MATH251 - Algebra 2

Summary of Results

Winter, 2024 Notes by Louis Meunier Complete notes

1	Notation	1
2	Vector Spaces, Linear Relations	2
3	Linear Transformations	4
4	Elementary Matrices; Determinant	9
5	Diagonalization	13
6	Inner Product Spaces	15

1 NOTATION

 \mathbb{F} denotes an arbitrary field; in section 6 we will restrict \mathbb{F} to either \mathbb{R} or \mathbb{C} . Upper case U, V, W will typically denote vector spaces, lower case Greek letters α, β, γ bases, and lower case a, b, c scalars from \mathbb{F} . A subscript (eg $I_V, 0_{\mathbb{F}}$) denote "where" an element comes from (eg identity on V, zero on \mathbb{F}), but will often be omitted.

 $M_{m \times n}(\mathbb{F}) := \{m \times n \text{ matrices with entries in } \mathbb{F}\}; \text{ if } m = n \text{ we denote } M_n(\mathbb{F}). \text{ GL}_n(\mathbb{F}) := \{A \in M_n(\mathbb{F}) : A \text{ invertible } \} \subseteq M_n(\mathbb{F}).$

 $\mathbb{F}[t]_n := \{a_0 + a_1t + \cdots + a_nt^n : a_i \in \mathbb{F}\}.$

Important (purely subjectively) results are highlighted with \star for their use in proofs and other results.

2 VECTOR SPACES, LINEAR RELATIONS

Definition 1 (Vector Space). A vector space *V* defined over a field \mathbb{F} is an abelian group with respect to an addition operation + with identity element $0 \equiv 0_V$, and with an additional scalar multiplication from the field such that for $u, v \in V$ and $a, b \in \mathbb{F}$,

1. $1 \cdot v = v; 1 \in \mathbb{F}$ (identity)

- 2. $a \cdot (b \cdot v) = (\alpha \cdot \beta)v$ (associativity of multiplication)
- 3. (a + b)v = av + bv (distribution of scalar addition over scalar multiplication)
- 4. a(u + v) = au + av (distribution of scalar multiplication over vector addition)

To follow, unless otherwise specified, take *V* to be an arbitrary vector space.

Proposition 1. $0_{\mathbb{F}} \cdot v = 0_V; -1 \cdot v = -v; a \cdot 0_V = 0_V, a \in \mathbb{F}.$

Definition 2 (Subspace). $W \subseteq V$, such that W nonempty and W closed under vector addition and scalar multiplication.

Definition 3 (Linear Combination, Span, Spanning Sets). A linear combination of vectors $v_i \in S$ for some set $S \subseteq V$ is a summation $a_1v_1 + \cdots + a_nv_n$ for scalars $a_i \in \mathbb{F}$.

Define Span({ v_1, \ldots, v_n }) := { $a_1v_1 + \cdots + a_nv_n : a_i \in \mathbb{F}$ }.

We say a set *S* spans *V* if Span(*S*) = *V*; we say *S* minimally spanning if $\nexists v \in S : S \setminus \{v\}$ spanning.

Proposition 2. For any set $S \subseteq V$, Span(S) is a subspace, and moreover the smallest subspace containing S (ie, any other subspace containing S must also contain Span(S)).

Sketch. Use the linearity definition of Span(S) on any other subspace containing *S*. \Box

Definition 4 (Linear Independence). A set $S \subseteq V$ is linearly independent if there is no nontrivial linear combinations equal to 0_V ; conversely, S is linearly dependent if such a linear combination exists. Symbolically, letting $S := \{v_1, \ldots, v_n\}$

S linearly independent
$$\iff (\sum_i a_i v_i = 0 \iff a_i \equiv 0)$$

S linearly dependent
$$\iff \exists a'_i s$$
, not all zero s.t. $\sum_i a_i v_i = 0$

Remark 1. Recall the a_i 's from a field, so they have inverses unless equal to zero. A common proof technique is to assume one is nonzero, hence has an inverse, and derive a contradiction.

Definition 5 (Maximal Independence). A set *S* maximally independent if it is independent, and $\nexists v \in V$ s.t. $S \cup \{v\}$ still independent.

Theorem 1. For $S \subseteq V$, S minimally spanning $\iff S$ linearly independent and spanning $\iff S$ maximally linearly independent \iff every $v \in V$ equals a unique linear combination of vectors in S.

Definition 6 (Basis). If any (hence all) of the above requirements holds, we say *S* a basis for *V*.

Lemma 1 (Steinitz Substitution). Let $Y \subseteq V$ be independent and $Z \subseteq V$ (finite) spanning. Then $|Y| \leq |Z|$ and $\exists Z' \subseteq Z : |Z'| = |Z| - |Y|$, and $Y \cup Z'$ still spanning.

Theorem 2. If V admits a finite basis, any two bases are equinumerous.

In such a case, we define $\dim(V) := |\beta|$ for any basis β for V, and put $\dim(V) = \infty$ if V does not admit a finite basis.

Sketch. Immediate corollary of Steinitz Substitution.

