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1 Introduction

Remark 1.1. This course is about vector spaces and linear transformations between them; a vector space involves
multiplication by scalars, where the scalars come from some field. We recall first examples of fields, then vector spaces, as
a motivation, before presenting a formal definition.

1.1 Vector Spaces

Remark 1.2. Much of this is recall from Algebra 1.

⊛ Example 1.1: Examples of Fields

1. Q; the field of rational numbers.

2. R; the field of real numbers; Q ⊆ R.

3. C; the field of complex numbers; Q ⊆ R ⊆ C.

4. F𝑝 ≡ Z/𝑝Z ≡ {0, 1, . . . , 𝑝 − 1}; 𝑡ℎ𝑒(𝑢𝑛𝑖𝑞𝑢𝑒) 𝑓 𝑖𝑒 𝑙𝑑𝑜 𝑓 p𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑤ℎ𝑒𝑟𝑒p𝑝𝑟𝑖𝑚𝑒.a

(a) 𝑝 = 2; F2 ≡ {0, 1}.

(b) 𝑝 = 3; F3 ≡ {0, 1, 2}.

(c) · · ·
awhere 𝑎 +𝑝 𝑏 ..= remainder of 𝑎+𝑏

𝑝 , 𝑎 ·𝑝 𝑏 ..= remainder of 𝑎·𝑏
𝑝 .

Remark 1.3. Throughout the course, we will denote an abstract field as F.

⊛ Example 1.2: Examples of Vector Spaces

1. R3 ..= {(𝑥, 𝑦, 𝑧) : 𝑥, 𝑦, 𝑧 ∈ R}. We can add elements in R3, and multiply them by real scalars.

2. F𝑛 ..= F × F × · · · F︸         ︷︷         ︸
𝑛 times

..= {(𝑎1, 𝑎2, . . . , 𝑎𝑛) : 𝑎𝑖 ∈ F}, where 𝑛 ∈ N1; this is a generalization of the

previous example, where we took 𝑛 = 3, F = R. Operations follow identically; addition:

(𝑎1, 𝑎2, . . . , 𝑎𝑛) + (𝑏1, 𝑏2, . . . , 𝑏𝑛) ..= (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, . . . , 𝑎𝑛 + 𝑏𝑛)

and, taking a scalar 𝜆 ∈ F, multiplication:

𝜆 · (𝑎1, 𝑎2, . . . , 𝑎𝑛) ..= (𝜆 · 𝑎1,𝜆 · 𝑎2, . . . ,𝜆 · 𝑎𝑛).

We refer to these elements (𝑎1, · · · , 𝑎𝑛) as vectors in F𝑛 ; the vector for which 𝑎𝑖 = 0∀ 𝑖 is the 0
vector, and is the additive identity, making F𝑛 an abelian group under addition, that admits
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multiplication by scalars from F.

3. 𝐶(R) ..= { 𝑓 : R→ R : 𝑓 continuous}. Here, we have the constant zero function as our additive
identity (𝑥 ↦→ 0∀ 𝑥), and addition/scalar multiplication of two continuous real functions are
continuous.

4. F[𝑡] ..= {𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + · · · + 𝑎𝑛𝑡

𝑛 : 𝑎𝑖 ∈ F∀ 𝑖 , 𝑛 ∈ N}, ie, the set of all polynomials in 𝑡 with
coefficients from F. Here, we can add two polynomials;

(𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛𝑡
𝑛) + (𝑏0 + 𝑏1𝑡 + · · · + 𝑏𝑚𝑡

𝑚) ..=

max{𝑛,𝑚}∑
𝑖=0

(𝑎𝑖 + 𝑏𝑖)𝑡 𝑖 ,

(where we “take” undefined 𝑎𝑖/𝑏𝑖’s as 0; that is, if 𝑚 > 𝑛, then 𝑎𝑚−𝑛 , 𝑎𝑚−𝑛+1, . . . , 𝑎𝑚 are taken
to be 0). Scalar multiplication is defined

𝜆 · (𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + · · · + 𝑎𝑛𝑡

𝑛) ..= 𝜆𝑎0 + 𝜆𝑎1𝑡 + 𝜆𝑎2𝑡
2 + · · · + 𝜆𝑎𝑛𝑡

𝑛 .

Here, the zero polynomial is simply 0 (that is, 𝑎𝑖 = 0∀ 𝑖).

↩→ Definition 1.1: Vector Space

A vector space 𝑉 overoveroveroveroveroveroveroveroveroveroveroveroveroveroveroverover a field F is an abelian group with an operation denoted + (or +𝑉 ) and identity
element2denoted 0𝑉 , equipped with scalar multiplication for each scalar 𝜆 ∈ F satisfying the following
axioms:

1. 1 · 𝑣 = 𝑣 for 1 ∈ F, ∀ 𝑣 ∈ 𝑉 .

2. 𝛼 · (𝛽 · 𝑣) = (𝛼 · 𝛽)𝑣, ∀𝛼, 𝛽 ∈ F, 𝑣 ∈ 𝑉 .

3. (𝛼 + 𝛽) · 𝑣 = 𝛼 · 𝑣 + 𝛽 · 𝑣, ∀𝛼, 𝛽 ∈ F, 𝑣 ∈ 𝑉 .

4. 𝛼 · (𝑢 + 𝑣) = 𝛼 · 𝑢 + 𝛼 · 𝑣, ∀𝛼 ∈ F, 𝑢, 𝑣 ∈ 𝑉 .

We refer to elements 𝑣 ∈ 𝑉 as vectors.

1Where we take 0 ∈ N, for sake of consistency. Moreover, by convention, we define F0 (that is, when 𝑛 = 0) to be {0}; the trivial
vector space.

2The “zero vector”.
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↩→ Proposition 1.1

For a vector space 𝑉 over a field F, the following holds:

1. 0 · 𝑣 = 0𝑉 , ∀ 𝑣 ∈ 𝑉 (where 0 ..= 0F)

2. −1 · 𝑣 = −𝑣, ∀ 𝑣 ∈ 𝑉 (where 1 ..= 1F)3

3. 𝛼 · 0𝑉 = 0𝑉 , ∀𝛼 ∈ F

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. 0 · 𝑣 = (0 + 0) · 𝑣 = 0 · 𝑣 + 0 · 𝑣 =⇒ 0 · 𝑣 = 0𝑉 (by “cancelling” one of the 0 · 𝑣 terms on each side).

2. 𝑣 + (−1 · 𝑣) = (1 · 𝑣 + (−1) · 𝑣) = (1 − 1) · 𝑣 = 0 · 𝑣 = 0𝑉 =⇒ (−1 · 𝑣) = −𝑣.

3. 𝛼 · 0𝑉 = 𝛼 · (0𝑉 + 0𝑉) = 𝛼 · 0𝑉 + 𝛼 · 0𝑉 =⇒ 𝛼 · 0𝑉 = 0𝑉 (by, again, cancelling a term on each side).

■

↩→ Lecture 01; Last Updated: Sat Apr 6 10:19:07 EDT 2024

1.2 Creating Spaces from Other Spaces

↩→ Definition 1.2: Product/Direct Sum of Vector Spaces

For vector spaces 𝑈,𝑉 over the same field F, we define their product (or direct sum) as the set

𝑈 ×𝑉 = {(𝑢, 𝑣) : 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉},

with the operations:

(𝑢1, 𝑣1) + (𝑢2, 𝑣2) ..= (𝑢1 + 𝑢2, 𝑣1 + 𝑣2)
𝜆 · (𝑢, 𝑣) ..= (𝜆 · 𝑢,𝜆 · 𝑣)

⊛ Example 1.3: F

F2 = F × F, where F is considered as the vector space over F (itself).

3NB: “additive inverse”

1.2 Introduction: Creating Spaces from Other Spaces 5



↩→ Definition 1.3: Subspace

For a vector space 𝑉 over a field F, a subspace of 𝑉 is a subset 𝑊 ⊆ 𝑉 s.t.

1. 0𝑉 ∈ 𝑊4

2. 𝑢 + 𝑣 ∈ 𝑊 ∀𝑢, 𝑣 ∈ 𝑊 (closed under addition)

3. 𝛼 · 𝑢 ∈ 𝑊 ∀𝑢 ∈ 𝑊, 𝛼 ∈ F5

Then, 𝑊 is a vector space in its own right.

⊛ Example 1.4: Examples of Subspaces

1. Let 𝑉 ..= F𝑛 .

• 𝑊 ..= {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛 : 𝑥1 = 0} = {(0, 𝑥2, 𝑥3, . . . , 𝑥𝑛) : 𝑥𝑖 ∈ F}.

• 𝑊 ..= {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛 : 𝑥1 + 2 · 𝑥2 = 0}

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑊 . Then, 𝑥 + 𝑦 = (𝑥1 + 𝑦1, . . . , 𝑥𝑛 + 𝑦𝑛), and
𝑥1 + 𝑦1 + 2 · (𝑥2 + 𝑦2) = 𝑥1 + 2 · 𝑥2 + 𝑦1 + 2 · 𝑦2 = 0 + 0 = 0 =⇒ 𝑥 + 𝑦 ∈ 𝑊 . Similar logic
follows for axioms 2., 3. ■

• (More generally)

𝑊 ..= {(𝑥1, . . . , 𝑥𝑛) ∈ F𝑛 :

𝑎11𝑥1 + · · · 𝑎1𝑛𝑥𝑛 = 0
𝑎21𝑥1 + · · · + 𝑎2𝑛𝑥𝑛 = 0

. . .

𝑎𝑘1𝑥1 + · · · 𝑎𝑘𝑛𝑥𝑛 = 0

},

that is, a linear combination of homogenous “conditions” on each term.

• 𝑊 ∗ ..= {(𝑥1, . . . , 𝑥𝑛) : 𝑥1 + 𝑥2 = 1} is not a subspace; it is not closed under addition, nor
under scalar multiplication.

2. Let F[𝑡]𝑛 ..= {𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛𝑡
𝑛 : 𝑎𝑖 ∈ F}. Then, F[𝑡]𝑛 is a subspace of F[𝑡], the more general

polynomial space. However, the set of all polynomials of degree exactly 𝑛 (all axioms fail, in fact)
is not a subspace of F[𝑡]𝑛 .

• 𝑊 ..= {𝑝(𝑡) ∈ F[𝑡]𝑛 : 𝑝(1) = 0}.

• 𝑊 ..= {𝑝(𝑡) ∈ F[𝑡]𝑛 : 𝑝′′(𝑡) + 𝑝′(𝑡) + 2𝑝(𝑡) = 0}.

4This is equivalent to requiring that 𝑊 ≠ ∅; stated this way, axiom 3. would necessitate that 0 · 𝑤 = 0𝑉 ∈ 𝑊 .
5Note that these axioms are equivalent to saying that 𝑊 is a subgroup of 𝑉 with respect to vector addition; 2. ensures closed under
addition, and 3. ensures the existence of additive inverses (as per −1 · 𝑣 = −𝑣).
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3. Let 𝑉 ..= 𝐶(R) be the space of continuous function R→ R.

• 𝑊 ..= { 𝑓 ∈ 𝐶(R) : 𝑓 (𝜋) + 7 𝑓 (
√

2) = 0}.

• 𝑊 ..= 𝐶1(R) ..= everywhere differentiable functions.

• 𝑊 ..= { 𝑓 ∈ 𝐶(R) :
∫ 1

0 𝑓 d𝑥 = 0}.

↩→ Proposition 1.2

Let 𝑊1,𝑊2 be subspaces of a vector space 𝑉 over F. Then, define the following:

1. 𝑊1 +𝑊2 ..= {𝑤1 + 𝑤2 : 𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2}

2. 𝑊1 ∩𝑊2 ..= {𝑤 ∈ 𝑉 : 𝑤 ∈ 𝑊1 ∧ 𝑤 ∈ 𝑊2}

These are both subspaces of 𝑉 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. (a) 0𝑉 ∈ 𝑊1 and 0𝑉 ∈ 𝑊2 =⇒ 0𝑉 = 0𝑉 + 0𝑉 ∈ 𝑊1 +𝑊2.
(b) (𝑢1 + 𝑢2) + (𝑣1 + 𝑣2) = (𝑢1 + 𝑣1) + (𝑢2 + 𝑣2) ∈ 𝑊1 +𝑊2.
(c) 𝛼 · (𝑢 + 𝑣) = 𝛼 · 𝑢 + 𝛼 · 𝑣 ∈ 𝑊1 +𝑊2

2. (a) 0𝑉 ∈ 𝑊1 and 0𝑉 ∈ 𝑊2 =⇒ 0𝑉 = 0𝑉 + 0𝑉 ∈ 𝑊1 ∩𝑊2.
(b) 𝑢, 𝑣 ∈ 𝑊1 ∩𝑊2 =⇒ 𝑢 + 𝑣 ∈ 𝑊1 ∧ 𝑢 + 𝑣 ∈ 𝑊2 =⇒ 𝑢 + 𝑣 ∈ 𝑊1 ∩𝑊2.
(c) 𝛼 · 𝑢 ∈ 𝑊1 ∧ 𝛼 · 𝑢 ∈ 𝑊2 =⇒ 𝛼 · 𝑢 ∈ 𝑊1 ∩𝑊2.

■

1.3 Linear Combinations and Span

↩→ Definition 1.4: Linear Combination

Let 𝑉 be a vector space over a field F . For finitely many vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 , their linear combination is a
sum of the form

𝑛∑
𝑖=1

𝑎𝑖𝑣𝑖 = 𝑎1 · 𝑣1 + · · · + 𝑎𝑛 · 𝑣𝑛 ,

where 𝑎𝑖 ∈ F∀ 𝑖.

A linear combination is called trivial if 𝑎𝑖 = 0∀ 𝑖, that is, all coefficients are 0.

If 𝑛 = 0 (ie, we are “summing up” 0 vectors), we define the sum as the zero vector;
∑0

𝑖=1 𝑎𝑖𝑣𝑖
..= 0𝑉 .

↩→ Lecture 02; Last Updated: Mon Mar 25 13:48:03 EDT 2024
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↩→ Definition 1.5: A More General Definition of Linear Combination

For a (possibly infinite) set 𝑆 of vectors from 𝑉 , a linear combination of vectors in 𝑆 is a linear combination
of 𝑎1𝑣1 + · · · 𝑎𝑛𝑣𝑛 for some finite subset {𝑣1, . . . , 𝑣𝑛} ⊆ 𝑆.6

↩→ Definition 1.6: Span

For a subset 𝑆 ⊆ 𝑉 , we define its span as

Span(𝑆) ..= set of all linear combinations of 𝑆 ..= {𝑎1𝑣1 + · · · 𝑎𝑛𝑣𝑛 : 𝑎𝑖 ∈ F, 𝑣𝑖 ∈ 𝑆}.

By convention, we set Span(∅) = {0𝑉}.

⊛ Example 1.5

Let 𝑆 ..= {(1, 0,−1), (0, 1,−1), (1, 1,−2)} ⊆ R3. Then,

0R3 = (0, 0, 0) = 1 · (1, 0,−1) + 1 · (0, 1,−1) + −1 · (1, 1,−2).

We claim, moreover, that Span(𝑆) = 𝑈 ..= {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 + 𝑦 + 𝑧 = 0} (a plane through the origin).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Note that 𝑆 ⊆ 𝑈 , hence 𝑆 ⊆ Span 𝑆 ⊆ 𝑈 . OTOH, if (𝑥, 𝑦, 𝑧) ∈ 𝑈, we have 𝑧 = −𝑥 − 𝑦, and so

(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦,−𝑥 − 𝑦) = 𝑥 · (1, 0,−1) + 𝑦 · (0, 1,−1) ∈ Span(𝑆)

hence 𝑈 ⊆ Span(𝑆) and thus Span(𝑆) = 𝑈 . ■

Remark 1.4. We implicitly used the following claim in the proof above; we prove it more generally.

↩→ Proposition 1.3

Let 𝑉 be a vector space over F and let 𝑆 ⊆ 𝑉 . Then, Span(𝑆) is always a subspace. Moreover, it is the
smallest (minimal) subspace containing 𝑆 (that is, for any subspace 𝑈 ⊇ 𝑆, we have that 𝑈 ⊇ Span 𝑆).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Because adding/scalar multiplying linear combinations of elements of 𝑆 again results in a linear com-
bination of elements of 𝑆, and 0𝑉 ∈ Span(𝑆) by definition, we have that Span(𝑆) is indeed a subspace.

If 𝑈 ⊃ 𝑆 is a subspace of 𝑉 containing 𝑆, then by definition 𝑈 is closed under addition, that is, taking linear
combinations of its elements (in particular, of elements of 𝑆); hence, 𝑈 ⊃ Span(𝑆). ■

↩→ Lemma 1.1

For 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑉 , 𝑣 ∈ Span(𝑆) ⇐⇒ Span(𝑆 ∪ {𝑣}) = Span(𝑆).

6That is, we do not allow infinite sums.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ( =⇒ ) Let 𝑣 ∈ Span(𝑆) =⇒ 𝑣 = 𝑎1𝑣1 + · · · 𝑎𝑛𝑣𝑛 , 𝑎𝑖 ∈ F, 𝑣𝑖 ∈ 𝑉 . Then, for any linear combination

𝑏1𝑢1 + · · · 𝑏𝑚𝑢𝑚 + 𝑏 · 𝑣 = 𝑏1𝑢1 + · · · 𝑏𝑚𝑢𝑚 + 𝑏(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛)

is a linear combination of vectors in 𝑆∪{𝑣} (first equality) or equivalently, a combination of vectors in 𝑆 (second
equality) and thus Span(𝑆 ∪ {𝑣}) ⊆ Span 𝑆. The reverse inclusion follows trivially.

( ⇐= ) Span(𝑆 ∪ {𝑣}) = Span 𝑆 =⇒ 𝑣 ∈ Span(𝑆). ■

⊛ Example 1.6

(From the above example) We have

Span({(1, 0,−1), (0, 1,−1)} ∪ {(1, 1,−2)}) = Span({(1, 0,−1), (0, 1,−1)}),

since (1, 1,−2) ∈ Span({(1, 0,−1), (0, 1,−1)}) (it was redundant, as it could be generated by the other
two vectors).

↩→ Definition 1.7: Spanning Set

Let 𝑉 be a vector space over a field F . We call 𝑆 ⊆ 𝑉 a spanning set for 𝑉 if Span(𝑆) = 𝑉 . We call such a
spanning set minimal if no proper subset of 𝑆 is a spanning set (�𝑣 ∈ 𝑆 s.t. 𝑆 \ {𝑣} spanning).

Remark 1.5. Note that any 𝑆 ⊆ 𝑉 is spanning for Span(𝑆). But, 𝑆 may not be minimal; indeed, consider the previous
example. We were able to remove a vector from 𝑆 while having the same span.

⊛ Example 1.7

For F𝑛 as a vector space over F, the standard spanning set

St
𝑛

..= {(1, . . . , 0)︸     ︷︷     ︸
..=𝑒1

, (0, 1, 0, . . . , 0)︸           ︷︷           ︸
..=𝑒2

, . . . , (0, . . . , 1)︸     ︷︷     ︸
𝑒𝑛

}.

Given any 𝑥 ..= (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛 , we can write

𝑥 = 𝑥1 · 𝑒1 + · · · 𝑥𝑛 · 𝑒𝑛 .

This is clearly minimal; removing any 𝑒𝑖 would then result in a 0 in the 𝑖th “coordinate” of a vector,
hence St \{𝑒𝑖} would span only vectors whose 𝑖th coordinate is 0.
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↩→ Definition 1.8: Linear Dependence

Let 𝑉 be a vector space over a field F . A set 𝑆 ⊆ 𝑉 is said to be linearly dependent if there is a nontrivial
linear combination of vectors in 𝑆 that is equal to 0𝑉 .

Conversely, 𝑆 is called linearly independent if there is no nontrivial linear combination of vectors in 𝑆

that is equal to 0𝑉 ; all linear combinations of vectors in 𝑆 that equal 0𝑉 are trivial.

↩→ Lecture 03; Last Updated: Mon Mar 25 13:48:23 EDT 2024

⊛ Example 1.8

1. The empty set ∅ is linearly independent; there are no non-trivial linear combinations that equal
0𝑉 (there are no linear combinations at all).

2. For 𝑣 ∈ 𝑉 , the set {𝑣} is linearly dependent iff 𝑣 = 0𝑉 .

3. 𝑆 ..= {(1, 0,−1), (0, 1,−1), (1, 1,−2)} ..= {𝑣1, 𝑣2, 𝑣3}; 𝑆 is linearly dependent (𝑣1+𝑣2−𝑣3 = (0, 0, 0)).

4. 𝑉 ..= F3; 𝑆 ..= {(1, 0,−1), (0, 1,−1), (0, 0, 1)} = {𝑣1, 𝑣2, 𝑣3} is linearly independent.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose

𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 = 0𝑉
=⇒ 𝑎1 = 0 ∧ 𝑎2 = 0 ∧ −𝑎1 − 𝑎2 + 𝑎3 = 0 =⇒ 𝑎3 = 0

=⇒ 𝑎1 = 𝑎2 = 𝑎3 = 0

Hence only a trivial linear combination is possible. ■

5. St𝑛 is linearly independent.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof.

𝑛∑
𝑖=1

𝑎𝑖𝑒𝑖 = 0F𝑛 =⇒ 𝑎𝑖 = 0∀ 𝑖

■

↩→ Lemma 1.2

Let 𝑉 be a vector space over a field F , and 𝑆 ⊆ 𝑉 (possibly infinite).

1. 𝑆 is linearly dependent ⇐⇒ there is a finite subset 𝑆0 ⊆ 𝑆 that is linearly dependent.

2. 𝑆 is linearly independent ⇐⇒ all finite subsets of 𝑆 are linearly independent.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 2. follows from the negation of 1.

( ⇐= ) Trivial.

( =⇒ ) Suppose 𝑆 linearly dependent. Then, 0𝑉 = some nontrivial linear combination of vectors 𝑣1, . . . , 𝑣𝑛 in
𝑆. Let 𝑆0 = {𝑣1, . . . , 𝑣𝑛}, then, 𝑆0 is linearly dependent itself. ■

1.4 Linear Dependence and Span

↩→ Proposition 1.4

Let 𝑉 be a vector space over a field F and 𝑆 ⊆ 𝑉 .

1. 𝑆 linearly dependent ⇐⇒ ∃𝑣 ∈ Span(𝑆 \ {𝑣}).

2. 𝑆 linearly independent ⇐⇒ there is no 𝑣 ∈ Span(𝑆 \ {𝑣}).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 2. follows from the negation of 1.

( =⇒ ) Suppose 𝑆 linearly dependent. Then, 0𝑉 =
∑𝑛

𝑖=1 𝑎𝑖𝑣𝑖 for some nontrivial linear combination of distinct
vectors 𝑆. At least one of 𝑎𝑖 ≠ 0; we can assume wlog (reindexing) 𝑎1 ≠ 0. Then,

𝑎1𝑣1 = −
𝑛∑
𝑖=2

𝑎𝑖𝑣𝑖 =⇒ 𝑣1 = (−𝑎−1
1 )

𝑛∑
𝑖=2

𝑎𝑖𝑣𝑖 =

𝑛∑
𝑖=2

(−𝑎−1
1 𝑎𝑖)𝑣𝑖 ,

hence, 𝑣1 ∈ Span({𝑣2, . . . , 𝑣𝑛}) ⊆ Span(𝑆 \ {𝑣})
( ⇐= ) Suppose 𝑣 ∈ Span(𝑆 \ {𝑣}), then 𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 , with 𝑣1, . . . , 𝑣𝑛 ∈ 𝑆 \ {𝑣}, thus

0𝑉 = 𝑎1𝑣1 + · · · 𝑎𝑛𝑣𝑛 − 𝑣,

which is not a trivial combination (−1 on the 𝑣; 𝑣 cannot “merge” with the other vectors), hence 𝑆 is linearly
dependent. ■

↩→ Corollary 1.1

𝑆 ⊆ 𝑉 is linearly independent ⇐⇒ 𝑆 a minimal spanning set of Span 𝑆.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows from proposition 1.4, 2. ■

↩→ Definition 1.9: Maximally Independent

Let 𝑉 be a vector space over a field F . A set 𝑆 ⊆ 𝑉 is called maximally independent if 𝑆 is linearly
independent and �𝑣 ∈ 𝑉 \ 𝑆 s.t. 𝑆 ∪ {𝑣} is still linearly independent.

