 7− 1 = p− 1 with residue. 2023 =

6 · 337 + 1, and 9 = 1 · 6 + 3.
22023 ·39 = 2(26)337 ·36 ·33. By FLT, this is equivalent to 2(1)337 ·1·33 ≡ 2·27 ≡ 54 ≡ 5

mod 7.

9 Arithmetic of Polynomials

9.1 Definitions

↪→ Definition 9.1: Polynomial Ring

Let F be a field, and let F[x] be the ring of polynomials with coefficients in F, ie

F[x] = {anxn + · · · a1x+ a0 : ai ∈ F}.

Operations of addition, multiplication are defined as is familiar.

⊛ Example 9.1

F = Z/3Z. We have

(x2 + x+ 1)(2x+ 1) + 2x2 + 5 ≡ 2x3 + (����:0
1 + 2)x2 +�����:0

(1 + 2)x+ 1 + 2x2 + 6

≡ 2x3 + 2x2 + �6 mod 3

↪→ Definition 9.2: deg

If f = anx
n + · · · a1x + a0 has an ̸= 0, we say deg f = n, unless f = 0, where deg f

undefined.
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If f, g not zero, then deg(f · g) = deg(f) + deg(g); thus, if f, g are not zero, f · g ̸= 0. If
f · g = 0, we must have either that f = 0 or g = 0, or both. Thus, this is a commutative
ring with no zero divisors.

↪→Theorem 9.1: Division with Residue

Let f, g ∈ F[x], g ̸= 0. Then, ∃! polynomials g, r ∈ F[x] s.t. f = q · g + r, where either
r = 0 or deg(r) < deg(g); furthermore, q, r are unique.

Proof. If f = 0, then take q = 0, r = 0 (no other choice). Take f ̸= 0 wlog. We first prove
existence by induction on deg f .

• Base: deg f = 0: If deg g > 0, let q = 0, r = f , hence f = 0 · g + f . Otherwise, if
deg g = 0, then g is a constant, then f = (fg−1) · g + 0.

• Assumption: suppose true for all polynomials h ∈ F[x] such that deg h ≤ n and deg f =

n+ 1. Say f = an+1x
n+1+ l.o.t.30, and g = bmx

m+ l.o.t., where bm ̸= 0.

– If n+ 1 < m, then f = 0 · g + f , deg f < deg g.

– If n + 1 ≥ m, then f(x) = an+1b
−1
m xn+1−mg︸ ︷︷ ︸

=an+1xn+1+ l.o.t

+h(x), where h is essentially the

“difference” between the expression. Note that deg h ≤ n; hence, by induction
h(x) = q̃(x) ·g(x)+r(x), where either r(x) = 0 or deg r < deg g. This implies that

f(x) = (an+1b
−1
m xn+1−m + q̃(x))︸ ︷︷ ︸

q(x)

g(x) + r(x).

Thus, the proof holds for all deg f . We know show uniqueness. Suppose f = q1g+r1 = q2g+r2,
where ri = 0 or deg ri < deg g. Consider

(q1 − q2)g = r2 − r1.

If RHS ̸= 0, then the LHS ̸= 0, hence q1 − q2 ̸= 0. Since g ̸= 0, then deg(LHS) = deg(q1 −
q2)+deg g ≥ deg g. But deg RHS ≤ max(deg r1, deg r2) < deg g, and we have a contradiction.
Hence, RHS = 0 =⇒ LHS = 0, hence q1 − q2 = 0, so r1 = r2, q1 = q2, and the polynomial is
thus unique. ■

30Lower order terms

↪→ Definition 9.3: Divisibility

We say g|f if r = 0; namely,

f = q · g for some q ∈ F[x].
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As before, g|f =⇒ g|hf for any h ∈ F[x]; g|f1, g|f2 =⇒ g|(f1 ± f2); etc. Many of the
other consequences of divisibility in integers follow similarly.

9.2 GCD

↪→ Definition 9.4: GCD of Polynomials

Let f, g ∈ F[x] not both 0. The greatest common divisor of f, g denoted gcd(f, g) is amonic
polynomial of largest degree dividing both f and g.

↪→ Definition 9.5: Monic

f = anx
n + · · ·+ a0, an ̸= 0 is monic if an = 1 (leading term is one).

↪→Theorem 9.2: GCD

gcd(f, g) exists and is unique. Furthermore, of the nonzero monic polynomials of the form

u(x)f(x) + v(x)g(x),

it has the minimal degree. Any common example of f, g divides the gcd.

Proof. • Existence: Let S := {a(x) : a(x) monic, nonzero; a(x) = u(x)f(x) + v(x)g(x).}.
S ̸= ∅; if f ̸= 0, rather f = anx

n+ l.o.t., then a(x) = a−2
n f(x) · f(x) + 0 · g(x) ∈ S

(if f = 0, use g by same argument). Choose some h(x) ∈ S have the minimal positive
degree.

• Unique: suppose h1(x) ∈ S and deg h = deg h1 = d, h = xd + lot = uf + vg,
h1 = xd + log = u1f + v1g. Now either:

– h− h1 = 0 (done)

– deg(h−h1) < deg h. However, h−h1 = (u−u1)f+(v−v1)g. h−h1 = aex
e+ lot,

then ae−1(h− h1) is monic of deg < deg h, and is in S, a contradiction.
Hence, h must be unique.

• h|f, h|g: Write
f = q · h+ r.

If r = 0, h|f . Else, r = f − q ·h, and thus r ∈ S, and we can write r = f − q(uf + vg) =
(f − qu)f − (qv)g. Thus, after normalization (ie “divide out” to make monic), r ∈ S,
and has a smaller degree then h, and we thus have a contradiction, and so r = 0. Thus,
h|f, h|g.

• Maximality of deg(h): Suppose t(x)|f, t(x)|g, thus t(x)|(uf + vg), so t|h. Thus, deg t ≤
deg h, and further h has the maximal possible degree, hence h is the monic common
divisor of max degree.
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• Uniqueness of GCD: Say h1 another common divisor of f, g of the same degree of h. We
have that deg h = deg h1 and h1|h, and further h, h1 monic, then h = h1.

■

↪→Theorem 9.3: Euclidean Algorithm (Polynomials)

Each

f = q0 · g + r0, r0 = 0 or deg(r0) < deg(g)

g = q1 · r0 + r1, r1 = 0 or deg(r1) < deg(r0)

r0 = q2 · r1 + r2 · · ·
...

rn−1 = qn+1rn

We have that rn, once normalized, is the gcd(f, g) (ie if rn(x) = anx
n + lot, we normalize

by dividing by an).

Proof. ■

⊛ Example 9.2

f = x3 − x2 + 2x− 2, g = x2 − 4x+ 3 ∈ Q[x].

f = (x2 − 4x+ 3)(x+ 3) + (11x− 11)

x2 − 4x+ 3 = (11x− 11)(
1

11
x− 3

11
)

Hence, gcd(f, g) = 1
11
(11x− 11) = x− 1. The same process follows to find u, v; we

have x− 1 = 1
11
(f − g(x+ 3)) = 1

11
f − 1

11
(x+ 3)g.

⊛ Example 9.3

F = F2 = Z/2Z = {0, 1}where 1+1 = 0. Take f = x5+x3+x2+x, g = x3+x2+x.

f = (x3 + x2 + x)(x2 + x+ 1) + x2

x3 + x2 + x = x2(x+ 1) + x

x2 = x · x

Hence, gcd(f, g) = x. We also have that x = g − x2(x + 1) = g − (f − (x2 + x +

1)g)(x+ 1) = g(1 + (x2 + x+ 1)(x+ 1))− (x+ 1)f = g · x3 + f · (x+ 1)
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↪→ Lemma 9.1

Let f(x) ∈ F[x] and α ∈ F such that f(α) = 0. Then, (x− α)|f(x)

Proof. Divide with residue: f(x) = q0(x)(x− α) + r, st r = 0 or deg(r) < 1. If r = 0, we are
done. Now, substitute α; 0 = f(α) = q(α) · (α− α)︸ ︷︷ ︸

=0

+r =⇒ r = 0. ■

↪→ Corollary 9.1

If f has deg n > 0 and f(αi) = 0 for distinct α1, . . . , αn, then f = c ·
∏n

i=1(x − αi). This
implies that, if β ̸= αi for any i, then f(β) ̸= 0. We can conclude that a polynomial of
degree n has at most n distinct roots.

⊛ Example 9.4

Do the polynomials in R[x] f = x6 + x4 − x2 − 1, g = x3 + 2x2 + x + 2 have a
common solution? They do, iff d = gcd(f, g) has a real root. In this case, gcd(f, g) =
x2 + 1 = (x− i)(x+ i), so f, g have no common real roots.

↪→ Definition 9.6: Associates

Two nonzero polynomials f, g ∈ F[x] are called associates if ∃α ∈ F, α ̸= 0, st αf = g (we
commonly denote F× = F \ {0})

Remark 9.1. Associate polynomials have the same degree.

↪→ Lemma 9.2

This is an equivalence relation and the representatives for the equivalence are the monic
polynomials.

Proof. f ∼ f , since 1 · f = f .
If f ∼ g, we have αf = g =⇒ 1

α
g = f =⇒ g ∼ f .

If f ∼ g, g ∼ h ie αf = g and βg = h, then (αβ)f = βg = h, noting that αβ ̸= 0. Thus, this
is an equivalence relation.
If f = anx

n + lot, an ̸= 0, then 1
an
f ∼ f , and anf

=
xn + lot, a monic polynomial, hence any

equivalence class has a representative which is a monic polynomial.
Further, if f, g monic and αf = g, then α = 1, hence f = g. ■

↪→ Definition 9.7: Irreducible Polynomial
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Anon-constant polynomial f (deg f > 0) is called irreducible if any g|f satisfies g 1 (namely,
a constant) or g ∼ f (namely, g = αf for some α ∈ F×).31

31This can be seen as an
analog to primes; p ∈ Z prime
ifm|p =⇒ m = ±1 or
m = ±p. Irreducible
polynomials are the “primes of
the rings of polynomials.”

Remark 9.2. If deg f > 1, f(x) irreducible =⇒ f has no root in F; if f(α) = 0, then
f(x) = (x − α)f1(x), f1(x) ∈ F[x], hence we have a non-trivial factorization since (x − α) ̸∼
1, (x− α) ̸∼ f =⇒ f reducible.
The converse does not hold; consider x2 + 1, x2 + 2 ∈ R[x]; f(x) = (x2 + 1)(x2 + 2) is reducible,
clearly, but has no real root.

Remark 9.3. Any linear polynomial, of the form ax+ b where a ̸= 0, is irreducible.

Remark 9.4. Irreducibility depends on the field in question, eg x2 + 1 is irreducible in R[x], but
x2 + 1 = (x− i)(x+ i), so it is reducible in C[x].

↪→ Proposition 9.1

Suppose32deg f ≥ 1. The following are equivalent:

1. f irreducible;

2. f |gh =⇒ f |g or f |h.
32Recall lemma 7.3, in the

integers

Proof. 1. =⇒ 2.: suppose f irreducible and f |gh. If f ̸ |g, then gcd(f, g) = 1. Then, we can
write

1 = uf + vg, some u(x), v(x) ∈ F[x]

=⇒ h = ufh︸︷︷︸
f |

+ vgh︸︷︷︸
f |

=⇒ f |h

1. ⇐= 2.: suppose f = gh, and say wlog f |g. So, f |g and g|f =⇒ deg g = deg f and so
g = f · t, and deg tmust be 0, therefore t constant, and thus hmust be constant ie h ∼ 1, hence
f irreducible. ■

↪→ Lemma 9.3

Any non-zero polynomial f ∈ F[x] can be written as

f = c · f1 · f2 · · · fn,

where all fi ∈ F[x] are irreducible, monic, and c ∈ F[x].