Corollary 1 (\star). For V finite dimensional, any independent set I can be completed to a basis β for V such that $I \subseteq \beta$.

Remark 2. Other than the general definitions and equivalent notions of a basis, this corollary is certainly the most important from this section, and is used extensively in proofs to follow.

3 Linear Transformations

Throughout this section, assume V, W are vector spaces and T, S linear transformations unless specified otherwise.

Definition 7 (Linear Transformation). A function $T : V \to W$ is a linear transformation if it respects the vector space structures, namely $T(av_1 + v_2) = aT(v_1) + T(v_2)$ for any $a \in \mathbb{F}$, $v_1, v_2 \in V$.

We let $I_V : V \to V, v \mapsto v$ be the identity transformation. We sometimes call a transformation from a vector space to itself a linear operator.

Proposition 3. T(0) = 0

Theorem 3 (\star). *Linear transformations are completely determined by their effects on a basis; if* $T_0(v_i) = T_1(v_i)$ for every $v_i \in \beta$ for a basis β of V, then $T_0 \equiv T_1$.

Sketch. Define a transformation as mapping $v := a_1v_1 + \cdots + a_nv_n \mapsto a_1w_1 + \cdots + a_nw_n$ for arbitrary $w_i \in W$. Show that this is linear, and uniquely determined.

Definition 8 (Isomorphism). An isomorphism of vector spaces V, W is a linear transformation $T: V \to W$ that admits a linear inverse T^{-1} . We write $V \cong W$ in this case.

Proposition 4. *T* isomorphism \iff *T* linear and bijection.

Theorem 4 (\star). If dim(V) = n, V $\cong \mathbb{F}^n$. Moreover, every n-dimensional vector spaces are isomorphic.

Sketch. Define a transformation that maps $v_i \mapsto e_i$ where v_i basis vectors for V and e_i basis vectors for \mathbb{F}^n . Show that this is a linear bijection.

Definition 9 (Kernel, Image). For $T : V \rightarrow W$, and put

$$Ker(T) := \{ v \in V : T(v) = 0 \} = T^{-1}\{0\} \subseteq V$$
$$Im(T) := \{T(v) : v \in V\} = T(V) \subseteq W$$

Proposition 5. Ker(T), Im(T) subspaces of V, W resp; hence, put nullity(T) := dim(Ker(T)), rank(T) := dim(Im(T)).

Proposition 6. For $T : V \to W$ and β a basis for V, $T(\beta)$ spans Im(W); hence, $T(\beta)$ spans $W \iff T$ surjective.

Proposition 7 (*****). Let $T : V \to W$; T injective \iff Ker $(T) = \{0\}$ (or, "is trivial") \iff $T(\beta)$ independent for any β -basis for $V \iff T(\beta)$ independent for some β -basis for V.

Remark 3. The second criterion in particular gives a usually quicker way to check injectivity.

Theorem 5 (\star Dimension Theorem). *For* dim(*V*) < ∞ , nullity(*T*) + rank(*T*) = dim(*V*)

Sketch. Direct proof follows by constructing a basis for Ker(*T*), completing it to a basis for *V*, taking $T(\beta)$ and noticing the number of redundant vectors.

Alternatively, the first isomorphism theorem gives that $V/\text{Ker}(T) \cong \text{Im}(T)$ and thus $\dim(V/\text{Ker}(T)) = \dim(V) - \dim(\text{Ker}(T)) = \dim(\text{Im}(T))$ where the second equality needs some proof.

Corollary 2. Let $\dim(V) = \dim(W) = n$. Then $T : V \to W$ injective \iff surjective \iff rank(T) = n.

Theorem 6 (First Isomorphism Theorem). $V/\text{Ker}(t) \cong \text{Im}(T)$

Definition 10 (Homomorphism Space). Put Hom(V, W) := { $T : V \to W$ } for T linear. This is a vector space under the natural operations endowed by the linearity of the transforms themselves, ie $(aT_1 + T_2)(v) := a \cdot T_1(v) + T_2(v)$.

Theorem 7. Let β , γ be bases for V, W resp. Then $\{T_{v,w} : v \in \beta, w \in \gamma\}$ where

$$T_{v,w}(v') = \begin{cases} w & v' = v \\ 0 & v' \neq v \end{cases}$$

a basis for Hom(V, W).

Corollary 3. dim(Hom(V, W)) = dim(V) · dim(W)

Sketch. A counting game.

For any discussion of linear transformations represented with matrices, assume *V*, *W* finite dimensional.

Definition 11 (* Matrix representation of a linear operator). Let dim(*V*) = *n*, dim(*W*) = *m*. For a basis $\beta := \{v_1, \dots, v_n\}$ of *V* and $\gamma := \{w_1, \dots, w_m\}$ and $T : V \to W$, put

$$[T]_{\beta}^{\gamma} := \begin{pmatrix} | & | \\ [T(v_1)]_{\gamma} & \cdots & [T(v_n)]_{\gamma} \\ | & | \end{pmatrix} \in M_{m \times n}(\mathbb{F}),$$

where, if $T(v_i) = a_1 w_1 + \dots + a_m w_m$, we put $[T(v_i)]_{\gamma} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$. We call this the coordinate

vector of $T(v_i)$ in base γ .