In other words, there is no proper supset �̃� ⊋ 𝑆 that is still independent.
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↩→ Lemma 1.3

If 𝑆 ⊆ 𝑉 maximally independent, then 𝑆 is spanning for 𝑉 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑆 ⊆ 𝑉 be maximally independent. Let 𝑣 ∈ 𝑉 ; supposing 𝑣 ∉ 𝑆 (in the case that 𝑣 ∈ 𝑆, then
𝑣 ∈ Span(𝑆) trivially). By maximality, 𝑆 ∪ {𝑣} is linearly dependent, hence there exists a nontrivial linear
combination that equals 0𝑉 . Since 𝑆 independent, this combination must include 𝑣, with a nonzero coefficient.
We can write

𝑎𝑣 +
𝑛∑
𝑖=1

𝑎𝑖𝑣𝑖 = 0𝑉 𝑎 ≠ 0, 𝑣𝑖 ∈ 𝑆

=⇒ 𝑣 =

𝑛∑
𝑖=1

(−𝑎−1𝑎𝑖)𝑣𝑖 ∈ Span 𝑆.

■

↩→ Theorem 1.1

Let 𝑉 be a vector space over a field F and let 𝑆 ⊆ 𝑉 . TFAE:

1. 𝑆 is a minimal spanning set;

2. 𝑆 is linearly independent and spanning;

3. 𝑆 is a maximally linearly independent set;

4. Every vector in 𝑉 is equal to unique linear combination of vectors in 𝑆.

↩→ Lecture 04; Last Updated: Mon Mar 25 13:48:03 EDT 2024

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (1. =⇒ 2.) Suppose 𝑆 is spanning for 𝑉 and is minimal. Then, by corollary 1.1, we have that 𝑆 is
linearly independent, and is thus both linearly independent and spanning.

(2. =⇒ 3.) Suppose 𝑆 is linearly independent and spanning. Let 𝑣 ∈ 𝑉 \ 𝑆; 𝑆 is spanning, hence 𝑣 ∈ Span 𝑆,
that is, there exists a linear combination of vectors in 𝑆 that is equal to 𝑣:

𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 , 𝑎𝑖 ∈ F, 𝑣𝑖 ∈ 𝑆.

Thus, 0𝑉 = 𝑎1𝑣1+ · · ·+ 𝑎𝑛𝑣𝑛 −𝑣, thus 𝑆∪{𝑣} is linearly dependent, and so 𝑆 is maximally linearly independent.

(3. =⇒ 1.) Suppose 𝑆 is maximally linearly independent. By lemma 1.3, 𝑆 is spanning, and since 𝑆 is linearly
independent, by corollary 1.1, 𝑆 is minimally spanning for Span 𝑆.

(2. =⇒ 4.) Suppose 𝑆 is linearly independent and spans 𝑉 , and let 𝑣 ∈ 𝑉 . We have that 𝑣 ∈ Span 𝑆 and hence
is equal to a linear combination of vectors in 𝑆. This gives existence; we now need to prove uniqueness.

Suppose there exist two linear combinations that equal 𝑣,

𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 𝑏1𝑢1 + · · · + 𝑏𝑚𝑢𝑚 ,
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𝑎𝑖 , 𝑏 𝑗 ∈ F, 𝑣𝑖 , 𝑢𝑗 ∈ 𝑆. With appropriate reindexing/relabelling and allowing certain scalars to equal 0, we can
assume that the combinations use the same vectors (with potentially different coefficients), that is,

𝑣 = 𝑎1𝑤1 + · · · + 𝑎𝑘𝑤𝑘 = 𝑏1𝑤1 + · · · + 𝑎𝑘𝑤𝑘 .

This implies, then,
(𝑎1 − 𝑏1)𝑤1 + · · · + (𝑎𝑘 − 𝑏𝑘)𝑤𝑘 = 0𝑉 ,

and by the assumed linear independent of 𝑆, each coefficient (𝑎𝑖 − 𝑏𝑖) = 0∀ 𝑖 =⇒ 𝑎𝑖 = 𝑏𝑖 ∀ 𝑖, hence, these are
indeed the same representations, and thus this representation is unique.

(4. =⇒ 2.) Suppose every vector in 𝑉 admits a unique linear combination of vectors in 𝑆. Clearly, then, 𝑆 is
spanning. It remains to show 𝑆 is linearly independent. Suppose

0𝑉 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛

for 𝑣𝑖 ∈ 𝑆. But we have that every vector has a unique representation, and we know that 𝑎𝑖 = 0∀ 𝑖 is a
(valid) linear combination that gives 0𝑉 ; hence, this must be the unique combination, 𝑎𝑖 = 0∀ 𝑖, and the linear
combination above is trivial. Hence, 𝑆 is linearly independent and spanning. ■

↩→ Definition 1.10: Basis

If any (hence all) of the above statements hold, we call 𝑆 a basis for 𝑉 .

In the words of 4., we call the unique linear combination of vectors in 𝑆 that is equal to 𝑣 the unique
representation of 𝑣 in 𝑆. Its coefficients are called the Fourier coefficients of 𝑣 in 𝑆.

⊛ Example 1.9

1. St𝑛 = {𝑒𝑖 : 1 ⩽ 𝑖 ⩽ 𝑛} is a basis for F𝑛 .

2. In F3, the set
{(1, 0,−1), (0, 1,−1), (0, 0, 1)}

is a basis; it is linearly independent and spanning.

3. For F[𝑡]𝑛 , the standard basis is
{1, 𝑡 , 𝑡2, . . . , 𝑡𝑛}.

4. For F[𝑡], the standard basis is

𝑆 ..= {1, 𝑡 , 𝑡2, . . . } = {𝑡𝑛 : 𝑛 ∈ N}.

5. Let F[[𝑡]] denote the space of all formal power series
∑

𝑛∈N 𝑎𝑛𝑡
𝑛 ; polynomials are an example,

but with only finite nonzero coefficients. Note that, then, the set 𝑆 defined above is not a basis
for this “extended” set. We can in fact find a basis for this set; we need more tools first.
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↩→ Theorem 1.2

Every vector space has a basis.

Remark 1.6. This theorem relies on assuming the Axiom of Choice.

↩→ Lecture 05; Last Updated: Mon Mar 25 13:48:03 EDT 2024

Proof (Attempt). (Of theorem 1.2) We will try to “inductively” build a maximally independent set, as follows:

Begin with an empty set 𝑆0 ..= ∅, and iteratively add more vectors to it. Let 𝑣0 ∈ 𝑉 be a non-zero vector,
and let 𝑆1 ..= {𝑣0}.

If 𝑆1 is maximal, then we are done. Otherwise, there exists a new vector 𝑣1 ∈ 𝑉 \ 𝑆1 s.t. 𝑆2 ..= {𝑣0, 𝑣1} is still
independent.

If 𝑆2 is maximal, then we are done. Otherwise, there exists a new vector 𝑣2 ∈ 𝑉 \ 𝑆2 s.t. 𝑆3 ..= {𝑣0, 𝑣1, 𝑣2} is
still independent.

Continue in this manner; this would take arbitrarily many finite, or even infinite, steps; we would need
some “choice function” that would “allow” us to choose any particular 𝑖th vector 𝑣𝑖 .

We can make this construction precise via the Axiom of Choice and transfinite induction (on ordinals);
alternatively, we will prove a statement equivalent to the Axiom of Choice, Zorn’s Lemma. ■

Remark 1.7. Before stating Zorn’s Lemma, we introduce the following terminology.

↩→ Axiom 1.1: Axiom of Choice

Let 𝑋 be a set of nonempty sets. Then, there exists a choice function 𝑓 defined on 𝑋 that maps each set
of 𝑋 to an element of that set.

↩→ Definition 1.11: Inclusion-Maximal Element

A inclusion-maximal element of 𝐼 is a set 𝑆 ∈ 𝐼 s.t. there is no strict super set 𝑆′ ⊋ 𝑆 s.t. 𝑆′ ∈ 𝐼.

↩→ Definition 1.12: Chain

Let 𝑋 a set. Call a collection 𝒞 ⊆ 𝒫(𝑋) a chain if any two 𝐴, 𝐵 ∈ 𝒞 are comparable, ie, 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.

↩→ Definition 1.13: Upper Bound

An upper bound of a collection 𝜏 ⊆ 𝒫(𝑋) is a set 𝑈 ⊆ 𝑋 s.t. 𝑈 ⊇ 𝐽 ∀ 𝐽 ∈ 𝜏; 𝑈 contains the union of all sets
in 𝐽.

⊛ Example 1.10: Of The Previous Definitions

Let 𝑋 ..= N, 𝐼 ..= {∅, {0}, {1, 2}, {1, 2, 3}} ⊆ 𝒫(N).

The maximal elements of 𝐼 would be {0} and {1, 2, 3}.

1.4 Introduction: Linear Dependence and Span 14



Chains would include 𝒞0 ..= {∅, {1, 2}, {1, 2, 3}}, 𝒞1 ..= {∅, {0}}, 𝒞2 ..= {∅} (or any set containing a
single element).

The sets {0, 1, 2, 3} and {0, 1, 2, 3, 4, 5} are upper bounds for 𝐼, while neither is an element of 𝐼.
The set {1, 2, 3} is an upper bound for 𝒞0. A chain {∅, {0}, {0, 1}, {0, 1, 2}, . . . } has an upper bound
of N.

↩→ Lemma 1.4: Zorn’s Lemma

Let 𝑋 be an ambient set and 𝐼 ⊆ 𝒫(𝑋) be a nonempty collection of subsets of 𝑋. If every chain 𝒞 ⊆ 𝐼 has
an upper bound in 𝐼, then 𝐼 has a maximal element.

“Proof”. This is equivalent to the Axiom of Choice; proving it is beyond the scope of this course :(. ■

Proof of theorem 1.2, cnt’d. We obtain a maximal independent set using Zorn’s Lemma.

Let 𝐼 be the collection of all linearly independent subsets of 𝑉 . 𝐼 is nonempty; ∅ ∈ 𝐼, as is {𝑣} ∈ 𝐼 for any
nonzero 𝑣 ∈ 𝑉 . To apply Zorn’s, we need to show that every chain 𝒞 if sets in 𝐼 has an upper bound in 𝐼; that
is, every linearly independent set has an upper bound that itself is linearly independent.

Let 𝒞 be a chain in 𝐼. Let 𝑆 ..=
⋃𝒞 be the union of all sets in 𝒞. To show 𝑆 is linearly independent, it suffices

to show that every finite subset {𝑣1, . . . , 𝑣𝑛} ⊆ 𝑆 is linearly independent. Let 𝑆𝑖 ∈ 𝒞 be s.t. 𝑣𝑖 ∈ 𝑆𝑖 for each 𝑖.
Because 𝒞 a chain, for each 𝑖 , 𝑗 we have either 𝑆𝑖 ⊆ 𝑆 𝑗 or 𝑆 𝑗 ⊆ 𝑆𝑖 , and so we can order 𝑆1, . . . , 𝑆𝑛 in increasing
order w.r.t ⊆. This implies, then, there is a maximal 𝑆𝑖0 s.t. 𝑆𝑖0 ⊇ 𝑆𝑖 ∀ 𝑖 ∈ {1, . . . , 𝑛}. Moreover, we have that
{𝑣1, . . . , 𝑣𝑛} ∈ 𝑆𝑖0 , and that 𝑆𝑖0 is linearly independent and thus {𝑣1, 𝑣2, . . . , 𝑣𝑛} is also linearly independent.

Thus, as we can apply Zorn’s Lemma, we conclude that 𝐼 has a maximal element, ie, there is a maximal
independent set, and thus a 𝑉 indeed has a basis. ■

↩→ Lecture 06; Last Updated: Mon Mar 25 13:48:03 EDT 2024

↩→ Theorem 1.3

For every vector space𝑉 over a field F, any two bases ℬ1,ℬ2 are equinumerous/of equal size/cardinality,
ie, there is a bĳection between ℬ1 and ℬ2.

Remark 1.8. We will only prove this for vector spaces that admit a finite basis.

↩→ Lemma 1.5: Steinitz Substitution

Let 𝑉 be a vector space over a field F . Let 𝑌 ⊆ 𝑉 be a (possibly infinite) linearly independent set and let
𝑍 ⊆ 𝑉 be a finite spanning set. Then:

1. 𝑘 ..= |𝑌 | ⩽ |𝑍 | =: 𝑛

2. There is 𝑍′ ⊆ 𝑍 of size 𝑛 − 𝑘 s.t. 𝑌 ∪ 𝑍′ is still spanning.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Remark first that if 𝑍 finite and spanning for 𝑉 , then we cannot have a infinite linearly independent 𝑌
subset of 𝑉 . Thus, wlog assume that 𝑌 finite.

We prove by induction on 𝑘.

𝑘 = 0 gives that 𝑌 = ∅, and so 𝑍′ = 𝑍 itself works (𝑍′ ∪ 𝑌 = 𝑍) as a spanning set.

Suppose the statement holds for some 𝑘 ⩾ 0. Let 𝑌 be an independent set such that |𝑌 | = 𝑘 + 1, ie

𝑌 ..= {𝑦1, 𝑦2, . . . , 𝑦𝑘 , 𝑦𝑘+1}, 𝑦 ∈ 𝑉.

By our inductive assumption, we can consider 𝑌′ ..= {𝑦1, . . . , 𝑦𝑘} ⊆ 𝑌 of size 𝑘, to obtain a set

𝑍′ = {𝑧1, 𝑧2, . . . , 𝑧𝑛−𝑘} ⊆ 𝑍, s.t. 𝑌′ ∪ 𝑍′ = {𝑦1, . . . , 𝑦𝑘 , 𝑧1, . . . , 𝑧𝑛−𝑘}

is spanning. As this is spanning, we can write 𝑦𝑘+1 as a linear combination of vectors in 𝑌′ ∪ 𝑍′, ie

𝑦𝑘+1 = 𝑎1𝑦1 + · · · + 𝑎𝑘𝑦𝑘 + 𝑏1𝑧1 + · · · + 𝑏𝑛−𝑘𝑧𝑛−𝑘 , 𝑎𝑖 , 𝑏 𝑗 ∈ F.

It must be that at least one of 𝑏 𝑗’s must be nonzero; if they were all zero, then 𝑦𝑘+1 would simply be a linear
combination of vector 𝑦𝑖 giving that 𝑦𝑘+1 linearly dependent, contradicting our construction of 𝑌 linearly
independent.

Assume, wlog, 𝑏𝑛−𝑘 ≠ 0. Then, we can write

𝑧𝑛−𝑘 = 𝑏−1
𝑛−𝑘𝑦𝑘+1 − 𝑏−1

𝑛−𝑘𝑎1𝑦1 − · · · − 𝑏−1
𝑛−𝑘𝑎𝑘𝑦𝑘 − 𝑏−1

𝑛−𝑘𝑏1𝑧1 − · · · − 𝑏−1
𝑛−𝑘𝑏𝑛−𝑘−1𝑧𝑛−𝑘−1,

and hence

𝑧𝑛−𝑘 ∈ Span{𝑦1, . . . , 𝑦𝑘+1, 𝑧1, . . . , 𝑧𝑛−𝑘−1} = Span
©­­«{𝑦1, . . . , 𝑦𝑘+1}︸           ︷︷           ︸

𝑌

∪ {𝑧1, . . . , 𝑧𝑛−𝑘−1}︸              ︷︷              ︸
..=𝑍′′

ª®®¬ .
We had that 𝑌′ ∪ 𝑍′ was spanning, and (𝑌′ ∪ 𝑍′) \ (𝑌 ∪ 𝑍′′) = {𝑧𝑛−𝑘} ⊆ Span(𝑌 ∪ 𝑍′′), and we thus have that
𝑌 ∪ 𝑍′′ is also spanning. ■

↩→ Corollary 1.2: Finite Basis Case for theorem 1.3

Let 𝑉 be a vector space that admits a finite basis. Then, any two bases of 𝑉 are equinumerous.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑌, 𝑍 be two finite bases for 𝑉 . Then, 𝑌 is independent and 𝑍 is spanning, so by Steinitz Substitution,
|𝑌 | ⩽ |𝑍 |. OTOH, 𝑍 is independent, and 𝑌 is spanning, so by Steinitz Substitution, |𝑍 | ⩽ |𝑌 |, and we conclude
that |𝑌 | = |𝑍 |. Let 𝑛 ..= |𝑌 |.

It remains to show that there exist no infinite bases for 𝑉 ; it suffices to show that there is no independent
set of size 𝑛 + 1. To this end, let 𝐼 ⊆ 𝑉 such that |𝐼 | = 𝑛 + 1 be an independent set. 𝑌 is still spanning, hence,
by the substitution lemma, 𝑛 + 1 ⩽ 𝑛, a contradiction. Hence, 𝐼 as defined cannot exist and so any basis of 𝑉
must be of size 𝑛. ■
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↩→ Definition 1.14: Dimension

Let 𝑉 be a vector space over a field F . The dimension of 𝑉 , denote

dim(𝑉)

as the cardinality/size of any basis for 𝑉 . We call 𝑉 finite dimensional if dim(𝑉) is a natural number, i.e. 𝑉
admits a finite basis. Otherwise, we say 𝑉 is infinite dimensional.

↩→ Corollary 1.3: of Steinitz Substitution

Let 𝑉 be a finite dimensional vector space over F and denote 𝑛 ..= dim(𝑉). Then:

1. Every linearly independent subset 𝐼 ⊆ 𝑉 has size ⩽ 𝑛;

2. Every spanning set 𝑆 ⊆ 𝑉 for 𝑉 has size ⩾ 𝑛;

3. Every independent set 𝐼 can be completed to a basis to 𝑉 , ie, there exists a basis 𝐵 for 𝑉 s.t. 𝐼 ⊆ 𝐵.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix a basis 𝐵 for 𝑉 , |𝐵| =: 𝑛.

1. If 𝐼 is a independent set, then because 𝐵 spanning, Steinitz Substitution gives |𝐼 | ⩽ |𝐵|.

2. If 𝑆 spanning for 𝑉 , then because 𝐵 is linearly independent, Steinitz Substitution gives |𝐵| ⩽ |𝑆 |.

3. Let 𝐼 be an independent set. Then, because 𝐵 is spanning, Steinitz Substitution gives 𝐵′ ⊆ 𝐵 of size 𝑛 − |𝐼 |
s.t. 𝐼 ∪ 𝐵′ is spanning. Moreover, |𝐼 ∪ 𝐵′| ⩽ 𝑛, and by 2. it must have size ⩾ 𝑛, and thus has size precisely
𝑛 and is thus a minimally spanning set and thus a basis.

■

↩→ Corollary 1.4: Monotonicity of Dimension

Let 𝑉 be a vector space over a field F . For any subspace 𝑊 ⊆, dim𝑊 ⩽ dim𝑉 , and

dim𝑊 = dim𝑉 ⇐⇒ 𝑊 = 𝑉.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝐵 ⊆ 𝑊 be a basis for 𝑊 . Because 𝐵 is independent, |𝐵| ⩽ dim(𝑉) by 1. of corollary 1.3, so
dim(𝑊) = |𝐵| ⩽ dim(𝑉).

If |𝐵| = dim(𝑉), then 𝐵 is a basis for 𝑉 again by 1. of corollary 1.3, so 𝑊 = Span(𝐵) = 𝑉 . ■

↩→ Lecture 07; Last Updated: Mon Mar 25 13:48:03 EDT 2024
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2 Linear Transformations, Matrices

2.1 Introduction: Definitions, Basic Properties

↩→ Definition 2.1: Linear Transformation

Let 𝑉,𝑊 be vector spaces over a field F. A function 𝑇 : 𝑉 → 𝑊 is called a linear transformation if it
preserves the vector space structures, that is,

1. 𝑇(𝑣0 + 𝑣1) = 𝑇(𝑣0) + 𝑇(𝑣1), ∀ 𝑣0, 𝑣1 ∈ 𝑉 ;

2. 𝑇(𝛼 · 𝑣) = 𝛼 · 𝑇(𝑣), ∀𝛼 ∈ F, 𝑣 ∈ 𝑉 ;

3. 𝑇(0𝑉) = 0𝑊 .

Remark 2.1. Note that 3. is redundant, implied by 2., but included for emphasis:

𝑇(0𝑉) = 𝑇(0F · 0𝑉) = 0F · 𝑇(0𝑉) = 0𝑊 .

⊛ Example 2.1: Linear Transformations

1. 𝑇 : F2 → F2, 𝑇(𝑎1, 𝑎2) ..= (𝑎1 + 2𝑎2, 𝑎1).

2. Let 𝜃 ∈ R, and let 𝑇𝜃 : R2 → R2 be the rotation by 𝜃. The linearity of this is perhaps
most obvious in polar coordinates, ie 𝑣 ∈ R2, 𝑣 = 𝑟(cos 𝛼, sin 𝛼) for appropriate 𝑟, 𝛼, and
𝑇𝜃(𝑣) = 𝑟(cos(𝛼 + 𝜃), sin(𝛼 + 𝜃)).

3. 𝑇 : R2 → R2, a reflection about the 𝑥-axis, ie, 𝑇(𝑥, 𝑦) = (𝑥,−𝑦).

4. Projections, 𝑇 : F𝑛 → F𝑛 .

5. The transpose on 𝑀𝑛(F), ie, 𝑇 : 𝑀𝑛(F) → 𝑀𝑛(F), where 𝐴 ↦→ 𝐴𝑡 .

6. The derivative on space of polynomials of degree leq 𝑛, 𝐷 : F[𝑡]𝑛+1 → F[𝑡]𝑛 , 𝑝(𝑡) ↦→ 𝑝′(𝑡).

↩→ Theorem 2.1

Linear transformations are completely determined by their values on a basis.

That is, let ℬ ..= {𝑣1, . . . , 𝑣𝑛} be a basis for a vector space 𝑉 over F. Let 𝑊 also be a vector space
over F and let 𝑤1, . . . , 𝑤𝑛 ∈ 𝑊 be arbitrary vectors. Then, there is a unique linear transformation
𝑇 : 𝑉 → 𝑊 s.t. 𝑇(𝑣𝑖) = 𝑤𝑖 ∀ 𝑖 = 1, . . . , 𝑛.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We aim to define 𝑇(𝑣) for arbitrary 𝑣 ∈ 𝑉 . We can write

𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛

as the unique representation of 𝑣 in terms of the basis ℬ. Then, we simply define

𝑇(𝑣) ..= 𝑎1𝑤1 + · · · + 𝑎𝑛𝑤𝑛 ,

for our given 𝑤𝑖’s. Then, 𝑇(𝑣𝑖) = 1 · 𝑤𝑖 = 𝑤𝑖 , as desired, and 𝑇 is linear;

1. Let 𝑢, 𝑣 ∈ 𝑉 ; 𝑢 ..=
∑

𝑛 𝑎𝑖𝑣𝑖 , 𝑣
..=

∑
𝑛 𝑏𝑖𝑣𝑖 . Then,

𝑇(𝑢 + 𝑣) = 𝑇(
∑
𝑛

𝑎𝑖𝑣𝑖 +
∑
𝑛

𝑏𝑖𝑣𝑖) = 𝑇(
∑
𝑛

(𝑎𝑖 + 𝑏𝑖)𝑣𝑖) =
∑
𝑛

(𝑎𝑖 + 𝑏𝑖)𝑤𝑖 =
∑
𝑛

𝑎𝑖𝑤𝑖 +
∑
𝑛

𝑏𝑖𝑤𝑖 = 𝑇(𝑢) + 𝑇(𝑣).

2. Scalar multiplication follows similarly.

To show uniqueness, suppose𝑇0, 𝑇1 are two linear transformations satisfying𝑇0(𝑣𝑖) = 𝑤𝑖 = 𝑇1(𝑣𝑖). Let 𝑣 ∈ 𝑉 ,
and write 𝑣 =

∑
𝑛 𝑎𝑖𝑣𝑖 . By linearity,

𝑇𝑘(𝑣) = 𝑇𝑘(
∑
𝑛

𝑎𝑖𝑣𝑖) =
∑
𝑛

𝑎𝑖𝑇(𝑣𝑖) =
∑
𝑛

𝑎𝑖𝑤𝑖 ,

for 𝑘 = 0, 1, hence, 𝑇1(𝑣) = 𝑇0(𝑣) for arbitrary 𝑣, hence the transformations are equivalent. ■

↩→ Definition 2.2: Some Important Transformations

We denote 𝑇0 : 𝑉 → 𝑊 by 𝑇0(𝑣) ..= 0𝑊 ∀ 𝑣 ∈ 𝑉 the zero transformation. We denote 𝐼𝑉 : 𝑉 → 𝑉 ,
𝐼𝑉(𝑣) ..= 𝑣 ∀ 𝑣 ∈ 𝑉 , as the identity transformation.

↩→ Lecture 08; Last Updated: Sat Apr 6 12:28:02 EDT 2024

2.2 Isomorphisms, Kernel, Image

↩→ Definition 2.3: Isomorphism

Let 𝑉,𝑊 be vector spaces over F. An isomorphism from 𝑉 to 𝑊 is a linear transformation 𝑇 : 𝑉 → 𝑊 (a
homomorphism for vector spaces) which admits an inverse 𝑇−1 that is also linear.

If such an isomorphism exists, we say 𝑉 and 𝑊 are isomorphic.