Proof. (By induction on deg f )

• deg f = 0 =⇒ f constant (f = f )
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• Suppose true for 0 ≤ deg g ≤ n and let f be a polynomial of deg f = n+ 1.

If f irreducible, ∃c (leading coefficient, in fact) such that f = c · f1, with f1 monic and
irreducible (if f ∼ h, then f irreducible ⇐⇒ h irreducible), and we are done.

Else, f = f1 · f2 is a non-trivial factorization ie deg(f1) < deg f, deg f2 < deg f (neither
scalars). We can write, f1 = c1p1(x) · · · pa(x) and f2 = c2pa+1(x) · · · pb(x), where each
pi irreducible and monic, by our assumption, hence f = f1f2 = (c1c2)p1 · · · pb(x), and
our inductive step is done and thus the statement holds.

■

↪→Theorem 9.4: Unique Factorization for Polynomials

Let f(x) ∈ F[x] be a non-zero polynomial. Then, we have

f = c · p1(x)a1 · · · pr(x)ar

where c ∈ F×, pi(x) monic, distinct, irreducible polynomials, and ai > 0. Moreover, c,
pi(x)’s, and ai’s are uniquely determined.

Remark 9.5. Existence follows from lemma 9.3 by collecting like polynomials under ai. It remains
to prove uniqueness.

Proof. Because pi(x) monic, leading coefficient of rhs c must be the leading coefficient of the
lhs, ie c determined by f .
Suppose we have two decompositions, say

f = c · p1(x)a1 · · · pr(x)ar = c̃ · q1(x)b1 · · · qs(x)bs .

We must have c = c̃. Then, r = s and after renaming the qi, we have that qi = pi and ai = bi.
We proceed by induction on deg f .

• deg f = 0: since we have irreducible polynomials which must have positive degree33,
hence the only option is r = s = 0, hence f = c = c̃.

• Suppose true for polynomials h(x) such that 0 ≤ deg h ≤ n, and deg f = n + 1. Note,
first, that r ≥ 1, s ≥ 1 (else f constant). We have that

p1(x)|f = c · q1(x)b1 · · · qs(x)bs
proposition 9.1

=⇒ p1(x)|c︸ ︷︷ ︸
c const, not possible

or p1(x)|qi(x) for some i.

We have that qi(x) irreducible, so p1(x) ∼ qi(x), but they are both monic, so p1(x) =

qi(x). Rename, then, qi as q1, ie p1 = q1. This implies, then that c · pa1−1
1 pa22 · · · parr =

c · qb1−1
1 qb22 · · · qbss . Then, by induction, we can “rename” each of the qi, if needed, hence

pi = qi∀i, and we are done.
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■
33Analog to primes

̸= 0,±1

↪→Theorem 9.5: Unique Factorization for Polynomials

Let f(x) ∈ F[x] be a non-zero polynomial. There exists a unique c ∈ Fx and distinct, monic,
irreducible polynomials f1(x), . . . , fr(x) with r ≥ 0 and positive integers ai s.t.

f(x) = c · f1(x)a1 · · · fr(x)ar .

↪→ Corollary 9.2

Let f(x), g(x) be non-zero polynomials. Then, f |g iff we can write

f(x) = cf1(x)
a′1 · · · fr(x)a

′
r , g(x) = df1(x)

a1 · · · fr(x)ar

where c, d ∈ Fx, fi are irreducible monic polynomials with r ≥ 0, and 0 ≤ a′i ≤ ai, 0 < ai.

Proof. If we have such an expression, then g = f ·h where h = dc−1 · f1(x)a1−a′1 · · · fr(x)ar−a′r

is a polynomial as ai − a′i ≥ 0. Conversely, suppose f |g so g = fh. Write

f = c · f1(x)a
′
1 · · · fs(x)a

′
s , c ∈ Fx, a′i > 0

h = e · f1(x)b1 · · · fs(x)b2fsh(x)ash · · · fr(x)ar

=⇒ g = (ce) · f1(x)a
′
1+b1 · · · fs(x)a

′
s+bsfs+1(x)

ash · · · fr(x)ar ,

and let d = c · e, ai = a′i + bi for 1 ≤ i ≤ s. ■

↪→ Corollary 9.3: GCD, LCM

If f, g are non-zero polynomials f(x) = c · f1(x)a1 · · · fr(x)ar , g = d · f1(x)b1 · · · fr(x)br ,
c, d ∈ Fx, ai ≥ 0, bi ≥ 0, fi distinct monic irreducible. Then

gcd(f, g) = f
min(a1,b1)
1 · · · fmin(ar,br)

r

lcm(f, g) = f
max(a1,b1)
1 · · · fmax(ar,br)

r

Remark 9.6. How does one tell if a polynomial is irreducible?

1. Any linear polynomial ax+ b, a ̸= 0 is irreducible.

2. If f(x) ∈ F[x] has degree 2 or 3, f(x) reducible iff f(x) has a root in F.

3. Over C, the only irreducible polynomials are the linear polynomials (recall theorem 5.2)

4. Over R any irreducible polynomial has degree 1 or 2. 34 34Show

5. Let f(x) ∈ Q[x] of degree d.
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(a) d = 1: f(x) irreducible

(b) d = 2, 3: f(x) reducible ⇐⇒ f has a rational root.

(c) d > 3: f(x)reducible ⇐= f has a root.

6. Let F = Fp where p prime. Let g(x) ∈ F be a non-constant polynomial. Then, g(x) has a
root in F iff gcd(g, xp − 1) ̸= 1.

While no general method exists to determine reducibility, there is a general method to determine
existence of roots.

↪→ Proposition 9.2

Let f(x) = anx
n + · · ·+ a1x+ a0 be a non-constant polynomial with integer coefficients,

an ̸= 0. Let f(a
b
) = 0 where (a, b) = 1. Then, b|an, a|a0.

Proof. We have
(
a
b

)n
an +

(
a
b

)n−1
an−1 + · · ·+

(
a
b

)
a1 + a0 = 0. Multiple by bn to get

an · an + an−1ban−1 + · · ·+ abn−1a1︸ ︷︷ ︸
a|

an · an +

b|︷ ︸︸ ︷
an−1ban−1 + · · ·+ abn−1a1 + a0b

n = 0

Which implies a|a0bn =⇒ a|a0
b|anan =⇒ b|an

■

↪→ Proposition 9.3

f(x) ∈ F[x] has a root a ∈ F ⇐⇒ (x − a)|f(x) ⇐⇒ gcd(f(x), xp − x) ̸= 1. Further,
f(x) ∈ F[x] has a non-zero root a ∈ F\{0} ⇐⇒ (x−a)|f(x) ⇐⇒ gcd(f(x), xp−1−1) ̸=
1.

⊛ Example 9.5

Is −1 a square in F113? 35

35Yes/No ⇐⇒ p ≡4 1, 3

Proof. This is equivalent to asking is x2 + 1 irred in F113 ⇐⇒ gcd(x2 + 1, x112 − 1) ̸= 1.

x112 − 1 = (x2 + 1)(x110 − x108 + x106 − · · ·+ (−1)55︸ ︷︷ ︸
p−3
2

)− ((−1)55︸ ︷︷ ︸
p−3
2

+1)

=⇒ (x2 + 1)|x112 − 1 =⇒ gcd(x2 + 1, x112 − 1) = x2 + 1
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Hence, −1 is indeed a square (−1 ≡113 15
2, in fact). ■

10 Rings

10.1 Ideals

↪→ Definition 10.1: Ideal

An ideal I of R is a subset of R such that

1. 0 ∈ I ;

2. x, y ∈ I =⇒ x+ y ∈ I ;

3. x ∈ R, y ∈ I =⇒ xy ∈ I .36
36Consider 2. to state that

I closed under addition. 3. can
be considered as a sort-of
“absorption” quality; thinking
about this in the more
concrete case of nZ may make
more sense. Think about this
x · y as a “multiple” in a sense
of y.

Remark 10.1. Typically, 1 /∈ I . If I = R, then it is; if 1 ∈ I , then ∀r ∈ R, r· = r ∈ I , hence
I = R (by criterion (3)). In other words, ideals are typically not subrings. 37

37This is a direct result of
our convention of requiring
subrings to contain 1; many
texts do not require subrings
to contain the multiplicative
elements, so in these cases
ideals would then typically be
subrings as well. We will not
adopt this convention.

⊛ Example 10.1

We consider some trivial examples:

• I = {0}

• I = R.

• R = F a field, and I ̸= {0}, then I = R. That is, any non-zero ideals of a field
are trivial and generally uninteresting.

↪→ Definition 10.2: Principal Ideals

Let r ∈ R and let (r) = ⟨r⟩ := Rr = {sr : s ∈ R} = rR. This is an ideal; 0 = 0 · r;
s1r + s2r = (s1 + s2)r ∈ I ; s · s1r = (ss1) · r ∈ I .

⊛ Example 10.2

Any integerm ∈ Z,mZ is an ideal of Z.

↪→ Definition 10.3: Units of R

Consider a commutative ring R. We denote

Rx = {u ∈ R : ∃v ∈ R with uv = vu = 1}
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the units of R.

Remark 10.2. 1 ∈ Rx. If u1, u2 ∈ Rx then u1u2 ∈ Rx, because ∃vi s.t. viui = 1 hence
(v2v1)(u1u2) = v2(���: 1v1u1)(u2) = (v2u2) = 1. That is, the product of units is a unit.

⊛ Example 10.3

Consider the following examples of units:

• Zx = {±1}

• R = F then Fx = F \ {0}.

• F[x]x = Fx (the degree of the units must be zero, hence they are simply the
constants of the field.)

• Z[
√
2]x = {a+ b

√
2 : a2 − 2b2 = ±1}38

38These (a, b) solve the
Pell Equations, x2−2y2 = ±1

.

↪→ Definition 10.4: Associates

Define r1, r2 ∈ R as associates if there ∃u ∈ Rx s.t. ur1 = r2.39
39This is an extension of

the previous definition of
associates for polynomials to
an arbitrary ring.↪→ Proposition 10.1

Take r1, r2 ∈ R. Then r1 ∼ r2 is an equivalence relation.

Proof. ■

↪→ Lemma 10.1

Let r1, r2 ∈ R. If r1 ∼ r2 then (r1) = (r2).

Remark 10.3. The converse does not always hold; it holds if R is an integral domain.

↪→ Definition 10.5: Integral Domain

A ring R is an integral domain if xy = 0 =⇒ x = 0 or y = 0.

Proof. Say ur1 = r2; then (r2) = Rr2 = Rur1 = (Ru) · r1 ⊆ R · r1 = (r1). Then, r1 ∼ r2 =⇒
(r2) ⊆ (r1). Equivalence relation =⇒ symmetric, hence r2 ∼ r1 =⇒ (r1) ⊆ (r2), hence we
have equality.
We consider the converse; (r) = (s) =⇒ r ∼ s. r ∈ (r) = (s) =⇒ r = us for some u ∈ R,
and s ∈ (r) =⇒ s = vr for some v ∈ R. This implies then that

(1− uv) · r = 0.
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This gives two possibilities: r = 0 =⇒ s = vr = 0, or r ̸= 0 =⇒ 1 − uv = 0 =⇒ uv =

1 =⇒ u, v units, hence r = u · s =⇒ r ∼ s by definition. This holds only if the ring is an
integral domain. ■

↪→Theorem 10.1

Every ideal of Z is of the form ⟨m⟩ = m · Z for a unique non-negative integer m which
implies the ideals of Z are all principal and are exactly

(0) = {0}, (1) = Z, (2) = 2Z, (3) = 3Z, (4) = 4Z, . . .