Proposition 8. Let $n = \dim(V)$ and let $I_{\beta} : V \to \mathbb{F}^n$, $v \mapsto [v]_{\beta}$. This is an isomorphism.

Theorem 8 (\star). Let $T : V \to W$, β, γ bases for V, W respectively. The following diagram commutes:

ie $I_{\gamma} \circ T = L_{[T]_{\beta}^{\gamma}} \circ I_{\beta}$, where $L_A(v) := A \cdot v$.

Moreover, $\operatorname{Hom}(V, W) \to M_{m \times n}(\mathbb{F}), T \mapsto [T]^{\gamma}_{\beta}$ an isomorphism.

Remark 4. This theorem is quite powerful (and has a pretty diagram): any $m \times n$ matrix corresponds to a linear transformation between n- and m-dimensional spaces, and conversely, any such linear transformation can be represented as a matrix. It also allows us to "be a little clever" with our definitions of matrix operations.

Definition 12. For $A \in M_{m \times n}$, $B \in M_{\ell \times m}(\mathbb{F})$, define $B \cdot A := [L_B \circ L_A]$.

Corollary 4. Matrix multiplication associative.

Sketch. Indeed, as function composition is.

Corollary 5. For $T: V \to W$, $S: W \to U$ and bases α, β, γ for V, W, U resp., $[S \circ T]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha}$

Corollary 6. For $A \in M_n(\mathbb{F})$, L_A invertible $\iff A$ invertible in which case $L_A^{-1} = L_{A^{-1}}$.

Definition 13 (*T*-invariant subspace). Let $T : V \to V$; $W \subseteq V$ *T*-invariant if $T(W) \subseteq W$.

Proposition 9. $\operatorname{Im}(T^n)$ *T-invariant for any* $n \in \mathbb{N}$ *ie* $V \supseteq \operatorname{Im}(T) \supseteq \operatorname{Im}(T^2) \supseteq \cdots \supseteq \operatorname{Im}(T^n) \supseteq \cdots$.

Similarly, $\operatorname{Ker}(T^n) T$ -invariant for any $n \in \mathbb{N}$, ie $\{0\} \subseteq \operatorname{Ker}(T) \subseteq \operatorname{Ker}(T^2) \subseteq \cdots \subseteq \operatorname{Ker}(T^n) \subseteq \cdots$.

Definition 14 (Nilpotent). $T: V \to V$ nilpotent if $T^n = 0$ for some $n \in \mathbb{N}$.

Proposition 10. If $T: V \rightarrow V$ nilpotent, $T^{\dim(V)} = 0$.

Sketch. Nilpotent $\implies \exists k : T^k = 0$. If $k \leq \dim(V)$ this is clear. If $k > \dim(V)$, use proposition 9.

Definition 15 (Direct Sum). For W_0 , $W_1 \subseteq V$, we write $V = W_0 \oplus W_1$ if $W_0 \cap W_1 = \{0_V\}$ and $V = W_0 + W_1$, and say V the direct sum of W_0 , W_1 .

Theorem 9 (Fitting's Lemma). For V finite dimensional and a linear transformation $T : V \to V$, we can decompose $V = U \oplus W$ such that U, W T-invariant, T_U nilpotent and T_W an isomorphism.

Sketch. Using proposition 9 and the finite dimensions, remark that $\exists N$ such that $W := \text{Im}(T^N) = \text{Im}(T^{N+1})$ and $U := \text{Ker}(T^N) = \text{Ker}(T^{N+1})$. Proceed.

Definition 16 (Dual Space). Let $V^* := \text{Hom}(V, \mathbb{F})$.

Proposition 11. For V finite dimensional, $\dim(V^*) = \dim(V)$; moreover $V^* \cong V$.

Sketch. Follows directly from the more general corollary 3, or, more instructively, by considering the dual basis:

Proposition 12. Let V finite dimensional. For a basis $\beta := \{v_1, \ldots, v_n\}$ for V, the dual basis

$$\beta^* := \{f_1, \dots, f_n\}, \text{ where } f_i(v_j) := \delta_{ij} := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ a basis for } V^*.$$

Definition 17. For each $x \in V$, define $\hat{x} \in V^{**}$ by $\hat{x} : V^* \to \mathbb{F}$, $\hat{x}(f) := f(x)$. For $S \subseteq V$, put $\hat{S} := \{\hat{x} : x \in S\}$.

Theorem 10 (\star). $x \mapsto \hat{x}, V \mapsto V^{**}$ a linear injection, and in particular, an isomorphism if V finite dimensional.

Moreover, $V^{**} = \hat{V}$.

Sketch. Isomorphism also follows directly from $V^{**} \cong V^*$ (being the dual of the dual) and \cong being an equivalence relation.

Definition 18 (Annihilator). For $S \subseteq V$ a set, $S^{\perp} := \{f \in V^* : f|_S = 0\}$.

Proposition 13. S^{\perp} *a subspace of* V^* *,* $S_1 \subseteq S_2 \subseteq V \implies S_1^{\perp} \supseteq S_2^{\perp}$.

