MATH251 - Algebra 2

Summary of Results

Winter, 2024
Notes by Louis Meunier
Complete notes

1 Notation 1
2 Vector Spaces, Linear Relations 2
3 Linear Transformations 4
4 Elementary Matrices; Determinant 9
5 Diagonalization 13
6 Inner Product Spaces 15

1 Notation

\mathbb{F} denotes an arbitrary field; in section 6 we will restrict \mathbb{F} to either \mathbb{R} or \mathbb{C}. Upper case U, V, W will typically denote vector spaces, lower case Greek letters α, β, γ bases, and lower case a, b, c scalars from \mathbb{F}. A subscript (eg $I_{V}, 0_{\mathbb{F}}$) denote "where" an element comes from (eg identity on V, zero on \mathbb{F}), but will often be omitted.
$M_{m \times n}(\mathbb{F}):=\{m \times n$ matrices with entries in $\mathbb{F}\} ;$ if $m=n$ we denote $M_{n}(\mathbb{F}) . \mathrm{GL}_{n}(\mathbb{F}):=$ $\left\{A \in M_{n}(\mathbb{F}): A\right.$ invertible $\} \subseteq M_{n}(\mathbb{F})$.

$$
\mathbb{F}[t]_{n}:=\left\{a_{0}+a_{1} t+\cdots+a_{n} t^{n}: a_{i} \in \mathbb{F}\right\}
$$

Important (purely subjectively) results are highlighted with \star for their use in proofs and other results.

2 Vector Spaces, Linear Relations

Definition 1 (Vector Space). A vector space V defined over a field \mathbb{F} is an abelian group with respect to an addition operation + with identity element $0 \equiv 0_{V}$, and with an additional scalar multiplication from the field such that for $u, v \in V$ and $a, b \in \mathbb{F}$,

1. $1 \cdot v=v ; 1 \in \mathbb{F}$ (identity)
2. $a \cdot(b \cdot v)=(\alpha \cdot \beta) v$ (associativity of multiplication)
3. $(a+b) v=a v+b v$ (distribution of scalar addition over scalar multiplication)
4. $a(u+v)=a u+a v$ (distribution of scalar multiplication over vector addition)

To follow, unless otherwise specified, take V to be an arbitrary vector space.
Proposition 1. $0_{\mathbb{F}} \cdot v=0_{V} ;-1 \cdot v=-v ; a \cdot 0_{V}=0_{V}, a \in \mathbb{F}$.
Definition 2 (Subspace). $W \subseteq V$, such that W nonempty and W closed under vector addition and scalar multiplication.

Definition 3 (Linear Combination, Span, Spanning Sets). A linear combination of vectors $v_{i} \in S$ for some set $S \subseteq V$ is a summation $a_{1} v_{1}+\cdots+a_{n} v_{n}$ for scalars $a_{i} \in \mathbb{F}$.

Define $\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right):=\left\{a_{1} v_{1}+\cdots+a_{n} v_{n}: a_{i} \in \mathbb{F}\right\}$.
We say a set S spans V if $\operatorname{Span}(S)=V$; we say S minimally spanning if $\nexists v \in S: S \backslash\{v\}$ spanning.

Proposition 2. For any set $S \subseteq V, \operatorname{Span}(S)$ is a subspace, and moreover the smallest subspace containing S (ie, any other subspace containing S must also contain $\operatorname{Span}(S)$).

Sketch. Use the linearity definition of Span (S) on any other subspace containing S.
Definition 4 (Linear Independence). A set $S \subseteq V$ is linearly independent if there is no nontrivial linear combinations equal to 0_{V}; conversely, S is linearly dependent if such a linear combination exists. Symbolically, letting $S:=\left\{v_{1}, \ldots, v_{n}\right\}$

$$
S \text { linearly independent } \Longleftrightarrow\left(\sum_{i} a_{i} v_{i}=0 \Longleftrightarrow a_{i} \equiv 0\right)
$$

$$
S \text { linearly dependent } \Longleftrightarrow \exists a_{i}^{\prime} s \text {, not all zero s.t. } \sum_{i} a_{i} v_{i}=0
$$

Remark 1. Recall the a_{i} 's from a field, so they have inverses unless equal to zero. A common proof technique is to assume one is nonzero, hence has an inverse, and derive a contradiction.

Definition 5 (Maximal Independence). A set S maximally independent if it is independent, and $\nexists v \in V$ s.t. $S \cup\{v\}$ still independent.

Theorem 1. For $S \subseteq V, S$ minimally spanning \Longleftrightarrow S linearly independent and spanning $\Longleftrightarrow S$ maximally linearly independent \Longleftrightarrow every $v \in V$ equals a unique linear combination of vectors in S.

Definition 6 (Basis). If any (hence all) of the above requirements holds, we say S a basis for V.

Lemma 1 (Steinitz Substitution). Let $Y \subseteq V$ be independent and $Z \subseteq V$ (finite) spanning. Then $|Y| \leqslant|Z|$ and $\exists Z^{\prime} \subseteq Z:\left|Z^{\prime}\right|=|Z|-|Y|$, and $Y \cup Z^{\prime}$ still spanning.

Theorem 2. If V admits a finite basis, any two bases are equinumerous.
In such a case, we define $\operatorname{dim}(V):=|\beta|$ for any basis β for V, and put $\operatorname{dim}(V)=\infty$ if V does not admit a finite basis.

Sketch. Immediate corollary of Steinitz Substitution.
Corollary $1(\star)$. For V finite dimensional, any independent set I can be completed to a basis β for V such that $I \subseteq \beta$.

Remark 2. Other than the general definitions and equivalent notions of a basis, this corollary is certainly the most important from this section, and is used extensively in proofs to follow.

3 Linear Transformations

Throughout this section, assume V, W are vector spaces and T, S linear transformations unless specified otherwise.