Proof. If40 I ◁ Z, if I = {0} then I = (0). If I ̸= {0}, ∃ somem ̸= 0 such thatm ∈ I and then 40The symbol I ◁ R
denotes I is a principal ideal
of Ralso −m = −1 ·m ∈ I =⇒ I contains a positive integer. Let n ∈ I be the minimal positive

element belonging to I . We claim that I = (n).
On the one hand, n ∈ I =⇒ kn ∈ I∀k ∈ Z =⇒ (n) ⊆ I . Conversely, let t ∈ I , and write

t = kn+ r, 0 ≤ r < n.

If r ̸= 0, note that r = t − kn, and since both t and n =⇒ −kn ∈ I , then it must be that
r ∈ I . But r < n, hence we have a contradiction, and it must be that r = 0 =⇒ t = kn ∈
(n) =⇒ I ⊆ (n). ■

↪→Theorem 10.2
41Let I◁F[x], F a field. Then, I = (0) or I = (f) for a uniquemonic polynomial f . Moreover,
if f ̸= g are monic polynomials, then (f) ̸= (g).

41This proof follows
almost precisely from the logic
of the previous proof.

Proof. If I = {0} then I = (0). Else, ∃f ∈ I, f ̸= 0. Then, for a suitable α ∈ Fx, then αf
monic, and it must be that αf ∈ I . This implies that I contains some monic polynomial.
Let g ∈ I be a monic polynomial of minimal degree among all nonzero polynomials of I . Note
that (g) = F[x] · g ⊆ I . Let h ∈ I and divide h by g with residue. Then, we have

h = q · g + r, r = 0 or deg(r) < deg(g).

Note that r = h − qg where h ∈ I and q · g ∈ I , hence if r ≠= 0, then deg(r) < deg(g) and
we found a smaller degree polynomial in the ideal and we have a contradiction of our choice
of g. So, we must have

r = 0 =⇒ h = q · g =⇒ h ∈ (g) =⇒ I ⊆ (g).

It remains to show that f, g monic and (f) = (g) =⇒ f = g. We have that (f) = (g) =⇒
f ∼ g, as F[x] is an integral domain (lemma 10.1), so we can write f = u · g for some u ∈
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F[x] = Fx = F− {0}, which implies

f = u · g =⇒ xn + l.o.t. = u · (xn + l.o.t) =⇒ u = 1 =⇒ f = g.

■

⊛ Example 10.4

Consider x ∈ F[x], and the ideal

(x) = {anxn + · · ·+ a1x���+a0 : ai ∈ F, a0 = 0}
= {f ∈ F[x] : f(0) = 0}

⊛ Example 10.5

I = {f ∈ F[x] : f(0) = 0, f(1) = 0}. Show that I is an ideal, and that I = (x·(x−1)).

↪→ Definition 10.6: Generalized Way to Create Ideals

Let r1, . . . , rn be elements of a ring R. We write

⟨r1, . . . , rn⟩ := Rr1 +Rr2 + · · ·+Rrn

= {
n∑

i=1

siri : si ∈ R}

For instance, r1 = 1 cot r1 + 0 · r2 + · · · + 0 · rn ∈ ⟨r1, . . . , rn⟩. We call this ideal the
“generalize ideal”; call it I = ⟨r1, . . . , rn⟩. We show that it is indeed an ideal below.

Proof.

(1) 0 = 0 · r1 + · · ·+ 0 · rn ∈ I

(2)
n∑

i=1

siri +
n∑
i

riri

=
n∑
(si + ti)ri ∈ I

(3) s · · ·
∑

siri =
∑

(ssi)ri ∈ I

■

⊛ Example 10.6

Letm,n be nonzero integers. Then, we can write ⟨m,n⟩ = ⟨gcd(m,n)⟩.
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⊛ Example 10.7

Let R = C[x, y] = {
∑N

i,j=0 aijx
iyj : aij}. An ideal would be

I = ⟨x, y⟩ = {f(x, y) : f has no constant term, ie a00 = 0}

This is because if f ∈ LHS, then f = f1 · x + f2 · y, f1, f2 ∈ C[x, y] (noting that it
has no constant term), and conversely, if f ∈ RHS, it does not have a constant term
either, that is, f =

∑
ai,jx

iyj with a00 = 0, so we canwrite f = x·
∑

i≥1,j aijx
j−1yj+

y
∑

i=0,j aijx
iyj−1; i = 0 =⇒ j ≥ 1, and thus have “x times something plus y times

something” and hence f ∈ I . We can equivalently write

I = {f(x, y) ∈ C[x, y] : f(0, 0) = 0}.

Note that this ideal is not a principal ideal, that is, ̸ ∃ polynomial f(x, y) s.t. ⟨x, y⟩ =
⟨f(x, y)⟩.

10.2 Homomorphism

↪→ Definition 10.7: Homomorphism

Let R, S be commutative rings.42A function f : R→ S is called a ring homomorphism if43

1. f(1R) = 1S (identity)

2. f(x+ y) = f(x) + f(y) (respects addition)

3. f(xy) = f(x)f(y) (respects multiplication)

∀x, y ∈ R.
43Throughout this section,

references to arbitrary sets R,
S may be made. It is safe to
assume that these are rings
even if not explicitly stated.

43Note the “preservation”
of the properties of rings each
requirement necessitates.

↪→ Proposition 10.2

These axioms imply the following consequences:

(i) f(0R) = 0S

(ii) −f(x) = f(−x)

(iii) f(x− y) = f(x)− f(y)

Proof. (i) f(0R) = f(0R + 0R) = f(0R) + f(0R). Adding −f(0R) to both sides, we get 0S =

f(0R).
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(ii) We will aim to show that f(x) + f(−x) = 0S , equivalently. We have

f(x) + f(−x) = f(x+ (−x)) by axiom 2
= f(0R) = 0S by (1)

as desired.
(iii) f(x− y) = f(x+ (−y)) = f(x) + f(−y) = f(x) + (−f(y)) = f(x)− f(y). ■

↪→ Proposition 10.3

Im(f) = {f(r) : r ∈ R} is a subring of S.

Remark 10.4. We need to check the following (ring axioms):

(i) 0, 1 ∈ Im(f)

(ii) x1, x2 ∈ Im(f) =⇒ x1 + x2 ∈ Im(f)

(iii) x1, x2 ∈ Im(f) =⇒ x1 · x2 ∈ Im(f)

(iv) x ∈ Im(f) =⇒ −x ∈ Im(f)

Proof. (i) f(0R) = 0S, f(1R) = 1S , by the previous proposition and by definition resp.

(ii), (iii) Say xi = f(ri); then x1
+
× x2 = f(r1)

+
× f(r2) = f(r1

+
× r2) ∈ Im(f)

(iv) If x = f(r),−x = −f(r) = f(−r) ∈ Im(f), from the previous proposition.

■

↪→ Definition 10.8: Kernel

Let f : R→ S be a homomorphism. The kernel of f is defined as

kerF := {r ∈ R : f(r) = 0S} ≡ f−1(0).

↪→ Proposition 10.4

The following propositions relate to the kernel of a homomorphism:

(i) ker(f) ◁ R

(ii) f injective ⇐⇒ ker(f) = {0R}

(iii) f(x) = f(y) ⇐⇒ x− y ∈ ker(f)

Remark 10.5. To show that some t ∈ ker(f), we need only to show that f(t) = 0S .
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Proof. (i) We show each axiom: f(0R) = 0S ∈ ker(f); x, y ∈ ker(f) =⇒ f(x) + f(y) =

0S + 0S = 0S ; f(rx) = f(r)f(x) = f(r) · 0S = 0S .

(ii) Suppose f injective. Then, 0R is the unique element mapping to 0S , by definition of an
injective function. Hence, ker f = {0R} = (0R). Conversely, suppose ker f = {0R} and
that f(x) = f(y). Note that f(x− y) = f(x)− f(y) = f(x)− f(x) = 0S =⇒ x− y ∈
ker(f) =⇒ x− y = 0R =⇒ x = y.

(iii) f(x) = f(y) ⇐⇒ f(x)− f(y) = 0S ⇐⇒ f(x− y) = 0S ⇐⇒ x− y ∈ ker(f).

■

↪→ Corollary 10.1

Let s ∈ S and let f−1(s) = {r ∈ R : f(r) = s}. Then, either f−1(s) = ∅, or f−1(s) =

x+ ker(f) = {x+ r : r ∈ ker(f)} ⊆ R for any x s.t. f(x) = s.

Proof. If f−1(s) ̸= ∅,∃x ∈ R s.t. f(x) = s. If x+r ∈ x+kerR, then f(x+r) = f(x)+f(r) =

s+ 0S = s. Hence, f−1(s) ⊇ x+ ker(f).

Suppose y ∈ f−1(s) =⇒ f(x) = f(y) = s. This implies r = y − x ∈ ker f (by previous
proposition). Note that x+ r = y; hence y ∈ x+ ker(f) =⇒ f−1(s) ⊆ x+ ker(f). ■

⊛ Example 10.8

R = Z, S = Z/nZ where n ≥ 1 ∈ Z. Take f : R→ S where f(a) = a mod n = ā.
This is a ring homomorphism:

• f(1) ≡n 1, the identity of Z/nZ.

• a+ b = ā+ b̄.

• ab = ā · b̄.

This is surjective, hence Im(f) = Z/nZ. We have that ker(f) = {a ∈ Z : ā ≡n 0} =
(n) = nZ.

Now what is f−1(1)? Take some x ∈ Z. f(x) = x = 1; take x = 1, then
f−1(1) = 1 + nZ. Generally, then, we have f−1(r) = r + nZ.

⊛ Example 10.9

Let F be a field and b ∈ F a fixed element. φ : F[x] → F, where φ(f(x)) = f(b).
So, f(x) = anx

n + · · · + a1x + a0, φ(f(x)) = anb
n + · · · + a1b + a0. This is a ring

homomorphism.
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• f(1) = 1

We have too that φ is surjective; given c ∈ F, we can show that φ(x + (c − b)) =

b+ (c− b) = c.

kerφ = (x− b)

⊛ Example 10.10

Let R, S be rings. Then, R× S is a ring.

⊛ Example 10.11

Consider the map
R→ R× S, r 7→ (r, 0).

This is not a ring homomorphism since f(1) = (1, 0) ̸= (1, 1) (that is, unless 0s = 1s,
that is, S is the zero ring).

OTOH, take

φ : R× S → R, (r, s) 7→ r

ψ : R× S → S, (r, s) 7→ s

These are indeed ring homomorphisms.

We also have
kerφ = {0} × S, kerψ = R× {0}.

⊛ Example 10.12

Take a polynomial in R[x] and fix α1 < α2 < · · · < αn ∈ R. Take

φ : R[x] 7→ Rn, f(x) 7→ (f(α1), f(α2), . . . , f(αn)).

This is a homomorphism. We also have that φ is surjective. Let

ei = · · · (0, . . . , 0, 1, 0, . . . , 0),

ie a unit vector where the ith entry is 1. Take

fi(x) =
n∏

j=1,j ̸=i

(x− αj)/
n∏

j=1,j ̸=i

(αi − αj).