↩→ Proposition 2.1

𝑇 : 𝑉 → 𝑊 is an isomorphism ⇐⇒ 𝑇 is linear and bĳective.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. The direction =⇒ is trivial.

Suppose 𝑇 : 𝑉 → 𝑊 is linear and bĳective, ie 𝑇−1 exists. We need to show that 𝑇−1 is linear. Let
𝑤1, 𝑤2 ∈ 𝑊, 𝑎1, 𝑎2 ∈ F. Then:

𝑇−1(𝑎1𝑤1 + 𝑎2𝑤2) = 𝑇−1(𝑎1𝑇(𝑇−1(𝑤1)) + 𝑎2𝑇(𝑇−1(𝑤2)))

(by linearity of 𝑇) = 𝑇−1(𝑇(𝑎1𝑇
−1(𝑤1) + 𝑎2𝑇

−1(𝑤2)))

= 𝑎1𝑇
−1(𝑤1) + 𝑎2𝑇

−1(𝑤2).

■

Remark 2.2. This proposition holds for all structures that only have operations; it does not for those with relations, such
as graphs, orders, etc..

↩→ Theorem 2.2

For 𝑛 ∈ N, every 𝑛-dimensional vector space 𝑉 over F is isomorphic to F𝑛 . In particular, all 𝑛-dim vector
spaces over F are isomorphic.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix a basis ℬ ..= {𝑣1, . . . , 𝑣𝑛} for 𝑉 , and let 𝑇 : 𝑉 → F𝑛 be the unique linear transformation determined
by ℬ with 𝑇(𝑣𝑖) = 𝑒𝑖 , where {𝑒1, . . . , 𝑒𝑛} is the standard basis for F𝑛 . We show that 𝑇 is a bĳection.

(Injective) Suppose 𝑇(𝑥) = 𝑇(𝑦), 𝑥, 𝑦 ∈ 𝑉 . Write 𝑥 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 , 𝑦 = 𝑏1𝑣1 + · · · + 𝑏𝑛𝑣𝑛 , the unique
representation of 𝑥, 𝑦 in the basis ℬ. We have:

𝑎1𝑒1 + · · · + 𝑎𝑛𝑒𝑛 = 𝑎1𝑇(𝑣1) + · · · + 𝑎𝑛𝑇(𝑣𝑛) = 𝑇(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛) = 𝑇(𝑥) = 𝑇(𝑦) = · · · = 𝑏1𝑒1 + · · · + 𝑏𝑛𝑒𝑛 ,

but by the uniqueness of representation in a basis, it follows that each 𝑎𝑖 = 𝑏𝑖 , hence, 𝑥 = 𝑦.

(Surjective) Let 𝑤 ∈ F𝑛 . Then, 𝑤 = 𝑎1𝑒1 + · · · + 𝑎𝑛𝑒𝑛 (uniquely). But then,

𝑤 = 𝑎1𝑇(𝑣1) + · · · + 𝑎𝑛𝑇(𝑣𝑛) = 𝑇(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛),

where 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ∈ 𝑉 , hence 𝑇 indeed surjective. ■

Remark 2.3. Replacing F𝑛 with an arbitrary 𝑛-dim vector space 𝑊 over F yields the following.

↩→ Theorem 2.3: Freeness of Vector Spaces

Let 𝑊,𝑉 be vector spaces over F and let 𝛽, 𝛾 be bases for 𝑉,𝑊 respectively. Every bĳection 𝑇 : 𝛽 → 𝛾 can
be extended to an isomorphism �̂� : 𝑉 → 𝑊 .

In particular, all vector spaces over Fwith equinumerous bases are isomorphic.

Remark 2.4. The proof follows very similarly to the previous theorem, but extended to arbitrary, possible infinite, spaces.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Homework exercise. ■
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↩→ Definition 2.4: Image/Kernel

For a linear transformation 𝑇 : 𝑉 → 𝑊 , where 𝑉,𝑊 are vector spaces over F, we define the image

Im(𝑇) ..= 𝑇(𝑉),

and its kernel
Ker(𝑇) ..= 𝑇−1({0𝑊 }).

↩→ Proposition 2.2

Ker(𝑇) and Im(𝑇) are subspaces of 𝑉,𝑊 resp.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Ker(𝑇)) Let 𝑣0, 𝑣1 ∈ Ker𝑇 and 𝑎0, 𝑎1 ∈ F, then

𝑇(𝑎0𝑣0 + 𝑎1𝑣1) = 𝑎0𝑇(𝑣0) + 𝑎1𝑇(𝑣1) = 0𝑊 =⇒ 𝑎0𝑣0 + 𝑎1𝑣1 ∈ Ker𝑇.

(Im(𝑇)) Let 𝑤0, 𝑤1 ∈ Im𝑇, 𝑎0, 𝑎1 ∈ F. Then 𝑤𝑖 = 𝑇(𝑣𝑖), 𝑣𝑖 ∈ 𝑉 , and so

𝑎0𝑤0 + 𝑎1𝑤1 = 𝑎0𝑇(𝑣0) + 𝑎1𝑇(𝑣1) = 𝑇(𝑎0𝑣0 + 𝑎1𝑣1) =⇒ 𝑎0𝑤0 + 𝑎1𝑤1 ∈ Im𝑇.

■

↩→ Proposition 2.3

Let 𝑇 : 𝑉 → 𝑊 be a linear transformation, where 𝑉,𝑊 vector spaces over F. Let 𝛽 be a (possibly infinite)
basis for 𝑉 . Then, 𝑇(𝛽) spans Im(𝑇).

In particular, 𝑇 is surjective iff 𝑇(𝛽) spans 𝑊 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑤 ∈ Im(𝑇), so 𝑤 = 𝑇(𝑣) for some 𝑣 ∈ 𝑉 , where we have 𝑣 ..= 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 , 𝑣𝑖 ∈ 𝛽. Then,

𝑤 = 𝑇(𝑣) = 𝑎1𝑇(𝑣1) + · · · + 𝑎𝑛𝑇(𝑣𝑛) ∈ Span({𝑇(𝑣1), . . . , 𝑇(𝑣𝑛)}) ⊆ Span(𝑇(𝛽)).

■

↩→ Lecture 09; Last Updated: Fri Apr 5 08:27:50 EDT 2024
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↩→ Proposition 2.4

Let 𝑇 : 𝑉 → 𝑊 be a linear transformation, where 𝑉,𝑊 vector spaces over F. TFAE:

1. 𝑇 is injective.

2. Ker(𝑇) is the trivial subspace {0𝑉}.

3. 𝑇(𝛽) is independent for each basis 𝛽 for 𝑉 .

3’. 𝑇(𝛽) is independent for some basis 𝛽 for 𝑉 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (1. =⇒ 2.) Trivial; only 0𝑉 can be mapped to 0𝑊 .

(2. =⇒ 1.) Suppose Ker(𝑇) = {0𝑉} and let 𝑇(𝑥) = 𝑇(𝑦), 𝑥, 𝑦 ∈ 𝑉 . By linearity,

𝑇(𝑥 − 𝑦) = 𝑇(𝑥) − 𝑇(𝑦) = 0𝑊 =⇒ 𝑥 − 𝑦 ∈ Ker(𝑇) =⇒ 𝑥 − 𝑦 = 0𝑉 =⇒ 𝑥 = 𝑦.

(2. =⇒ 3.) Fix a basis 𝛽 for 𝑉 . To show that 𝑇(𝛽) linearly independent, take an arbitrary linear combination
𝑎1𝑤1 + · · · + 𝑎𝑛𝑤𝑛 ∈ 𝑇(𝛽). Suppose

∑
𝑖 𝑎𝑖𝑤𝑖 = 0𝑊 . Since 𝑤𝑖 ∈ 𝑇(𝛽), 𝑤𝑖 = 𝑇(𝑣𝑖), 𝑣𝑖 ∈ 𝛽, hence

0𝑊 = 𝑎1𝑤1 + · · · + 𝑎𝑛𝑤𝑛 = 𝑎1𝑇(𝑣1) + · · · + 𝑎𝑛𝑇(𝑣𝑛) = 𝑇(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛)

=⇒ 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ∈ Ker(𝑇)

=⇒ 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 0𝑉 ,

but each 𝑣𝑖 is linearly independent, hence this must be a trivial linear combination, and thus 𝑎𝑖 = 0∀ 𝑖.

(3) =⇒ (3’) Trivial; stronger statement implies weaker statement.

(3’) =⇒ (2) Suppose 𝑇(𝛽) linearly independent for some basis 𝛽 for 𝑉 . Suppose 𝑇(𝑣) = 0𝑊 , 𝑣 ∈ 𝑉 . We write

𝑣 = 𝑎1𝑣1 + · · · 𝑎𝑛𝑣𝑛 , 𝑣𝑖 ∈ 𝛽.

Then,

0𝑊 = 𝑇(𝑣) = 𝑇(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛) = 𝑎1𝑇(𝑣1) + · · · + 𝑎𝑛𝑇(𝑣𝑛),

but {𝑇(𝑣𝑖)} ⊆ 𝑇(𝛽) is linearly independent, hence, this combination must be trivial and each 𝑎𝑖 = 0, and thus
𝑣 = 0𝑉 and so Ker(𝑇) = {0𝑉} is trivial. ■
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↩→ Definition 2.5: Rank, nullity

Let 𝑉,𝑊 be vector spaces over F and 𝑇 : 𝑉 → 𝑊 be linear. Define rank of 𝑇 as

rank(𝑇) ..= dim(Im(𝑇)),

and nullity of 𝑇 as
nullity(𝑇) ..= dim(Ker(𝑇)).

↩→ Theorem 2.4: Rank-Nullity Theorem

Let 𝑉,𝑊 be vector spaces over F, dim(𝑉) < ∞. Let 𝑇 : 𝑉 → 𝑊 be a linear transformation. Then,

nullity(𝑇) + rank(𝑇) = dim(𝑉).

Remark 2.5. Intuitively: the nullity is the number of vectors we “collapse”; the rank is what is left. Together, we have
the entire space.

Remark 2.6. This follows directly from the first isomorphism theorem for vector spaces, and the fact that dim(𝑉/Ker(𝑇)) =
dim(𝑉) − dim(Ker(𝑇)); however, we will prove it without this result below.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let {𝑣1, . . . , 𝑣𝑘} be a basis for Ker(𝑇), and complete it to a basis 𝛽 ..= {𝑣1, . . . , 𝑣𝑘 , 𝑢1, . . . , 𝑢𝑛−𝑘} for 𝑉 ,
where 𝑛 ..= dim(𝑉). We need to show that dim(Im(𝑇)) = 𝑛 − 𝑘.

Recall that {𝑇(𝑣1), . . . , 𝑇(𝑣𝑘), 𝑇(𝑢1), . . . , 𝑇(𝑢𝑛−𝑘)} spans Im(𝑇). But 𝑣1, . . . , 𝑣𝑘 ∈ Ker(𝑇), so 𝑇(𝑣𝑖) = 0𝑊 ∀ 𝑖 =

1, . . . , 𝑘. Hence, letting 𝛾 ..= {𝑇(𝑢1), . . . , 𝑇(𝑢𝑛−𝑘)} spans Im(𝑇). It remains to show that 𝛾 is independent.

Let 𝑎1𝑇(𝑢1) + · · · 𝑎𝑛−𝑘𝑇(𝑢𝑛−𝑘) = 0𝑊 ; by linearity,

𝑇(𝑎1𝑢1 + · · · + 𝑎𝑛−𝑘𝑢𝑛−𝑘) = 0𝑊

=⇒ 𝑎1𝑢1 + · · · + 𝑎𝑛−𝑘𝑢𝑛−𝑘 ∈ Ker(𝑇)

=⇒ 𝑎1𝑢1 + · · · + 𝑎𝑛−𝑘𝑢𝑛−𝑘 = 𝑏1𝑣1 + · · · + 𝑏𝑘𝑣𝑘 ,

but each of these 𝑢𝑖 , 𝑣 𝑗 ∈ 𝛽, hence, each coefficient must be identically zero as 𝛽 linearly independent, and thus
dim(Im(𝑇)) = 𝑛 − 𝑘. This completes the proof. ■

↩→ Corollary 2.1: Pigeonhole Principle for Dimension

Let 𝑇 : 𝑉 → 𝑊 be a linear transformation. If 𝑇 injective, then dim(𝑊) ⩾ dim(𝑉).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If dim(𝑉) < ∞, then dim(Im(𝑇)) = dim(𝑉), and we have that dim(Im(𝑇)) ⩽ dim(𝑊) and conclude
dim(𝑉) ⩽ dim(𝑊).

If dim(𝑉) = ∞, then dim(Im(𝑇)) = ∞ and dim(𝑊) ⩾ dim(Im(𝑇)) = ∞. ■
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↩→ Corollary 2.2

Let 𝑛 ∈ N and𝑉,𝑊 be 𝑛-dimensional vector spaces over F. For a linear transformation 𝑇 : 𝑉 → 𝑊 , TFAE:

1. 𝑇 injective;

2. 𝑇 surjective;

3. rank(𝑇) = 𝑛.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (2. ⇐⇒ 3.) Follows from rank(𝑇) = dim(Im(𝑇)) = 𝑛 ⇐⇒ Im(𝑇) = 𝑊 .

(1. =⇒ 3.) We have nullity(𝑇) = 0 so rank(𝑇) = dim(𝑉) = 𝑛.

(3. =⇒ 1.) If rank(𝑇) = 𝑛, then nullity(𝑇) = 0. ■

↩→ Lecture 10; Last Updated: Mon Mar 25 13:48:03 EDT 2024

↩→ Theorem 2.5: First Isomorphism Theorem for Vector Spaces

Let 𝑉,𝑊 be vector spaces over F. Let 𝑇 : 𝑉 → 𝑊 be a linear transformation. Then,

𝑉/Ker(𝑇) � Im(𝑇),

by the isomorphism given by 𝑣 + Ker(𝑇) ↦→ 𝑇(𝑣).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. From group theory, we know that �̂� : 𝑉/Ker(𝑇) → Im(𝑇), where �̂�(𝑣 + Ker(𝑇)) ..= 𝑇(𝑣) is well-defined,
and is an isomorphism of abelian groups. We need only to check that �̂� is linear, namely, that is respects scalar
multiplication. We have

�̂�(𝑎 · (𝑣 + Ker(𝑇))) = �̂�((𝑎 · 𝑣) + Ker(𝑇))

= 𝑇(𝑎𝑣) = 𝑎 · 𝑇(𝑣)

= 𝑎�̂�(𝑣 + Ker(𝑇)),

as desired. ■

2.3 The Space Hom(𝑉,𝑊)
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↩→ Definition 2.6: Homomorphism Space

For vector spaces 𝑉,𝑊 over F, let Hom(𝑉,𝑊) (also denoted ℓ (𝑉,𝑊)) denote the set of all linear transfor-
mations from 𝑉 to 𝑊 . We can turn this into a vector space over F as follows:

1. Addition of linear transformations: for 𝑇0, 𝑇1 ∈ Hom(𝑉,𝑊), define

(𝑇0 + 𝑇1) : 𝑉 → 𝑊, 𝑣 ↦→ 𝑇0(𝑣) + 𝑇1(𝑣).

(𝑇0 +𝑇1) is clearly a linear transformation, as the linear combination of linear transformations 𝑇0, 𝑇1.

2. Scalar multiplication of linear transformations: for 𝑇 ∈ Hom(𝑉,𝑊), 𝑎 ∈ F, define

(𝑎 · 𝑇) : 𝑉 → 𝑊, 𝑣 ↦→ 𝑎 · 𝑇(𝑣),

which is again clearly linear in its own right.

↩→ Proposition 2.5

Endowed with the operations described above, Hom(𝑉,𝑊) is a vector space over F.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows easily from the definitions. ■

↩→ Theorem 2.6: Basis for Hom(𝑉,𝑊)
For vector spaces 𝑉,𝑊 over F and bases 𝛽, 𝛾 for 𝑉,𝑊 resp., the following set

{𝑇𝑣,𝑤 : 𝑣 ∈ 𝛽, 𝑤 ∈ 𝛾},

is a basis for Hom(𝑉,𝑊), where for each 𝑣 ∈ 𝛽 and 𝑤 ∈ 𝛾, 𝑇𝑣,𝑤 ∈ Hom(𝑉,𝑊) defined as the unique linear
transformation such that

𝑇𝑣,𝑤(𝑣′) =

𝑤 𝑣′ = 𝑣

0𝑊 𝑣′ ≠ 𝑣 ⇐⇒ ∈ 𝛽 \ {𝑣}
.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

↩→ Corollary 2.3

If 𝑉,𝑊 finite dimensional, then dim(Hom(𝑉,𝑊)) = dim(𝑉) · dim(𝑊).
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↩→ Proposition 2.6

Let 𝛽 = {𝑣1, . . . , 𝑣𝑛}, 𝛾 = {𝑤1, . . . , 𝑤𝑚} be bases for 𝑉,𝑊 resp. Then, by theorem 2.6,

{𝑇𝑣𝑖 ,𝑤 𝑗 : 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . , 𝑚}}

is a basis for Hom(𝑉,𝑊), and it has 𝑛 · 𝑚 vectors by construction.

2.4 Matrix Representation of Linear Transformations, Finite Fields

Consider a linear transformation 𝑇 : F𝑛 → F𝑚 between finite fields. We know that 𝑇 is uniquely determined
by its value of basis vectors, so fix the standard bases

𝛽 = {𝑒(𝑛)1 , . . . , 𝑒
(𝑛)
𝑛 } = {𝑣1, . . . , 𝑣𝑛},

and note that 𝑇 is determined by {𝑇(𝑣1), . . . , 𝑇(𝑣𝑛)} ⊆ F𝑚 .

Remark 2.7. We denote vectors in F𝑛 as column vectors, ie
©­­­«
𝑎1
...

𝑎𝑛

ª®®®¬ ∈ F𝑛 .

Each 𝑇(𝑣𝑖) is a column vector in F𝑚 , and we an put these into a 𝑚 × 𝑛 matrix, namely:7

[𝑇] ..=
©­­«

| |
𝑇(𝑣1) · · · 𝑇(𝑣𝑛)

| |

ª®®¬ =

©­­­«
𝑎11 · · · 𝑎1𝑛
...

. . .
...

𝑎𝑚1 · · · 𝑎𝑚𝑛

ª®®®¬︸              ︷︷              ︸
𝑛

We call this the matrix representation of 𝑇 in the standard bases. The operation of multiplying an 𝑚 × 𝑛

matrix and a 𝑛 × 1 vector is precisely defined so that

↩→ Proposition 2.7

𝑇(𝑣) = [𝑇] · 𝑣 for all 𝑣 ∈ F𝑛 .

7Where [𝑇] denotes a matrix named “𝑇”.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑣 =

©­­­«
𝑥1
...

𝑥𝑛

ª®®®¬ , where 𝑣 = 𝑥1𝑣1 + · · · + 𝑥𝑛𝑣𝑛 . Then

𝑇(𝑣) = 𝑥1𝑇(𝑣1) + · · · + 𝑥𝑛𝑇(𝑣𝑛)

𝑇(𝑣𝑖) =
©­­­«
𝑎1𝑖
...

𝑎𝑚𝑖

ª®®®¬
so

𝑇(𝑣) =
©­­­«
𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛

. . .

𝑎𝑚1 · 𝑥1 + · · · + 𝑎𝑚𝑛 · 𝑥𝑛

ª®®®¬ = [𝑇] · 𝑣

■

↩→ Definition 2.7

For a given 𝑚 × 𝑛 matrix 𝐴 over F, define 𝐿𝐴 : F𝑛 → F𝑚 by 𝐿𝐴(𝑣) ..= 𝐴 · 𝑣, where 𝑣 is viewed as an 𝑛 × 1
column. It follows from definition that the 𝐿𝐴 is linear.

In other words, every 𝑇 ∈ Hom(F𝑛 , F𝑚) is equal to 𝐿𝐴 for some 𝐴.

↩→ Lecture 11; Last Updated: Sun Apr 7 23:03:11 EDT 2024

↩→ Proposition 2.8

The map

Hom(F𝑛 , F𝑚) → 𝑀𝑚×𝑛(F)
𝑇 ↦→ [𝑇]

is an isomorphism of vector spaces, with inverse

𝑀𝑚×𝑛(F) → Hom(F𝑛 , F𝑚)
𝐴 ↦→ 𝐿𝐴.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity:Linearity: Let 𝛽 = {𝑣1, . . . , 𝑣𝑛} be the standard basis for F𝑛 . Fix 𝑇1, 𝑇2 ∈ Hom(F𝑛 , F𝑚) and 𝛼 ∈ F.
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1.

[𝑇1 + 𝑇2] =
©­­«

|
· · · (𝑇1 + 𝑇2)(𝑣𝑖) · · ·

|

ª®®¬ =
©­­«

|
· · · 𝑇1(𝑣𝑖) + 𝑇2(𝑣𝑖) · · ·

|

ª®®¬
=

©­­«
|

· · · 𝑇1(𝑣𝑖) · · ·
|

ª®®¬ +
©­­«

|
· · · 𝑇2(𝑣𝑖) · · ·

|

ª®®¬
= [𝑇1] + [𝑇2]

2. It remains to show that 𝛼 · [𝑇] = [𝛼 · 𝑇]; the proof follows similarly to 1.

Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse:Inverse: We need to show that 1. 𝐴 ↦→ 𝐿𝐴 ↦→ [𝐿𝐴] is the identity on 𝑀𝑚×𝑛(F), and conversely, that 2.
𝑇 ↦→ [𝑇] ↦→ 𝐿[𝑇] is the identity on Hom(F𝑛 , F𝑚).

1. We need to show that [𝐿𝐴] = 𝐴. The 𝑗th column of [𝐿𝐴] is 𝐿𝐴(𝑣 𝑗) = 𝐴 · 𝑣 𝑗 = 𝑗th column of 𝐴 =: 𝐴(𝑗).
Hence, the 𝑗th column of [𝐿𝐴] is equal to the 𝑗th column of 𝐴, and thus they are equal.

2. We showed this in proposition 2.7.

■

↩→ Corollary 2.4

dim(Hom(F𝑛 , F𝑚)) = dim(𝑀𝑚×𝑛(F)) = 𝑚 · 𝑛.

Remark 2.8. This was stated previously in proposition 2.6 by constructing an explicit basis. Indeed, this basis is precisely
the image of the standard basis for 𝑀𝑚×𝑛(F) under the map 𝐴 ↦→ 𝐿𝐴.

2.5 Matrix Representation of Linear Transformations, General Spaces

Remark 2.9. The previous section was concerned with representing transformations between finite fields F𝑛 , F𝑚 ; this
section aims to make the same construction for any finite dimensional 𝑉,𝑊 .

↩→ Definition 2.8: Coordinate Vector

Let 𝑉 be a finite dimensional space over F and let 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} be a basis for 𝑉 . Let 𝑣 ∈ 𝑉 , with
(unique) representation 𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 . We denote

[𝑣]𝛽 ..=

©­­­«
𝑎1
...

𝑎𝑛

ª®®®¬ ∈ F𝑛

the coordinate vector of 𝑣 in base 𝛽.
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Remark 2.10. Recall that 𝑉 � F𝑛 where dim(𝑉) = 𝑛, by the unique linear transformation 𝑣𝑖 ↦→ 𝑒𝑖 , where {𝑒1, . . . , 𝑒𝑛}
the standard basis for F𝑛 . We denote this transformation

𝐼𝛽 : 𝑉 → F.

For an arbitrary 𝑣 ∈ 𝑉 , 𝐼𝛽(𝑣) maps 𝑣 to its coordinate vector:

𝐼𝛽(𝑣) = 𝐼𝛽(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛) = 𝑎1𝐼𝛽(𝑣1) + · · · 𝑎𝑛𝐼𝛽(𝑣𝑛)

= 𝑎1𝑒1 + · · · + 𝑎𝑛𝑒𝑛 = [𝑣]𝛽 .

↩→ Proposition 2.9

The map
𝐼𝛽 : 𝑉 → F𝑛 , 𝑣 ↦→ [𝑣]𝛽

is an isomorphism.

Suppose we are given a linear transformation 𝑇 : 𝑉 → 𝑊 , where 𝑉,𝑊 finite dimensional spaces over F.
Fix 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} and 𝛾 ..= {𝑤1, . . . , 𝑤𝑚} as bases for 𝑉,𝑊 resp. We can denote [𝑇(𝑣𝑖)]𝛾 as 𝑇(𝑣𝑖) in base 𝛾
(in the field 𝑚), and construct a matrix for 𝑇:8

[𝑇]𝛾𝛽 ..=
©­­«

| |
[𝑇(𝑣1)]𝛾 · · · [𝑇(𝑣𝑛)]𝛾

| |

ª®®¬
We call this the matrix representation of 𝑇 from 𝛽 to 𝛾.