Definition 7 (Linear Transformation). A function $T: V \rightarrow W$ is a linear transformation if it respects the vector space structures, namely $T\left(a v_{1}+v_{2}\right)=a T\left(v_{1}\right)+T\left(v_{2}\right)$ for any $a \in \mathbb{F}$, $v_{1}, v_{2} \in V$.

We let $I_{V}: V \rightarrow V, v \mapsto v$ be the identity transformation. We sometimes call a transformation from a vector space to itself a linear operator.

Proposition 3. $T(0)=0$
Theorem 3 (\star). Linear transformations are completely determined by their effects on a basis; if $T_{0}\left(v_{i}\right)=T_{1}\left(v_{i}\right)$ for every $v_{i} \in \beta$ for a basis β of V, then $T_{0} \equiv T_{1}$.

Sketch. Define a transformation as mapping $v:=a_{1} v_{1}+\cdots+a_{n} v_{n} \mapsto a_{1} w_{1}+\cdots+a_{n} w_{n}$ for arbitrary $w_{i} \in W$. Show that this is linear, and uniquely determined.

Definition 8 (Isomorphism). An isomorphism of vector spaces V, W is a linear transformation $T: V \rightarrow W$ that admits a linear inverse T^{-1}. We write $V \cong W$ in this case.

Proposition 4. T isomorphism $\Longleftrightarrow T$ linear and bijection.
Theorem $4(\star)$. If $\operatorname{dim}(V)=n, V \cong \mathbb{F}^{n}$. Moreover, every n-dimensional vector spaces are isomorphic.

Sketch. Define a transformation that maps $v_{i} \mapsto e_{i}$ where v_{i} basis vectors for V and e_{i} basis vectors for \mathbb{F}^{n}. Show that this is a linear bijection.

Definition 9 (Kernel, Image). For $T: V \rightarrow W$, and put

$$
\begin{aligned}
& \operatorname{Ker}(T):=\{v \in V: T(v)=0\}=T^{-1}\{0\} \subseteq V \\
& \operatorname{Im}(T):=\{T(v): v \in V\}=T(V) \subseteq W
\end{aligned}
$$

Proposition 5. $\operatorname{Ker}(T), \operatorname{Im}(T)$ subspaces of V, W resp; hence, p ut $\operatorname{nullity}(T):=\operatorname{dim}(\operatorname{Ker}(T)), \operatorname{rank}(T):=$ $\operatorname{dim}(\operatorname{Im}(T))$.

Proposition 6. For $T: V \rightarrow W$ and β a basis for $V, T(\beta)$ spans $\operatorname{Im}(W)$; hence, $T(\beta)$ spans W $\Longleftrightarrow T$ surjective.

Proposition 7 (太). Let $T: V \rightarrow W$; T injective $\Longleftrightarrow \operatorname{Ker}(T)=\{0\}$ (or, "is trivial") \Longleftrightarrow $T(\beta)$ independent for any β-basis for $V \Longleftrightarrow T(\beta)$ independent for some β-basis for V.

Remark 3. The second criterion in particular gives a usually quicker way to check injectivity.
Theorem 5 (\star Dimension Theorem). For $\operatorname{dim}(V)<\infty$, nullity $(T)+\operatorname{rank}(T)=\operatorname{dim}(V)$
Sketch. Direct proof follows by constructing a basis for $\operatorname{Ker}(T)$, completing it to a basis for V, taking $T(\beta)$ and noticing the number of redundant vectors.

Alternatively, the first isomorphism theorem gives that $V / \operatorname{Ker}(T) \cong \operatorname{Im}(T)$ and thus $\operatorname{dim}(V / \operatorname{Ker}(T))=\operatorname{dim}(V)-\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{dim}(\operatorname{Im}(T))$ where the second equality needs some proof.

Corollary 2. Let $\operatorname{dim}(V)=\operatorname{dim}(W)=n$. Then $T: V \rightarrow W$ injective \Longleftrightarrow surjective \Longleftrightarrow $\operatorname{rank}(T)=n$.

Theorem 6 (First Isomorphism Theorem). $V / \operatorname{Ker}(t) \cong \operatorname{Im}(T)$

Definition 10 (Homomorphism Space). Put $\operatorname{Hom}(V, W):=\{T: V \rightarrow W\}$ for T linear. This is a vector space under the natural operations endowed by the linearity of the transforms themselves, ie $\left(a T_{1}+T_{2}\right)(v):=a \cdot T_{1}(v)+T_{2}(v)$.

Theorem 7. Let β, γ be bases for V, W resp. Then $\left\{T_{v, w}: v \in \beta, w \in \gamma\right\}$ where

$$
T_{v, w}\left(v^{\prime}\right)= \begin{cases}w & v^{\prime}=v \\ 0 & v^{\prime} \neq v\end{cases}
$$

a basis for $\operatorname{Hom}(V, W)$.

Corollary 3. $\operatorname{dim}(\operatorname{Hom}(V, W))=\operatorname{dim}(V) \cdot \operatorname{dim}(W)$
Sketch. A counting game.
For any discussion of linear transformations represented with matrices, assume V, W finite dimensional.

Definition 11 (\star Matrix representation of a linear operator). Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$. For a basis $\beta:=\left\{v_{1}, \ldots, v_{n}\right\}$ of V and $\gamma:=\left\{w_{1}, \ldots, w_{m}\right\}$ and $T: V \rightarrow W$, put

$$
[T]_{\beta}^{\gamma}:=\left(\begin{array}{ccc}
\mid & & \mid \\
{\left[T\left(v_{1}\right)\right]_{\gamma}} & \cdots & {\left[T\left(v_{n}\right)\right]_{\gamma}} \\
\mid & & \mid
\end{array}\right) \in M_{m \times n}(\mathbb{F}),
$$

where, if $T\left(v_{i}\right)=a_{1} w_{1}+\cdots+a_{m} w_{m}$, we put $\left[T\left(v_{i}\right)\right]_{\gamma}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$. We call this the coordinate vector of $T\left(v_{i}\right)$ in base γ.