Note that fi(αi) = 1 and 0 for all other αj , and thus φ(fi) = ei. Further, φ(r1f1 +
· · ·+ rnfn) =

∑n
i=1 φ(rifi) =

∑n
i=1 φ(ri)φ(fi) =

∑n
i=1 riei = (r1, . . . , rn), hence φ
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surjective.

Finally, we have that kerφ = ⟨
∏n

i=1(x− αi)⟩.

10.3 Cosets

↪→ Definition 10.9: Coset

Let R be a ring and I ◁ R. A coset of I is a subset of R of the form

a+ I = {a+ i : i ∈ I},

where a ∈ R.

Remark 10.6. Note that the coset, while defined with respect to I , need not be a subset of I , but
is by definition a subset of the ring R.

↪→ Definition 10.10: Relation on Cosets

Let R be a commutative ring and I ◁ R. Define a relation on R as x ∼ y if x− y ∈ I .

↪→ Lemma 10.2

The following relate to relation defined previously.

1. This is an equivalence relation.

2. Every equivalence class is of the form x + I , where x + I is called a coset of I , for
some x ∈ R.

3. x+ I = y + I ⇐⇒ x− y ∈ I .

4. Either (x+ I) ∩ (y + I) = ∅ or x+ I = y + I .

Proof. 1. (i) x ∼ x ⇐= x− x = 0. x− x = 0 ∈ I by definition. (ii) x ∼ y =⇒ x− y ∈
I =⇒ −1(x − y) ∈ I =⇒ y − x ∈ I =⇒ y ∼ x, again by definition. (iii) x ∼ y,
y ∼ z =⇒ x− y, y − z ∈ I =⇒ x− y + y − z ∈ I =⇒ x− z ∈ I =⇒ x ∼ z, as
the ideal is closed under addition, hence ∼ is an equivalence relation.

2. x+I = {x+t : t ∈ I} ⊆ R. Suppose y ∈ x+I, then y = x+t then x−y = x−(x+t) =
−1 · t ∈ I . That is, x ∼ y. Suppose y ∼ x. Then, y− x =: t ∈ I =⇒ y = x+ (y− x) =
x+ t ∈ x+ I =⇒ equivalence class of x is x+ I .

3. This is equivalent to saying the equivalence class of x is the equivalence class of y iff
x ∼ y, which follows by definition.
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4. Follows by the fact that equivalence classes partition the set they are defined on (recall
theorem 4.1).

■

⊛ Example 10.13

Say R = Z, I = nZ. Then, the cosets are just the congruence classes (nZ, 1 +

nZ, . . . , (n− 1) + nZ) mod n.

10.4 Quotient Rings: The Ring R/I

↪→ Definition 10.11: Quotient Ring

Consider 44R/I . We define operations as

(x+ I) + (y + I) := (x+ y) + I, (x+ I) · (y + I) := (x · y) + I.

Equivalently, letting x = x+ I , we write

x+ y = x+ y, x · y = x · y.
44Recall how we defined

the elements of the ring
Z/nZ. This can be seen as a
generalization of this idea;
read “R” mod “I”.

Remark 10.7. By this definition, we can see that every element of R/I is a coset, that is, of the
form x+ I ; this is not unique, however, as it is possible that x+ I = y + I despite x ̸= y.

↪→Theorem 10.3: R/I is a Commutative Ring

R/I = {x : x ∈ R} is a commutative ring, where 0 = 0 = I, 1 = 1 = 1+ I . Moreover, the
function

π : R→ R/I, x 7→ x,

is a surjective ring homomorphism with kerπ = I .

↪→ Corollary 10.2

Any45ideal is the kernel of some ring homomorphism.
45Direct consequence of

theorem 10.3

Proof. (Of theorem 10.3)We first sow that the operations are well defined, that is, if x̄ = x̄1, ȳ =

ȳ1, then x+ y = x1 + y1, and x · y = x1 · y1. 46 We have, then, 46For instance, in Z/8Z,
we have that
3 + 10 = 3 + 10 = 13 = 5,
which is equivalent to saying
3 + 2 = 3 + 2 = 5. We aim
to show this holds for general
R/I .

x− x1 ∈ I, y − y1 ∈ I =⇒ (x+ y)− (x1 + y1) = (x− x1)︸ ︷︷ ︸
∈I

+(y − y1)︸ ︷︷ ︸
∈I

∈ I

xy − x1y1 = x︸︷︷︸
∈R

(y − y1︸ ︷︷ ︸
∈I

) + y1︸︷︷︸
∈R

(x− x1︸ ︷︷ ︸
∈I

) ∈ I,

hence the operations are well defined. We now verify (some of) the ring axioms:
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1. x+ y = x+ y = y + x = y + x

2. 0 + x = 0 + x = x

3. x+ (−x) = x+ (−x) = 0 =⇒ x has an inverse for addition, −x = −x

4. · · ·

5. · · ·

6. · · ·

7. · · ·

8. x(y + z) = x · x+ y = x(y + z) = xy + yz = xy + xz = x · y + x · z,

hence, it is a commutative ring.

Now consider the map π : R → R/I, π(x) = x. We verify it is indeed a ring homomor-
phism:

1. π(1) = 1 = 1R/I

2. π(x+ y) = x+ y = x+ y = π(x) + π(y)

3. π(x · y) = x · y = x · y = π(x) · π(y)

Hence, π is indeed a ring homomorphism. Its kernel is:

ker(π) = {x ∈ R : π(x) = 0} = {x ∈ R : x+I = 0+I = I} = {x ∈ R : x ∼ 0} = {x ∈ R : x ∈ I} = I.

■

⊛ Example 10.14: Of R/I ’s

1. R = Z, I = nZ, a+nZ = a = a mod n, that is, this is modular arithmetic on
the integers. The homomorphism is Z → Z/nZ, a 7→ a, which has a kernel of
nZ.

2. R = F[x], I = ⟨f(x)⟩, f(x) monic, non-constant polynomial. (We have that
⟨f(x)⟩ = ⟨αf(x)⟩∀α ∈ F×, so monic wlog; a constant polynomial f = α, α ∈
F× would have I = F[x] so R/I = {0}, an uninteresting case, so we require
non-constant f .)

In this context, g(x) ∼ h(x) ⇐⇒ g(x)− f(x) ∈ ⟨f(x)⟩ ⇐⇒ f(x)|(g(x)−
h(x)), that is, g = h ⇐⇒ f |(g − h).
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⊛ Example 10.15

Consider R[x]/⟨x2 + 1⟩. We claim that a1 + b1x = a2 + b2x =⇒ a1 = a2, b1 = b2.
We can check:

a1 + b1x = a2 + b2x ⇐⇒ (x2 + 1)|(a1 − a2) + (b1 − b2)x,

but this is impossible, since the RHS is linear and the LHS is quadratic, unless the RHS
is 0, hence, that a1−a2 = 0 ⇐⇒ a1 = a2 and b1− b2 = 0 ⇐⇒ b1 = b2, as desired.

Further, we claim that any coset is represented by some a+bx. Suppose g a coset.
Then,

g = q · (x2 + 1) + r(x), , r(x) = 0 or deg(r(x)) < 2

=⇒ r(x) = a, a ∈ R or r(x) = a+ bx, a, b ∈ R

=⇒ r(x) = a+ bx, a, b ∈ R,

that is, r(x) can be written as a + bx for a, b in the field or zero. Hence, we have
g(x) − r(x) = q · (x2 + 1), and since (x2 + 1)|q · (x2 + 1), then g(x) ∼ r(x) =⇒
g = r. Hence, we can conclude that every element of R[x]/⟨x2 + 1⟩ is of the form
a+ bx, a, b ∈ R, for unique a, b.

Operations in this case would work as:

a1 + b1x+ a2 + b2x = (a1 + a2) + (b1 + b2)x

a1 + b1x · a2 + b2x = (a1 + b1x)(a2 + b2x) = a1a2 + (a1b2 + a2b1)x+ b1b2x2

But note that x2 = (x2 + 1)− 1 =⇒ x2 = −1, so b1b2x2 = −b1b2, so this simplifies
to

a1a2 + (a1b2 + a2b1)x− b1b2 = (a1a2 − b1b2) + (a1b2 + a2b1)x.

But note the similarity to multiplication in C. In this way, we can define a bijection47

R[x]/(x2 + 1) ∼= C, a+ bi 7→ a+ bx.
47Note that A ∼= B

means that A is isomorphic to
B.Remark 10.8. This concept works generally.

↪→ Lemma 10.3

Suppose n = deg(f) ≥ 1. Then, a complete set of representatives for the cosets is

⊛ = {g(x) : deg g < n} = {bn−1x
n−1 + · · ·+ b0 : bi ∈ F}.

Proof. Take h(x) ∈ F[x], and write h(x) = q(x)f(x) + r(x), where either r(x) = 0 or deg r <
n. Then, h(x) − r(x) = q(x)f(x) ∈ I =⇒ h(x) + I = r(x) + I (that is, h and r are ∼). So,
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any coset is represented as an element of ⊛. It remains to show that this holds for any coset,
that is, if g1, g2 ∈ ⊛ and g1 + I = g2 + I =⇒ g1 = g2. We have that g1− g2 ∈ I = f(x) ·F[x]
for any nonzero f, deg f ≤ n. Moreover, deg(g1 − g2) < n, hence, g1 = g2. ■

⊛ Example 10.16

Take f(x) = x2 + 1; here, ⊛ = {ax+ b : a, b ∈ F}.

Remark 10.9. Consider the analog to integer modular arithmetic. For addition, we have that
g1 + g2 = g1 + g2, deg g1 + g2 < n. For multiplication, we have g1 · g2 = g1g2. But now,deg g1g2
is potentially ≥ n, so we write g1g2 = r, where r the residue of dividing g1g2 by f (which then
must have degree < n).

↪→Theorem 10.4

Let F be a field. Let f(x) ∈ F be a non-constant irreducible polynomial. Then, R =

F[x]/(f(x)) is a field containing F.

Moreover, if #F = q, deg(f) = n, then #R = qn.

⊛ Example 10.17

Take, F2, and consider F[x]/(x2+x+1); this is a field with 4 elements. Namely, they
are 0, 1, x, 1 + x; these are the only polynomials of deg < 2 with coefficients in F2.
We can write operations in the field:

(Addition)

+ 0 1 x 1 + x

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1
1 + x x+ 1 x 1 0

(Multiplication)

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1

x 0 x x+ 1 1
x+ 1 0 x+ 1 1 x

Proof. (Of theorem 10.4) We have shown previously that F[x]/I a commutative ring; further,
0 ̸= 1, because of the set ⊛ above. Hence it remains to show that there exists inverses.48

Let g ∈ F[x]/(f(x)), g ̸= 0, that is, f ̸ |g. This implies, moreover, that gcd(f, g) = 1,
since f irreducible (the divisors of f are thus 1 and f ; f does not divide g as shown, hence
the gcd is 1). This implies that ∃u(x), v(x) ∈ F[x] s.t. 1 = u(x)f(x) + v(x)g(x) =⇒ 1 =

u(x)f(x) + v(x)g(x). But u(x)f(x) a multiple of f(x) hence ∈ I =⇒ u(x)f(x) ∈ 0 =⇒
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1 = 0+ v(x)g(x) =⇒ v(x)g(x) = 1, that is, v(x) is the inverse wrt multiplication of g(x), as
desired.

■
48Note the similarities to

proving that Z/pZ where p
prime a field; that is, yet again,
primes in Z are analogous to
irreducible polynomials in
F[x].