Theorem 11. If V finite dimensional and $U \subseteq V$ a subspace, $(U^{\perp})^{\perp} = \hat{U}$.

Definition 19 (Transpose). For $T: V \to W$, define $T^t: W^* \to V^*$, $g \mapsto g \circ T$, ie $T^t(g)(v) = g(T(v))$.

Proposition 14. (1) T^t linear, (2) $\operatorname{Ker}(T^t) = (\operatorname{Im}(T))^{\perp}$, (3) $\operatorname{Im}(T^t) = (\operatorname{Ker}(T))^{\perp}$, and (4) if V, W finite and β , γ bases resp, then $([T]^{\gamma}_{\beta})^t = [T^t]^{\beta^*}_{\gamma^*}$, where A^t represents the typical matrix transpose.

Sketch. Remark that (1), (2), (3) hold for infinite dimensional spaces; (2) is fairly clear, but the converse direction of (3) is a little tricky. (4) is just a pain notationally. \Box

Theorem 12. Let V finite dimensional and $U \subseteq V$ a subspace. Then (1) dim $(U^{\perp}) = \dim(V) - \dim(U)$ and (2) $(V/U)^* \cong U^{\perp}$ by the map $f \mapsto f_U, f_U : V \to \mathbb{F}, v \mapsto f(v + U)$.

Sketch. For (1), construct a basis for *U*, complete it, then take the basis and "stare". \Box

Corollary 7. T^t injective $\iff T$ surjective; if V, W finite dimensional, T^t surjective $\iff T$ injective.

Definition 20 (Matrix Rank, C-Rank, R-Rank). For $A \in M_{m \times n}(\mathbb{F})$, define rank(A) := rank (L_A) , c-rank(A) := size of maximally independent subset of columns $\{A^{(1)}, \ldots, A^{(n)}\}$, and r-rank(A) := the same definition but for rows.

Proposition 15. rank(A) = c-rank(A) = r-rank(A)

Sketch. First equality should be clear; second follows either from remarking that $rank(A) = rank(A^t) = r-rank(A)$, or by using tools of the next section.

4 ELEMENTARY MATRICES; DETERMINANT

Proposition 16. For $A \in M_{m \times n}(\mathbb{F})$, $b \in \text{Im}(L_A)$, the set of solutions to $A\vec{x} = \vec{b}$ is precisely the coset $\vec{v} + \text{Ker}(L_A)$ where $\vec{v} \in \mathbb{F}^n$ such that $A\vec{v} = \vec{b}$.

Proposition 17. If m < n and $A \in M_{m \times n}(\mathbb{F})$, there is always a nontrivial solution to $A\vec{x} = \vec{0}$.

Definition 21 (Elementary Row/Column Operations). For $A \in M_{m \times n}(\mathbb{F})$, an elementary row (column) operation is one of

- 1. interchanging two rows (columns) of A
- 2. multiplying a row (column) by a nonzero scalar
- 3. adding a scalar multiple of one row (column) to another.

Remark each operation is invertible.

Definition 22 (Elementary Matrix). An elementary matrix $E \in M_n(\mathbb{F})$ is one obtained from I_n by a elementary row/column operation.

Proposition 18. *Elementary matrices are invertible.*

Proposition 19. Let $T : V \to W, S : W \to W$ and $R :\to V$ where V, W finite dimensional, and S, R invertible. Then rank $(S \circ T) = rank(T) = rank(T \circ R)$.

In the language of matrices, if $A \in M_{m \times n}(\mathbb{F})$, $P \in GL_m(\mathbb{F})$, $Q \in GL_n(\mathbb{F})$, then rank(PA) = rank(AQ).

Proposition 20. For any two bases α , β for V, there exists a $Q \in GL_n(\mathbb{F})$ such that $[T]_{\alpha}Q = Q[T]_{\beta}$.

Conversely, for any $Q \in GL_n(\mathbb{F})$, there exists bases α , β for V such that $Q = [I]_{\alpha}^{\beta}$.

Corollary 8 (*****). *Elementary matrices preserve rank.*

Sketch. Elementary matrices are invertible by proposition 18, so directly apply proposition 19.

Theorem 13 (Diagonal Matrix Form). Every matrix $A \in M_n(\mathbb{F})$ can be transformed into a matrix

$$\begin{bmatrix} I_r & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(n-r) \times (r)} & \mathbf{0}_{(n-r) \times (n-r)} \end{bmatrix}$$

via row, column operations. Moreover, rank(A) = r.

Sketch. By induction. Not very enlightening proof.

Corollary 9. For each $A \in M_n(\mathbb{F})$, there exist $P, Q \in GL_n(\mathbb{F})$ such that B := PAQ of the form above.

Corollary 10. *Every invertible matrix a product of elementary matrices.*

Definition 23 ((r)ref). A matrix is said to be in row echelon form (ref) if

- 1. All zero rows are at the bottom, ie each nonzero row is above each zero row;
- The first nonzero entry (called a pivot) of each row is the only nonzero entry in its column;
- 3. The pivot of each row appears to the right of the pivot of the previous row.