Proposition 8. Let $n=\operatorname{dim}(V)$ and let $I_{\beta}: V \rightarrow \mathbb{F}^{n}, v \mapsto[v]_{\beta}$. This is an isomorphism.
Theorem $8(\star)$. Let $T: V \rightarrow W, \beta, \gamma$ bases for V, W respectively. The following diagram commutes:

ie $I_{\gamma} \circ T=L_{[T]_{\beta}^{\gamma}} \circ I_{\beta}$, where $L_{A}(v):=A \cdot v$.

$$
\text { Moreover, } \operatorname{Hom}(V, W) \rightarrow M_{m \times n}(\mathbb{F}), T \mapsto[T]_{\beta}^{\gamma} \text { an isomorphism. }
$$

Remark 4. This theorem is quite powerful (and has a pretty diagram): any $m \times n$ matrix corresponds to a linear transformation between n - and m-dimensional spaces, and conversely, any such linear transformation can be represented as a matrix. It also allows us to "be a little clever" with our definitions of matrix operations.

Definition 12. For $A \in M_{m \times n}, B \in M_{\ell \times m}(\mathbb{F})$, define $B \cdot A:=\left[L_{B} \circ L_{A}\right]$.

Corollary 4. Matrix multiplication associative.

Sketch. Indeed, as function composition is.
Corollary 5. For $T: V \rightarrow W, S: W \rightarrow U$ and bases α, β, γ for V, W, U resp., $[S \circ T]_{\alpha}^{\gamma}=$ $[S]_{\beta}^{\gamma} \cdot[T]_{\alpha}^{\beta}$

Corollary 6. For $A \in M_{n}(\mathbb{F}), L_{A}$ invertible $\Longleftrightarrow A$ invertible in which case $L_{A}^{-1}=L_{A^{-1}}$.
Definition 13 (T-invariant subspace). Let $T: V \rightarrow V ; W \subseteq V T$-invariant if $T(W) \subseteq W$.

Proposition 9. $\operatorname{Im}\left(T^{n}\right) T$-invariant for any $n \in \mathbb{N}$ ie $V \supseteq \operatorname{Im}(T) \supseteq \operatorname{Im}\left(T^{2}\right) \supseteq \cdots \supseteq \operatorname{Im}\left(T^{n}\right) \supseteq$ \cdots.

Similarly, $\operatorname{Ker}\left(T^{n}\right) T$-invariant for any $n \in \mathbb{N}$, ie $\{0\} \subseteq \operatorname{Ker}(T) \subseteq \operatorname{Ker}\left(T^{2}\right) \subseteq \cdots \subseteq \operatorname{Ker}\left(T^{n}\right) \subseteq$ \cdots.

Definition 14 (Nilpotent). $T: V \rightarrow V$ nilpotent if $T^{n}=0$ for some $n \in \mathbb{N}$.
Proposition 10. If $T: V \rightarrow V$ nilpotent, $T^{\operatorname{dim}(V)}=0$.
Sketch. Nilpotent $\Longrightarrow \exists k: T^{k}=0$. If $k \leqslant \operatorname{dim}(V)$ this is clear. If $k>\operatorname{dim}(V)$, use proposition 9.

Definition 15 (Direct Sum). For $W_{0}, W_{1} \subseteq V$, we write $V=W_{0} \oplus W_{1}$ if $W_{0} \cap W_{1}=\left\{0_{V}\right\}$ and $V=W_{0}+W_{1}$, and say V the direct sum of W_{0}, W_{1}.

Theorem 9 (Fitting's Lemma). For V finite dimensional and a linear transformation $T: V \rightarrow V$, we can decompose $V=U \oplus W$ such that $U, W T$-invariant, T_{U} nilpotent and T_{W} an isomorphism.

Sketch. Using proposition 9 and the finite dimensions, remark that $\exists N$ such that $W:=$ $\operatorname{Im}\left(T^{N}\right)=\operatorname{Im}\left(T^{N+1}\right)$ and $U:=\operatorname{Ker}\left(T^{N}\right)=\operatorname{Ker}\left(T^{N+1}\right)$. Proceed.

Definition 16 (Dual Space). Let $V^{*}:=\operatorname{Hom}(V, \mathbb{F})$.

Proposition 11. For V finite dimensional, $\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)$; moreover $V^{*} \cong V$.

Sketch. Follows directly from the more general corollary 3, or, more instructively, by considering the dual basis:

Proposition 12. Let V finite dimensional. For a basis $\beta:=\left\{v_{1}, \ldots, v_{n}\right\}$ for V, the dual basis $\beta^{*}:=\left\{f_{1}, \ldots, f_{n}\right\}$, where $f_{i}\left(v_{j}\right):=\delta_{i j}:=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$ a basis for V^{*}.

Definition 17. For each $x \in V$, define $\hat{x} \in V^{* *}$ by $\hat{x}: V^{*} \rightarrow \mathbb{F}, \hat{x}(f):=f(x)$.
For $S \subseteq V$, put $\hat{S}:=\{\hat{x}: x \in S\}$.
Theorem $10(\star) . x \mapsto \hat{x}, V \mapsto V^{* *}$ a linear injection, and in particular, an isomorphism if V finite dimensional.

Moreover, $V^{* *}=\hat{V}$.
Sketch. Isomorphism also follows directly from $V^{* *} \cong V^{*}$ (being the dual of the dual) and \cong being an equivalence relation.