⊛ Example 10.18

We construct a field with 25 elements. Take F5 = Z/5Z and f(x) = x2 − 2 (irre-
ducible mod 5). Take L = F5[x]/(x

2 − 2), which is then a field with 25 elements
by theorem 10.4, spec, of the form {a+ bx : a, b ∈ F5}.

Remark 10.10. The polynomial t2 − 2 is irreducible in F5, but it actually has a root in L as
defined above. Namely, the root is x (x). To check: x2 − 2 = x2 − 2 = 0.49

49“You’re not being
cheated, its a tautology.”

Remark 10.11. We could have defined L̃ = F5[x]/(x
2 − 3); these are isomorphic fields, that is,

L̃ ∼= L. Moreover, we have that t2 − 3 has a root in L̃, so it must have a root in L as well.

Take (ax+ b) ∈ L. We want that (ax+ b)2 = 3. That is,

(ax+ b)2 = a2x2 + 2abx+ b2

= 2a2 + 2abx+ b2

= 2abx+ (b2 + 2a2) = 3 =⇒ a = 0 or b = 0

In the case a = 0, we have that b2 = 3 =⇒ 3 a square, which is not true in F5. Taking b = 0,
then, we have 2a2 = 3 =⇒ a = ±2. We can verify:

3 = (2x)2 ∈ L.

Remark 10.12. L contains F is not very precise; more specifically, we have that ∃ a map F→ L,

α 7→ α = α + ⟨f(x)⟩. This an injective ring homomorphism, and thus F ∼= ℑ(F), that is, F is
isomorphic to the image of F.

↪→Theorem 10.5

Let g(t) ∈ F[t] be a non-constant polynomial. Then, ∃ a field L ⊇ F s.t. g has a root in L.

Proof. WLOG, assume g(t) irreducible. Take another variable x, and let L = F[x]/⟨g(x)⟩; this
is a field as g irreducible, and again, it contains F (that is, a field isomorphic to F). Then, in
L, the element x solves g(t) = ant

n + · · · + a0, ai ∈ F. We have, g(x) = anx
n + · · · + a0 =

anxn + · · · a0 = g(x) = g(x) + ⟨g(x)⟩ = ⟨g(x)⟩ = 0L. ■

⊛ Example 10.19
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F = R, g(t) = t2 + 1. L = R[x]/⟨x2 + 1⟩, x a root of t2 + 1. In this case, we can
denote x = i, that is, i =

√
−1; L ∼= C.

10.5 Isomorphisms

↪→ Definition 10.12: Isomorphism

Let f : R → S be a ring homomorphism. If f bijective, we say that R is isomorphic to S,
and denote R ∼= S. We say that f is an isomorphism between R and S.

↪→Theorem 10.6: First IsomorphismTheorem

Let φ : R→ S be a surjective homomorphism of rings. Let I = kerφ. Then, R/I ∼= S.

Proof. Denote the elements of R/I by r. Define Φ : R/I → S, Φ(r) = φ(r). We show this is a
ring homomorphism:

• (Well defined) if r = r1, we aim to show that φ(r) = φ(r1). r = r1 =⇒ r − r1 = a ∈
I = kerφ. φ(r) = φ(a+ r1) = φ(a) + φ(r1) = 0 + φ(r1) = φ(r1).

• (Homomorphism) Φ(r + / · s) = Φ(r + / · s) = φ(r + / · s) = φ(r) + / · φ(s) =

Φ(r) + / · Φ(s).

To show Φ bijective:

• (Surjective) Given s ∈ S,∃r ∈ R s.t. φ(r) = s, since φ surjective. Then, Φ(r) = φ(r) =

s =⇒ Φ surjective.

• (Injective) This is equivalent to showing kerΦ = {0}. Suppose Φ(r) = 0S =⇒ φ(r) =

0S =⇒ r ∈ kerφ = I =⇒ r = 0R/I

Hence, Φ a bijective ring homomorphism and so R/I ∼= S. ■

⊛ Example 10.20

Let R = R[x], S = C. Let φ : R → S, φ(f(x)) = f(i). φ is a homomorphism of
rings:

φ(f + / · g) = (f + / · g)(i) = f(i) + / · g(i); φ(1) = 1.

Let I = kerφ. Note that x2 + 1 ∈ I(i2 + 1 = 0), =⇒ ⟨x2 + 1⟩ ⊆ I . We know,
further, that I = ⟨g(x)⟩ for some g(x) ∈ R[x] (any ideal ofR[x] principal), so x2+1 ∈
I =⇒ g(x)|(x2 + 1). But x2 + 1 is irreducible, hence g(x) ∼ 1 =⇒ I = R[x] or
g(x) ∼ x2 + 1 =⇒ I = ⟨x2 + 1⟩. This first case is not possible, since this implies

§10.5 Rings: Isomorphisms p. 60



1 ∈ R[x], since φ(1) = 1 ̸= 0, hence g(x) = x2 + 1 =⇒ I = ⟨x2 + 1⟩, and thus by
First Isomorphism Theorem, R[x]/⟨x2 + 1⟩ ∼= C.

↪→Theorem 10.7: Chinese Remainder Theorem

Letm,n be relatively prime positive integers. Then, Z/mnZ ∼= Z/mZ× Z/nZ.

Proof. Define a function φ : Z→ Z/mZ×Z/nZ, φ(a) = (a mod m, a mod n). We show φ

a ring homomorphism:

φ(a+ / · b) = (a+ / · b mod m, a+ / · b mod n)

= (a mod m+ / · b mod m, a mod n+ / · b mod n)

= (a mod m, a mod n) + / · (b mod m, b mod n)

= φ(a) + / · φ(b)
φ(1) = (1 mod m, 1 mod n) = 1Z/mZ×Z/nZ

We also have

kerφ = {a ∈ Z : φ(a) = (a mod m, b mod n) = (0, 0)}
= {a : m|a and n|a} = {a : lcm(m,n)|a} = {a : mn|a} = mnZ

Let S = Im (φ) which is a subring of Z/mZ × Z/nZ. Then, φ : Z → S is a surjective
ring homomorphism with kernel mnZ, and so by First Isomorphism Theorem, Z/mnZ ∼= S.
Note that the LHS has m · n elements, hence S must have m · n elements as well, and thus
S = Z/mZ× Z/nZ. Thus, Z/mnZ ∼= Z/mZ× Z/nZ.

We can alternatively prove surjectivity directly. Since gcd(m,n) = 1, ∃u, v ∈ Z s.t. 1 =

um+ vn, hence we have

φ(um) = (um mod m, 1− vn mod n) = (0, 1)

and
φ(vn) = (1− um mod m, vn mod n) = (1, 0)

Hence,

φ(aum+ bvn) = φ(aum) + φ(bvn) = φ(um+ · · ·+ um︸ ︷︷ ︸
a times

) + φ(vn+ · · ·+ vn︸ ︷︷ ︸
b times

)

= aφ(um) + bφ(vn)

= a(0, 1) + b(1, 0)

= (0, a) + (b, 0) = (b, a),

hence φ surjective. Again, the kernel is kerφ = mnZ and so Z/mnZ ∼= Z/mZ× Z/nZ ■
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⊛ Example 10.21: Application of Chinese Remainder Theorem

Letm = 11, n = 13. Find an integer x s.t. x ≡11 2 and x ≡13 3.

Proof. We can express 1 = gcd(11, 13) = um + vn = 11u + 13v. Working out the
Euclidean algorithm, this yields u = 6 and v = 5, that is, 1 = 6 ·11−5 ·13 = 66−65.
We have

66 7→ (0, 1) ∈ Z/11Z× Z/13Z,

and
−65 7→ (1, 0) ∈ Z/11Z× Z/13Z.

Hence, 3 · 66+2 ·−65 7→ (2, 3) ∈ Z/11Z×Z/13Z, so x = 3 · 66+2 ·−65 = 68. ■

11 Groups

11.1 Definitions

↪→ Definition 11.1: Group

A group G is a non-empty set with an operation

G×G→ G, (a, b) 7→ a ∗ b,

s.t.

1. (Associative) a ∗ (b ∗ c) = (a ∗ b) ∗ c

2. (Two-Sided Identity) ∃ an element of G, denoted 1G s.t. ∀a ∈ G, 1G ∗ a = a ∗ 1G = a

3. (Two-Sided Unit) ∀a ∈ G,∃b ∈ G s.t. a ∗ b = b ∗ a = 1G

↪→ Proposition 11.1: Basic Properties of Groups

The following are direct consequences of the definition of a group:

1. 1G unique: if c ∈ G s.t. a · c = c · a = a∀a ∈ G, then c = 1G

2. Given a ∈ G, b s.t. a ∗ b = b ∗ a = 1G is unique: if a ∗ c = c ∗ a = 1G, then c = b. We
denote b = a−1.

3. (a1 ∗ a2)−1 = a−1
2 ∗ a−1

1 .

4. ab = ac =⇒ b = c
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5. Define for a ∈ G, n ∈ Z,

an :=


1G n = 0

a ∗ · · · ∗ a︸ ︷︷ ︸
a times

n > 0

a−1 ∗ · · · ∗ a−1︸ ︷︷ ︸
−n times

n < 0

Then, an+m = anam.

Proof. 1. c = c ∗ 1G = 1G

2. b = b ∗ 1G = b ∗ (a ∗ c) = (b ∗ a) ∗ c = 1G ∗ c = c =⇒ b = c

3. (a1a2)(a−1
2 a−1

1 ) = a1a
−1
2 a2a

−1
1 = a11Ga

−1
1 = a1a

−1
1 = 1G. The converse follows.

4. ab = ac =⇒ a−1ab = a−1ac =⇒ 1Gb = 1Gc =⇒ b = c

5.

■

↪→ Proposition 11.2: What “Doesn’t Hold” in Groups

1. Only one operation, ∗.

2. Typically, ab ̸= ba, that is, not commutative (see definition 11.2).

↪→ Definition 11.2: Commutative/Abelain Group

If ∀a, b ∈ G, ab = ba, G is called commutative or abelian. Sometimes, ifG abelian, we write
the operation as + and the neutral element as 0.

⊛ Example 11.1: Basic Examples of Groups

• G = {1}, where 1 ∗ 1 = 1.

• G = Z orG = Z/nZ, where ∗ = +. Moreover, ifR a ring, thenR is an abelian
group with addition.

• For a field F, (F,+) is an abelian group, as is (F×, ·).

• If R a ring (need not be commutative), then R× = {u ∈ R : ∃v ∈ R, uv =

vu = 1} (the units) is a group with multiplication.

– Z,Z× = {±1} is a group.

– R = M2(R). The units R× are all the invertible matrices, that is, with
non-zero determinant. (R,+) and (R, ·) are both groups.
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– More generally, R = M2(F), a ring, has units R× = M2(F)× =: GL2(F).
Note that this is a non-abelian group under multiplication (as matrix mul-
tiplication not commutative).

↪→ Definition 11.3: Subgroup

A subgroup H of G is a subset H ⊆ G s.t.

1. (Identity) 1 ∈ H

2. (Closed under Multiplication) a, b ∈ H =⇒ a · b ∈ H

3. (Closed under Inverses) a ∈ H =⇒ a−1 ∈ H

Moreover, H a group itself. We denote H < G or H ⩽ G.

↪→ Definition 11.4: Cyclic Subgroup

Take any g ∈ G, and form

⟨g⟩ = {gn : n ∈ Z} = {. . . , g−2, g−1, 1, g, g2, . . . }.

This is called the cyclic subgroup generated by g. G is itself cyclic ifG = ⟨g⟩ for some g ∈ G.