If all pivots are 1, then we say that *B* is in reduced row echelon form (rref).

Theorem 14. There exist a sequence of row operations 1., 3., to bring any matrix to ref; there exists a sequence of row operations of type 2. to bring a ref matrix to rref. We call such operations "Gaussian elimination".

Theorem 15. Applying Gaussian elimination to the augmented matrix $(A|b) \rightarrow (\tilde{A}|\tilde{b})$ in rref, then Ax = b has a solution $\iff \operatorname{rank}(\tilde{A}|\tilde{b}) = \operatorname{rank}(\tilde{A}) = \sharp$ non-zero rows of \tilde{A} .

Corollary 11. $Ax = b \iff if(A|b)$ in ref, there is no pivot in the last column.

Lemma 2. Let B be the rref of $A \in M_{m \times n}(\mathbb{F})$. Then, (1) \sharp non-zero rows of $B = \operatorname{rank}(B) = \operatorname{rank}(A) =: r$, (2) for each i = 1, ..., r, denoting j_i the pivot of the ith row, then $B^{(j_i)} = e_i \in \mathbb{F}^m$; moreover, $\{B^{(j_1)}, \ldots, B^{(j_r)}\}$ linearly independent, and (3) each column of B without a pivot is in the span of the previous columns.

Corollary 12. *The rref of a matrix is unique.*

Remark 5. See here for a "thorough" derivation of the determinant. It won't be repeated here.

Definition 24 (Multilinear). We say a function $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ is multilinear if it is linear in every row ie

$$\delta \begin{pmatrix} \vec{v}_1 \\ \vdots \\ c\vec{x} + \vec{y} \\ \vdots \\ \vec{v}_n \end{pmatrix} = c \cdot \delta \begin{pmatrix} \vec{v}_1 \\ \vdots \\ c\vec{x} \\ \vdots \\ \vec{v}_n \end{pmatrix} + \delta \begin{pmatrix} \vec{v}_1 \\ \vdots \\ \vec{y} \\ \vdots \\ \vec{v}_n \end{pmatrix}$$

Proposition 21. For $\delta : M_n(\mathbb{F}) \to \mathbb{F}$, if A has a zero row, then $\delta(A) = 0$.

Definition 25 (Alternating). A multilinear form $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ called alternating if $\delta(A) = 0$ for any matrix *A* with two equal rows.

Proposition 22. Let $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ be alternating and multilinear; then if B obtained from A by swapping two rows $\delta(B) = -\delta(A)$.

Proposition 23. A multilinear $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ is alternating iff $\delta(A) = 0$ for every matrix A with two equal consecutive rows.

Proposition 24. If $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ be an alternating multilinear form. Then for $A \in M_n(\mathbb{F})$,

$$\delta(A) = \sum_{\pi \in S_n} A_{1\pi(1)} A_{2\pi(2)} \cdots A_{n\pi(n)} \delta(\pi I),$$

where $\pi I_n := \begin{pmatrix} - & e_{\pi(1)} & - \\ & \vdots & \\ - & e_{\pi(n)} & - \end{pmatrix}$.

Definition 26 (sgn). Denote $sgn(\pi) := (-1)^{\sharp \pi}$ where $\sharp \pi :=$ parity of $\pi \equiv$ number of inversions by π .

Corollary 13. If $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ be an alternative multilinear form. Then for $A \in M_n(\mathbb{F})$,

$$\delta(A) = \sum_{\pi \in S_n} sgn(\pi) A_{1\pi(1)} A_{2\pi(2)} \cdots A_{n\pi(n)} \delta(I).$$

Moreover, δ uniquely determined by its value on I_n .

Definition 27 (\star Determinant). Let $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ be the unique normalized ($\delta(I_n) = 1$) alternating multilinear form, ie det(A) := $\sum_{\pi \in S_n} \operatorname{sgn}(\pi) A_{1\pi(1)} \cdots A_{n\pi(n)}$.

Lemma 3. Let $\delta : M_n(\mathbb{F}) \to \mathbb{F}$ be an alternating multilinear form. Then for any $A \in M_n(\mathbb{F})$ and an elementary matrix E, then $\delta(EA) = c \cdot \delta(A)$ for some non-zero scalar c.

In particular, if *E* swaps 2 rows, then c = -1; if *E* multiplies a row by a scalar *c*, c = c; if *E* adds a scalar multiple of one row to another, c = 1.

Theorem 16. For $A \in M_n(\mathbb{F})$, $det(A) = 0 \iff A$ noninvertible.

Sketch. Follows from lemma 3 by writing $A' = E_1 \cdots E_k A$ where A' in rref and applying det.

Theorem 17. det(*AB*) = det(*A*) det(*B*) for any $A, B \in M_n(\mathbb{F})$.

Sketch. Consider two cases, where *A* either invertible or not. In the former, write *A* as a product of elementary matrices and apply lemma 3.

Corollary 14. det
$$(A^{-1}) = (det(A))^{-1}$$
 for any $A \in GL_n(\mathbb{F})$.

Corollary 15. det(A^t) = det(A) for any $A \in M_n(\mathbb{F})$.