Definition 18 (Annihilator). For $S \subseteq V$ a set, $S^{\perp}:=\left\{f \in V^{*}:\left.f\right|_{S}=0\right\}$.
Proposition 13. S^{\perp} a subspace of $V^{*}, S_{1} \subseteq S_{2} \subseteq V \Longrightarrow S_{1}^{\perp} \supseteq S_{2}^{\perp}$.
Theorem 11. If V finite dimensional and $U \subseteq V$ a subspace, $\left(U^{\perp}\right)^{\perp}=\hat{U}$.
Definition 19 (Transpose). For $T: V \rightarrow W$, define $T^{t}: W^{*} \rightarrow V^{*}, g \mapsto g \circ T$, ie $T^{t}(g)(v)=$ $g(T(v))$.

Proposition 14. (1) T^{t} linear, (2) $\operatorname{Ker}\left(T^{t}\right)=(\operatorname{Im}(T))^{\perp}$, (3) $\operatorname{Im}\left(T^{t}\right)=(\operatorname{Ker}(T))^{\perp}$, and (4) if V, W finite and β, γ bases resp, then $\left([T]_{\beta}^{\gamma}\right)^{t}=\left[T^{t}\right]_{\gamma^{*}}^{\beta^{*}}$, where A^{t} represents the typical matrix transpose. Sketch. Remark that (1), (2), (3) hold for infinite dimensional spaces; (2) is fairly clear, but the converse direction of (3) is a little tricky. (4) is just a pain notationally.

Theorem 12. Let V finite dimensional and $U \subseteq V$ a subspace. Then (1) $\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)-$ $\operatorname{dim}(U)$ and $(2)(V / U)^{*} \cong U^{\perp}$ by the map $f \mapsto f_{U}, f_{U}: V \rightarrow \mathbb{F}, v \mapsto f(v+U)$.

Sketch. For (1), construct a basis for U, complete it, then take the basis and "stare".

Corollary 7. T^{t} injective $\Longleftrightarrow T$ surjective; if V, W finite dimensional, T^{t} surjective $\Longleftrightarrow T$ injective.

Definition 20 (Matrix Rank, C-Rank, R-Rank). For $A \in M_{m \times n}(\mathbb{F})$, define $\operatorname{rank}(A):=$ $\operatorname{rank}\left(L_{A}\right), \mathrm{c}-\operatorname{rank}(A):=$ size of maximally independent subset of columns $\left\{A^{(1)}, \ldots, A^{(n)}\right\}$, and $r-\operatorname{rank}(A):=$ the same definition but for rows.
$\operatorname{Proposition}$ 15. $\operatorname{rank}(A)=\mathrm{c}-\operatorname{rank}(A)=\operatorname{r-rank}(A)$
Sketch. First equality should be clear; second follows either from remarking that $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A^{t}\right)=\mathrm{r}-\operatorname{rank}(A)$, or by using tools of the next section.

4 Elementary Matrices; Determinant

Proposition 16. For $A \in M_{m \times n}(\mathbb{F}), b \in \operatorname{Im}\left(L_{A}\right)$, the set of solutions to $A \vec{x}=\vec{b}$ is precisely the coset $\vec{v}+\operatorname{Ker}\left(L_{A}\right)$ where $\vec{v} \in \mathbb{F}^{n}$ such that $A \vec{v}=\vec{b}$.

Proposition 17. If $m<n$ and $A \in M_{m \times n}(\mathbb{F})$, there is always a nontrivial solution to $A \vec{x}=\overrightarrow{0}$.
Definition 21 (Elementary Row/Column Operations). For $A \in M_{m \times n}(\mathbb{F})$, an elementary row (column) operation is one of

1. interchanging two rows (columns) of A
2. multiplying a row (column) by a nonzero scalar
3. adding a scalar multiple of one row (column) to another.

Remark each operation is invertible.

Definition 22 (Elementary Matrix). An elementary matrix $E \in M_{n}(\mathbb{F})$ is one obtained from I_{n} by a elementary row/column operation.

Proposition 18. Elementary matrices are invertible.

Proposition 19. Let $T: V \rightarrow W, S: W \rightarrow W$ and $R: \rightarrow V$ where V, W finite dimensional, and S, R invertible. Then $\operatorname{rank}(S \circ T)=\operatorname{rank}(T)=\operatorname{rank}(T \circ R)$.

In the language of matrices, if $A \in M_{m \times n}(\mathbb{F}), P \in \mathrm{GL}_{m}(\mathbb{F}), Q \in \mathrm{GL}_{n}(\mathbb{F})$, then $\operatorname{rank}(P A)=$ $\operatorname{rank}(A)=\operatorname{rank}(A Q)$.

Proposition 20. For any two bases α, β for V, there exists a $Q \in \mathrm{GL}_{n}(\mathbb{F})$ such that $[T]_{\alpha} Q=$ $Q[T]_{\beta}$.

Conversely, for any $Q \in \mathrm{GL}_{n}(\mathbb{F})$, there exists bases α, β for V such that $Q=[I]_{\alpha}^{\beta}$.
Corollary 8 (\star). Elementary matrices preserve rank.
Sketch. Elementary matrices are invertible by proposition 18, so directly apply proposition 19.

Theorem 13 (Diagonal Matrix Form). Every matrix $A \in M_{n}(\mathbb{F})$ can be transformed into a matrix

$$
\left[\begin{array}{cc}
I_{r} & \mathbf{0}_{r \times(n-r)} \\
\mathbf{0}_{(n-r) \times(r)} & \mathbf{0}_{(n-r) \times(n-r)}
\end{array}\right]
$$

via row, column operations. Moreover, $\operatorname{rank}(A)=r$.

Sketch. By induction. Not very enlightening proof.