If we use additive notation rather than multiplicative, we have

⟨g⟩ = {ng : n ∈ Z} = {. . . ,−2g,−g, 0, g, 2g, . . . }.

⊛ Example 11.2: Cyclic Groups

For example, Z/nZ and Z are cyclic; we have Z/nZ = ⟨1⟩ and Z = ⟨1⟩. Note that
cyclic =⇒ abelian, hence any non-abelian group is not cyclic.

↪→ Definition 11.5: Order of g/G

The order ofG, denoted ♯G or |G|, is the number of elements inG. IfG infinite, it is denoted
∞.

The order of an element g ∈ G is the minimal positive n ∈ Z+ s.t. gn = 1. If not such n
exists, we say that the order of g is∞. We denote ord(G).

⊛ Example 11.3: Orders

1. Z, k ̸= 0, then ord(k) =∞, since nk = 0 =⇒ n = 0

2. µn = nth roots of 1 in C (that is, the nth roots of unity). This is a group with n
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elements, under multiplication, and is cyclic, with ⟨µn⟩ = ⟨e
2πi
n ⟩.

3. GL2(F2) is a non-abelian group of 6 elements. We have, for instance,

ord

((
1 1

0 1

))
= 2; ord

((
1 0

1 1

))
= 3.

Multiplying the first by itself once yields the identity
(
1 0

0 1

)
; the second re-

quires two multiplications by itself (that is, you cube the matrix) to yield the
identity.

↪→ Proposition 11.3

ord(g) = |⟨g⟩|. That is, the order of an element is the order of the cyclic subgroup it
generates.

Proof. Suppose ord(g) = ∞ and |⟨g⟩| < ∞. This means that there must be repetitions in
the subgroup; ∃a > b ≥ 0 s.t. ga = gb. This implies, then, that ga−b = gb · g−b = 1, but
a− b > 0 so ord g <∞ (as we have found some power n such that gn = 1) and thus we have
a contradiction. Hence, if the order of ord g =∞, then |⟨g⟩| =∞ as well.

Suppose ord g = n, 0 < n <∞. We note that ∀a ∈ Z, a = q · n+ r, 0 ≤ r < n, and so we
can write

ga = gq·n+r = (gn)q · gr = 1q · gr = gr =⇒ ⟨g⟩ = {1, g, . . . , gn−1},

that is, g to any power can be reduced to g of a power ≤ n− 1.

We now aim to show these are distinct. Suppose they are not; that is, ∃0 ≤ b < a ≤ n− 1

such that ga = gb. We can write
ga−b = 1,

but 0 < a − b < n, so this is a contradiction, as, by definition, n the minimal positive integer
such that gn = 1, and this implies that we have a smaller element. Hence, these elements are
indeed distinct and we thus have precisely n elements, which is equivalent to the order ord g,
and the proof is complete. ■

11.2 Symmetric Group

↪→ Definition 11.6: Symmetric Group Sn

A group with n! elements, non-abelian if n ≥ 3 (S1 trivial, S2 only two elements so abelian).
We often denote [1, n] = {1, 2, . . . , n}. The permutations of [1, n] is a bijective function
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σ : [1, n]→ [1, n]. We write:

Sn := {σ : [1, n]→ [1, n] : σ bijective}.

This is a group under composition of functions; if σ, τ, ρ are permutations, then we have

σ ◦ τ bijective, so ∈ Sn; ρ ◦ (σ ◦ τ) = (ρ ◦ σ) ◦ τ .

The identity function and inverses follow similarly

♯Sn = n! since we have n choices for σ(1), n − 1 choices for σ(2), . . . , 2 choices for
σ(n− 1), and 1 choice for σ(n), yield n! choices and hence ♯Sn = n!.

⊛ Example 11.4: Permutations, n = 5

Consider the following (we denote [1, . . . , n] 7→ [1, . . . , n] as the top 7→ bottom line
of the matrix):(

1 2 3 4 5

5 2 4 1 3

)
︸ ︷︷ ︸

σ

(
1 2 3 4 5

1 2 5 3 4

)
︸ ︷︷ ︸

τ

=

(
1 2 3 4 5

5 2 3 4 1

)
︸ ︷︷ ︸

στ

.

This is cumbersome notation.

↪→ Definition 11.7: Cycles

Let501 ≤ a ≤ n and i1, i2, . . . , ia distinct elements of [1, n]. We denote σ = (i1 i2 · · · ia)
as a cycle of length a, equal to the permutation σ such that σ(ij) = ij+1∀j = 1, . . . , a and
σ(t) = t∀t /∈ {i1, . . . , ia}. For instance, for n = 7,

(5 1 6) =

(
1 2 3 4 5 6 7

6 2 3 4 1 5 7

)
.

50Note that indices j here
should be read mod a. That is,
if you have (i1i2), then this
would “read” as i1 7→ i2 and
i2 7→ i3 mod 2 = i1.

⊛ Example 11.5: n = 3

σ = (1 2 3) =

(
1 2 3

2 3 1

)
, τ = (1 2) =

(
1 2 3

2 1 3

)
. Consider:

στ = (123)(12) = (13)(2) = (13)

τσ = (12)(123) = (1)(23) = (23)

Hence, since these are not equal, S3 not commutative; moreover, Sn for n ≥ 3 is not
commutative.
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More generally, consider σ = (i1, . . . , ia). Let k ≥ 1Then,

σk = σ ◦ · · · ◦ σ
σ2 = (i1, i2, i3, i4, . . . ) k = 2

σk(ij) = ij+k

σk(t) = t∀t /∈ {i1, . . . , ia}
σk = 1 for k = a,

that is, the order of a cycle of length a is a.

↪→ Proposition 11.4: Facts about Cycles

1. Disjoint cycles commute. Sayσ = (i1, . . . , ia) and τ = (ia+1, . . . , ib), and {i1, . . . , ia}∩
{ia+1, . . . , ib} = ∅. Then, στ = τσ.

2. Any permutation can be written as a product of disjoint cycles.

Proof. 1. If t /∈ {i1, . . . , ib}, στ(t) = σ(τ(t)) = σ(t) = t. Else, we have

στ(is) =


σ(is+1) a+ 1 ≤ s ≤ b

ia+1 s = b

σ(is) 1 ≤ s ≤ a

=


is+1 a+ 1 ≤ s ≤ b

ia+1 s = b

is+1 1 ≤ s ≤ a

(where indices are read mod a) Calculating τσ yields the same result.

2. We won’t prove. Consider the following example.

■

⊛ Example 11.6

Let We can write
σ = (1 5 7 2)(3)(4 12)(6 9 10 11 8).

⊛ Example 11.7: Composition of Disjoint Permutations

Given σ ∈ Sn, write σ = τ1τ2 · · · τr. τi is a cycle of length ai where the τi disjoint.
Then, we can write

σ2 = τ1 · · · τrτ1 · · · τr
= τ 21 · · · τ 2r

σk = τ k1 τ
k
2 · · · τ kr

§11.2 Groups: Symmetric Group p. 67



Hence, we have thatσk = 1 ⇐⇒ τ k1 = τ k2 = · · · = τ kr = 1 ⇐⇒ a1|k, a2|k, . . . , ar|k
(this follows from lemma 11.1). Hence, lcm(a1, · · · ar)|k and thus ord(σ) = lcm(a1, . . . , ar).
Note that, if the cycles not disjoint, this usually fails.

↪→ Lemma 11.1

Say g ∈ G has order a. Let k ≥ 1, then gk = 1 =⇒ a|k.

Proof. Write k = q · a + r, 0 ≤ r < a. Then, 1 = gk = (ga)qgr = 1qgr = gr =⇒ r = 0 =⇒
a|k. ■

⊛ Example 11.8: Subgroups of Sn

Let T ⊆ [1, n], ♯T = t, AT = {σ ∈ Sn : σ(b) = b∀b ∈ T} (that is, all elements
in T are fixed.), and BT = {σ ∈ Sn : σ(T ) = T}. We have that AT < BT < SN .
Moreover, ♯AT = (n− t)! and ♯BT = t!(n− t)!.

11.3 Dihedral Groups Dn

↪→ Definition 11.8: Dn

Dn or the dihedral group is the group of symmetries of a regular n-gon in the plane, where
n ≥ 3 (that is n = 3 a triangle, n = 4 a square, etc).

Let x represent a planar rotation (about the z axis), and y a rotation about y. Then,
ordx = n and ord y = 2.

↪→ Proposition 11.5

Every symmetry σ ∈ Dn is uniquely determined by σ(1) and σ(2). That is, σ = τ ⇐⇒
σ(1) = τ(1), σ(2) = τ(2).

Moreover, the elements of Dn are precisely

Dn = {e, x, . . . , xn−1, y, xy, x2y, . . . , xn−1y},

that is, Dn has precisely 2n elements. Further, Dn not abelian. 51
51Read: “an n-gon has

precisely 2n distinct
symmetries”. Note that e ≡ ⊮,
that is, the identity element
(no rotations).

Proof. We have, for a s.t. 0 ≤ a ≤ n− 1,
1 2

xa 1 + a 2 + a

xay 1 + a a

. We claim these are distinct: if

σ ∈ Dn, then σ(1) = 1 + a, then either σ(2) = a or 2 + a, and so either σ = xay or σ = xa,
respectively.
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To show xyxy = 1:

To show that Dn not abelian we have that

xyxy = 1 =⇒ xyx = y−1 = y

=⇒ xy = yx−1

In this case, ifDn abelian, then xy = yx =⇒ x = x−1 =⇒ x2 = 1, which is a contradiction.

Moreover, we have then that xy = yx−1, and so we can write

xay = yx−a =⇒ xa+1y = x(xay) = x(yx−a)

= (xy)x−a = yx−1x−a = yx−(a+1),

that is, ∀a, xay = yx−a. ■

⊛ Example 11.9: In D5

What is, in D5, the element x3yxyx2yx4?

Proof.

x3y(xy)x2yx4 = x3y(yx−1)x2yx4

= x3��y
2x−1x2yx4

= (x4y)x4

= (yx−4)x4

= y

■

↪→ Definition 11.9: Direct Product

If G1, G2 are groups, G1 ×G2 also a group, where

• (x1, y1)(x2y2) = (x1x2, y1y2).

• 1 = (1, 1)

• (x, y)−1 = (x−1, y−1)
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11.4 Cosets and Lagrange’s Theorem

↪→ Definition 11.10: Left Coset

Let H < G. A left coset of H in G is a subset of G of the form

gH := {gh : h ∈ H}.

↪→ Lemma 11.2: Facts about Cosets

1. The cosets are equivalence classes for the relation on G defined x ∼ y if y−1x ∈ H .

2. Two cosets are either equal or disjoint; G = ⨿{gi:i∈I}giH for a suitable {gi : i ∈ I} ⊆
G (I some index set).

3. xH = yH ⇐⇒ y−1x ∈ H ⇐⇒ x−1y ∈ H ⇐⇒ ∃h ∈ H s.t. x = yh.

4. xH = H ⇐⇒ x ∈ H .

⊛ Example 11.10: S3

Let G = S3, H = {1, (123), (132)} = ⟨(123)⟩. Examples of cosets of H would then
be

H = {1, (123), (132)}
(12)H = (13)H = (23)H = {(12), (23), (13)}

We can write, then,
G = H ⨿ (12)H.

⊛ Example 11.11: Z/6Z

Let G = Z/6Z, H = ⟨3⟩ = {0, 3}.

1 +H = {1, 4}
2 +H = {2, 5}
3 +H = {3, 0} = H

↪→ Definition 11.11: Index of a Subgroup

Let G be finite, H < G. We define the index of H in G, denoted [G : H] as the number of
distinct left cosets of H in G.