5 DIAGONALIZATION

Motivation to keep in mind: linear transformations are icky. How can we represent them more simply on particular subspaces? Namely, scalar multiplication is the simplest linear transformation (verify that is indeed linear) - can we pick subspaces such that *T* becomes scalar multiplication on these subspaces?

Definition 28 (Linearly Independent Subspaces). For $V_1, \ldots, V_k \subseteq V$, we say $\{V_1, \ldots, V_k\}$ linearly independent if $V_i \cap \sum_{j \neq i} V_j = \{0_V\}$ and call $V_1 \oplus \cdots \oplus V_k$ a direct sum.

Definition 29 (Diagnolizable). We say $T : V \to V$ is diagnolizable if there exists V_i 's such that $V = \bigoplus_{i=1}^k V_i$ and $T|_{V_i}$ is multiplication by a fixed scalar $\lambda_i \in \mathbb{F}$.

Definition 30 (Eigenvalue/vector). For a linear operator $T : V \to V$ and $\lambda \in \mathbb{F}$, we call λ an eigenvalue if there exists a nonzero vector v such that $T(v) = \lambda v$; we call such a v an eigenvector.

Remark 6. *v* must be nonzero! This is important for proofs to go forward.

Definition 31 (Eigenspace). For an eigenvalue λ of $T : V \to V$, let $\operatorname{Eig}_V(\lambda) := \{v \in V : Tv = \lambda v\}$ be the eigenspace of *T* corresponding to λ .

Proposition 25. $Eig_V(\lambda)$ a subspace of V.

Proposition 26. Trace and determinant are conjugation-invariant; ie for $A, B \in M_n(\mathbb{F})$, if there exists $Q \in GL_n(\mathbb{F})$ such that AQ = QB, tr(A) = tr(B) and det(A) = det(B).

Definition 32 (Trace, Determinant of Transformation). For $T : V \to V$ where V finite dimensional, put $tr(T) := tr(T) := tr([T]_{\beta})$ and $det(T) := det([T]_{\beta})$ for some/any basis for V.

Remark 7. This is well-defined; $[T]_{\alpha}$, $[T]_{\beta}$ are conjugate for any two bases α , β .

Proposition 27 (\star). *T diagonalizable* \iff *there exists a basis* β *for V such that* $[T]^{\beta}_{\beta}$ *diagonal* \iff *there is a basis for V consisting of eigenvectors for T*

Proposition 28. A diagonalizable iff $\exists Q \in GL_n(\mathbb{F})$ such that $Q^{-1}AQ$ diagonal, with the columns of Q eigenvectors of A.

Proposition 29. (1) $v \in V$ an eigenvector of T with eigenvalue $\lambda \iff \in \text{Ker}(\lambda I - T)$, (2) $\lambda \in \mathbb{F}$ an eigenvalue $\iff \lambda I - T$ not invertible $\iff \det(\lambda I - T) = 0$.

Definition 33 (Characteristic polynomial). For $T : V \to V$, put $p_T(t) = \det(tI_V - T)$. For $A \in M_n(\mathbb{F})$, put $p_A(t) := \det(tI_n - A)$.

Proposition 30 (\star). $p_T(t) = t^n - tr(T)t^{n-1} + \cdots + (-1)^n det(T)$, ie p_T a polynomial of degree n and \cdots some polynomials of degree n - 2.

Corollary 16. $T: V \rightarrow V$ has at most *n* distinct eigenvalues.

Proposition 31. For eigenvalues $\lambda_1, \ldots, \lambda_k$ and corresponding eigenvectors $v_1, \ldots, v_k, \{v_1, \ldots, v_k\}$ linearly independent. Moreover, the eigenspaces $\text{Eig}_T(\lambda_i)$ are linearly independent.

Definition 34 (Geometric, Algebraic Multiplicity). For an eigenvalue λ of $T : V \to V$, put

$$m_g(\lambda) := \dim(\operatorname{Eig}_T(\lambda))$$

and call it the geometric multiplicity of λ , and

$$m_a(\lambda) \coloneqq \max\{k \ge 1 : (t - \lambda)^k | p_T(t)\}$$

and call it the algebraic multiplicity of *T*.

Proposition 32. If $T : V \to V$ has eigenvalues $\lambda_1, \ldots, \lambda_k$, $\sum_{i=1}^k m_g(\lambda_i) \leq n$; moreover, $\sum_{i=1}^k m_g(\lambda_i) = n \iff T$ diagonalizable.

Proposition 33. $m_g(\lambda) \leq m_a(\lambda)$ for any λ .

Sketch. To prove this, you need to use the fact that the characteristic polynomial of *T* restricted to any *T*-invariant subspace of *V* divides the characteristic polynomial of *T*. \Box

Definition 35. A polynomial $p(t) \in \mathbb{F}[t]$ splits over \mathbb{F} if $p(t) = a(t - r_1) \cdots (t - r_n)$ for some $a \in \mathbb{F}, r_i \in \mathbb{F}$.