Corollary 9. For each $A \in M_{n}(\mathbb{F})$, there exist $P, Q \in \mathrm{GL}_{n}(\mathbb{F})$ such that $B:=P A Q$ of the form above.

Corollary 10. Every invertible matrix a product of elementary matrices.
Definition 23 ((r)ref). A matrix is said to be in row echelon form (ref) if

1. All zero rows are at the bottom, ie each nonzero row is above each zero row;
2. The first nonzero entry (called a pivot) of each row is the only nonzero entry in its column;
3. The pivot of each row appears to the right of the pivot of the previous row.

If all pivots are 1 , then we say that B is in reduced row echelon form (rref).
Theorem 14. There exist a sequence of row operations 1., 3., to bring any matrix to ref; there exists a sequence of row operations of type 2. to bring a ref matrix to rref. We call such operations "Gaussian elimination".

Theorem 15. Applying Gaussian elimination to the augmented matrix $(A \mid b) \rightarrow(\tilde{A} \mid \tilde{b})$ in rref, then $A x=b$ has a solution $\Longleftrightarrow \operatorname{rank}(\tilde{A} \mid \tilde{b})=\operatorname{rank}(\tilde{A})=\sharp$ non-zero rows of \tilde{A}.

Corollary 11. $A x=b \Longleftrightarrow$ if $(A \mid b)$ in ref, there is no pivot in the last column.
Lemma 2. Let B be the rref of $A \in M_{m \times n}(\mathbb{F})$. Then, (1) $\#$ non-zero rows of $B=\operatorname{rank}(B)=$ $\operatorname{rank}(A)=: r$, (2) for each $i=1, \ldots, r$, denoting j_{i} the pivot of the ith row, then $B^{\left(j_{i}\right)}=e_{i} \in \mathbb{F}^{m}$; moreover, $\left\{B^{\left(j_{1}\right)}, \ldots, B^{\left(j_{r}\right)}\right\}$ linearly independent, and (3) each column of B without a pivot is in the span of the previous columns.

Corollary 12. The rref of a matrix is unique.
Remark 5. See here for a "thorough" derivation of the determinant. It won't be repeated here.

Definition 24 (Multilinear). We say a function $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is multilinear if it is linear in every row ie

$$
\delta\left(\begin{array}{c}
\overrightarrow{v_{1}} \\
\vdots \\
c \vec{x}+\vec{y} \\
\vdots \\
\vec{v}_{n}
\end{array}\right)=c \cdot \delta\left(\begin{array}{c}
\overrightarrow{v_{1}} \\
\vdots \\
c \vec{x} \\
\vdots \\
\vec{v}_{n}
\end{array}\right)+\delta\left(\begin{array}{c}
\overrightarrow{v_{1}} \\
\vdots \\
\vec{y} \\
\vdots \\
\overrightarrow{v_{n}}
\end{array}\right)
$$

Proposition 21. For $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$, if A has a zero row, then $\delta(A)=0$.
Definition 25 (Alternating). A multilinear form $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ called alternating if $\delta(A)=0$ for any matrix A with two equal rows.

Proposition 22. Let $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be alternating and multilinear; then if B obtained from A by swapping two rows $\delta(B)=-\delta(A)$.

Proposition 23. A multilinear $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is alternating iff $\delta(A)=0$ for every matrix A with two equal consecutive rows.

Proposition 24. If $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be an alternating multilinear form. Then for $A \in M_{n}(\mathbb{F})$,

$$
\delta(A)=\sum_{\pi \in S_{n}} A_{1 \pi(1)} A_{2 \pi(2)} \cdots A_{n \pi(n)} \delta(\pi I)
$$

where $\pi I_{n}:=\left(\begin{array}{ccc}- & e_{\pi(1)} & - \\ & \vdots & \\ - & e_{\pi(n)} & -\end{array}\right)$.
Definition 26 (sgn). Denote $\operatorname{sgn}(\pi):=(-1)^{\sharp \pi}$ where $\sharp \pi:=$ parity of $\pi \equiv$ number of inversions by π.

Corollary 13. If $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be an alternative multilinear form. Then for $A \in M_{n}(\mathbb{F})$,

$$
\delta(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) A_{1 \pi(1)} A_{2 \pi(2)} \cdots A_{n \pi(n)} \delta(I)
$$

Moreover, δ uniquely determined by its value on I_{n}.
Definition $27\left(\star\right.$ Determinant). Let $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be the unique normalized $\left(\delta\left(I_{n}\right)=1\right)$ alternating multilinear form, ie $\operatorname{det}(A):=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) A_{1 \pi(1)} \cdots A_{n \pi(n)}$.

Lemma 3. Let $\delta: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be an alternating multilinear form. Then for any $A \in M_{n}(\mathbb{F})$ and an elementary matrix E, then $\delta(E A)=c \cdot \delta(A)$ for some non-zero scalar c.

In particular, if E swaps 2 rows, then $c=-1$; if E multiplies a row by a scalar $c, c=c$; if E adds a scalar multiple of one row to another, $c=1$.

Theorem 16. For $A \in M_{n}(\mathbb{F}), \operatorname{det}(A)=0 \Longleftrightarrow A$ noninvertible.
Sketch. Follows from lemma 3 by writing $A^{\prime}=E_{1} \cdots E_{k} A$ where A^{\prime} in rref and applying det.

Theorem 17. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for any $A, B \in M_{n}(\mathbb{F})$.

Sketch. Consider two cases, where A either invertible or not. In the former, write A as a product of elementary matrices and apply lemma 3.

Corollary 14. $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$ for any $A \in \mathrm{GL}_{n}(\mathbb{F})$.
Corollary 15. $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$ for any $A \in M_{n}(\mathbb{F})$.

5 Diagonalization

Motivation to keep in mind: linear transformations are icky. How can we represent them more simply on particular subspaces? Namely, scalar multiplication is the simplest linear transformation (verify that is indeed linear) - can we pick subspaces such that T becomes scalar multiplication on these subspaces?