↩→ Theorem 2.7

Let 𝑇 : 𝑉 → 𝑊 , 𝛽, 𝛾 as above.

1. The following diagram commutes:
•𝑉 •𝑊

•F𝑛 •F𝑚

𝑇

𝐼𝛽 𝐼𝛾

𝐿[𝑇]𝛾𝛽

Namely, 𝐼𝛾 ◦ 𝑇 = 𝐿[𝑇]𝛾𝛽
◦ 𝐼𝛽, or equivalently, given 𝑣 ∈ 𝑉 , [𝑇(𝑣)]𝛾 = [𝑇]𝛾𝛽 · [𝑣]𝛽.

2. The map Hom(𝑉,𝑊) → 𝑀𝑚×𝑛(F), 𝑇 ↦→ [𝑇]𝛾𝛽 is a vector space isomorphism with inverse begin the
map 𝑀𝑚×𝑛(F) → Hom(𝑉,𝑊), 𝐴 ↦→ 𝐼−1

𝛾 ◦ 𝐿𝐴 ◦ 𝐼𝛽

8Where we denote [𝑇]𝛾𝛽 as the matrix representation of the transform 𝑇 : 𝑉 → 𝑊 , with basis 𝛽, 𝛾 for 𝑉,𝑊 respectively.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 2. is left as a (homework) exercise; it follows directly from 1.

Fix 𝑣 ∈ 𝑉 . We need to show that 𝐼𝛾 ◦ 𝑇(𝑣) = 𝐿[𝑇]𝛾𝛽
◦ 𝐼𝛽(𝑣). We have

𝐼𝛾 ◦ 𝑇(𝑣) = [𝑇(𝑣)]𝛾 .

OTOH,
𝐿[𝑇]𝛾𝛽

◦ 𝐼𝛽(𝑣) = 𝐿[𝑇]𝛾𝛽
([𝑣]𝛽) = [𝑇]𝛾𝛽 · [𝑣]𝛽 .

We need to show, then, that [𝑇(𝑣)]𝛾 = [𝑇]𝛾𝛽 · [𝑣]𝛽. Let 𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 , so [𝑣]𝛽 =

©­­­«
𝑎1
...

𝑎𝑛

ª®®®¬. Recall that

[𝑇]𝛾𝛽 =
©­­«

| |
[𝑇(𝑣1)]𝛾 · · · [𝑇(𝑣𝑛)]𝛾

| |

ª®®¬. Thus, we have

[𝑇]𝛾𝛽 · [𝑣]𝛽 = 𝑎1[𝑇(𝑣1)]𝛾 + · · · + 𝑎𝑛[𝑇(𝑣𝑛)]𝛾 = [𝑎1𝑇(𝑣1) + · · · + 𝑎𝑛𝑇(𝑣𝑛)]𝛾 (by linearly of 𝐼𝛾)

= [𝑇(𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛)]𝛾 (by linearity of 𝑇)

= [𝑇(𝑣)]𝛾 ,

which is precisely what we wanted to show. ■

Remark 2.11. For 𝐴 ∈ 𝑀𝑚×𝑛(F) and 𝑥 =

©­­­«
𝑥1
...

𝑥𝑛

ª®®®¬ ∈ F𝑛 , we have

𝐴 · 𝑥 = 𝑥1 · 𝐴(1) + 𝑥2 · 𝐴(2) + · · · + 𝑥𝑛 · 𝐴(𝑛),

where 𝐴(𝑗) is the 𝑗th column of 𝐴; thus 𝐴 · 𝑥 is a linear combination of 𝐴, with coefficients given by the vector 𝑥; this
interpretation can make it easier to make sense of computations.

↩→ Lecture 12; Last Updated: Sat Apr 6 10:19:07 EDT 2024

2.6 Composition of Linear Transformations, Matrix Multiplication

↩→ Proposition 2.10

Composition is associative; given 𝑇 : 𝑉 → 𝑊, 𝑆 : 𝑊 → 𝑈, and 𝑅 : 𝑈 → 𝑋, then

(𝑅 ◦ 𝑆) ◦ 𝑇 = 𝑅 ◦ (𝑆 ◦ 𝑇).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix 𝑣 ∈ 𝑉 . Then

(𝑅 ◦ 𝑆) ◦ 𝑇(𝑣) = (𝑅 ◦ 𝑆)(𝑇(𝑣)) = 𝑅(𝑆(𝑇(𝑣)))
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OTOH:

𝑅 ◦ (𝑆 ◦ 𝑇)(𝑣) = 𝑅((𝑆 ◦ 𝑇)(𝑣)) = 𝑅(𝑆(𝑇(𝑣))).

■

Let 𝐴 ∈ 𝑀𝑚×𝑛(F) and 𝐵 ∈ 𝑀𝑙×𝑚(F). Then, 𝐿𝐴 : F𝑛 → F𝑚 and 𝐿𝐵 : F𝑚 → F𝑙 , and have composition
𝐿𝐵 ◦ 𝐿𝐴 : F𝑛 → F𝑙 . We know that 𝐿𝐵 ◦ 𝐿𝐴 is a linear transformation, and thus must be equal to 𝐿𝐶 for
some matrix 𝐶 ∈ 𝑀𝑙×𝑛(F). Indeed, 𝐶 is the matrix representation of the transformation [𝐿𝐵 ◦ 𝐿𝐴], as proven
previously.

Let 𝛽 = {𝑒1, . . . , 𝑒𝑛} for F𝑛 , then

[𝐿𝐵 ◦ 𝐿𝐴] =
©­­«

| |
𝐿𝐵 ◦ 𝐿𝐴(𝑒1) · · · 𝐿𝐵 ◦ 𝐿𝐴(𝑒𝑛)

| |

ª®®¬ =
©­­«

| |
𝐵 · (𝐴 · 𝑒1) · · · 𝐵 · (𝐴 · 𝑒𝑛)

| |

ª®®¬
↩→ Definition 2.9: Matrix Multiplication

For matrices 𝐴 ∈ 𝑀𝑚×𝑛(F) and 𝐵 ∈ 𝑀𝑙×𝑚(F), define their product 𝐵 · 𝐴 to be the matrix

[𝐿𝐵 ◦ 𝐿𝐴] =
©­­«

| |
𝐵 · (𝐴 · 𝑒1) · · · 𝐵 · (𝐴 · 𝑒𝑛)

| |

ª®®¬ =
©­­«

| |
𝐵 · 𝐴(1) · · · 𝐵 · 𝐴(2)

| |

ª®®¬ =
(
𝑐𝑖 𝑗

)1⩽ 𝑗⩽𝑛
1⩽𝑖⩽𝑙

where 𝐴(𝑗) is the 𝑗th column of 𝐴, 𝑐𝑖 𝑗 ..=
(
− 𝐵(𝑖) −

)
·
©­­«

|
𝐴(𝑗)

|

ª®®¬.

↩→ Proposition 2.11

[𝐿𝐵 ◦ 𝐿𝐴] = 𝐵 · 𝐴, ie 𝐿𝐵 ◦ 𝐿𝐴 = 𝐿𝐵·𝐴.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows from our definition. ■

↩→ Corollary 2.5

Matrix multiplication is association; 𝐶 · (𝐵 · 𝐴) = (𝐶 · 𝐵) · 𝐴 for 𝐴 ∈ 𝑀𝑚×𝑛(F), 𝐵 ∈ 𝑀𝑙×𝑚(F), 𝐶 ∈ 𝑀𝑘×𝑙(F).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝐶 · (𝐵 · 𝐴) = [𝐿𝐶 ◦ (𝐿𝐵 ◦ 𝐿𝐴)] = [(𝐿𝐶 ◦ 𝐿𝐵) ◦ 𝐿𝐴] = (𝐶 · 𝐵) · 𝐴. ■

Remark 2.12. This is proven by the linear transformation representation of matrices; try proving this directly from our
definition.
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↩→ Corollary 2.6

Let 𝑉,𝑊,𝑈 be finite-dimensional vector spaces over F, 𝑇 : 𝑉 → 𝑊, 𝑆 : 𝑊 → 𝑈 be linear transformations
and 𝛼, 𝛽, 𝛾 be bases for 𝑉,𝑊,𝑈 resp. Then,

[𝑆 ◦ 𝑇]𝛾𝛼 = [𝑆]𝛾𝛽 · [𝑇]𝛽𝛼 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows from the commutativity of the diagrams:

𝑉 𝑊 𝑈

F𝑛 F𝑚 F𝑙

𝑇 𝑆

≀ ≀

[𝑇]𝛽𝛼 [𝑆]𝛾𝛽

≀ ⇐⇒
𝑉 𝑈

F𝑛 F𝑙

≀ ≀

𝑇◦𝑆

[𝑆◦𝑇]𝛾𝛼

In “words”, for 𝑣 ∈ 𝑉 ,

[𝑆 ◦ 𝑇]𝛾𝛼 · [𝑣]𝛼 = [(𝑆 ◦ 𝑇)(𝑣)]𝛾𝛼 = [𝑆(𝑇(𝑣))]𝛼 = [𝑆]𝛾𝛽 · [𝑇(𝑣)]𝛽 = [𝑆]𝛾𝛽 · [𝑇]𝛽𝛼 · [𝑣]𝛼 ,

ie we have shown that 𝐿[𝑆◦𝑇]𝛾𝛼 = 𝐿[𝑆]𝛾𝛽 ·[𝑇]
𝛽
𝛼
. Because 𝐴 ↦→ 𝐿𝐴 is an isomorphism, it follows that [𝑆 ◦ 𝑇]𝛾𝛼 =

[𝑆]𝛾𝛽 · [𝑇]𝛽𝛼. ■

↩→ Lecture 13; Last Updated: Mon Mar 25 13:48:03 EDT 2024

2.7 Inverses of Transformations and Matrices

Remark 2.13. Recall that, given a function 𝑓 : 𝑋 → 𝑌, a function 𝑔 : 𝑌 → 𝑋 is called

1. a left inverse of 𝑓 if 𝑔 ◦ 𝑓 = Id𝑋 ;

2. a right inverse of 𝑓 if 𝑓 ◦ 𝑔 = Id𝑋 ;

3. a (two-sided) inverse of 𝑓 if 𝑔 both a left and right inverse of 𝑓 .

If an inverse exists, it is unique; let 𝑔0, 𝑔1 be inverse of 𝑓 ,then, 𝑔0 = 𝑔0 ◦ ( 𝑓 ◦ 𝑔1) = (𝑔0 ◦ 𝑓 ) ◦ 𝑔1 = 𝑔1.

↩→ Proposition 2.12

Let 𝑓 : 𝑋 → 𝑌. Then,

1. 𝑓 has a left-inverse ⇐⇒ 𝑓 injective;

2. 𝑓 has a right-inverse ⇐⇒ 𝑓 surjective;

3. 𝑓 has an inverse ⇐⇒ 𝑓 bĳective.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ((a), =⇒ ) Suppose 𝑔 : 𝑌 → 𝑋 is a left-inverse of 𝑓 and 𝑓 (𝑥1) = 𝑓 (𝑥2). Then, 𝑔 ◦ 𝑓 (𝑥1) = 𝑔 ◦ 𝑓 (𝑥2) =⇒
𝑥1 = 𝑥2 and so 𝑓 injective.

((b), =⇒ ) Suppose 𝑔 : 𝑌 → 𝑋 is a right-inverse of 𝑓 and let 𝑦 ∈ 𝑌. Then, 𝑓 (𝑔(𝑦)) = 𝑦 =⇒ 𝑦 ∈ 𝑓 (𝑋).
The remainder of the cases and directions are left as an exercise. ■

Remark 2.14. Proof of (𝑏), ⇐= uses Axiom of Choice.

⊛ Example 2.2

1. The differentiation transform 𝛿 : F[𝑡]𝑛+1 → F[𝑡]𝑛 , 𝑝(𝑡) ↦→ 𝑝′(𝑡)has a right inverse, the integration
transform, 𝜄 : F[𝑡]𝑛 → F[𝑡]𝑛+1, 𝑝(𝑡) ↦→ antiderivative of 𝑝(𝑡); conversely, 𝜄 has left inverse 𝛿; they
do not admit inverses.

2. Let 𝑓 : F[[𝑡]] → F[[𝑡]] be the left-shift map, where
∑∞

𝑛=0 𝑎𝑛𝑡
𝑛 ↦→ ∑∞

𝑛=1 𝑎𝑛𝑡
𝑛−1. Then, 𝑔 : F[[𝑡]] →

F[[𝑡]] with
∑∞

𝑛=0 𝑎𝑛𝑡
𝑛 ↦→ ∑

𝑛=0 𝑎𝑛𝑡
𝑛+1, the right-shift map, is a right inverse of 𝑓 , but 𝑓 has no left

inverse (it is not injective).

Remark 2.15. The existence of only one-sided inverses existing happens only when in infinite-dimensional vectors spaces,
or when the dimension of the domain is not the same as the dimension of the codomain.

↩→ Corollary 2.7: Of Rank-Nullity Theorem

Let 𝑇 : 𝑉 → 𝑊 s.t. dim(𝑉) = dim(𝑊) < ∞. TFAE:

1. 𝑇 has a left-inverse;

2. 𝑇 has a right-inverse;

3. 𝑇 is invertible (has an inverse).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We have already that 𝑇 injective ⇐⇒ 𝑇 surjective ⇐⇒ 𝑇 bĳective. ■

↩→ Definition 2.10: Matrix Inverse

We call a 𝑛 × 𝑛 matrix 𝐵 over F the inverse of an 𝑛 × 𝑛 matrix 𝐴 over F if 𝐴 · 𝐵 = 𝐵 · 𝐴 = 𝐼𝑛 . We denote
𝐵 = 𝐴−1.

↩→ Proposition 2.13

Let 𝐴 ∈ 𝑀𝑛(F). Then,

1. 𝐿𝐴 is invertible ⇐⇒ 𝐴 is invertible, in which case 𝐿−1
𝐴

= 𝐿𝐴−1 ;

2. 𝐴 is invertible ⇐⇒ it has a left-inverse, ie 𝐵 · 𝐴 = 𝐼𝑛 ⇐⇒ it has a right-inverse, ie 𝐴 · 𝐵 = 𝐼𝑛 .
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. 𝐿𝐴 invertible ⇐⇒ ∃𝑇 : F𝑛 → F𝑛-linear s.t. 𝐿𝐴 ◦ 𝑇 = 𝑇 ◦ 𝐿𝐴 = 𝐼F𝑛 ⇐⇒ ∃ a matrix 𝐵 ∈ 𝑀𝑛(F)
such that 𝐿𝐴 ◦ 𝐿𝐵 = 𝐿𝐵 ◦ 𝐿𝐴 = 𝐼F𝑛 ⇐⇒ there is a matrix 𝐵 ∈ 𝑀𝑛(F) s.t. 𝐿𝐴𝐵 = 𝐿𝐵𝐴 = 𝐼F𝑛 ⇐⇒ there is a
𝐵 ∈ 𝑀𝑛(F) s.t. 𝐴 · 𝐵 = 𝐵 · 𝐴 = 𝐼𝑛 .

2. Follows directly from corollary 2.7 and part 1.

■

2.8 Invariant Subspaces and Nilpotent Transformations

↩→ Definition 2.11: 𝑇-Invariant

Let 𝑇 : 𝑉 → 𝑉 be a linear transformation.9We call a subspace 𝑊 ⊆ 𝑉 𝑇-invariant if 𝑇(𝑊) ⊆ 𝑊 .

⊛ Example 2.3: Examples of Invariant Subspaces

1. For any 𝑇 : 𝑉 → 𝑉 , Im(𝑇) is 𝑇-invariant.

2. For any 𝑇 : 𝑉 → 𝑉 , Ker(𝑇) is 𝑇-invariant, since 𝑇(𝑣) = 0𝑉 ∈ Ker(𝑇) ∀ 𝑣 ∈ Ker(𝑇). Moreover, for
any 𝑛 ∈ N, the space Ker(𝑇𝑛) is 𝑇-invariant.10

↩→ Lecture 14; Last Updated: Mon Mar 25 13:48:03 EDT 2024

↩→ Proposition 2.14

For a linear operator 𝑇 : 𝑉 → 𝑉 , the following hold:

1. 𝑉 ⊇ Im(𝑇) ⊇ Im(𝑇2) ⊇ · · · ⊇ Im(𝑇𝑛) ⊇ · · · . Moreover, Im(𝑇𝑛) is 𝑇-invariant for any 𝑛 ∈ N.

2. {0𝑉} ⊆ Ker(𝑇) ⊆ Ker(𝑇2) ⊆ · · · ⊆ Ker(𝑇𝑛) ⊆ · · · . Moreover, Ker(𝑇𝑛) is 𝑇-invariant for any 𝑛 ∈ N.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. If 𝑥 ∈ Im(𝑇𝑛+1), then 𝑥 = 𝑇𝑛+1(𝑦) = 𝑇𝑛(𝑇(𝑦)) ∈ Im(𝑇𝑛) for some 𝑦 ∈ 𝑉 , hence Im(𝑇𝑛+1) ⊆ Im(𝑇𝑛).
If 𝑥 ∈ Im(𝑇𝑛), then 𝑥 = 𝑇𝑛(𝑦) so 𝑇(𝑥) = 𝑇(𝑇𝑛(𝑦)) = 𝑇𝑛(𝑇(𝑦)) ∈ Im(𝑇𝑛), so 𝑇(Im(𝑇𝑛)) ⊆ Im(𝑇𝑛).

2. If 𝑥 ∈ Ker(𝑇𝑛), then 𝑇𝑛+1(𝑥) = 𝑇(𝑇𝑛(𝑥)) = 𝑇(0𝑉) = 0𝑉 hence 𝑥 ∈ Ker(𝑇𝑛+1) so Ker(𝑇𝑛) ⊆ Ker(𝑇𝑛+1).
Moreover, 𝑇(𝑥) ∈ Ker(𝑇𝑛) since 𝑇(𝑥) ∈ Ker(𝑇𝑛−1) ⊆ Ker(𝑇𝑛), since 𝑇𝑛−1(𝑇(𝑥)) = 𝑇𝑛(𝑥) = 0𝑉 so
𝑇(Ker(𝑇𝑛)) ⊆ Ker(𝑇𝑛).

■

⊛ Example 2.4: More Examples of Invariant Subspaces

Let 𝑇 : R3 → R3 by 𝑇(𝑥, 𝑦, 𝑧) ..= (2𝑥 + 𝑦, 3𝑥 − 𝑦, 7𝑧). Then, the 𝑥 − 𝑦 plane, {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 0}

9Because the domain and codomain are the same, we often call 𝑇 a “linear operator”.
10𝑇𝑛 ..= 𝑇 ◦ 𝑇 ◦ · · · ◦ 𝑇, 𝑛 times; 𝑇0 ..= 𝐼𝑉 .
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is 𝑇-invariant, as is the 𝑧 axis, {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 = 𝑦 = 0}. Hence, we can decompose R3 into two
𝑇-invariant subspaces, namely 𝑥 − 𝑦 plane ⊕ 𝑧-axis.

↩→ Definition 2.12: Nilpotent

In a ring 𝑅, an element 𝑟 ∈ 𝑅 is called nilpotent if 𝑟𝑛 = 0 for some 𝑛 ∈ N+.

A linear transformation 𝑇 : 𝑉 → 𝑉 is called nilpotent if 𝑇𝑛 = 0 for some 𝑛 ∈ N+.11

For a matrix 𝐴 ∈ 𝑀𝑛(F), 𝐴 is called nilpotent if 𝐴𝑛 = 0𝑛 for some 𝑛 ∈ N+.

⊛ Example 2.5: Examples of Nilpotent Transformations

1. Let 𝑉 , 𝑛-dimensional vector space over F with basis 𝛽 ..= {𝑣1, . . . , 𝑣𝑛}. Let 𝑇 : 𝑉 → 𝑉 be the
unique linear transformation that “shifts” 𝛽: ie, 𝑇(𝑣1) ..= 0𝑉 , 𝑇(𝑣2) ..= 𝑣1, . . . , 𝑇(𝑣𝑛) = 𝑣𝑛−1.

2. The differentiation operation, 𝛿 : F[𝑡]𝑛 → F[𝑡]𝑛 is nilpotent, since 𝛿𝑛+1 = 0 for any polynomial.

3. For any matrix 𝐴 ∈ 𝑀𝑛(F), 𝐴 is nilpotent iff 𝐿𝐴 : F𝑛 → F𝑛 is nilpotent.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝐿𝐴𝑘 = 𝐿𝑘
𝐴

=⇒ 𝐴𝑘 = 0 ⇐⇒ 𝐿𝐴𝑘 = 0 ⇐⇒ 𝐿𝑘
𝐴
= 0 ■

4. 𝑛 × 𝑛 matrices that are strictly upper triangular12are nilpotent. For instance, for 3 × 3, we need
to show13

©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
3

= 0 ⇐⇒
©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
3

·
©­­«
★

★

★

ª®®¬ = 0

11One can verify that all linear transformations 𝑇 : 𝑉 → 𝑉 from a vector space to itself form a ring with (◦,+), ie composition and
(“standard”) addition of transformations. The same holds for linear operators defined over an abelian group (where the same +
operation is endowed by the ring).
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We have:

©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
2 ©­­«

0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
©­­«
★

★

★

ª®®¬ =
©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
2 ©­­«

★

★

0

ª®®¬
=

©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
©­­«
★

★

0

ª®®¬
=

©­­«
0 ∗ ∗
0 0 ∗
0 0 0

ª®®¬
©­­«
★

0
0

ª®®¬
=

©­­«
0
0
0

ª®®¬ .

↩→ Proposition 2.15

If 𝑉 is 𝑛-dimensional and 𝑇 : 𝑉 → 𝑉 is a linear nilpotent transformation, then 𝑇𝑛 = 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

↩→ Definition 2.13: Domain Restriction

For a function 𝑓 : 𝑋 → 𝑌 and 𝐴 ⊆ 𝑋, we define the restriction of 𝑓 to 𝐴 as the function 𝑓 |𝐴 : 𝐴 → 𝑌 given
by 𝑎 ↦→ 𝑓 (𝑎).

↩→ Definition 2.14: Direct Sum

Let 𝑉 be a vector space over F, and let 𝑊0,𝑊1 ⊆ 𝑉 be subspaces of 𝑉 . If

1. 𝑊0 ∩𝑊1 = {0𝑉} (the subspaces are linearly independent), and

2. 𝑊0 +𝑊1 = {𝑤0 + 𝑤1 : 𝑤0 ∈ 𝑊0, 𝑤1 ∈ 𝑊1} = 𝑉 ,

we write 𝑉 = 𝑊0 ⊕𝑊1, and say 𝑉 is the direct sum if 𝑊0,𝑊1.

13ie zeros everywhere except cells strictly above diagonal.
13Where we denote arbitrary elements ★; different ★s are not necessarily equal.
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↩→ Theorem 2.8: Fitting’s Lemma

For finite dimensional vector space 𝑉 over F and a linear transformation 𝑇 : 𝑉 → 𝑉 , there is a decompo-
sition

𝑉 = 𝑈 ⊕𝑊

as a direct sum of 𝑇-invariant subspaces 𝑈,𝑊 such that 𝑇 |𝑈 : 𝑈 → 𝑈 is nilpotent and 𝑇 |𝑊 : 𝑊 → 𝑊 is
an isomorphism.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Recall that Im(𝑇) ⊇ · · · ⊇ Im(𝑇𝑛) and Ker(𝑇) ⊆ · · · ⊆ Ker(𝑇𝑛). Both of these become constant eventually,
ie the inequalities become strict equalities, hence ∃𝑁 ∈ N+ such that ∀ 𝑘 ∈ N, Im(𝑇𝑁+𝑘) = Im(𝑇𝑁 ) and
Ker(𝑇𝑁+𝑘) = Ker(𝑇𝑁 ).

Let 𝑈 ..= Ker(𝑇𝑁 ) and 𝑊 ..= Im(𝑇𝑁 ). These are clearly 𝑇-invariant.

𝑇𝑁 (Ker(𝑇𝑁 )) = {0𝑉}, and 𝑇(Im(𝑇𝑁 )) = Im(𝑇𝑁+1) = Im(𝑇𝑁 ) = 𝑊 and thus 𝑇 |𝑊 : 𝑊 → 𝑊 is surjective and
hence 𝑇 |𝑊 must be injective and thus an isomorphism.

It remains to show that 𝑉 = 𝑈 ⊕𝑊 . If 𝑣 ∈ 𝑈 ∩𝑊,𝑇𝑁 (𝑣) = 0𝑉 but 𝑇 |𝑊 an isomorphism so 𝑇𝑁 (𝑣) = 0 ⇐⇒
𝑣 = 0𝑉 , hence 𝑈 ∩𝑊 = {0𝑉}.