Proof. (Of lemma 11.2)
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1. (Equivalence relation)

(a) x ∼ x ⇐= x−1x = 1 ∈ H

(b) x ∼ y =⇒ y−1x ∈ H =⇒ x−1y = (y−1x)−1 ∈ H

(c) x ∼ y, y ∼ z =⇒ y−1x ∈ H, z−1y ∈ H =⇒ z−1y · y−1x ∈ H =⇒ z−1x ∈
H =⇒ x ∼ y

(Equivalence class of x) If x ∈ y, y−1x ∈ H =⇒ x−1y ∈ H =⇒ y = x(x−1y) ∈ xH .
Conversely, if y ∈ xH =⇒ y = xh, some y ∈ H . y−1x = (xh)−1x = h−1x1x = h−1 ∈
H =⇒ x ∼ y.

2. (Cosets equal/disjoint) This follows directly from 1. by properties of equivalence rela-
tions.

3. (Equivalence) xH = yH =⇒ x, y have same equivalence class and so x ∼ y =⇒
x−1y ∈ H . Then, xH = yH =⇒ yH = xH , so the same logic follows symmetrically.
x−1y ∈ H =⇒ x ∼ y =⇒ x = yh, some h ∈ H .

4. (xH = H ⇐⇒ x ∈ H) Let y = 1. This then follows directly from 3.

■

↪→Theorem 11.1: Lagrange’s Theorem

Let G be finite, H < G. Then,
[G : H]|H| = |G|,

and in particular,
|H| | |G|

↪→ Corollary 11.1

Let G be a finite group, g ∈ G. Then, ord g| | G |.

Proof. ord g = |⟨g⟩| | |G|, by Lagrange’s Theorem. ■

Proof. (Of Lagrange’s Theorem) LetG be a finite group,H < G. Since the cosets of a subgroup
form a disjoint union of the group itself, we can write

G = ⨿i∈IgiH,

for some index set I . Let a, b ∈ G, and define the function

f : aH → bH, x 7→ ba−1x.

We claim this is a well-defined, bijective function.
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• (Well-Defined) Let x = ah for some h ∈ H . Then, ba−1x = ba−1ah = bh ∈ bH , hence
the map is well-defined.

• (Surjective) Take y ∈ bH, y = bh. This is the image of ah (where a fixed as defined), that
is, ba−1ah = bh as desired.

• (Injective) Consider ba−1x1 = ba−1x2. Multiplying both sides by ab−1 =⇒ x1 = x2.

Thus, this is indeed well-defined bijective map, moreover, each coset of giH has the same num-
ber of elements. Specifically, we have

♯G =
∑
i∈I

|giH| =
∑
i∈I

|H| = |I| · |H|.

Thus, we have that
|G| = |H| · |I|,

moreover, in the language of the theorem,

|G| = |H| · [G : H].

■

Remark 11.1 (Applications of Lagrange’s Theorem). 1. LetG be a finite group of primer or-
der p; then, G is cyclic, moreover, every element of G, ̸= e, generates G.

2. Every element of a group must have an order that divides the order of the group. This follows
from Lagrange’s combined with the fact that ord g =| ⟨g⟩. For instance, a group of order 6
cannot have an element of order 4 nor 5.

Remark 11.2. Note that if n | |G|, this does not imply that ∃ an element ofG of order n. Indeed,
taking n = |G|, this would imply that group G would be cyclic.

11.5 Homomorphisms/Isomorphisms

↪→ Definition 11.12: Group Homorphism

Let G,H be groups, and define f : G→ H . f is called a group homomorphism if

f(g1g2) = f(g1)f(g2),

∀g1, g2 ∈ G.

The kernel of f is taken

ker f = {g ∈ G : f(g) = eH}.
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↪→ Lemma 11.3: Consequences of Homomorphisms

Let f : G→ H be a group homomorphism.

1. f(eG) = eH
52;

2. f(g−1) = f(g)−1;

3. Im (f) < H (that is, the image of f is a subgroup of H)

Proof. 1.

f(eG) = f(eGeG) = f(eG)f(eG)

=⇒ f(eG)
−1f(eG) = f(eG)

−1f(eG)f(eG)

=⇒ eH = f(eG)

2.

eH = f(eG) = f(gg−1) = f(g)f(g−1)

=⇒ f(g)−1eH = f(g)−1f(g)f(g−1)

=⇒ f(g−1) = f(g)−1

3. eH = f(eG) ∈ Im (f). Let h1, h2 ∈ Im (f), and let hi = f(gi). Then, h1h2 = f(g1g2) and
h−1
1 = f(g1)

−1 =⇒ eH , h1h2, h
−1
1 ∈ Im (f), hence Im (f) a subgroup of H .

■
52Note that this is a

consequence, not an axiom, as
it was in ring
homomorphisms.↪→ Definition 11.13: Group Isomorphism

A group homomorphism f : G → H is a isomorphism if it is bijective. We denote G ∼= H

if such a function exists.

↪→ Proposition 11.6

Let f : G→ H be an isomorphism. Then, g = f−1 : H → G also an isomorphism.

Proof. g bijective, as f bijective and thus its inverse is also bijective. It remains to show that
∀x, y ∈ H, f−1(xy) = f−1(x) · f−1(y). We have:

f(f−1(xy)) = f(f−1(x)f−1(y)) =⇒ f(f−1(xy)) = xy (5)
f(f−1(x)f−1(y)) = f(f−1(x))f(f−1(y)) = xy, (6)

noting that as both lines evaluate equivalently while computed in different orders, the claim
holds, hence g = f−1 a bijective homomorphism and is thus an isomorphism. ■
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↪→ Proposition 11.7: Isomorphism an Equivalence Relation
∼= is an equivalence relation on groups.

Proof. 1. (reflexive) G ∼= G by f = eG

2. (symmetric) G1
∼= G2 =⇒ G1

f→ G2 =⇒ G2
f−1

→ G1 =⇒ G2
∼= G1

3. (transitive) f : G1 → G2, g : G2 → G3, then consider g ◦ f : G1 → G2. This is bijective
(composition of bijections is bijective). Take x, y ∈ G1, then (g ◦ f)(xy) = g(f(xy)) =

g(f(x)f(y)) = g(f(x))g(f(y)) = (g ◦ f)(x)(g ◦ f)(y), hence g ◦ f a homomorphism.

■

↪→ Proposition 11.8: Cyclic; |G| = |H| = n =⇒ G ∼= H

Let53n ∈ Z+. Then, any two cyclic groups of order n are isomorphic.

Proof. Suppose G = ⟨g⟩, H = ⟨h⟩ of order n. Define f(ga) = ha for any integer a. This is well
defined (ga = gb =⇒ ga−b = eG =⇒ n|(a− b) =⇒ f(ga) = ha = hb(hn)k = hb = f(gb)).
This is a surjective (ha = f(ga)∀h, g) homomorphism (f(gagb) = f(ga+b) = ha+b = hahb =

f(ga)f(gb)), and is also injective because f(ga) = ha = eH =⇒ n|a =⇒ ga = eG. Thus,
any cyclic group of order n is isomorphic. Moreover, any cyclic group of order n is isomorphic
to Z/nZ over addition. ■

53This proof assumes
finite groups, but this is true
generally for non-finite
groups.↪→ Lemma 11.4

Let f : G→ H be a group homomorphism. ker f < G, and f injective iff ker f = {eG}.

Proof. We have that eG ∈ ker f since f(1G) = 1H . Suppose g1, g2 ∈ ker f =⇒ f(g1) =

f(g2) = eH =⇒ f(g1g2) = f(g1)f(g2) = eHeH = eH =⇒ g1g2 ∈ ker f . Suppose
g ∈ ker f =⇒ f(g−1) = f(g)−1 = e−1

H = eH =⇒ g−1 ∈ ker f , hence all the group axioms
hold and ker f < G.

( =⇒ ) Suppose f injective. Then, f(eG) = eH uniquely, and so ker f = {eG}.

(⇐= ) Suppose ker f = {eG}, and f(g1) = f(g2). Then, eH = f(g1)
−1f(g2) = f(g−1

1 )f(g2) =

f(g−1
1 g2) =⇒ g−1

1 g2 ∈ ker f =⇒ g−1
1 g2 = eG =⇒ g1 = g2 =⇒ f injective. ■

↪→ Corollary 11.2

Let p ∈ P. Then, any two groups of order p are isomorphic are cyclic, and isomorphic to
Z/pZ.
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Proof. Suppose |G| = p. Choose any g ∈ G, g ̸= eG. Let H = ⟨g⟩. By Lagrange’s Theorem,
|H| | |G| = p, so |H| = 1 or p, but by construction, |H| = p (since g ̸= eG) , hence |H| = |G|.
Thus, G a cyclic group of order p and is thus, by the previous example, we have that G ∼=
Z/pZ. ■

↪→ Proposition 11.9

Let f : G1 → G2 be a homomorphism and H < G1. Then, f(H) < G2.

Proof. • 1G2 ∈ H =⇒ 1G2 = f(1G1) ∈ f(H)

• x, y ∈ f(H) =⇒ ∃a, b ∈ H s.t. x = f(a), y = f(b) =⇒ xy = f(a)f(b) = f(ab).
a · b ∈ H =⇒ f(ab) ∈ f(H) =⇒ xy ∈ f(H)

• x ∈ f(H) =⇒ x−1 = f(a−1) for a ∈ H . Then, a−1 ∈ H =⇒ f(a−1) ∈ f(H).

Hence, f(H) < G2 ■

↪→ Lemma 11.5

Let g ∈ G1, f : G1 → G2 a homomorphism. Then, ord(f(g))| ord(g).

Proof. Suppose n = ord g =⇒ gn = 1 =⇒ f(gn) = f(g)n = f(1G1) = 1G2 =⇒ f(g)n =

1G2 =⇒ ord(f(g))|n. ■

↪→ Corollary 11.3

If f : G1 → G2 an isomorphism, f induces bijections between subgroups of H < G1 and
K < G2, that is,

G1 > H 7→ f(H) < G2; G1 > f−1(K)←[ K < G2.

↪→Theorem 11.2: Cayley

Let G be a finite group of order n. Then, G is isomorphic to a subgroup of Sn.

Proof. Let g ∈ G, and let σg : G→ G, a 7→ ga. We claim that σg a permutation.

Note first that σg injective,

σg(a) = σg(b) =⇒ ga = gb =⇒ a = b,

and surjective, since
∀b ∈ G, σg(g−1b) = b.
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Now consider the map
G→ Sn, g 7→ σg.

This map is a homomorphism:

σgh(a) = gha = σg(σh(a)) =⇒ σgh = σg ◦ σh,

noting that the operation in Sn is ◦. This homomorphism is injective; let σg be the identity
permutation. Then, σg(e) = e =⇒ ge = e =⇒ g = e. Thus, since the image of a
homomorphism is a subgroup, the image of G under this map is a subgroup of Sn, that is,
G < Sn and the proof is complete. ■

↪→ Lemma 11.6

Let T, Z be sets, and f : T → Z a bijection. Then, the group of permutations of T and Z
are isomorphic.

Proof. Let σ ∈ ST . Then, f ◦ σ ◦ f−1 : Z → Z is a bijection. Hence, we have the map

ST → SZ , σ 7→ f ◦ σ ◦ f−1.

This is a group homomorphism; given σ1, σ2 ∈ ST ,

f ◦ σ1 ◦ σ2 ◦ f−1 = (fσ1f
−1)(fσ2f

−1).