Definition 28 (Linearly Independent Subspaces). For $V_{1}, \ldots, V_{k} \subseteq V$, we say $\left\{V_{1}, \ldots, V_{k}\right\}$ linearly independent if $V_{i} \cap \sum_{j \neq i} V_{j}=\left\{0_{V}\right\}$ and call $V_{1} \oplus \cdots \oplus V_{k}$ a direct sum.

Definition 29 (Diagnolizable). We say $T: V \rightarrow V$ is diagnolizable if there exists V_{i} 's such that $V=\bigoplus_{i=1}^{k} V_{i}$ and $\left.T\right|_{V_{i}}$ is multiplication by a fixed scalar $\lambda_{i} \in \mathbb{F}$.

Definition 30 (Eigenvalue/vector). For a linear operator $T: V \rightarrow V$ and $\lambda \in \mathbb{F}$, we call λ an eigenvalue if there exists a nonzero vector v such that $T(v)=\lambda v$; we call such a v an eigenvector.

Remark 6. v must be nonzero! This is important for proofs to go forward.

Definition 31 (Eigenspace). For an eigenvalue λ of $T: V \rightarrow V$, let $\operatorname{Eig}_{V}(\lambda):=\{v \in V:$ $T v=\lambda v\}$ be the eigenspace of T corresponding to λ.

Proposition 25. Eig $_{V}(\lambda)$ a subspace of V.

Proposition 26. Trace and determinant are conjugation-invariant; ie for $A, B \in M_{n}(\mathbb{F})$, if there exists $Q \in \mathrm{GL}_{n}(\mathbb{F})$ such that $A Q=Q B, \operatorname{tr}(A)=\operatorname{tr}(B)$ and $\operatorname{det}(A)=\operatorname{det}(B)$.

Definition 32 (Trace, Determinant of Transformation). For $T: V \rightarrow V$ where V finite dimensional, put $\operatorname{tr}(T):=\operatorname{tr}(T):=\operatorname{tr}\left([T]_{\beta}\right)$ and $\operatorname{det}(T):=\operatorname{det}\left([T]_{\beta}\right)$ for some/any basis for V.

Remark 7. This is well-defined; $[T]_{\alpha},[T]_{\beta}$ are conjugate for any two bases α, β.
Proposition $27(\star) . T$ diagonalizable \Longleftrightarrow there exists a basis β for V such that $[T]_{\beta}^{\beta}$ diagonal \Longleftrightarrow there is a basis for V consisting of eigenvectors for T

Proposition 28. A diagonalizable iff $\exists Q \in \mathrm{GL}_{n}(\mathbb{F})$ such that $Q^{-1} A Q$ diagonal, with the columns of Q eigenvectors of A.

Proposition 29. (1) $v \in V$ an eigenvector of T with eigenvalue $\lambda \Longleftrightarrow \in \operatorname{Ker}(\lambda I-T)$, (2) $\lambda \in \mathbb{F}$ an eigenvalue $\Longleftrightarrow \lambda I-T$ not invertible $\Longleftrightarrow \operatorname{det}(\lambda I-T)=0$.

Definition 33 (Characteristic polynomial). For $T: V \rightarrow V$, put $p_{T}(t)=\operatorname{det}\left(t I_{V}-T\right)$. For $A \in M_{n}(\mathbb{F})$, put $p_{A}(t):=\operatorname{det}\left(t I_{n}-A\right)$.

Proposition $30(\star)$. $p_{T}(t)=t^{n}-\operatorname{tr}(T) t^{n-1}+\cdots+(-1)^{n} \operatorname{det}(T)$, ie p_{T} a polynomial of degree n and \cdots some polynomials of degree $n-2$.

Corollary 16. $T: V \rightarrow V$ has at most n distinct eigenvalues.
Proposition 31. For eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and corresponding eigenvectors $v_{1}, \ldots, v_{k},\left\{v_{1}, \ldots, v_{k}\right\}$ linearly independent. Moreover, the eigenspaces Eig $\mathcal{F}_{T}\left(\lambda_{i}\right)$ are linearly independent.

Definition 34 (Geometric, Algebraic Multiplicity). For an eigenvalue λ of $T: V \rightarrow V$, put

$$
m_{g}(\lambda):=\operatorname{dim}\left(\operatorname{Eig}_{T}(\lambda)\right)
$$

and call it the geometric multiplicity of λ, and

$$
m_{a}(\lambda):=\max \left\{k \geqslant 1:(t-\lambda)^{k} \mid p_{T}(t)\right\}
$$

and call it the algebraic multiplicity of T.

Proposition 32. If $T: V \rightarrow V$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{k}, \sum_{i=1}^{k} m_{g}\left(\lambda_{i}\right) \leqslant n$; moreover, $\sum_{i=1}^{k} m_{g}\left(\lambda_{i}\right)=n \Longleftrightarrow T$ diagonalizable.

Proposition 33. $m_{g}(\lambda) \leqslant m_{a}(\lambda)$ for any λ.
Sketch. To prove this, you need to use the fact that the characteristic polynomial of T restricted to any T-invariant subspace of V divides the characteristic polynomial of T.

Definition 35. A polynomial $p(t) \in \mathbb{F}[t]$ splits over \mathbb{F} if $p(t)=a\left(t-r_{1}\right) \cdots\left(t-r_{n}\right)$ for some $a \in \mathbb{F}, r_{i} \in \mathbb{F}$.

Remark 8. For an eigenvalue λ of $T: V \rightarrow V, \sum_{i=1}^{k} m_{a}\left(\lambda_{i}\right)=n$
Theorem 18 (\star Main Criterion of Diagonalizability). T diagonalizable iff $p_{T}(t)$ splits and $m_{g}(\lambda)=m_{a}(\lambda)$ for each eigenvalue λ of T.