Thus, we have dim(𝑈 +𝑊) = dim(𝑈) + dim(𝑊) − dim(𝑈 ∩𝑊) = dim(𝑈) + dim(𝑊) = dim(𝑉); moreover, it
must be that 𝑈 +𝑊 = 𝑉 .14 ■

↩→ Lecture 15; Last Updated: Mon Mar 25 13:48:03 EDT 2024

2.9 Dual Spaces

↩→ Definition 2.15: Dual Space

For a vector space 𝑉 over a field F, linear transformations from 𝑉 → F (where we view F as a one-
dimensional vector space over F) are called linear functionals. The space of linear functionals (namely,
Hom(𝑉, F)) is denoted 𝑉∗, and called the dual space of 𝑉 .

↩→ Proposition 2.16

If 𝑉 is finite dimensional, dim(𝑉∗) = dim(𝑉).15

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. For finite dimensional 𝑉 , we know that dim(Hom(𝑉, F)) = dim(𝑉) · dim(F) = dim(𝑉), hence dim(𝑉∗) =
dim(𝑉). In the same notation with which we proved this originally in proposition 2.6; fix a basis 𝛽 ..= {𝑣1, . . . , 𝑣𝑛}
for 𝑉 and the standard basis 𝛾 ..= {1} for F, and defined 𝛽∗ ..= { 𝑓1, . . . , 𝑓𝑛}, where 𝑓𝑖

..= 𝑇𝑣𝑖 ,1 : 𝑉 → F maps
𝑣𝑖 ↦→ 1 and every other basis vector to 0F. ■

Remark 2.16. The basis 𝛽∗ for 𝑉∗ is called the dual basis. Explicitly, we have:

14It is precisely here that we use finiteness of 𝑉 .
15This does not hold for infinite dimensional spaces.
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↩→ Corollary 2.8

Let 𝑉 be a finite dimensional vector space over F and let 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} be a basis for 𝑉 . Then,

𝛽∗ ..= { 𝑓1, . . . , 𝑓𝑛}

is a basis for 𝑉∗. Moreover, for each linear functional 𝑓 ∈ 𝑉∗,

𝑓 =

𝑛∑
𝑖=1

𝑓 (𝑣𝑖) · 𝑓𝑖 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence:Linear indepedence: let 𝑎1 𝑓1 + · · · + 𝑎𝑛 𝑓𝑛 = 0𝑉∗ =: 0. Then,

(𝑎1 𝑓1 + · · · + 𝑎𝑛 𝑓𝑛)(𝑣𝑖) = 𝑎𝑖 𝑓𝑖(𝑣𝑖) = 𝑎𝑖 · 1 = 𝑎𝑖 =⇒ 𝑎𝑖 = 0,

hence 𝛽∗ indeed linearly independent.

Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning:Spanning: let 𝑓 ∈ 𝑉∗. We claim that 𝑓 =
∑𝑛

𝑖=1 𝑓 (𝑣𝑖) 𝑓𝑖 . It suffices to show these two sides are equal on the
basis vectors, as linear transformations are determined by their effect on basis vectors. We have:(

𝑛∑
𝑖=1

𝑓 (𝑣𝑖) 𝑓𝑖

)
(𝑣 𝑗) =

𝑛∑
𝑖=1

𝑓 (𝑣𝑖) 𝑓𝑖(𝑣 𝑗) =
𝑛∑
𝑖=1

𝑓 (𝑣𝑖) · 𝛿𝑖 𝑗 = 𝑓 (𝑣 𝑗),

as desired.16 ■

⊛ Example 2.6

1. Let 𝑉 ..= F𝑛 and 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} be a basis for F𝑛 , viewed as column vectors, and let 𝛽∗ ..=

{ 𝑓1, . . . , 𝑓𝑛} be the dual basis for 𝑉∗. Recall that 𝑓𝑖 : F𝑛 → F, hence 𝑓𝑖
..= 𝐿𝐴𝑖 for some matrix

𝐴𝑖 ∈ 𝑀1×𝑛(F) ..= space of 1 × 𝑛 row vectors. Hence, 𝐴𝑖 = 𝑒 𝑡
𝑖
.

2. Consider 𝑉∗∗, the dual of the dual. If 𝑉 is finite-dimensional, then as dim(𝑉) = dim(𝑉∗), we
have dim(𝑉) = dim(𝑉∗) = dim(𝑉∗∗), ie, they are (abstractly) isomorphic.

We have that 𝑇 : 𝑉 → 𝑉∗, 𝑣𝑖 ↦→ 𝑓𝑖 is an isomorphism; we define an explicit isomorphism to 𝑉∗∗

below.

↩→ Definition 2.16

Let𝑉 be an arbitrary vector space over F. For each 𝑥 ∈ 𝑉 , define �̂� ∈ 𝑉∗∗ by �̂� : 𝑉∗ → F, where �̂�( 𝑓 ) ..= 𝑓 (𝑥).

Remark 2.17. Note that �̂� is linear.

16Where 𝛿𝑖 𝑗 ..=

{
1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
is the Kronecker delta.
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↩→ Theorem 2.9

The map 𝑥 ↦→ �̂� : 𝑉 → 𝑉∗∗ is a linear injection. In particular, if𝑉 is finite dimensional, it is an isomorphism.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑥 ∈ 𝑉 and suppose �̂� = 0𝑉∗∗ . Let 𝛽 be a basis for 𝑉 and 𝛽∗ its dual basis. Let 𝑥 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 for
𝑣𝑖 ∈ 𝛽, 𝑎𝑖 ∈ F. Let 𝑓𝑖 such that 𝑓𝑖(𝑣 𝑗) = 𝛿𝑖 𝑗𝑣 𝑗 . Then,

�̂� 𝑓𝑖 = 𝑓𝑖(𝑥) = 𝑓𝑖(𝑎1𝑣1 + · · · 𝑎𝑛𝑣𝑛) = 𝑎𝑖 = 0,

hence, 𝑎𝑖 = 0∀ 𝑖. Hence, 𝑥 = 0, and thus �̂� has a trivial kernel and is thus injective. ■

↩→ Lecture 16; Last Updated: Sat Apr 6 10:19:07 EDT 2024

Remark 2.18. Notice that to get an isomorphism 𝑉 � 𝑉∗, we fixed a basis for 𝑉 to define it. However, for 𝑉 � 𝑉∗∗, we
had a canonical isomorphism independent of choice of basis. Writing 𝑆 ⊆ 𝑉 , �̂� ..= {�̂� : 𝑥 ∈ 𝑆} ⊆ 𝑉∗∗, our theorem says
that �̂� = 𝑉∗∗ for finite-dimensional 𝑉 .

↩→ Definition 2.17: Annihilator

Let 𝑉 be a vector space over F and 𝑆 ⊆ 𝑉 . We call

𝑆⊥ ..= { 𝑓 ∈ 𝑉∗ : 𝑓 |𝑆 = 0} = { 𝑓 ∈ 𝑉∗ : 𝑓 (𝑢) = 0∀𝑢 ∈ 𝑆}

the annihilator of 𝑆.

↩→ Proposition 2.17

Let 𝑉 be a vector space over F and 𝑆 ⊆ 𝑉 .

1. 𝑆⊥ is a subspace of 𝑉∗17

2. 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 =⇒ 𝑆⊥
1 ⊇ 𝑆⊥

2

3. 𝑆⊥ = (Span(𝑆))⊥

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. If 𝑓1, 𝑓2 ∈ 𝑆⊥, 𝑎 ∈ F, then ∀𝑢 ∈ 𝑆,

(𝑎 𝑓1 + 𝑓2)(𝑢) = 𝑎 𝑓1(𝑢) + 𝑓2(𝑢) = 𝑎 · 0 + 0,

so 𝑎 𝑓1 + 𝑓2 ∈ 𝑆⊥.

2. Clear.

3. If 𝑓 ∈ 𝑉∗ takes all vectors in 𝑆 to 0, then it does the same for linear combinations.

■

17Even if 𝑆 is not a subspace itself.
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↩→ Proposition 2.18

If 𝑉 is finite dimensional and 𝑈 ⊆ 𝑉 a subspace, then (𝑈⊥)⊥ = �̂� .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We know that 𝑉∗∗ = �̂� , so we fix �̂� ∈ �̂� and show that

�̂� ∈ (𝑈⊥)⊥ ⇐⇒ �̂� ∈ �̂� ⇐⇒ 𝑥 ∈ 𝑈.

We have

�̂� ∈ (𝑈⊥)⊥ : ⇐⇒ ∀ 𝑓 ∈ 𝑈⊥, �̂�( 𝑓 ) = 𝑓 (𝑥) = 0

hence if 𝑥 ∈ 𝑈 , then �̂� ∈ (𝑈⊥)⊥, so �̂� ⊆ (𝑈⊥)⊥.

Conversely, let �̂� ∈ (𝑈⊥)⊥. Then, ∀ 𝑓 ∈ 𝑈⊥, 𝑓 (𝑥) = 0.

Suppose towards a contradiction that 𝑥 ∉ 𝑈 . We aim to define 𝑓 ∈ 𝑈⊥ s.t. 𝑓 (𝑥) = 1, obtaining a contradic-
tion. Let {𝑢1, . . . , 𝑢𝑘} be a basis for 𝑈 , noting that {𝑢1, . . . , 𝑢𝑘 , 𝑥} still linearly independent by assumption of
𝑥 ∉ 𝑈 = Span({𝑢1, . . . , 𝑢𝑘}). Thus, we can extend this to a basis 𝛽 = {𝑢1, . . . , 𝑢𝑘 , 𝑥, 𝑣1, . . . , 𝑣𝑚} for 𝑉 . Define
𝑓 : 𝑉 → F ∈ 𝑉∗ as the unique linear transformation such that 𝑓 (𝑢𝑖) = 𝑓 (𝑣 𝑗) = 0 and 𝑓 (𝑥) = 1. Then, 𝑓 ∈ 𝑈⊥ by
definition, and 𝑓 (𝑥) = 1 by definition. This is a contradiction that 𝑥 ∉ 𝑈 . ■

↩→ Corollary 2.9

For a finite dimensional 𝑉 and subspace 𝑈 ⊆ 𝑉 ,

𝑈 = {𝑥 ∈ 𝑉 : ∀ 𝑓 ∈ 𝑈⊥, 𝑓 (𝑥) = 0}.

↩→ Definition 2.18: Dual/Transpose of 𝑇

Let 𝑉,𝑊 be vector spaces over a field F and 𝑇 : 𝑉 → 𝑊 . We define the dual/transpose of 𝑇 as the map
𝑇𝑡 : 𝑊 ∗ → 𝑉∗, given by 𝑔 ↦→ 𝑔 ◦ 𝑇. Ie, 𝑇𝑡(𝑔)(𝑣) ..= 𝑔 ◦ 𝑇(𝑣) = 𝑔(𝑇(𝑣)).

↩→ Proposition 2.19

Let 𝑉,𝑊 be vector spaces over a field F and 𝑇 : 𝑉 → 𝑊 .

1. 𝑇𝑡 is linear.

2. Ker(𝑇𝑡) = (Im(𝑇))⊥.

3. Im(𝑇𝑡) ⊆ (Ker(𝑇))⊥ and is equal if 𝑉,𝑊 are finite dimensional.

4. If 𝑉,𝑊 are finite dimensional and 𝛽, 𝛾 are bases resp., then

[𝑇𝑡]𝛽
∗

𝛾∗ = ([𝑇]𝛾𝛽 )
𝑡 .
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. 𝑇𝑡(𝑎𝑔1 + 𝑔2) = (𝑎𝑔1 + 𝑔2) ◦ 𝑇 = 𝑎 · 𝑔1 ◦ 𝑇 + 𝑔2 ◦ 𝑇 = 𝑎 · 𝑇𝑡(𝑔1) + 𝑇∗(𝑔2), ∀ 𝑔1, 𝑔2 ∈ 𝑊 ∗, 𝑎 ∈ F.

2. For 𝑔 ∈ 𝑊 ∗,

𝑔 ∈ Ker(𝑇𝑡) : ⇐⇒ 𝑇𝑡(𝑔) = 0𝑉∗ ⇐⇒ 𝑇𝑡(𝑔)(𝑣) = 0∀ 𝑣 ∈ 𝑉

⇐⇒ 𝑔(𝑇(𝑣)) = 0∀ 𝑣 ∈ 𝑉

⇐⇒ 𝑔(𝑤) = 0∀𝑤 ∈ Im(𝑇)

⇐⇒ 𝑔 ∈ (Im(𝑇))⊥

3. Fix 𝑓 = 𝑇𝑡(𝑔) ∈ Im(𝑇𝑡), 𝑔 ∈ 𝑊 ∗, and 𝑢 ∈ Ker(𝑇), noting that 𝑓 (𝑢) = 𝑇𝑡(𝑔)(𝑢) = 𝑔(𝑇(𝑢)) = 𝑔(0𝑊 ) = 0 so
𝑓 ∈ (Ker(𝑇))⊥.
Suppose now 𝑉,𝑊 are finite dimensional; we’ve shown an inclusion, so it suffices now to show that
dim(Im(𝑇𝑡)) = dim(Ker(𝑇))⊥. We have:

dim(Im(𝑇𝑡)) = dim(𝑊 ∗) − dim(Ker(𝑇𝑡))

= dim(𝑊) − dim(Im(𝑇)⊥)

= dim(𝑊) − dim(𝑊) + dim(Im(𝑇))

= dim(Im(𝑇))

OTOH:

dim(Ker(𝑇)⊥) = dim(𝑉) − dim(Ker(𝑇)) = dim(Im(𝑇)),

and thus dim(Im(𝑇𝑡)) = dim(Ker(𝑇))⊥ (remarking that the first equality follows from 1. of the following
theorem, and 2. from the dimension theorem).

4. Let 𝛽 ..= {𝑣1, . . . , 𝑣𝑛}, 𝛾 ..= {𝑤1, . . . , 𝑤𝑚} be finite bases for 𝑉,𝑊 resp. Recall that

𝐴 ..= [𝑇]𝛾𝛽 ..=
©­­«

| |
[𝑇(𝑣1)]𝛾 · · · [𝑇(𝑣𝑛)]𝛾

| |

ª®®¬ ,
ie 𝐴(𝑗) = [𝑇(𝑣 𝑗)]𝛾 hence 𝑇(𝑣 𝑗) =

∑𝑚
𝑘=1 𝐴𝑘 𝑗𝑤𝑘 .

Similarly, write 𝛾∗ ..= {𝑔1, . . . , 𝑔𝑚} and 𝛽∗ ..= { 𝑓1, . . . , 𝑓𝑛}, then

𝐵 ..= [𝑇𝑡]𝛽
∗

𝛾∗
..=

©­­«
| |

[𝑇𝑡(𝑔1)]𝛽∗ · · · [𝑇𝑡(𝑔𝑚)]𝛽∗
| |

ª®®¬ ,
so 𝑇𝑡(𝑔𝑖) =

∑𝑛
ℓ=1 𝐵ℓ 𝑖 𝑓ℓ =

∑𝑛
ℓ=1 𝑇

𝑡(𝑔𝑖)(𝑣ℓ ) 𝑓ℓ , so 𝐵ℓ 𝑖 = 𝑇𝑡(𝑔𝑖)(𝑣ℓ ). To complete the proof, we must show that
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𝐴𝑖 𝑗 = 𝐵 𝑗𝑖 for all 𝑖 , 𝑗:

𝐵 𝑗𝑖 = 𝑇𝑡(𝑔𝑖)(𝑣 𝑗) = 𝑔𝑖(𝑇(𝑣 𝑗)) = 𝑔𝑖(
𝑚∑
𝑘=1

𝐴𝑘 𝑗𝑤𝑘) =
𝑚∑
𝑘=1

𝐴𝑘 𝑗𝑔𝑖(𝑤𝑘) = 𝐴𝑖 𝑗 ,

where the last equality 𝑔𝑖(𝑤𝑘) = 𝛿𝑖𝑘 , by construction.

■

↩→ Lecture 17; Last Updated: Mon Mar 25 13:48:03 EDT 2024

↩→ Theorem 2.10

Let 𝑉 be a finite-dimensional vector space over F and 𝑈 ⊆ 𝑉 be a subspace.

1. dim(𝑈⊥) = dim(𝑉)−dim(𝑈). In fact, if {𝑣1, . . . , 𝑣𝑘} is a basis for𝑈 and 𝛽 ..= {𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1 . . . , 𝑣𝑛}
is a basis for 𝑉 with the dual basis 𝛽∗ = { 𝑓1, . . . , 𝑓𝑛}, then { 𝑓𝑘+1, . . . , 𝑓𝑛} is a basis for 𝑈⊥.

2. (𝑉/𝑈)∗ � 𝑈⊥ by the map 𝑓 ↦→ 𝑓𝑈 , where 𝑓𝑈 : 𝑉 → F given by 𝑓𝑈(𝑣) ..= 𝑓 (𝑣 +𝑈).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise.

■

↩→ Corollary 2.10: of proposition 2.19

Let 𝑉,𝑊 be vector spaces over F and 𝑇 : 𝑉 → 𝑊 be a linear transformation.

1. 𝑇𝑡 injective ⇐⇒ 𝑇 surjective.

2. If 𝑉,𝑊 finite dimensional, then 𝑇𝑡 surjective ⇐⇒ 𝑇 injective.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. 𝑇𝑡 injective ⇐⇒ Ker(𝑇𝑡) = {0𝑊 ∗} ⇐⇒ Im(𝑇)⊥ = {0𝑊 ∗} =⇒ ⊛ Im(𝑇) = 𝑊 ⇐⇒ 𝑇 surjective.
Conversely, if Im(𝑇) = 𝑊 =⇒ (Im(𝑇))𝑡 = {0𝑊 ∗} (and the rest follows identically).

2. Im(𝑇𝑡) = Ker(𝑇)⊥ =⇒ Im(𝑇⊥) = 𝑉∗ ⇐⇒ Ker(𝑇) = {0𝑉}, following similar logic to above.

■

Remark 2.19. Part 4. of proposition 2.19 establishes a dependency between the columns and rows of a matrix; precisely:

↩→ Lecture 18; Last Updated: Mon Mar 25 13:48:03 EDT 2024

2.9.1 Application to Matrix Rank
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↩→ Definition 2.19: Matrix Rank/C-Rank,R-Rank

For a matrix 𝐴 ∈ 𝑀𝑚×𝑛(F), we define
rank(𝐴) ..= rank(𝐿𝐴)

and the column rank of

c-rank(𝐴) ..= size of maximal indep. subset of columns {𝐴(1), . . . , 𝐴(𝑛)}

and row rank of

r-rank(𝐴) ..= size of maximal indep. subset of rows {𝐴(1), . . . , 𝐴(𝑚)}.

Remark 2.20. Notice that rank(𝐴) = c-rank(𝐴).

↩→ Corollary 2.11

rank(𝐴) = rank(𝐴𝑡) = r-rank(𝐴)

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We know already that rank(𝐴𝑡) = c-rank(𝐴𝑡) = r-rank(𝐴), as remarked previously, hence we need only
to show that rank(𝐴𝑡) = rank(𝐴). But 𝐴 = [𝐿𝐴] and 𝐴𝑡 = [𝐿𝐴𝑡 ] = [𝐿𝐴]𝑡 = [𝐿𝑡

𝐴
]. Thus, rank(𝐴) = rank(𝐿𝐴) =

rank(𝐿𝑡
𝐴
) = rank(𝐴𝑡). ■

↩→ Corollary 2.12

rank(𝐴) = c-rank(𝐴) = r-rank(𝐴), ∀𝐴 ∈ 𝑀𝑚×𝑛(F)

3 Elementary Matrices, Matrix Operations

3.1 Systems of Linear Equations

We can write a system of 𝑚 equations of 𝑛 unknowns 𝑥𝑖
𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛 = 𝑏1

. . .
. . .

. . .

𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

succinctly as a matrix equation
𝐴 · ®𝑥 = ®𝑏,
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where 𝐴 ..= (𝑎𝑖 𝑗) ∈ 𝑀𝑚×𝑛(F), ®𝑥 =

©­­­«
𝑥1
...

𝑥𝑛

ª®®®¬, and ®𝑏 ..=

©­­­«
𝑏1
...

𝑏𝑚

ª®®®¬ ∈ F𝑚 . Hence, ®𝑥 solves 𝐴®𝑥 = ®𝑏 ⇐⇒ 𝐿𝐴(®𝑥) = ®𝑏 ⇐⇒

®𝑥 ∈ 𝐿−1
𝐴
(®𝑏). In other words, a solution exists iff ®𝑏 ∈ Im(𝐿𝐴) = Span(𝐴(1), . . . , 𝐴(𝑛)). In particular, when ®𝑏 = ®0, a

solution always exists, ®𝑥 = ®0. We call 𝐴 · ®𝑥 = ®0 the homogeneous system of equations of 𝐴.

It follows that 𝐴 · ®𝑥 = ®0 has nonzero solutions ⇐⇒ Ker(𝐿𝐴) non-trivial. Moreover, if 𝐴 · ®𝑥 = ®𝑏 and 𝐴 · ®𝑦 = ®0,
then 𝐴 · (®𝑥 + ®𝑦) = ®𝑏 as well by linearity.

↩→ Proposition 3.1

For 𝐴 ∈ 𝑀𝑚×𝑛(F) and 𝑏 ∈ Im(𝐿𝐴) the set of solutions to 𝐴®𝑥 = ®𝑏 is precisely the coset ®𝑣 + Ker(𝐿𝐴) where
®𝑣 ∈ F𝑛 is a particular solution to 𝐴®𝑥 = ®𝑏; 𝐴®𝑣 = ®𝑏.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ®𝑣+ an element of Ker(𝐿𝐴) is a solution to 𝐴®𝑥 = ®𝑏. Conversely, if ®𝑣, ®𝑤 are solutions to 𝐴®𝑥 = ®𝑏, then
𝐴 · (®𝑣 − ®𝑤) = ®𝑏 − ®𝑏 = ®0 so ®𝑣 − ®𝑤 ∈ Ker(𝐿𝐴), thus ®𝑤 = ®𝑣 + (®𝑣 − ®𝑤) ∈ ®𝑣 + Ker(𝐿𝐴). ■

↩→ Corollary 3.1

If 𝑚 < 𝑛 and 𝐴 ∈ 𝑀𝑚×𝑛(F), then there is always a nonzero solution to the homogeneous equation 𝐴®𝑥 = ®0

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. nullity (𝐿𝐴) = 𝑛 − rank(𝐿𝐴) = 𝑛 − dim(Im(𝐿𝐴)) ⩾ 𝑛 − 𝑚 > 0 hence Ker(𝐿𝐴) nontrivial. ■

↩→ Lecture 19; Last Updated: Mon Mar 25 13:48:03 EDT 2024

↩→ Corollary 3.2

For 𝐴 ∈ 𝑀𝑚×𝑛(F),

1. Ker(𝐿𝐴) = {0F𝑛 } ⇐⇒ 𝐴®𝑥 = ®𝑏 has at most one solution, for each ®𝑏 ∈ F𝑚 .

2. If 𝑛 = 𝑚, 𝐴 is invertible ⇐⇒ 𝐴®𝑥 = ®𝑏 has exactly one solution for each ®𝑏 ∈ F𝑚 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. follows from proposition 3.1. 2. follows from 1. ■

We would like to determine whether 𝐴®𝑥 = ®𝑏 has a solution (equivalently, if ®𝑏 ∈ Im(𝐿𝐴)), and to solve it,
determining a particular solution, and Ker 𝐿𝐴.

3.2 Elementary Row/Column Operations, Matrices
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↩→ Definition 3.1: Elementary Row (Column) Operations

Let 𝐴 ∈ 𝑀𝑚×𝑛(F). An elementary row (column) operation is one of the following operations applied to 𝐴:

1. Interchanging any two rows (columns) of 𝐴;

2. Multiplying a row (column) by a nonzero scalar from F;

3. Adding a scalar multiple of one row (column) to another.

Remark 3.1. All of these operations are (clearly) invertible. Moreover, each of these operations can be seen as linear
transformations 𝑀𝑚×𝑛(F) → 𝑀𝑚×𝑛(F), and can thus be represented as (𝑚 · 𝑛) × (𝑚 · 𝑛) matrices.

↩→ Definition 3.2: Elementary Matrix

A matrix 𝐸 ∈ 𝑀𝑛(F) is called elementary if it is obtained from 𝐼𝑛 by an elementary row/column operation.

⊛ Example 3.1

1.
©­­«
1 0 0
0 0 1
0 1 0

ª®®¬ is obtained from 𝐼3 by operation 1.; indeed, either swapping the last two rows or

columns yields the same result.

2.
©­­«
1 0 0
0 1 0
0 0 3

ª®®¬ is obtained from 𝐼3 by operation 2.; again, either the row or column view yields the

same.

3.
©­­«
1 0 0
2 1 0
0 0 1

ª®®¬ is obtained from 𝐼3 by operation 3.; again, either viewed as adding 2 times the second

column to the first or 2 times the first row to the second.