Similarly, given τ ∈ SZ , we can define the map

SZ → ST , τ 7→ f−1 ◦ τ ◦ f.

This is also a homomorphism, hence, there exists a bijective homomorphism between ST → SZ

and thus the two are isomorphic. ■

11.6 Group Actions on Sets

↪→ Definition 11.14: Group Action

Let G a group, S ̸= ∅. G acts on S if we have a function

G× S → S, (g, s) 7→ g ⋆ s,

where

1. e ⋆ s = s∀s ∈ S;

2. (g1g2) ⋆ s = g1 ⋆ (g2 ⋆ s)∀g1, g2 ∈ G, s ∈ S.
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⊛ Example 11.12

Dn acts on the vertices of the n-gon;

xa(i) = i+ a; y(i) = n− i+ 2

⊛ Example 11.13: Conjugation

G acts on itself by
G×G→ G, (g, h) 7→ ghg−1.

⊛ Example 11.14

Let H < G. H acts on G by

H ×G→ G, (h, g) 7→ hg = h ⋆ g.

⊛ Example 11.15

D4 acts on the set S of 9 elements where the 9 elements form a 3 × 3 square. Now
suppose we were to color each square by one of the three colors red, green, blue.
Then, we’d have 39 possible colored squares. A natural question would be to ask how
many colored 3× 3 squares exist, up to symmetries?

⊛ Example 11.16

R acts on the sphere S; some θ ∈ R rotates the sphere by θ.

↪→ Definition 11.15: Orbit

Let G,S be as defined above. Let s ∈ S. The orbit of s is defined

Orb s = {g ⋆ s : g ∈ G} ⊆ S.

Note that this is equal to all the images of s under ⋆.

Remark 11.3. In example 11.16, the orbit of s ∈ S would be the latitude line; that is, all points
with the same distance from the rotation axis.

In example 11.14, the orbit of x ∈ H would be Orbx = Hx = {hx : h ∈ H}, a right coset of
H in G.

↪→ Definition 11.16: Stabilizer
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Let G,S be as defined above. Let s ∈ S. The stabilizer is defined

Stab s = {g ∈ G : g ⋆ s = s} ⊆ G.

Remark 11.4. In example 11.16, Stab s = 2πZ; unless s at the pole, then Stab s = R.

In example 11.14, take s ∈ G. Then, Stab s = {h ∈ H : h ⋆ s = hs = s} = {1}.

In example 11.13, Stab s = {g ∈ G : gsg−1 = g ⋆ s = s} = {g ∈ G : gs = sg}, which is
defined as the centralizer of s, that is, the elements that commute with s.

↪→ Definition 11.17: Collection of Cosets

If H < G denote by G \H the collection of left cosets xH of H in G. We have then

|G \H| = [G : H] =
|G|
|H|

,

if G finite (by Lagrange’s Theorem).

↪→ Lemma 11.7: Properties of Group Actions

1. Let s1, s2 ∈ S. s1 ∼ s2 if ∃g ∈ G s.t. g ⋆ s1 = s2 . This is an equivalence relation; the
equivalence class of s1 is Orb s1.

2. Let s ∈ S. Stab s < G.

Proof. 1. • (Reflexive) e ⋆ s = s =⇒ s ∼ s

• (Symmetric) s1 ∼ s2 =⇒ ∃g ∈ G s.t. g ⋆ s1 = s2 =⇒ g−1 ⋆ (g ⋆ s1) = g−1 ⋆ s2

and (g−1g)⋆s1 = g−1 ⋆s2. Hence, e⋆ s1 = g−1 ⋆s2 =⇒ s1 = g−1s2 =⇒ s2 ∼ s1.

• (Transitive) Suppose s1 ∼ s2, s2 ∼ s3. Then, ∃g1, g2 ∈ G s.t. g1 ⋆ s1 = s2, g2 ⋆ s2 =

s3 =⇒ (g2g1) ⋆ s1 = g2 ⋆ (g1 ⋆ s1) = g2 ⋆ s2 = s3 =⇒ s1 ∼ s3.

By definition, the equivalence class of some s1 is all elements such that g ⋆ s1 = s1 for
some g ∈ G, the very definition of Orb s1.

2. Let H = Stab s.

• (Identity) e ⋆ s = s =⇒ e ∈ H

• (Closure) Let g1, g2 ∈ H =⇒ g1 ⋆s = s, g2 ⋆s = s =⇒ (g1g2)⋆s = g1 ⋆ (g2 ⋆s) =

g1 ⋆ s = s =⇒ g1g2 ∈ H

• (Inverses) Let g ∈ H =⇒ g ⋆ s = s =⇒ g−1(g ⋆ s) = g−1 ⋆ s =⇒ (g−1g) ⋆ s =

g−1 ⋆ s =⇒ e ⋆ s = g−1 ⋆ s =⇒ s = g−1 ⋆ s =⇒ g−1 ∈ H

■
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↪→ Proposition 11.10: Orbit-Stabilizer Formula

There exists a bijection G \ Stab s → Orb s, that is, between the left cosets of Stab s in G
(see definition 11.17) and the orbit of s.

Proof. Let H := Stab s. Define a function Ψ : G \H → Orb s, where Ψ(gH) := g ⋆ s.

• (Well-defined) Suppose gH = g1H ; then, g1 = gh, h ∈ H =⇒ g1 ⋆ s = g ⋆ (h ⋆

s) =︸︷︷︸
h∈Stab

g ⋆ s.

• (Surjective) Any element of Orb s is of the form g ⋆ s for some g, namely, of the form
Ψ(gH)

• (Injective) Suppose ψ(gH) = ψ(g1H). Then, we have

g ⋆ s = g1 ⋆ s
×g−1

=⇒ s = g−1g1 ⋆ s =⇒ g−1g1 ∈ Stab s = H =⇒ g1H = gH

■

↪→ Corollary 11.4

Suppose G finite. Then,

|Orb s| = |G \H| = [G : H] =
|G|
| Stab s|

=
|G|
|H|

.

Proof. Follows from Orbit-Stabilizer Formula and Lagrange’s Theorem. ■

↪→ Definition 11.18: Fix, I, N

Let G be a group acting on S. Then, for g ∈ G, s ∈ S, we have

Fix g := ♯{s ∈ S : g ⋆ s = s} = ♯ fixed pts of g.

Define too

I(g, s) :=

1 g ⋆ s = s

0 else

and
N := ♯Orb of G in S.

↪→Theorem 11.3: Burnside’s Lemma
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Assume S,G finite.
N =

1

♯G

∑
g∈G

Fix g.

Proof. We will evaluate ∑
s∈S

∑
g∈G

I(g, s) =
∑
s∈S

| Stab s|

proposition 11.10
=

∑
s∈S

|G|
|Orb s|

= |G|
∑
s∈S

1

|Orb s|
⋆
= |G| ·N

⋆ : any orbit Orb s of size t contributes 1
t
= 1

|Orb s| t times.

OTOH, ∑
s∈S

∑
g∈G

I(g, s) =
∑
g∈G

∑
s∈S

I(g, s)∑
g∈G

Fix g

=⇒
∑
g∈G

Fix g = |G| ·N

=⇒ N =
1

|G|
∑
g∈G

Fix g.

■

Remark 11.5. Recall example 11.15; we had asked how many possibilities of a 3× 3 square (S),
colored with three different colors, existed up to symmetries byD4. This is equivalent to asking for
the number of orbits that exists for S.

We have

Fix 1 = ♯S = 39 anything times 1 brings it to itself

Fixx = 33

Fixx−1 = 33

Fixx2 = 35

For generalDn, all the elements inDn \ ⟨x⟩ = {xay : a = 0, . . . , n− 1} are reflections. They
are also orientation reversing and order two (xay · xay = yx−axay = y2 = 1).

Hence, we have that Fix y = 36 = Fixx2y = Fixxy = Fixx3y.

§11.6 Groups: Group Actions on Sets p. 80



Hence, we have from Burnside’s,

N =
1

8

(
39 + 2 · 33 + 35 + 4 · 36

)
= 2862.

11.7 More on the Dihedral Group

↪→ Lemma 11.8

Let x ∈ Dn. Then, ordxa = n
gcd a,n

. As a permutation of the n vertices of the corresponding
n-gon, we have xa = product of disjoint cycles, where all of the elements {1, . . . , n} appear,
each of this same length.

⊛ Example 11.17: n = 8

xa ⨿σi a ord

x (12345678) 1 8
x2 (1357)(2468) 2 4
x3 (14625836) 3 8
x4 (15)(26)(37)(48) 4 2
x5 · · · 5 8
x6 (1753)(2864) 6 4
x7 · · · 7 8

Proof. Write xa as a product of disjoint cycles, in which every 1 ≤ i ≤ n appears. Then,
consider the cycle in which i appears (take i as the first element, since we can simply rearrange
any permutation such that this holds):

(i, ia, i+ 2a, . . . , i+ (k − 1)a),

where k is the minimal positive integer such that i + ka ≡n i; ie, the first time that this cycle
closes. But this means that ka ≡n 0, that is, this k does not depend on the particular i we are
considering; it remains to show that this k is as given in the lemma.

We have that,

∀k′ ∈ Z, n | k′a ⇐⇒ n

(a, n)
| k′ · a

(a, n)

⇐⇒ n

(a, n)
| k′

=⇒ min. possible k′ is n

(a, n)

■
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↪→ Corollary 11.5

The ♯ of elements y ∈ ⟨x⟩ s.t. ⟨x⟩ = ⟨y⟩ is φ(n). Such y = xa and of ord n. The ♯ of such
y’s is ♯{1 ≤ a ≤ n s.t. (a, n) = 1} =: φ(n).

↪→ Corollary 11.6

For any d|n, ∃ elt of ord = d ∈ ⟨x⟩.

Proof. xn/d ■

Remark 11.6. In fact, there ∃φ(d) elts of order d in ⟨x⟩.

↪→ Proposition 11.11

Every element onDn \ {1, x, . . . , xn−1} is a reflection. If n odd, the reflection has exactly 1
fixed vertex. If n even, the symmetries y, x2y, . . . , xn−2y have 2 fixed vertices; the symme-
tries xy, . . . , xn−1y have none.

⊛ Example 11.18

Consider necklaces with 8 beads, with 4 Blue, 2 Green, 2 Red. How many combina-
tions, up to D8 symmetries, exist?

Proof. We will approach this using the C-F formula; we have N = 1
16

∑
g∈D8

Fix g.
Note first that Fix 1 = ♯ designs =

(
8
4

)(
4
2

)
= 420.

First, we claim that for a = 1, 3, 5, 7, Fixxa = 0; indeed, any xa for these awould
necessitate every bead to be of the same color.

Next, we claim that Fixx2 = Fix x6 = 0; indeed, we have two disjoint cycles of
order 4, so any element in these “gaps” would have to be of the same color, hence,
suppose one of these were green, then all 4 would be green; this is possible.

Next,Fixx4 =
(
4
2

)
(that is, we choosewhich of the four pairs of 2 elementswe take

to be blue) times ·2 (which of the 2 remain pairs are green), which gives Fixx4 = 12.

Now, take σ = reflection, with no fixed vertices; there exist 4 such σ. Fixσ =
(
4
2

)
(which of the four vertices are blue) ·2 (which of the 2 remaining vertices are red (or
green, wlog)) = 12.

Now, take σ = reflection with 2 fixed vertices; there exist 4. We have Fixσ =

3 + 3 + 6 = 12.

Thus, N = 1
16
(420 + 9 · 12) = 33. ■
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