Definition 36 (T-cyclic subspace). For $T: V \rightarrow V$ and any $v \in V$, the T-cyclic subspace generated by v is the space $\operatorname{Span}\left(\left\{T^{n}(v): v \in \mathbb{N}\right\}\right)$.

Lemma 4. For V finite dimensional, let $v \in V$ and $W:=T$-cyclic subspace generated by v. Then (1) $\left\{v, T(v), \ldots, T^{k-1}(v)\right\}$ is a basis for W where $k:=\operatorname{dim}(W)$ and (2) if $T^{k}(v)=a_{0} v+a_{1} T(v)+$ $\cdots+a_{k-1} T^{k-1}(v)$, then $p_{T_{W}}(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{1} t-a_{0}$.

Sketch. For (2), write down $\left[T_{W}\right]_{\beta}$ where β as in part (1).
Theorem 19 (\star Cayley-Hamilton). T satisfies its own characteristic polynomial, namely $p_{T}(T) \equiv$ 0.

6 Inner Product Spaces

All vector spaces in this section should be assumed to be inner product spaces, and all fields $\mathbb{F} \in\{\mathbb{C}, \mathbb{R}\}$.

Definition 37 (Inner Product). A function $\langle.,\rangle:. V \times V \rightarrow \mathbb{F}$ is called an inner product if for $u, v, w \in V, \alpha \in \mathbb{F}$,

- $\langle v+w, u\rangle=\langle v, u\rangle+\langle w, u\rangle$
- $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$
- $\langle u, v\rangle=\overline{\langle v, u\rangle}$
- $\langle u, u\rangle \geqslant 0$ and $\langle u, u\rangle=0 \Longleftrightarrow u=0$.

We call V equipped with such a function an inner product space. Given an inner product, we can define an associated norm $\|v\|:=\sqrt{\langle v, v\rangle}, v \in V$, and call vectors u such that $\|u\|$ unit; any vector can be "normalized" to a unit by $\tilde{v}:=\|v\|^{-1} \cdot v$.

Remark 9. Requirement 3 also gives us that $\langle u, u\rangle$ always real.
Proposition 34 (Properties of Inner Products). For $u, v, w \in V, \alpha \in \mathbb{F},\langle u, v+w\rangle=$ $\langle u, v\rangle+\langle u, w\rangle,\langle u, \alpha v\rangle=\bar{\alpha}\langle u, v\rangle,\|\alpha v\|=|\alpha|\|v\|$, and $\left\langle v, 0_{V}\right\rangle=\left\langle 0_{V}, v\right\rangle=0$.

Definition 38 (Orthogonal). $u, v \in V$ orthogonal if $\langle u, v\rangle=0$; we write $u \perp v$.
We say a set $S \subseteq V$ orthogonal if vectors in S are pair-wise orthogonal, and if in addition each are units, we say S orthonormal.

We say a set $S \subseteq V$ orthogonal to a vector $v \in V$ if $v \perp s \forall s \in S$.
Theorem 20 (Pythagorean). If $u \perp v$, then $\|u\|^{2}+\|v\|^{2}=\|u+v\|^{2}$; in particular $\|u\|,\|v\| \leqslant$ $\|u+v\|$.

Definition 39. For u a unit, put $\operatorname{proj}_{u}(v):=\langle v, u\rangle \cdot u$.
Proposition 35. For any $v \in V, u-u n i t, v-\operatorname{proj}_{u}(v) \perp u$.

Proposition 36. For any $x, y \in V,|\langle x, y\rangle| \leqslant\|x\|\|y\|$ and $\|x+y\| \leqslant\|x\|+\|y\|$.
Proposition 37. Sets of orthonormal vectors are linearly independent. In particular, if $\operatorname{dim}(V)=n$ and $\beta:=\left\{u_{1}, \ldots, u_{n}\right\}$ an orthonormal set, β forms a basis for V, and for any $v \in \beta$,

$$
v=\left\langle v, u_{1}\right\rangle u_{1}+\cdots+\left\langle v, u_{n}\right\rangle u_{n}=\operatorname{proj}_{u_{1}}(v)+\cdots+\operatorname{proj}_{u_{n}}(v) .
$$

Proposition 38. $v \perp V \Longleftrightarrow v=0_{V}$.

Theorem 21 (Gram-Schmidt). Every finite-dimensional vector space has an orthonormal basis.
One can be constructed "inductively" by starting with a basis $\beta:=\left\{v_{1}, \ldots, v_{n}\right\}$ for V.

- (Base) set $u_{1}:=\left\|v_{1}\right\|^{-1} v_{1} ;$ put $\alpha:=\left\{u_{1}\right\}$.
- (Step) given $\alpha:=\left\{u_{1}, \ldots, u_{k-1}\right\}$ a set of orthonormal vectors, set

$$
\tilde{u}_{k}:=v_{k}-\operatorname{proj}_{\alpha}\left(v_{k}\right)=v_{k}-\sum_{i=1}^{k-1}\left\langle v_{k}, u_{i}\right\rangle u_{i} .
$$

and normalize $u_{k}:=\left\|\tilde{u}_{k}\right\|^{-1} \cdot u_{k}$, and let $\alpha:=\alpha \cup\left\{u_{k}\right\}$.

- Repeat (Step) until $k=n$.

Definition 40 (Orthogonal Complement). For $S \subseteq V$, put $S^{\perp}:=\{v \in V: v \perp S\}$. Remark that S^{\perp} a subspace regardless if S is.