↩→ Theorem 3.1: Elementary Matrices and Operations

Each elementary matrix can be obtained either by a row or column operation of the same kind.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Clear by example. ■
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↩→ Theorem 3.2

For matrices 𝐴, 𝐵 ∈ 𝑀𝑚×𝑛(F), if 𝐵 is obtained from 𝐴 by an elementary row (column) operation of type
(i), then 𝐵 = 𝐸 · 𝐴 (𝐵 = 𝐴 · 𝐸) for the elementary matrix 𝐸 ∈ 𝑀𝑚(F) (𝑀𝑛(F)) obtained from the identity
matrix by the same operation as in obtaining 𝐵 from 𝐴.

Conversely, if 𝐸 is an elementary matrix then 𝐸 · 𝐴 (𝐴 · 𝐸) is obtained from 𝐴 by applying the same
elementary operations as in obtaining 𝐸 from the identity matrix.

↩→ Proposition 3.2

Elementary matrices are invertible, and the inverse is also an elementary matrix of the same type.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. This follows from the fact that each elementary operation is invertible, and as each elementary operation
can be representing as an elementary matrix, the result is clear. ■

↩→ Lecture 20; Last Updated: Thu Feb 22 21:48:02 EST 2024

↩→ Proposition 3.3

1. If 𝐴 ∈ 𝑀𝑚×𝑛(F), 𝑃 ∈ GL𝑚(F)18, and 𝑄 ∈ GL𝑛(F), then rank(𝑃 · 𝐴) = rank(𝐴) = rank(𝐴 · 𝑄)

2. More generally, if 𝑇 : 𝑉 → 𝑊 is a linear transformation, where 𝑉,𝑊 finite dimensional, and
𝑆 : 𝑊 → 𝑊 and 𝑅 : 𝑉 → 𝑉 are linear and invertible, then rank(𝑆 ◦ 𝑇) = rank(𝑇) = rank(𝑇 ◦ 𝑅).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. follows directly from part 2., being a special case where 𝑇 = 𝐿𝐴 , 𝑆 = 𝐿𝑃 , 𝑅 = 𝐿𝑄 .

We have that rank(𝑇) = dim(Im(𝑇)), and as 𝑆 an isomorphism, 𝑆 |Im(𝑇) is injective and thus 𝑆(Im(𝑇)) � Im(𝑇),
by 𝑆, so in particular, rank(𝑆 ◦ 𝑇) = dim(𝑆(Im(𝑇))) = rank(Im(𝑇)) = rank(𝑇).

For the other equality, we have that Im(𝑇 ◦ 𝑅) = 𝑇(𝑅(𝑉)) = 𝑇(𝑉) = Im(𝑇) so rank(𝑇) = dim(Im(𝑇)) =

dim(Im(𝑇 ◦ 𝑅)) = rank(𝑇 ◦ 𝑅). ■

↩→ Corollary 3.3

Elementary row/column operations (equivalently, multiplication by elementary matrices) are rank-
preserving; if 𝐵 obtained from 𝐴 by a row/column operation, then rank(𝐵) = rank(𝐴).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Elementary operations correspond to multiplication by elementary matrices as we have shown previ-
ously, which are further invertible by proposition 3.2, which hence do not change the rank by proposition 3.3. ■

18Denoting the space of invertible 𝑚 × 𝑚 matrices.
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↩→ Theorem 3.3: Diagonal Matrix Form

Every matrix 𝐴 ∈ 𝑀𝑛(F) can be transformed into a matrix 𝐵 of the form

©­«
[

𝐼𝑟

] [
0

][
0

] [
0

]ª®¬ ,
where the top right and bottom left [0]’s are 𝑛 − 𝑟 × 𝑟, the bottom [0] is 𝑛 − 𝑟 × 𝑛 − 𝑟, using row, column
operations. In particular, 𝑟 = rank(𝐴).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We prove by induction on 𝑛.

Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base:Base: If 𝑛 = 0, 𝐴 = () and we are done.

Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step:Inductive Step: Suppose 𝑛 ⩾ 1 and the statement holds for 𝑛 − 1. If 𝐴 is all zeros, we are done. Else, 𝐴 has
some nonzero entry, and by swapping two rows and columns such that the entry is in the top left (𝑎11) of the
matrix, and then multiplying by 𝑎11−1 such that it is equal to 1,

©­­­­­­«
1 ★ · · · ★

★
. . .

...
. . .

★
. . .

ª®®®®®®¬
.

We can then use row (resp. column) operations such that each cell below (resp. to the right of) the top left 1 is
equal to 0 by subtracting ★· row (resp. column) one from each,

©­­­­­­«
1 0 · · · 0

0 . . .
...

. . .

0 . . .

ª®®®®®®¬
.

Applying induction the the 𝑛 − 1 × 𝑛 − 1 matrix we have left over in the bottom right block, we can transform
this block into the desired form by row/column operations, not affecting 𝐴 itself. This gives us the desired
form of 𝐴. ■

↩→ Corollary 3.4

For each 𝐴 ∈ 𝑀𝑛(F), there are invertible matrices 𝑃, 𝑄 ∈ GL𝑛(F) such that

𝐵 ..= 𝑃 · 𝐴 · 𝑄

is of the form in theorem 3.3. Moreover, 𝑃 and 𝑄 are products of elementary matrices.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows from row/column operations corresponding to left/right multiplication by elementary matrices.
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■

↩→ Corollary 3.5

Every invertible matrix 𝐴 ∈ GL𝑛(F) is a product of elementary matrices.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝐴 ∈ GL𝑛(F), so rank(𝐴) = 𝑛. Then, by corollary 3.4, there exists matrices 𝑃, 𝑄 ∈ GL𝑛(F) such that
𝑃𝐴𝑄 = 𝐼𝑛 hence 𝐴 = 𝑃−1𝑄−1. 𝑃, 𝑄 are themselves products of elementary matrices and thus their inverses
are, hence 𝐴 itself is a product of elementary matrices. ■

↩→ Corollary 3.6

rank(𝐴) = rank(𝐴𝑡) ∀𝐴 ∈ 𝑀𝑛(F).

Remark 3.2. We’ve already proven this, but we present an alternative approach.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. There are 𝑃, 𝑄 ∈ GL𝑛(F) such that 𝐵 = 𝑃𝐴𝑄 of the desired diagonal form where 𝑟 = rank(𝐴). Then,
𝐵𝑡 = 𝑄𝑡𝐴𝑡𝑃𝑡 , and thus rank(𝐵𝑡) = rank(𝐴𝑡). But 𝐵𝑡 = 𝐵 so rank(𝐵𝑡) = rank(𝐵) = rank(𝐴) and thus rank(𝐴) =
rank(𝐴𝑡) as desired. ■

↩→ Corollary 3.7

The transpose of an invertible matrix is invertible, with (𝐴𝑡)−1 = (𝐴−1)𝑡 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝐴 · 𝐴−1 = 𝐼𝑛 = 𝐴−1 · 𝐴 =⇒ (𝐴−1)𝑡 · 𝐴𝑡 = 𝐼𝑡𝑛 = 𝐼𝑛 = 𝐴𝑡 · (𝐴−1)𝑡 . ■

↩→ Lecture 21; Last Updated: Sat Apr 6 10:19:07 EDT 2024

3.2.1 Application to Finding Inverse Matrix

If 𝐴 ∈ 𝑀𝑛(F) is invertible, then 𝐴 = 𝐸1 · · · · · 𝐸𝑘 for some elementary matrices 𝐸𝑖 , so 𝐴−1 = 𝐸−1
𝑘

· · · · · 𝐸−1
1 · 𝐼𝑛 .

Consider the augmented matrix (𝐴|𝐼𝑛). Remark that 𝐵 · (𝐴|𝐼𝑛) = (𝐵𝐴|𝐵𝐼𝑛), and in particular, 𝐸−1
𝑘

· · ·𝐸−1
1 ·

(𝐴|𝐼𝑛) = (𝐼𝑛 |𝐴−1), ie, there are row operations that turn (𝐴|𝐼𝑛) to (𝐼𝑛 |𝐴−1).

↩→ Theorem 3.4

Let 𝐴 ∈ 𝑀𝑛(F) be invertible.

1. There are row operations that turn (𝐴|𝐼𝑛) into (𝐼𝑛 |𝐴−1).

2. If row operations turn (𝐴|𝐼𝑛) into (𝐼𝑛 |𝐵) then 𝐵 = 𝐴−1.
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3.2.2 Solving Systems of Linear Equations

↩→ Definition 3.3

For matrices 𝐴1, 𝐴2 ∈ 𝑀𝑚×𝑛(F) and ®𝑏1, ®𝑏2 ∈ F𝑚 , the systems of linear equations 𝐴1 · ®𝑥 = ®𝑏1 and 𝐴2 · ®𝑥 = ®𝑏2

are called equivalent if their sets of solutions are equal.

In particular, any two systems with no solutions are equivalent.

↩→ Proposition 3.4

If 𝐺 ∈ GL𝑚(F) and 𝐴 ∈ 𝑀𝑚×𝑛(F), ®𝑏 ∈ F𝑚 , then 𝐺 · 𝐴®𝑥 = 𝐺 · ®𝑏 is equivalent to 𝐴®𝑥 = ®𝑏

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Multiply both sides from the left by 𝐺−1. ■

↩→ Corollary 3.8

Row operations applied to (𝐴|𝑏) do not change the solution set of 𝐴®𝑥 = ®𝑏.

↩→ Definition 3.4: ref/rref

Let 𝐵 ∈ 𝑀𝑚×𝑛(F). We say 𝐵 is in row echelon form if

1. All zero rows are at the bottom, ie each nonzero row is above each zero row;

2. The first nonzero entry (called a pivot) of each row is the only nonzero entry in its column;

3. The pivot of each row appears to the right of the pivot of the previous row.

If all pivots are 1, then we say that 𝐵 is in reduced row echelon form.

↩→ Theorem 3.5: Gaussian Elimination Theorem

There is a sequence of row operations of types 1. and 3. that bring any matrix 𝐴 ∈ 𝑀𝑚×𝑛(F) to a row
echelon form. Moreover, applying row operations of type 2. to a matrix in row echelon form results in a
reduced row echelon form.

↩→ Lecture 22; Last Updated: Sat Mar 9 09:25:26 EST 2024

⊛ Example 3.2
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3𝑥1+ 2𝑥2+ 3𝑥3− 2𝑥4 = 1
𝑥1+ 𝑥2+ 𝑥3 = 3
𝑥1+ 2𝑥2+ 𝑥3− 𝑥4 = 2

⇝ 𝐴 ..=
©­­«
3 2 3 −2
1 1 1 0
1 2 1 −1

ª®®¬ , ®𝑏 ..=
©­­«
1
3
2

ª®®¬ ,
so we have agumented matrix

(𝐴|𝑏) =
©­­«
3 2 3 −2 | 1
1 1 1 0 | 3
1 2 1 −1 | 2

ª®®¬
Gaussian Elimination

⇝
©­­«
1 0 1 0 | 1
0 1 0 0 | 2
0 0 0 1 | 3

ª®®¬ ,
so 𝑟 ..= rank(𝐴) = 3 and nullity(𝐿𝐴) = 4 − 3 = 1, so we expect a solution as a particular solution plus
an ideal (the kernel). Rewriting, we see that

𝑥1 +𝑥3 = 1
𝑥2 = 2

𝑥4 = 3
=⇒

©­­­­­«
𝑥1

𝑥2

𝑥3

𝑥4

ª®®®®®¬
=

©­­­­­«
1 − 𝑡1

2
𝑡1

3

ª®®®®®¬
=

©­­­­­«
1
2
0
3

ª®®®®®¬
+ 𝑡1

©­­­­­«
−1
0
1
0

ª®®®®®¬
,

where 𝑡1 ∈ F arbitrary. Moreover, since setting 𝑡1 = 0 gives that ®𝑣 ..= (1, 2, 0, 3)𝑡 a solution, then
𝑡1(−1, 0, 1, 0)𝑡 is a solution to the homogeneous system 𝐴®𝑥 = ®0, ie, ®𝑢 ..= (−1, 0, 1, 0)𝑡 is a basis for the
kernel of Ker(𝐿𝐴).

↩→ Theorem 3.6

For any system 𝐴®𝑥 = ®𝑏, using Gaussian elimination we obtain another system 𝐴1 ®𝑥 = ®𝑏1 where (𝐴1 | ®𝑏1) is
the reduced echelon form of (𝐴|®𝑏). Then:

1. 𝐴®𝑥 = ®𝑏 has a solution ⇐⇒ rank(𝐴1 | ®𝑏1) = rank(𝐴1) = ♯ of non-zero rows of 𝐴1.

2. If a solution exists, then, denoting 𝑟 ..= rank(𝐴) and 𝑛 ..= ♯ columns of 𝐴, we have the general solution
to 𝐴®𝑥 = ®𝑏 of the form

®𝑣 + 𝑡1®𝑢1 + · · · + 𝑡𝑛−𝑟 ®𝑢𝑛−𝑟

where ®𝑣 ∈ F𝑛 and {®𝑢1, . . . , ®𝑢𝑛−𝑟} a basis for Ker(𝐿𝐴) = space of solutions to 𝐴®𝑥 = ®0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We will only prove 1.

Recall that 𝐴®𝑥 = ®𝑏 has a solution ⇐⇒ ®𝑏 ∈ Im(𝐿𝐴) = Span(columns of 𝐴) ⇐⇒ Span(columns of 𝐴) =
Span(columns of (𝐴|𝑏)) ⇐⇒ rank(𝐴) = rank((𝐴|𝑏)). ■
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↩→ Corollary 3.9

The system 𝐴®𝑥 = ®𝑏 has a solution ⇐⇒ in the reduced echelon form (𝐴1 |®𝑏1) of the augmented matrix,
we do not have a pivot in the last column.

↩→ Lemma 3.1

Let 𝐵 ∈ 𝑀𝑚×𝑛(F) be obtained from 𝐴 ∈ 𝑀𝑚×𝑛(F) via a row operation. Then, for all 𝑎1, . . . , 𝑎𝑛 ∈ F,

𝑎1𝐴
(1) + · · · + 𝑎𝑛𝐴

(𝑛) = ®0 ⇐⇒ 𝑎1𝐵
(1) + · · · + 𝑎𝑛𝐵

(𝑛) = ®0.

In particular, columns in 𝐴 are linearly (in)dependent iff the corresponding columns in 𝐵 are linearly
(in)dependent.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

↩→ Lemma 3.2

Let 𝐵 be the reduced row echelon form of 𝐴 ∈ 𝑀𝑚×𝑛(F). Then:

1. ♯ non-zero rows of 𝐵 = rank(𝐵) = rank(𝐴) =: 𝑟.

2. For each 𝑖 = 1, . . . , 𝑟, denote by 𝑗𝑖 the pivot of the 𝑖th row. Then, 𝐵(𝑗𝑖) = 𝑒𝑖 ∈ F𝑚 . In particular,
{𝐵(𝑗1), . . . , 𝐵(𝑗𝑟)} is linearly independent.

3. Each column of 𝐵 without a pivot is in the span of the previous columns.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows from the definition of rref. ■

↩→ Corollary 3.10

The rref of a matrix is unique.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

↩→ Lecture 23; Last Updated: Mon Mar 25 13:48:03 EDT 2024

3.3 Determinant

The determinant, denoted det(𝐴), of a square matrix 𝐴 ∈ 𝑀𝑛(F) is a scalar from F, meant to equal 0 iff 𝐴 is not
invertible.
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↩→ Proposition 3.5

𝐴 ∈ 𝑀𝑛(F) is invertible ⇐⇒ the columns of 𝐴 are linearly independent ⇐⇒ the rows of 𝐴 are linearly
independent ⇐⇒ rank(𝐴) = 𝑛

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝐴 invertible ⇐⇒ 𝐿𝐴 invertible ⇐⇒ 𝐿𝐴 bĳection ⇐⇒ 𝐿𝐴 surjection ⇐⇒ rank(𝐿𝐴) = rank(𝐴) = 𝑛 ■

⊛ Example 3.3

Let 𝐴 ∈ 𝑀3(R), 𝐴 =
©­­«
− 𝑣1 −
− 𝑣2 −
− 𝑣3 −

ª®®¬. If {𝑣1, 𝑣2, 𝑣3} linear dependent, then dim(Span(𝑣1, 𝑣2, 𝑣3)) ⩽ 2,

which happens iff the parallelepiped formed with sides 𝑣1, 𝑣2, 𝑣3 is contained in a plane (is “flat”),
iff the parallelepiped is a parallelogram, ie, has 0 volume. As such, we can make the notion of
volume dependent on the orientation of 𝑣1, 𝑣2, 𝑣3 such that permuting 𝑣1, 𝑣2, 𝑣3 changes the sign of
the volume. This gives us the idea of an “oriented volume”, which we can define as our determinant.
This has a clear meaning in R, but it remains to show how we can generalize this to arbitrary fields,
where such a “volume” does not have a concrete meaning.

We now aim to derive a general formula for the determinant of a matrix over an arbitrary field by observ-
ing several key characteristics of our parallelepiped constructed above, and using these to define a unique
determinant formula with geometric motivations.

Observation 1
Scaling a vector in a parallelepiped scales the volume of the parallelepiped by the same scalar.

↩→ Definition 3.5: multiinear form

A function 𝛿 : 𝑀𝑛(F) → F is called (row) multilinear, or 𝑛-linear, if it is linear in every row, i.e. for each
𝑖 = 1, . . . , 𝑛,

𝛿

©­­­­­­­­­­­­­«

− 𝑣1 −
...

− 𝑣𝑖−1 −
− 𝑐 · ®𝑥 + ®𝑦 −
− 𝑣𝑖+1 −

...

− 𝑣𝑛 −

ª®®®®®®®®®®®®®¬
= 𝑐 · 𝛿

©­­­­­­­­­­­­­«

− 𝑣1 −
...

− 𝑣𝑖−1 −
− ®𝑥 −
− 𝑣𝑖+1 −

...

− 𝑣𝑛 −

ª®®®®®®®®®®®®®¬
+ 𝛿

©­­­­­­­­­­­­­«

− 𝑣1 −
...

− 𝑣𝑖−1 −
− ®𝑦 −
− 𝑣𝑖+1 −

...

− 𝑣𝑛 −

ª®®®®®®®®®®®®®¬
.

⊛ Example 3.4

1. 𝛿(𝐴) ..= 𝑎11 · 𝑎22 · · · · · 𝑎𝑛𝑛 is 𝑛-linear.
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2. Fix 𝑗 ∈ {1, . . . , 𝑛}. The function 𝛿 𝑗(𝐴) ..= 𝑎1𝑗 · 𝑎2𝑗 · · · · · 𝑎𝑛𝑗 is 𝑛-linear.

∗3. However, tr(𝐴) ..=
∑𝑛

𝑖=1 𝑎𝑖𝑖 is not 𝑛-linear; scalar multiplication fails.

↩→ Proposition 3.6

For an 𝑛-linear form 𝛿 : 𝑀𝑛(F) → F, if 𝐴 ∈ 𝑀𝑛(F) has zero row, then 𝛿(𝐴) = 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝛿(𝐴) = 𝛿

((®0
...

))
= 𝛿

((®0
...

)
+

(®0
...

))
= 𝛿

((®0
...

))
+ 𝛿

((®0
...

))
= 𝛿(𝐴) + 𝛿(𝐴) =⇒ 𝛿(𝐴) = 0. ■

Observation 2
If two sides of the parallelepiped are equal, then the volume is 0 (the shape is “flat”).

↩→ Definition 3.6: Alternating

A 𝑛-linear form 𝛿 : 𝑀𝑛(F) → F is called alternating if 𝛿(𝐴) = 0 for any matrix 𝐴 whose two equal rows.

↩→ Proposition 3.7

Let 𝛿 : 𝑀𝑛(F) → F be an alternating 𝑛-linear form. Then, if 𝐵 is obtained from 𝐴 by swapping two rows,
then 𝛿(𝐵) = −𝛿(𝐴).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. It suffices to show that swapping two consecutive rows changes the sign of the result. Suppose 𝐵 is
obtained from 𝐴 by swapping rows 1 and 2, namely

𝐵 =

©­­­«
− 𝐴(2) −
− 𝐴(1) −

...

ª®®®¬ .
Then,

𝛿
©­­­«
− 𝐴(1) + 𝐴(2) −
− 𝐴(1) + 𝐴(2) −

...

ª®®®¬ = 0,

since its first two rows are equal; OTOH,

𝛿
©­­­«
− 𝐴(1) + 𝐴(2) −
− 𝐴(1) + 𝐴(2) −

...

ª®®®¬ = 𝛿(𝐴) + 𝛿(𝐵),

so 𝛿(𝐵) = −𝛿(𝐴). ■
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↩→ Proposition 3.8

A multilinear form 𝛿 : 𝑀𝑛(F) → F is alternating ⇐⇒ 𝛿(𝐴) = 0 for every matrix 𝐴 with two equal
consecutive rows.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

Observation 3
If 𝑣𝑖 = 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛, ie, our parallelepiped is the unit cube, then the volume, aptly, equals 1; it is “normalized”.

↩→ Lecture 24; Last Updated: Mon Mar 25 13:48:03 EDT 2024

↩→ Proposition 3.9

Let 𝛿 : 𝑀𝑛(F) → F be an alternating multilinear form. Then, for each matrix 𝐴 ..= (𝑎𝑖 𝑗) ∈ 𝑀𝑛(F), we have

𝛿(𝐴) =
∑
𝜋∈𝑆𝑛

𝑎1𝜋(1)𝑎2𝜋(2) · · · 𝑎𝑛𝜋(𝑛)𝛿(𝜋𝐼),

where

𝜋𝐼𝑛 ..=

©­­­«
− 𝑒𝜋(1) −

...

− 𝑒𝜋(𝑛) −

ª®®®¬ .
ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

Remark 3.3. Since 𝛿 alternating, we can use row swaps to bring any 𝜋𝐼𝑛 to 𝐼𝑛 , thus 𝛿(𝜋𝐼𝑛) = ±𝛿(𝐼𝑛); ± depends on the
number of row swaps needed, ie, the parity of the given permutation 𝜋.

↩→ Definition 3.7: Parity

For a permutation 𝜋 ∈ 𝑆𝑛 , we let ♯𝜋 ..= number of inversions = number of pairs 𝑖 , 𝑗 ∈ {1, . . . , 𝑛} such that
𝑖 < 𝑗 but 𝜋(𝑖) > 𝜋(𝑗). We say 𝜋 even (resp. odd) if ♯𝜋 even (resp. odd), and define sgn(𝜋) ..= (−1)♯𝜋 the sign
of 𝜋.

↩→ Proposition 3.10

sgn : 𝑆𝑛 → ({1,−1}, ·) is a group homomorphism, that is −1 of transpositions. In particular,

1. sgn(𝜋−1) = sgn(𝜋)

2. If 𝜋 a product of 𝑘 transpositions, 𝜏1 · 𝜏2 · · · 𝜏𝑘 , then 𝑘 = ♯𝜋 mod 2.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. See Goren, Lemma 4.2.1.

3.3 Elementary Matrices, Matrix Operations: Determinant 54



For (a), we have that sgn(𝜋−1) = sgn(𝜋)−1 = sgn(𝜋).

For (b), sgn(𝜋) = sgn(𝜏1 · · · 𝜏𝑘) = sgn(𝜏1) · · · sgn(𝜏𝑘) = (−1)𝑘 so (−1)♯𝜋 = (−1)𝑘 and thus 𝑘 = ♯𝜋 mod 2. ■

↩→ Corollary 3.11: Of proposition 3.9

For any alternating multilinear form 𝛿 : 𝑀𝑛(F) → F and 𝐴 ..= (𝑎𝑖 𝑗) ∈ 𝑀𝑛(F),

𝛿(𝐴) =
∑
𝜋∈𝑆𝑛

𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛) · sgn(𝜋) · 𝛿(𝐼𝑛).

In particular, 𝛿 is uniquely determined by its value on 𝐼𝑛 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. By proposition 3.9, 𝛿(𝐴) = ∑
𝜋∈𝑆𝑛 𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛)𝛿(𝜋𝐼𝑛), so we need only to show that 𝛿(𝜋𝐼𝑛) = sgn(𝜋) ·

𝛿(𝐼𝑛). Writing 𝜋=𝜏1 · · · 𝜏𝑘 as transpositions, we know that (−1)𝑘 = sgn(𝜋) and each row swap corresponding to
a 𝜏𝑖 changes the sign of 𝛿. Applying each 𝜏𝑖 row swaps to 𝐼𝑛 , we obtain 𝜋𝐼𝑛 and thus 𝛿(𝜋𝐼𝑛) = (−1)𝑘 · 𝛿(𝐼𝑛) =
sgn(𝜋) · 𝛿(𝐼𝑛). ■

↩→ Theorem 3.7: Characterization of the Determinant

There is a unique normalized (ie is 1 on 𝐼𝑛) alternating multilinear form; we call such a form the determinant
and denote det; namely,

det(𝐴) ..=
∑
𝜋∈𝑆𝑛

sgn(𝜋) · 𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Uniqueness follows from corollary 3.11. It remains to show that the given definition for det is a
normalized, alternating, multilinear form.

Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized:Normalized: det(𝐼𝑛) =
∑

𝜋∈𝑆𝑛 sgn(𝜋) · 𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛) = (−1)0 · 1 · · · 1 = 1, since each summand will be zero
for any permutation other than the identity.

Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear:Multilinear: A linear combination of 𝑛-linear forms is itself an 𝑛-linear form, so it suffices to prove that for
a fixed 𝜋 ∈ 𝑆𝑛 , 𝛿𝜋 : 𝑀𝑛(F) → F given by 𝛿𝜋(𝐴) ..= 𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛) is 𝑛-linear, which should be clear as a product
of matrix entries.

Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating:Alternating: Suppose 𝐴 has two equal rows, wlog 𝐴(1), 𝐴(2). We partition 𝑆𝑛 into the disjoint union of even
and odd permutations, denoting 𝐴𝑛 the even permutations. Note that 𝑆𝑛 \ 𝐴𝑛 = 𝐴𝑛 · (12), ie the coset of the
transposition (12) of the subgroup 𝐴𝑛 . Thus, 𝐴𝑛 → 𝐴𝑛 · (12) via 𝜋 ↦→ 𝜋′ ..= 𝜋 · (12) is a bĳection, and our
partition has two equal parts. Thus, we can rewrite det as

det(𝐴) =
∑
𝜋∈𝑆𝑛

sgn(𝜋) · 𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛)

=
∑
𝜋∈𝐴𝑛

sgn(𝜋)𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛) +
∑
𝜋∈𝐴𝑛

sgn(𝜋′)︸  ︷︷  ︸
=−sgn(𝜋)

𝑎1𝜋′(1)︸︷︷︸
𝑎1𝜋(2)

· · · 𝑎𝑛𝜋′(𝑛)︸︷︷︸
=𝑎𝑛𝜋(𝑛)

=
∑
𝜋∈𝐴𝑛

sgn(𝜋)𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛) −
∑
𝜋∈𝐴𝑛

sgn(𝜋)𝑎1𝜋(1) · · · 𝑎𝑛𝜋(𝑛) = 0,
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where the last line follows from 𝑎1𝜋(2) = 𝑎2𝜋(2) and conversely 𝑎2𝜋(1) = 𝑎1𝜋(1) by assumption, and thus the two
partitioned summands are equal, of opposite sign. ■

3.3.1 Properties of the Determinant

↩→ Lemma 3.3

Let 𝛿 : 𝑀𝑛(F) → F be an alternating multilinear form. Then, for 𝐴 ∈ 𝑀𝑛(F) and an elementary matrix 𝐸,
if 𝐸 is of type

1. 1, then 𝛿(𝐸 · 𝐴) = −𝛿(𝐴);

2. 2, representing multiplying by a scalar 𝑐 ∈ F, then 𝛿(𝐸 · 𝐴) = 𝑐𝛿(𝐴);

3. 3, then 𝛿(𝐸 · 𝐴) = 𝛿(𝐴).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. is a restatement of the alternating property, proposition 3.7, 2. is the definition of multilinearity.

For 3., suppose 𝐸 adds 𝑐· row 𝑖 to row 𝑗, and suppose wlog 𝑖 = 1, 𝑗 = 2. Then,

𝛿(𝐸 · 𝐴) = 𝛿(𝐴(1), 𝐴(2) + 𝑐 · 𝐴(1), 𝐴(3), . . . , 𝐴(𝑛)) = 𝛿(𝐴) + 𝑐 · 𝛿(𝐴(1), 𝐴(1), 𝐴(3), . . . , 𝐴(𝑛)) = 𝛿(𝐴),

by definition of 𝛿 being alternating. ■

↩→ Theorem 3.8

For 𝐴 ∈ 𝑀𝑛(F), det(𝐴) = 0 iff 𝐴 noninvertible.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝐸1, . . . , 𝐸𝑘 be elementary matrices such that 𝐴′ ..= 𝐸1 · · ·𝐸𝑘 ·𝐴 is in rref, remaring that then det(𝐴′) =
𝑐 ·det(𝐴) for some 𝑐 ∈ F, 𝑐 ≠ 0, by lemma 3.3. We also have that rank(𝐴) = rank(𝐴′), and rank(𝐴′) < 𝑛 ⇐⇒ 𝐴′

has a zero row.

( ⇐= ) if 𝐴′ has a zero row, then by multilinearity, det(𝐴′) = 0 and thus det(𝐴) = 0 as well.

( =⇒ ) if 𝐴′ has no zero row, then 𝐴′ = 𝐼𝑛 and thus det(𝐴′) = 1, and det(𝐴) = 𝑐−1 · 1 ≠ 0. ■

↩→ Theorem 3.9

The determinant respects products, det(𝐴 · 𝐵) = det(𝐴) · det(𝐵), for all 𝐴, 𝐵 ∈ 𝑀𝑛(F).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose first 𝐴 noninvertible, so rank(𝐴) < 𝑛 and det(𝐴) = 0. Then

rank(𝐴 · 𝐵) = rank(𝐿𝐴𝐵) = rank(𝐿𝐴 ◦ 𝐿𝐵) ⩽ rank(𝐿𝐴) = rank(𝐴) < 𝑛,

so 𝐴 · 𝐵 also noninvertible and det(𝐴 · 𝐵) = 0. Hence, det(𝐴) · det(𝐵) = 0 · det(𝐵) = 0 = det(𝐴 · 𝐵).
Suppose now 𝐴 invertible. Then, writing 𝐴 = 𝐸1 · · ·𝐸𝑘 as a product of elementary matrices; it suffices to

show, by induction, for a single 𝐸. By lemma 3.3, det(𝐴) = det(𝐸 · 𝐼) = 𝑐 for some non-zero constant 𝑐 ∈ F, so
det(𝐴) · det(𝐵) = 𝑐 · det(𝐵). On the other hand, det(𝐴 · 𝐵) = det(𝐸 · 𝐵) = 𝑐 · det(𝐵), also by lemma 3.3. ■
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↩→ Corollary 3.12

det
(
𝐴−1) = det(𝐴)−1, ∀𝐴 ∈ GL𝑛(F).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1 = det(𝐼𝑛) = det
(
𝐴 · 𝐴−1) = det(𝐴) · (𝐴−1) =⇒ det

(
𝐴−1) = det(𝐴)−1. ■

↩→ Corollary 3.13

det
(
𝐴𝑡

)
= det(𝐴) ∀𝐴 ∈ 𝑀𝑛(F).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If𝐴 noninvertible, then rank(𝐴𝑡) = rank(𝐴) < 𝑛 so both are noninvertible, and thus det
(
𝐴𝑡

)
= det(𝐴) = 0.

If 𝐴 invertible, writing 𝐴 = 𝐸1 · · ·𝐸𝑘 , we have 𝐴𝑡 = 𝐸𝑡
𝑘
· · ·𝐸𝑡

1. For each 𝑖 = 1, . . . , 𝑘, 𝐸𝑡
𝑖

is an elementary
matrix of the same type, with the same constant if of type 2, and thus det(𝐸𝑖) = det

(
𝐸𝑡
𝑖

)
, and so

det
(
𝐴𝑡

)
= det

(
𝐸𝑡
𝑘

)
· · ·det

(
𝐸𝑡

1
)
= det(𝐸1) · · ·det(𝐸𝑘) = det(𝐴).

■

↩→ Lecture 25; Last Updated: Sat Apr 6 10:19:07 EDT 2024

4 Diagonalization of Linear Operators

4.1 Introduction: Definitions of Diagonalization

This section will be concerned with decomposing a linear operator 𝑇 : 𝑉 → 𝑉 for a finite dimensional 𝑉 into
a direct sum of simpler linear operators.

The simplest linear operator we could consider is multiplication by a fixed scalar; ideally, then, we would
like to be able, for any operator 𝑇 : 𝑉 → 𝑉 , to decompose 𝑉 = 𝑉1 ⊕𝑉2 ⊕ · · · ⊕𝑉𝑘 of 𝑇-invariant subspaces such
that 𝑇 |𝑉𝑖 is just multiplication by some scalar 𝜆𝑖 .

↩→ Definition 4.1: Linearly Independent Subspaces

For subspaces 𝑉1, 𝑉2, . . . , 𝑉𝑘 ⊆ 𝑉 , we say that {𝑉1, . . . , 𝑉𝑘} is linearly independent if

𝑉𝑖 ∩
∑
𝑗≠𝑖

𝑉𝑗 = {0𝑉},

then, we call 𝑉1 +𝑉2 + · · · +𝑉𝑘 a direct sum and denote 𝑉1 ⊕ 𝑉2 ⊕ · · · ⊕ 𝑉𝑘 .
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↩→ Definition 4.2: Diagonalization

Call a linear operator 𝑇 : 𝑉 → 𝑉 diagonalizable if it admits a diagonalization, ie

𝑉 = 𝑉1 ⊕ 𝑉2 ⊕ · · · ⊕ 𝑉𝑘 ,

where each 𝑉𝑖 is a subspace of 𝑉 , such that 𝑇 |𝑉𝑖 is just multiplication by a fixed scalar 𝜆𝑖 ∈ F.

⊛ Example 4.1

1. If 𝐴 a diagonal matrix, 𝐴 =

©­­­«
𝜆1 0 · · ·
0 . . . 0
· · · 0 𝜆𝑛

ª®®®¬, then 𝐿𝐴 is diagonalizable; take 𝑉𝑖
..= Span({𝑒𝑖}), then

F𝑛 = 𝑉1 ⊕ · · · ⊕ 𝑉𝑛 .

2. If 𝐴 not diagonal, but is similar to a diagonal matrix 𝐷 as above ie∃𝑄 ∈ GL𝑛(F) s.t. 𝐴 = 𝑄𝐷𝑄−1.
Then, as any invertible matrix 𝑄 = [𝐼𝑛]𝛽𝛼 is a change of basis matrix, denoting 𝛽 ..= {𝑣1, . . . , 𝑣𝑛},
then letting 𝑉𝑖

..= Span({𝑣𝑖}) gives the appropriate decomposition such that 𝐿𝐴 |𝑉𝑖 = mult. by
𝜆𝑖 . We generalize this below.

↩→ Proposition 4.1

Let 𝑉 , dim(𝑉) < ∞. A linear operator 𝑇 : 𝑉 → 𝑉 is diagonalizable iff there is a basis 𝛽 for 𝑉 such that
[𝑇]𝛽𝛽 is diagonal.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ( =⇒ ) Suppose 𝑉 = 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 such that 𝑇 |𝑉𝑖 = mult. by 𝜆𝑖 . Let 𝛽𝑖 be a basis for 𝑉𝑖 , then, 𝛽 ..= ∪𝑘
𝑖=1𝛽𝑖

is a basis for 𝑉 . Then, for each 𝑣 ∈ 𝛽, 𝑣 ∈ 𝛽𝑖 for some 𝑖 and so 𝑇(𝑣) = 𝜆𝑖 · 𝑣 and thus [𝑇(𝑣)]𝛽 =

©­­­­­­­­«

0
...

𝜆𝑖

...

0

ª®®®®®®®®¬
, and so

[𝑇]𝛽 =

©­­­«
𝜆1

. . .

𝜆𝑛

ª®®®¬ .
( ⇐= ) Suppose 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} a basis such that [𝑇]𝛽 is diagonal. Then, taking 𝑉𝑖

..= Span({𝑣𝑖}),
[𝑇(𝑣𝑖)] = 𝜆𝑖 · 𝑒𝑖 = 𝜆𝑖 · [𝑣𝑖]𝛽 = [𝜆𝑖𝑣𝑖]𝛽. 𝑣 ↦→ [𝑣]𝛽 injective, and thus 𝑇𝑣𝑖 = 𝜆𝑖𝑣𝑖 . ■

4.2 Eigenvalues/vectors/spaces
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↩→ Definition 4.3: Eigenvalue/eigenvector

For a linear operator 𝑇 : 𝑉 → 𝑉 and 𝜆 ∈ F, 𝜆 is called an eigenvalue of 𝑇 if there is a non-zero vector 𝑣 ∈ 𝑉

such that 𝑇(𝑣) = 𝜆 · 𝑣. Then, 𝑣 is called an eigenvector.

↩→ Lecture 26; Last Updated: Sat Apr 6 12:29:01 EDT 2024

↩→ Proposition 4.2

For a finite dimensional vector space 𝑉 and a linear transformation 𝑇 : 𝑉 → 𝑉 , TFAE:

1. 𝑇 is diagonalizable, ie 𝑉 =
⊕𝑘

𝑖=1 𝑉𝑖 s.t. 𝑇 |𝑉𝑖 scalar multiplication for each 𝑖.

2. There is a basis 𝛽 for 𝑉 such that [𝑇]𝛽𝛽 is diagonal.

3. There is a basis 𝛽 consisting of eigenvectors of 𝑇.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (1. ⇐⇒ 2.) proposition 4.1.

(2. =⇒ 3.) Suppose 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} a basis such that [𝑇]𝛽 a diagonal matrix with entries 𝜆𝑖 . Then,
[𝑇(𝑣 𝑗)]𝛽 = 𝜆 𝑗𝑒 𝑗 so 𝑇(𝑣 𝑗) = 𝜆 𝑗𝑣 𝑗 and thus 𝑣 𝑗 an eigenvector.

(3. =⇒ 2.) Let 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} a basis of eigenvectors such that 𝑇(𝑣 𝑗) = 𝜆 𝑗𝑣 𝑗 for some 𝜆 𝑗 ∈ F. Then

[𝑇]𝛽 =
©­­«

| | |
[𝑇(𝑣1)]𝛽 [𝑇(𝑣2)]𝛽 · · · [𝑇(𝑣𝑛)]𝛽

| | |

ª®®¬
But [𝑇(𝑣 𝑗)]𝛽 = [𝜆 𝑗𝑣 𝑗]𝛽 = 𝜆 𝑗𝑒 𝑗 , so this matrix is diagonal with entries 𝜆 𝑗 . ■

↩→ Proposition 4.3

For 𝐴 ∈ 𝑀𝑛(F), 𝐴 is diagonalizable, ie 𝐿𝐴 diagonalizable, ⇐⇒ ∃𝑄 ∈ 𝐺𝐿𝑛(F) s.t. 𝑄−1𝐴𝑄 is diagonal; the
columns of 𝑄 are eigenvectors, forming a basis for F𝑛 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝐴 diagonalizable ⇐⇒ there is a basis 𝛽 for F𝑛 such that [𝐿𝐴]𝛽 diagonal. Then, letting 𝛼 be the standard
basis, we have that 𝐴 = [𝐿𝐴]𝛼 = [𝐼]𝛼𝛽 · [𝐿𝐴]𝛽 · [𝐼]𝛽𝛼 = [𝐼]𝛼𝛽 · [𝐿𝐴]𝛽 · ([𝐼]𝛼𝛽 )−1 so [𝐿𝐴]𝛽 = ([𝐼]𝛼𝛽 )−1 · 𝐴 · [𝐼]𝛼𝛽 . Letting
𝑄 ..= [𝐼]𝛼𝛽 , we get 𝑄−1𝐴𝑄 diagonal. The columns of 𝑄 are exactly the vectors in 𝛽, and thus eigenvectors. ■

↩→ Definition 4.4: Eigenspace

For an eigenvalue 𝜆 of 𝑇 : 𝑉 → 𝑉 , let Eig𝑉(𝜆) ..= {𝑣 ∈ 𝑉 : 𝑇𝑣 = 𝜆𝑣}, called the eigenspace of 𝑇

corresponding to 𝜆.
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↩→ Proposition 4.4

Eig𝑉(𝜆) a subspace of 𝑉 .

Remark 4.1. Diagonalizability is a conjugate-invariant property; if 𝐴 ∼ 𝐵 and 𝐴 diagonalizable, then so is 𝐵.

↩→ Proposition 4.5

The trace, tr, and determinant, det, functions 𝑀𝑛(F) → F are conjugation-invariant.

↩→ Definition 4.5

Let 𝑉 , dim(𝑉) = 𝑛. and 𝑇 : 𝑉 → 𝑉 a linear operator. Define tr (resp. det) of 𝑇 as tr(𝑇) ..= tr
(
[𝑇]𝛽

)
(det(𝑇) ..= det

(
[𝑇]𝛽

)
) for some/any basis 𝛽 for 𝑉 .

Remark 4.2. This is well-defined (doesn’t depend on the choice of basis), [𝑇]𝛼, [𝑇]𝛽 are conjugate for any two bases, and
tr, det are conjugate-invariant.

↩→ Proposition 4.6

dim(𝑉) = 𝑛, 𝑇 : 𝑉 → 𝑉 invertible ⇐⇒ det(𝑇) ≠ 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝑇 invertible ⇐⇒ [𝑇]𝛽 invertible ⇐⇒ det
(
[𝑇]𝛽

)
≠ 0 for some basis 𝛽. ■

↩→ Proposition 4.7

Let 𝑇 : 𝑉 → 𝑉 , dim(𝑉) < ∞.

1. 𝑣 ∈ 𝑉 an eigenvector of 𝑇 with eigenvalue 𝜆 ⇐⇒ 𝑣 ∈ Ker(𝜆𝐼 − 𝑇).

2. 𝜆 ∈ F an eigenvalue ⇐⇒ 𝜆𝐼 − 𝑇 non-invertible ⇐⇒ det(𝜆𝐼 − 𝑇) = 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. 𝑇(𝑣) = 𝜆𝑣 ⇐⇒ 𝜆𝑣 − 𝑇(𝑣) = 0 ⇐⇒ (𝜆𝐼𝑉 − 𝑇)(𝑣) = 0 ⇐⇒ 𝑣 ∈ Ker(𝜆𝐼𝑉 − 𝑇).
2. follows from 1. by the dimension theorem. ■

↩→ Lecture 27; Last Updated: Mon Apr 8 11:43:09 EDT 2024

↩→ Corollary 4.1

For 𝐴 ∈ 𝑀𝑛(F), 𝜆 ∈ F an eigenvalue of 𝐴 (that is, if 𝐿𝐴) ⇐⇒ det(𝜆𝐼 − 𝐴) = 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows from the previous proposition by noting that [𝜆𝐼F𝑛 − 𝐿𝐴] in the standard basis of F𝑛 is just
𝜆𝐼𝑛 − 𝐴. ■
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↩→ Proposition 4.8

1. For 𝐴 ∈ 𝑀𝑛(F), the function 𝑡 ↦→ det(𝑡𝐼𝑛 − 𝐴) is a polynomial in 𝑡 of the form

𝑝𝐴(𝑡) ..= 𝑡𝑛 − tr(𝐴)𝑡𝑛−1 + · · · + (−1)𝑛 det(𝐴)

and is called the characteristic polynomial of 𝐴.

2. For a 𝑛-dim 𝑉 and 𝑇 : 𝑉 → 𝑉 , the function 𝑡 ↦→ det(𝑡𝐼𝑉 − 𝑇) is a polynomial of the form

𝑝𝑇(𝑡) ..= 𝑡𝑛 − tr(𝑇)𝑡𝑛−1 + · · · + (−1)𝑛 det(𝑇).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. a homework exercise; 2. follows immediately. ■

Hence, this proposition gives that the eigenvalues of 𝐴 are precisely the roots of 𝑝𝐴(𝑡).

↩→ Corollary 4.2

𝑇 : 𝑉 → 𝑉 has at most 𝑛 distinct eigenvalues.

⊛ Example 4.2

Let 𝐴 ..=
©­­«
3 1 0
0 3 4
0 0 4

ª®®¬. Then

−𝑝𝐴(𝑡) = det(𝐴 − 𝑡𝐼𝑛) = det
©­­«
3 − 𝑡 1 0

0 3 − 𝑡 4
0 0 4 − 𝑡

ª®®¬ = (3 − 𝑡)2(4 − 𝑡),

with roots 𝑡 = 3, 4 and thus 𝐴 has two eigenvalues 𝜆1 ..= 3 mult. 2 and 𝜆2 ..= 4. Then:

Eig𝐴(𝜆1) = Ker(3𝐼 − 𝐿𝐴) = { ®𝑥 ∈ F3 : (𝐴 − 3𝐼)®𝑥 = 0},

hence, ®𝑥 ∈ Eig𝐴(𝜆1) are the solutions to the homogeneous system (𝐴 − 3𝐼)®𝑥 = 0:

©­­«
0 1 0
0 0 4
0 0 1

ª®®¬ ·
©­­«
𝑥1

𝑥2

𝑥3

ª®®¬ =
©­­«
0
0
0

ª®®¬ ⇐⇒

𝑥2 = 0

𝑥3 = 0
⇐⇒ ®𝑥 = 𝑎𝑒1, 𝑎 ∈ F,

so Eig𝐴(3) = Span({𝑒1}). A similar computation gives Eig𝐴(𝜆)(2) = Span({(1, 1, 1
4)}).

We have hence found two 1-dimensional eigenspaces; 𝐴 is thus not diagonalizable.
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↩→ Proposition 4.9

Let 𝜆1, . . . ,𝜆𝑘 be distinct eigenvalues of 𝑇 : 𝑉 → 𝑉 on 𝑉 𝑛-dim. Then if 𝑣𝑖 an eigenvector of 𝑇 corre-
sponding to 𝜆𝑖 , then {𝑣1, . . . , 𝑣𝑘} is linearly independent. In particular, 𝑘 ⩽ 𝑛.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. By induction on 𝑘. If 𝑘 = 1 then {𝑣1} is linear independent because 𝑣1 ≠ 0𝑉 . Suppose the proposition
holds for 𝑘. Let 𝜆1, . . . ,𝜆𝑘+1 be distinct eigenvalues with corresponding {𝑣1, . . . , 𝑣𝑘+1} eigenvectors. Let

1 𝑎1𝑣1 + · · · + 𝑎𝑘+1𝑣𝑘+1 = 0𝑉 .

Taking 𝑇( 1 ), we have
2 𝜆1𝑎1𝑣1 + · · · + 𝜆𝑘+1𝑎𝑘+1𝑣𝑘+1 = 0𝑉 .

Then, 2 − 𝜆𝑘+1 · 1 yields

(𝜆1 − 𝜆𝑘+1)𝑎1𝑣1 + · · · + (𝜆𝑘 − 𝜆𝑘+1)𝑎𝑘𝑣𝑘 = 0𝑉 ,

but 𝑣1, . . . , 𝑣𝑘 linearly independent by assumption, so (𝜆𝑖 −𝜆𝑘+1)𝑎𝑖 = 0 for 𝑖 = 1, . . . , 𝑘. The 𝜆𝑖’s distinct, hence
it must be that 𝑎𝑖 = 0 for 𝑖 = 1, . . . , 𝑘, and so 1 gives that 𝑎𝑘+1𝑣𝑘+1 = 0𝑉 . But 𝑣𝑘+1 an eigenvalue, so this is only
possible if 𝑎𝑘+1 = 0 and the proof is complete. ■

↩→ Corollary 4.3

For distinct eigenvalues 𝜆1, . . . ,𝜆𝑘 of 𝑇 : 𝑉 → 𝑉 , dim(𝑉) < ∞, the corresponding eigenspaces Eig𝑇(𝜆𝑖)
are linearly independent.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. This follows directly proposition 4.9. ■

↩→ Definition 4.6: Geometric Multiplicity

For eigenvalue 𝜆 of 𝑇 : 𝑉 → 𝑉 , denote by 𝑚𝑔(𝜆) ..= dim(Eig𝑇(𝜆)) and call it the geometric multiplicity of 𝜆.

↩→ Corollary 4.4

For 𝑇 : 𝑉 → 𝑉 with distinct eigenvalues 𝜆1, . . . ,𝜆𝑘 ,

𝑘∑
𝑖=1

𝑚𝑔(𝜆𝑖) ⩽ 𝑛.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof.
∑𝑘

𝑖=1 𝑚𝑔(𝜆𝑖) = dim(
⊕𝑘

𝑖=1 Eig𝑇(𝜆𝑖)) ⩽ 𝑛. ■

↩→ Lecture 28; Last Updated: Fri Apr 5 13:26:26 EDT 2024
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↩→ Theorem 4.1

Let 𝑉, 𝑛 ..= dim(𝑉). A linear operator 𝑇 : 𝑉 → 𝑉 is diagonalizable iff the sum of the geometric
multiplicities of all of the eigenvalues 𝜆1, . . . ,𝜆𝑘 equals 𝑛, ie iff

𝑘∑
𝑖=1

𝑚𝑔(𝜆𝑖) = 𝑛.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Recall that 𝑇 diagonalizable iff ∃ a basis consisting of eigenvectors.