Remark 8. For an eigenvalue λ of $T : V \to V$, $\sum_{i=1}^{k} m_a(\lambda_i) = n$

Theorem 18 (\star Main Criterion of Diagonalizability). *T* diagonalizable iff $p_T(t)$ splits and $m_g(\lambda) = m_a(\lambda)$ for each eigenvalue λ of *T*.

Definition 36 (*T*-cyclic subspace). For $T : V \to V$ and any $v \in V$, the *T*-cyclic subspace generated by v is the space $\text{Span}(\{T^n(v) : v \in \mathbb{N}\})$.

Lemma 4. For V finite dimensional, let $v \in V$ and W := T-cyclic subspace generated by v. Then (1) $\{v, T(v), \ldots, T^{k-1}(v)\}$ is a basis for W where $k := \dim(W)$ and (2) if $T^k(v) = a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v)$, then $p_{T_W}(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0$.

Sketch. For (2), write down $[T_W]_\beta$ where β as in part (1).

Theorem 19 (\star Cayley-Hamilton). *T* satisfies its own characteristic polynomial, namely $p_T(T) \equiv 0$.

6 INNER PRODUCT SPACES

All vector spaces in this section should be assumed to be inner product spaces, and all fields $\mathbb{F} \in \{\mathbb{C}, \mathbb{R}\}$.

Definition 37 (Inner Product). A function $\langle ., . \rangle : V \times V \to \mathbb{F}$ is called an inner product if for $u, v, w \in V, \alpha \in \mathbb{F}$,

- $\langle v + w, u \rangle = \langle v, u \rangle + \langle w, u \rangle$
- $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$
- $\langle u, v \rangle = \overline{\langle v, u \rangle}$
- $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0 \iff u = 0$.

We call *V* equipped with such a function an inner product space. Given an inner product, we can define an associated norm $||v|| \coloneqq \sqrt{\langle v, v \rangle}, v \in V$, and call vectors *u* such that ||u|| unit; any vector can be "normalized" to a unit by $\tilde{v} \coloneqq ||v||^{-1} \cdot v$.

Remark 9. Requirement 3 also gives us that $\langle u, u \rangle$ always real.

Proposition 34 (Properties of Inner Products). For $u, v, w \in V$, $\alpha \in \mathbb{F}$, $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$, $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$, $||\alpha v|| = |\alpha| ||v||$, and $\langle v, 0_V \rangle = \langle 0_V, v \rangle = 0$.

Definition 38 (Orthogonal). $u, v \in V$ orthogonal if $\langle u, v \rangle = 0$; we write $u \perp v$.

We say a set $S \subseteq V$ orthogonal if vectors in S are pair-wise orthogonal, and if in addition each are units, we say S orthonormal.

We say a set $S \subseteq V$ orthogonal to a vector $v \in V$ if $v \perp s \forall s \in S$.

Theorem 20 (Pythagorean). If $u \perp v$, then $||u||^2 + ||v||^2 = ||u + v||^2$; in particular ||u||, $||v|| \le ||u + v||$.

Definition 39. For *u* a unit, put $\text{proj}_u(v) \coloneqq \langle v, u \rangle \cdot u$.

Proposition 35. For any $v \in V$, *u*-unit, $v - \text{proj}_u(v) \perp u$.

Proposition 36. *For any* $x, y \in V$, $|\langle x, y \rangle| \leq ||x|| ||y||$ *and* $||x + y|| \leq ||x|| + ||y||$.

Proposition 37. Sets of orthonormal vectors are linearly independent. In particular, if dim(V) = nand $\beta := \{u_1, ..., u_n\}$ an orthonormal set, β forms a basis for V, and for any $v \in \beta$,

$$v = \langle v, u_1 \rangle u_1 + \dots + \langle v, u_n \rangle u_n = \operatorname{proj}_{u_1}(v) + \dots + \operatorname{proj}_{u_n}(v).$$

Proposition 38. $v \perp V \iff v = 0_V$.

Theorem 21 (Gram-Schmidt). *Every finite-dimensional vector space has an orthonormal basis. One can be constructed "inductively" by starting with a basis* $\beta := \{v_1, \ldots, v_n\}$ *for* V.

- (Base) set $u_1 := ||v_1||^{-1}v_1$; put $\alpha := \{u_1\}$.
- (Step) given $\alpha := \{u_1, \ldots, u_{k-1}\}$ a set of orthonormal vectors, set

$$\tilde{u}_k \coloneqq v_k - \operatorname{proj}_{\alpha}(v_k) = v_k - \sum_{i=1}^{k-1} \langle v_k, u_i \rangle u_i.$$

and normalize $u_k := ||\tilde{u}_k||^{-1} \cdot u_k$, and let $\alpha := \alpha \cup \{u_k\}$.

• Repeat (Step) until k = n.

Definition 40 (Orthogonal Complement). For $S \subseteq V$, put $S^{\perp} := \{v \in V : v \perp S\}$. Remark that S^{\perp} a subspace regardless if *S* is.

Theorem 22. Let $W \subseteq V$ be a finite dimensional subspace.