Theorem 22. Let $W \subseteq V$ be a finite dimensional subspace.
(a) For $v \in V$, there exists a unique decomposition $v=w+w_{\perp}$ such that $w \in W, w_{\perp} \in W^{\perp}$. We put $\operatorname{proj}_{W}(v):=w$.
(b) $V=W \oplus W^{\perp}$.

Corollary 17. If $\alpha \neq \beta$ two different orthonormal bases for $W, \operatorname{proj}_{\alpha}(v)=\operatorname{proj}_{\beta}(v) \forall v \in V$.
Theorem 23. Putting $d(x, y):=\|x-y\|, x, y \in V$ and letting $W \subseteq V$-finite subspace, then $d\left(v, \operatorname{proj}_{W}(v)\right) \leqslant d(v, w)$ for any $w \in W$, that is, $\operatorname{proj}_{W}(v)$ is the closest vector to V in W; it is also unique.

Corollary 18. For $W \subseteq V$-finite subspace, $\left(W^{\perp}\right)^{\perp}=W$.
For the remainder of the notes, assume V finite dimensional.

Theorem 24 (Riesz Representation). For V-finite dimensional, then for every $f \in V^{*}$ there exists a unique $w \in V$ such that $f=f_{w}$ where $f_{w}(v):=\langle v, w\rangle, v \in V$. Ie, $w \mapsto f_{w}$ a linear isomorphism between $V \mapsto V^{*}$.

Remark 10. Its helpful to recall what exactly w looks like; namely, if $\left\{u_{1}, \ldots, u_{n}\right\}$ an orthonormal basis for V, then $w=\overline{f\left(u_{1}\right)} u_{1}+\cdots+\overline{f\left(u_{n}\right)} u_{n}$.

Theorem 25 (Adjoint). Let $T: V \rightarrow V$, then, there exists a unique $T^{*}: V \rightarrow V$ called the adjoint of T such that $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$ for any $v, w \in V$.

Remark 11. This proof relies heavily on Riesz.
Proposition 39. For $T: V \rightarrow V$ and β orthonormal basis for $V,\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$ (where $A^{*}:=\overline{A^{t}}$ for $A \in M_{n}(\mathbb{F})$).

Proposition 40 (Adjoint Properties). (a) $T \mapsto T^{*}: \operatorname{hom}(V, V) \rightarrow \operatorname{hom}(V, V)$ conjugate linear.
(b) $\left(T_{1} \circ T_{2}\right)^{*}=T_{2}^{*} \circ T_{1}^{*}$.
(c) $I_{V}^{*}=I_{V}$.
(d) $\left(T^{*}\right)^{*}=T$.
(e) T invertible $\Longrightarrow T^{*}$ invertible with $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.

Proposition 41 (Kernel, Image of Adjoint). $\operatorname{Im}\left(T^{*}\right)^{\perp}=\operatorname{Ker}(T)$ and $\operatorname{Ker}\left(T^{*}\right)=\operatorname{Im}(T)^{\perp}$. Thus, $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right), \operatorname{nullity}(T)=\operatorname{nullity}\left(T^{*}\right)$.

Remark 12. To prove the second equality, apply the first to $T^{* *}$.
Corollary 19. λ an eigenvalue of T iff $\bar{\lambda}$ an eigenvalue of T^{*}.

Lemma 5 (Schur's). Let $T: V \rightarrow V$ such that $p_{T}(t)$ splits. Then there is an orthonormal basis β for V such that $[T]_{\beta}$ upper triangular.

Definition 41 (Normality). We call $T: V \rightarrow V$ normal if $T \circ T^{*}=T^{*} \circ T\left(T, T^{*}\right.$ commute) and self-adjoint $T=T^{*}$.

Remark self-adjoint \Longrightarrow normal, but not the converse; discussion of normal operators applies to self-adjoint.

Proposition 42 (Properties of Normal Operators). For $T: V \rightarrow V$,
(a) $\|T v\|=\left\|T^{*} v\right\|$.
(b) $T-a I_{V}$ is normal; moreover $p(T)$ for any polynomial p normal.
(c) v an eigenvector of T corresponding to an eigenvalue λ iff v an eigenvector of T^{*} corresponding to $\bar{\lambda}$.
(d) For distinct $\lambda_{1} \neq \lambda_{2}$ eigenvalues $\operatorname{Eig}_{T}\left(\lambda_{1}\right) \perp \operatorname{Eig}_{T}\left(\lambda_{2}\right)$.

Theorem 26 (\star Diagonalizability of Normal Operators over \mathbb{C}). Let $T: V \rightarrow V$ over \mathbb{C}. Then T is normal iff there is an orthonormal eigenbasis for T.

Lemma 6. Eigenvalues of self-adjoint operators are always real.

Lemma 7. Characteristic polynomials of real symmetric matrices split over \mathbb{R}. Moreover, if T self-adjoint, $p_{T}(t)$ splits over \mathbb{R}.

Theorem 27 (\star Diagonalizability of Self-Adjoint Operators over \mathbb{R}). $T: V \rightarrow V$ over \mathbb{R} self-adjoint iff there is an orthonormal eigenbasis for T.

Theorem 28 (\star Spectral Theorem). Let $T: V \rightarrow V$ be self-adjoint if $\mathbb{F}=\mathbb{R}$ and normal if $\mathbb{F}=\mathbb{C}$. Then T admits a unique spectral decomposition

$$
T=\lambda_{1} P_{1}+\cdots+\lambda_{k} P_{k}
$$

where the P_{i} 's orthogonal projections, $I_{V}=P_{1}+\cdots+P_{k}$, and $P_{i} \circ P_{j}=\delta_{i j} P_{j}\left(i e, V=\bigoplus_{i=1}^{k} \operatorname{Im}\left(P_{i}\right)\right.$ and $\left.\operatorname{Im}\left(P_{i}\right) \perp \operatorname{Im}\left(P_{j}\right), i \neq j\right)$.