- (a) For v ∈ V, there exists a unique decomposition v = w + w_⊥ such that w ∈ W, w_⊥ ∈ W[⊥].
 We put proj_W(v) := w.
- (b) $V = W \oplus W^{\perp}$.

Corollary 17. If $\alpha \neq \beta$ two different orthonormal bases for W, $\operatorname{proj}_{\alpha}(v) = \operatorname{proj}_{\beta}(v) \forall v \in V$.

Theorem 23. Putting $d(x, y) := ||x - y||, x, y \in V$ and letting $W \subseteq V$ -finite subspace, then $d(v, \operatorname{proj}_W(v)) \leq d(v, w)$ for any $w \in W$, that is, $\operatorname{proj}_W(v)$ is the closest vector to V in W; it is also unique.

Corollary 18. For $W \subseteq V$ -finite subspace, $(W^{\perp})^{\perp} = W$.

For the remainder of the notes, assume *V* finite dimensional.

Theorem 24 (Riesz Representation). For V-finite dimensional, then for every $f \in V^*$ there exists a unique $w \in V$ such that $f = f_w$ where $f_w(v) := \langle v, w \rangle, v \in V$. Ie, $w \mapsto f_w$ a linear isomorphism between $V \mapsto V^*$.

Remark 10. Its helpful to recall what exactly w looks like; namely, if $\{u_1, \ldots, u_n\}$ an orthonormal basis for V, then $w = \overline{f(u_1)}u_1 + \cdots + \overline{f(u_n)}u_n$.

Theorem 25 (Adjoint). Let $T : V \to V$, then, there exists a unique $T^* : V \to V$ called the adjoint of T such that $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for any $v, w \in V$.

Remark 11. This proof relies heavily on Riesz.

Proposition 39. For $T: V \to V$ and β orthonormal basis for V, $[T^*]_{\beta} = [T]^*_{\beta}$ (where $A^* := \overline{A^t}$ for $A \in M_n(\mathbb{F})$).

Proposition 40 (Adjoint Properties). (a) $T \mapsto T^*$: hom $(V, V) \rightarrow$ hom(V, V) conjugate *linear.*

- (b) $(T_1 \circ T_2)^* = T_2^* \circ T_1^*$.
- (c) $I_V^* = I_V$.
- (d) $(T^*)^* = T$.
- (e) T invertible $\implies T^*$ invertible with $(T^*)^{-1} = (T^{-1})^*$.

Proposition 41 (Kernel, Image of Adjoint). $Im(T^*)^{\perp} = Ker(T)$ and $Ker(T^*) = Im(T)^{\perp}$. Thus, $rank(T) = rank(T^*)$, $nullity(T) = nullity(T^*)$.

Remark 12. To prove the second equality, apply the first to T^{**} .

Corollary 19. λ an eigenvalue of T iff $\overline{\lambda}$ an eigenvalue of T^* .

Lemma 5 (Schur's). Let $T : V \to V$ such that $p_T(t)$ splits. Then there is an orthonormal basis β for V such that $[T]_{\beta}$ upper triangular.

Definition 41 (Normality). We call $T : V \to V$ normal if $T \circ T^* = T^* \circ T$ (T, T^* commute) and self-adjoint $T = T^*$.

Remark self-adjoint \implies normal, but not the converse; discussion of normal operators applies to self-adjoint.

Proposition 42 (Properties of Normal Operators). For $T: V \to V$,

- (a) $||Tv|| = ||T^*v||.$
- (b) $T aI_V$ is normal; moreover p(T) for any polynomial p normal.
- (c) v an eigenvector of T corresponding to an eigenvalue λ iff v an eigenvector of T^* corresponding to $\overline{\lambda}$.
- (d) For distinct $\lambda_1 \neq \lambda_2$ eigenvalues $Eig_T(\lambda_1) \perp Eig_T(\lambda_2)$.

Theorem 26 (\star Diagonalizability of Normal Operators over \mathbb{C}). Let $T : V \to V$ over \mathbb{C} . Then *T* is normal iff there is an orthonormal eigenbasis for *T*.

Lemma 6. Eigenvalues of self-adjoint operators are always real.

Lemma 7. Characteristic polynomials of real symmetric matrices split over \mathbb{R} . Moreover, if *T* self-adjoint, $p_T(t)$ splits over \mathbb{R} .

Theorem 27 (\star Diagonalizability of Self-Adjoint Operators over \mathbb{R}). $T : V \to V$ over \mathbb{R} self-adjoint iff there is an orthonormal eigenbasis for *T*.

Theorem 28 (\star Spectral Theorem). Let $T : V \to V$ be self-adjoint if $\mathbb{F} = \mathbb{R}$ and normal if $\mathbb{F} = \mathbb{C}$. Then *T* admits a unique spectral decomposition

$$T = \lambda_1 P_1 + \dots + \lambda_k P_k,$$

where the P_i 's orthogonal projections, $I_V = P_1 + \cdots + P_k$, and $P_i \circ P_j = \delta_{ij}P_j$ (ie, $V = \bigoplus_{i=1}^k \operatorname{Im}(P_i)$ and $\operatorname{Im}(P_i) \perp \operatorname{Im}(P_j)$, $i \neq j$).