( =⇒ ) If 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} a basis for𝑉 of eigenvectors, then each 𝑣𝑖 ∈ Eig𝑇(𝜆 𝑗) for some 𝑗, so 𝛽 ⊆ ∪𝑘
𝑖=1Eig𝑇(𝜆𝑖)

and 𝛽 ∩ Eig𝑇(𝜆𝑖) is linearly independent, hence |𝛽 ∩ Eig𝑇(𝜆𝑖)| ⩽ 𝑚𝑔(𝜆𝑖). Thus, 𝑛 = |𝛽 | = ∑𝑘
𝑖=1

��𝛽 ∩ Eig𝑇(𝜆𝑖)
�� ⩽∑𝑘

𝑖=1 𝑚𝑔(𝜆𝑖). By the previous corollary, it follows that
∑𝑘

𝑖=1 𝑚𝑔(𝜆𝑖) = 𝑛.

( ⇐= ) Suppose
∑𝑘

𝑖=1 𝑚𝑔(𝜆𝑖) = 𝑛 and let 𝛽𝑖 a basis for Eig𝑇(𝜆𝑖). By the linear independence of the eigenspaces,
𝛽 ..= ∪𝑘

𝑖=1𝛽𝑖 still linearly independent and, having 𝑛 elements, is a basis for 𝑉 consisting of eigenvectors by
construction. ■

⊛ Example 4.3

Let 𝐷 : F[𝑡]2 → F[𝑡]2 by 𝑝(𝑡) ↦→ 𝑝′(𝑡). To find eigenvalues of 𝐷, we fix the basis 𝛼 ..= {1, 𝑡 , 𝑡2} for 𝐷

and find the corresponding matrix representation

[𝐷]𝛼 =
©­­«

| | |
[𝐷(1)]𝛼 [𝐷(𝑡)]𝛼 [𝐷(𝑡2)]𝛼

| | |

ª®®¬ =
©­­«

| | |
[0]𝛼 [1]𝛼 [2𝑡]𝛼
| | |

ª®®¬ =
©­­«
0 1 0
0 0 2
0 0 0

ª®®¬ .
Thus,

𝑝𝐷(𝑡) = −det([𝐷]𝛼 − 𝑡𝐼3) = −
©­­«
−𝑡 1 0
0 −𝑡 2
0 0 −𝑡

ª®®¬ = 𝑡3,

hence, the only eigenvalue is 𝜆 = 0, with corresponding Eig𝐷(0) = Ker(𝐷 − 0 · 𝐼) = Ker(𝐷), so
𝑚𝑔(0) = dim(Ker(𝐷)) = 3 − rank(𝐷) = 3 − rank([𝐷]𝛼) = 1. Moreover, 𝐷 is not diagonalizable.

↩→ Definition 4.7: Algebraic Multiplicity

For 𝑉, dim(𝑉) < ∞, and a linear operator 𝑇 : 𝑉 → 𝑉 and an eigenvalue 𝜆 of 𝑇, we define the algebraic
multiplicity of 𝜆 to be the multiplicity of 𝜆 as the root of 𝑝𝑇(𝑡), ie the largest 𝑘 ⩾ 1 such that (𝑡 −𝜆)𝑘 | 𝑝𝑇(𝑡).
We denote this by

𝑚𝑎(𝜆).
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↩→ Lemma 4.1

Let 𝑉 , dim(𝑉) < ∞ and 𝑇 : 𝑉 → 𝑉 be linear. For each 𝑇-invariant subspace 𝑊 ⊆ 𝑉 , let 𝑇𝑊 ..= 𝑇 |𝑊 : 𝑊 →
𝑊 . Then,

𝑝𝑇𝑊 (𝑡) | 𝑝𝑇(𝑡).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝛼 ..= {𝑣1, . . . , 𝑣𝑘} be a basis for 𝑊 and extend it to a basis 𝛽 ..= 𝛼 ∪ {𝑣𝑘+1, . . . , 𝑣𝑛} for 𝑉 . Leting
𝐴 ..= [𝑇𝑊 ]𝛼, we see that

[𝑇]𝛽 =
©­­«

| | | |
[𝑇(𝑣1)]𝛽 · · · [𝑇(𝑣𝑘)]𝛽 [𝑇(𝑣𝑘+1)]𝛽 · · · [𝑇(𝑣𝑛)]𝛽

| | | |

ª®®¬
=

©­­­­­­­«

★

𝐴 ★

★

0 ★

★

ª®®®®®®®¬
,

where 0 is a 𝑛 − 𝑘 × 𝑘 matrix of zeros. Hence,

𝑝𝑇(𝑡) = −det
(
[𝑇]𝛽 − 𝑡𝐼𝑛

)
= −det(· · ·) = −det(𝐴 − 𝑡𝐼𝑘) · det(𝐵 − 𝑡𝐼𝑛−𝑘) = −𝑝𝑇𝑊 (𝑡)det(𝐵 − 𝑡𝐼𝑛−𝑘),

and the proof is complete. ■

↩→ Proposition 4.10

Let 𝑉, dim(𝑉) < ∞, and 𝑇 : 𝑉 → 𝑉 . For each eigenvalue 𝜆 of 𝑇, 𝑚𝑔(𝜆) ⩽ 𝑚𝑎(𝜆).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑊 ..= Eig𝑇(𝜆), which is 𝑇-invariant, so by lemma 4.1, 𝑝𝑇(𝑡) = 𝑝𝑇𝑊 (𝑡) · 𝑞(𝑡) for some 𝑞(𝑡) ∈ F[𝑡]. But,
fixing any basis 𝛼 ..= {𝑣1, . . . , 𝑣𝑘} for 𝑊 , we have that 𝑇𝑊 (𝑣𝑖) = 𝑇(𝑣𝑖) = 𝜆𝑣𝑖 so [𝑇(𝑣𝑖)]𝛼 = 𝜆𝑒𝑖 ∈ F𝑘 hence [𝑇𝑊 ]𝛼 is
just a 𝑘× 𝑘 diagonal matrix with𝜆 entries. Thus, 𝑝𝑇𝑊 (𝑡) = det(𝑡𝐼𝑘 − [𝑇𝑊 ]𝛼) = (𝑡−𝜆)𝑘 , and so 𝑝𝑇(𝑡) = (𝑡−𝜆)𝑘 · 𝑞(𝑡)
and thus 𝑚𝑎(𝜆) ⩾ 𝑘 = dim(𝑊) = 𝑚𝑔(𝜆). ■

↩→ Definition 4.8: Splits

A polynomial 𝑝(𝑡) ∈ F[𝑡] splits over F if 𝑝(𝑡) = 𝑎 · (𝑡 − 𝑟1) · · · (𝑡 − 𝑟𝑛) for some 𝑎 ∈ F, 𝑟1, . . . , 𝑟𝑛 ∈ F.

Remark 4.3. If F is algebraically closed, then every polymomial over F splits over F.
Remark 4.4. For an eigenvalue 𝜆 of 𝑇 : 𝑉 → 𝑉 , where 𝑉 is 𝑛-dimensional, 𝑝𝑇(𝑡) splits iff

∑𝑘
𝑖=1 𝑚𝑎(𝜆𝑖) = 𝑛.

↩→ Theorem 4.2: Main Criterion of Diagonalizability

Let 𝑉, dim(𝑉) < ∞, 𝑇 : 𝑉 → 𝑉 linear. Then 𝑇 diagonalizable iff 𝑝𝑇(𝑡) splits and 𝑚𝑔(𝜆) = 𝑚𝑎(𝜆) for each
eigenvalue 𝜆 of 𝑇.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝜆1, . . . ,𝜆𝑘 be the distinct eigenvalues of 𝑇. Then,

𝑇 diagonalizable ⇐⇒
𝑘∑

𝑖=1
𝑚𝑔(𝜆𝑖) = 𝑛 ..= dim(𝑉)

since 𝑚𝑔(𝜆𝑖) ⩽ 𝑚𝑎(𝜆𝑖) and
∑𝑘

𝑖=1 𝑚𝑎(𝜆𝑖) ⩽ 𝑛, we have that

𝑛 =

𝑘∑
𝑖=1

𝑚𝑔(𝜆𝑖) ⇐⇒ 𝑚𝑔(𝜆𝑖) = 𝑚𝑎(𝜆𝑖), 𝑖 = 1, . . . , 𝑘, and
𝑘∑

𝑖=1
𝑚𝑎(𝜆𝑖) = 𝑛,

but this last statement is equivalent to saying that 𝑝𝑇(𝑡) splits. ■

↩→ Lecture 29; Last Updated: Mon Mar 25 13:48:03 EDT 2024

⊛ Example 4.4

1. 𝐴 ..=
©­­«
4 0 1
2 3 2
1 0 4

ª®®¬, so 𝐿𝐴 : F3 → F3. Then,

𝑝𝐴(𝑡) = −det
©­­«
4 − 𝑡 0 1

2 3 − 𝑡 2
1 0 4 − 𝑡

ª®®¬ = −(4 − 𝑡)(3 − 𝑡)(4 − 𝑡) + 1 · (3 − 𝑡) · 2 = −(𝑡 − 5)(𝑡 − 3)2.

Supposing char(F) ≠ 2 ie 3 ≠ 5, then we have two distinct eigenvalues 𝜆1 = 5,𝜆2 = 3 with
𝑚𝑎(5) = 1, 𝑚𝑎(3) = 2, so the polynomial splits (regardless of F). We have that 1 ⩽ 𝑚𝑔(5) ⩽
𝑚𝑎(5) = 1, so 𝑚𝑔(5) = 𝑚𝑎(5) = 1. We need only to check that 𝑚𝑔(3) = 2; but we have that

𝑚𝑔(3) = nullity(𝐿𝐴 − 3 · 𝐼) = 3 − rank(𝐿𝐴 − 3 · 𝐼) = 3 − rank(𝐴 − 3𝐼)

= 3 − rank
©­­«
1 0 1
2 0 2
1 0 1

ª®®¬ = 3 − 1 = 2 = 𝑚𝑎(3),

so 𝐴 indeed diagonalizable. A conjugate of 𝐴 that is diagonal is 𝐷 ..=
©­­«
5 0 0
0 3 0
0 0 3

ª®®¬, and if 𝑣1 an

eigenvector for 𝜆1 = 5 and 𝑣2, 𝑣3 are linearly independent eigenvectors for 𝜆2 = 3, then

𝑄 ..=
©­­«
| | |
𝑣1 𝑣2 𝑣3

| | |

ª®®¬ = [𝐼3]𝛼𝛽 ,
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where 𝛼 ..= {𝑒1, 𝑒2, 𝑒3} and 𝛽 ..= {𝑣1, 𝑣2, 𝑣3}, is such that

𝐷 = 𝑄−1𝐴𝑄.

In the case that char(F) = 2, 3 = 5 so we hae a single eigenvalue 𝜆 = 1 = 3 = 5 with 𝑚𝑎(1) = 3.

But we still have that rank(𝐴 − 𝐼) = rank
©­­«
1 0 1
0 0 0
1 0 1

ª®®¬ = 1 so 𝑚𝑔(1) = 2 < 3, hence 𝐴 is not

diagonalizable.

2. Let 𝑇 : F2 → F2 be a rotation by ninety degrees, so 𝑇(𝑒1) = 𝑒2 and 𝑇(𝑒2) = −𝑒1. Then, 𝑇 = 𝐿𝐴

with

𝐴 = [𝑇]𝛼 =
©­­«
| |
𝑒2 −𝑒1

| |

ª®®¬ =

(
0 −1
1 0

)
,

with 𝛼 the standard basis. Then

𝑝𝑇(𝑡) = 𝑝𝐴(𝑡) = −det

(
−𝑡 −1
1 −𝑡

)
= 𝑡2 + 1,

which doesn’t split over F ..= R, but does over F ..= C or any F with characteristic 2 where
𝑡2 + 1 = (𝑡 + 1)2.

When F ..= C, 𝑝𝑇(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖) so we have 2 distinct eigenvalues with each having algebraic
multiplicity 1, hence both have geometric multiplicity of 1 and thus 𝑇 is diagonalizable.

When char(F) = 2, we have a single eigenvalue 𝜆 = 1, with

𝑚𝑔(1) = nullity(𝑇 − 𝐼) = 2 − rank(𝑇 − 𝐼) = 2 − rank

(
−1 −1
1 −1

)
= 2 − rank

(
1 1
1 1

)
= 1 < 2 = 𝑚𝑎(1),

so 𝑇 is not diagonalizable.

Remark 4.5. From the previous two examples, regard that the issue of diagonalizability is a field-related issue; not only
because of the “splittability” of polynomials, but because of characteristic.

4.3 𝑇-cyclic Vectors and the Cayley-Hamilton Theorem

↩→ Definition 4.9: 𝑇-cyclic subspace

Let 𝑉 be any vector space, 𝑇 : 𝑉 → 𝑉 a linear operator, and 𝑣 ∈ 𝑉 . The 𝑇-cyclic subspace of/generated by
𝑣 is the space

Span({𝑣, 𝑇(𝑣), 𝑇2(𝑣), . . . , }) = Span({𝑇𝑛(𝑣) : 𝑛 ∈ N}).
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Remark 4.6. Note that 𝑇-cyclic subspaces are 𝑇-invariant. In a sense, 𝑇-cyclic subspaces are “minimal 𝑇-invariant
subspaces”. Recall too that the characteristic polynomial of 𝑇 restricted to 𝑇-invariant subspaces divides the characteristic
polynomial of 𝑇 by lemma 4.1.

↩→ Lemma 4.2

Let 𝑉 be finite dimensional, 𝑇 : 𝑉 → 𝑉 linear, and 𝑣 ∈ 𝑉 . Let 𝑊 ..= the 𝑇-cyclic subspace generated by 𝑣.

1. {𝑣, 𝑇(𝑣), . . . , 𝑇 𝑘−1(𝑣)} is a basis for 𝑊 , where 𝑘 ..= dim(𝑊).

2. Since 𝑇 𝑘(𝑣) ∈ Span({𝑣, 𝑇(𝑣), . . . , 𝑇 𝑘−1(𝑣)}), we have a unique representation 𝑇 𝑘(𝑣) = 𝑎0𝑣 + 𝑎1𝑇(𝑣) +
· · · + 𝑎𝑘−1𝑇

𝑘−1(𝑣). Then,
𝑝𝑇𝑊 (𝑡) = 𝑡𝑘 − 𝑎𝑘−1𝑡

𝑘−1 − · · · − 𝑎1𝑡 − 𝑎0

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as homework.

Hint for 2.: use 𝛽 ..= {𝑣, . . . , 𝑇 𝑘−1(𝑣)} representation of [𝑇𝑊 ]𝛽. ■

Remark 4.7. Note that if 𝑉 itself 𝑇-cyclic for some 𝑣, then 𝑇 “satisfies” its own characteristic polynomial. Indeed,
𝑝𝑇(𝑡) = 𝑡𝑛 − 𝑎𝑛−1𝑡

𝑛−1 − · · · − 𝑎0 and so

𝑝𝑇(𝑇) ..= 𝑇𝑛 − 𝑎𝑛−1𝑇
𝑛−1 − · · · − 𝑎0𝐼𝑉

is equal to 0 on 𝑣, and hence on all vectors 𝑢 ∈ 𝑉 since 𝑉 = Span({𝑣, 𝑇(𝑣), . . . , 𝑇𝑛−1(𝑣)}) because

𝑝𝑇(𝑇)(𝑇 𝑖)(𝑣) = 𝑇𝑛+𝑖(𝑣) − 𝑎𝑛−1𝑇
𝑛−1+𝑖(𝑣) − · · · − 𝑎0𝑇

𝑖(𝑣) = (𝑇 𝑖 ◦ 𝑝𝑇(𝑇))(𝑣) = 𝑇 𝑖(𝑝𝑇(𝑣)) = 𝑇 𝑖(0) = 0.

Even more generally, we have that this is true in general, precisely:

↩→ Theorem 4.3: Cayley-Hamilton Theorem

Let 𝑉 be finite dimensional and 𝑇 : 𝑉 → 𝑉 be linear. Then 𝑇 satisfies its own characteristic polynomial
𝑝𝑇(𝑡) = 𝑡𝑛 + 𝑎𝑛−1𝑡

𝑛−1 + · · · + 𝑎0, ie

𝑝𝑇(𝑇) = 𝑇𝑛 + 𝑎𝑛−1𝑇
𝑛−1 + · · · + 𝑎0𝐼𝑉 ≡ 0𝑉 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix 𝑣 ∈ 𝑉 . Let 𝑊 ..= 𝑇-cyclic subspace generated by 𝑣, so 𝑝𝑇𝑊 (𝑡)|𝑝𝑇(𝑡), ie 𝑝𝑇(𝑡) = 𝑞(𝑡) · 𝑝𝑇𝑊 (𝑡). Hence
𝑝𝑇(𝑇) = 𝑞(𝑇) ◦ 𝑝𝑇𝑊 (𝑇), and thus

𝑝𝑇(𝑇)(𝑣) = 𝑞(𝑇)(𝑝𝑇𝑊 (𝑇)(𝑣))
lemma 4.2

= 𝑞(𝑇)(0) = 0.

■

↩→ Corollary 4.5: Cayley-Hamilton for Matrices

For every 𝐴 ∈ 𝑀𝑛(F), 𝑝𝐴(𝐴) = 0.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows immediately from [𝐿𝐴]𝛼 = 𝐴. ■

↩→ Lecture 30; Last Updated: Mon Mar 25 13:48:03 EDT 2024

5 Inner Product Spaces

5.1 Introduction: Inner Products, Norms, Basic Properties

For this section, Fwill always be either R or C.

↩→ Definition 5.1: Inner Product

Let 𝑉 be a vector space over F. An inner product on 𝑉 is a function

𝑉 ×𝑉 → F, (𝑢, 𝑣) ↦→ ⟨𝑢, 𝑣⟩,

satisfying, for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝛼 ∈ F,

1. Linear in the first coordinate:

(a) ⟨𝑢 + 𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑤⟩

(b) ⟨𝛼𝑢, 𝑣⟩ = 𝛼 · ⟨𝑢, 𝑣⟩

2. Skew-symmetric:

(a) ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩

3. ⟨𝑢, 𝑢⟩ ⩾ 0, and equal to 0 iff 𝑢 = 0𝑉 .

𝑉 together with ⟨., .⟩ is called an inner product space.

Unless otherwise stated, all vector spaces 𝑉 should be considered as an inner product space from here on.

Remark 5.1. Note that the third requirement is well-defined; that is, it follows from 2. that ⟨𝑢, 𝑢⟩ ∈ R, since ⟨𝑢, 𝑢⟩ =
⟨𝑢, 𝑢⟩, ie ⟨𝑢, 𝑢⟩ is equal to its own complex conjugate, which is only possible if its imaginary part is precisely 0. So, it
makes sense to require it to be geq 0 (if it was complex, this would be meaningless).

↩→ Definition 5.2

Let ⟨., .⟩ be an inner product on 𝑉 . The norm associated to this inner product is defined

| |𝑣 | | ..=
√
⟨𝑣, 𝑣⟩, 𝑣 ∈ 𝑉.

We call 𝑣 ∈ 𝑉 a unit vector if | |𝑣 | | = 1. For 𝑣 ∈ 𝑉, 𝑣 ≠ 0, we call | |𝑣 | |−1 · 𝑣 the normalization of 𝑣.
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Remark 5.2. Never work with a norm directly; working with the square of the norm is far easier.

↩→ Proposition 5.1

Let 𝑉 be an inner product space. For each 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝛼 ∈ F,

1. Conjugate linearity in the second coordinate holds:

(a) ⟨𝑢, 𝑣 + 𝑤⟩ = ⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑤⟩

(b) ⟨𝑢, 𝛼𝑣⟩ = 𝛼⟨𝑢, 𝑣⟩

2. | |𝛼 · 𝑣 | | = |𝛼 | · | |𝑣 | |

3. | |𝑣, 0𝑉 | | = 0 = | |0𝑉 , 𝑣 | |

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1.(a), (b) follow from skew-symmetry.

For 2., we have | |𝛼𝑣 | |2 = ⟨𝛼𝑣, 𝛼𝑣⟩ = 𝛼 · 𝛼⟨𝑣, 𝑣⟩ = |𝛼 |2 · | |𝑣 | |2.

For 3., follows from ⟨0𝑉 , 𝑣⟩ + ⟨0𝑉 , 𝑣⟩ = ⟨0𝑉 , 𝑣⟩. ■

⊛ Example 5.1

1. For 𝑉 ..= F𝑛 , the standard inner product is the “dot product”; for ®𝑥 ..= (𝑥1, . . . , 𝑥𝑛), ®𝑦 ..=

(𝑦1, . . . , 𝑦𝑛),

⟨®𝑥, ®𝑦⟩ ..= ®𝑥 · ®𝑦 ..=

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 ,

which gives

| | ®𝑥 | | =

√√
𝑛∑
𝑖=1

|𝑥𝑖 |2,

that is, the standard Euclidean norm.

↩→ Proposition 5.2

For F ..= R and ®𝑥, ®𝑦 ∈ R𝑛 , ®𝑥 · ®𝑦 = | | ®𝑥 | | | | ®𝑦 | | cos 𝛼, where 𝛼 the angle from ®𝑥 to ®𝑦.

2. If ⟨., .⟩ an inner product on 𝑉 and 𝑟 a positive real, then ⟨., .⟩𝑟 ..= 𝑟 · ⟨., .⟩ is also an inner product.

3. Let 𝑉 ..= 𝐶[0, 1]. Define for 𝑓 , 𝑔 ∈ 𝑉 ,

⟨ 𝑓 , 𝑔⟩ ..=

∫ 1

0
𝑓 (𝑡) · 𝑔(𝑡)d𝑡 .
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4. Let 𝑉 ..= F[𝑡]𝑛 . For 𝑓 (𝑡) ..= 𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛𝑡
𝑛 , 𝑔(𝑡) ..= 𝑏0 + 𝑏1𝑡 + · · · + 𝑏𝑛𝑡

𝑛 , define

⟨ 𝑓 , 𝑔⟩1 ..=

𝑛∑
𝑖=0

𝑎𝑖𝑏𝑖 ,

and

⟨ 𝑓 , 𝑔⟩2 ..=

∫ 1

0
𝑓 (𝑡)𝑔(𝑡)d𝑡 .

These are both inner products.

5. For 𝐴 ∈ 𝑀𝑛×𝑚(F), let 𝐴∗ ..= 𝐴
𝑡
the conjugate transpose of 𝐴.19For 𝑉 ..= 𝑀𝑛(F) and 𝐴, 𝐵 ∈ 𝑉 , define

⟨𝐴, 𝐵⟩ ..= tr(𝐵∗ · 𝐴).

It is left as a (homework) exercise to verify that this is a well-defined inner product.

↩→ Lecture 31; Last Updated: Sat Apr 6 12:27:25 EDT 2024

5.2 Projections and Cauchy-Schwartz

↩→ Definition 5.3: Orthogonal

Let 𝑉 be an inner product space. Call 𝑢, 𝑣 ∈ 𝑉 orthogonal, and write 𝑢 ⊥ 𝑣, if ⟨𝑢, 𝑣⟩ = 0.

⊛ Example 5.2

In R3 equipped with the dot product, (1, 0,−1) ⊥ (1, 0, 1).

↩→ Theorem 5.1: Pythagorean Theorem

For an inner product space 𝑉 and 𝑢, 𝑣 ∈ 𝑉 , if 𝑢 ⊥ 𝑣 then

| |𝑢 | |2 + ||𝑣 | |2 = | |𝑢 + 𝑣 | |2.

In particular, | |𝑢 | |, | |𝑣 | | ⩽ | |𝑢 + 𝑣 | |.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof.

| |𝑢 + 𝑣 | |2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ = ⟨𝑢, 𝑢⟩ +
=0

⟨𝑢, 𝑣⟩ +
=0

⟨𝑣, 𝑢⟩ + ⟨𝑣, 𝑣⟩ = | |𝑢 | |2 + ||𝑣 | |2.

■

19Where 𝐴 ..= (𝑎𝑖 𝑗).
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↩→ Definition 5.4

For vectors 𝑢, 𝑣 in an inner product space 𝑉 , if 𝑢 is a unit vector, then put

proj𝑢(𝑣) ..= ⟨𝑣, 𝑢⟩ · 𝑢.

↩→ Proposition 5.3

Let 𝑉 be an inner product space and 𝑢 ∈ 𝑉 a unit vector. For each 𝑣 ∈ 𝑉 , 𝑣 − proj𝑢(𝑣) ⊥ 𝑢. In particular,
𝑣 = proj𝑢(𝑣) + 𝑤 where 𝑤 ..= 𝑣 − proj𝑢(𝑣) ⊥ proj𝑢(𝑣).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof.
⟨𝑣 − proj𝑢(𝑣), 𝑢⟩ = ⟨𝑣, 𝑢⟩ − ⟨proj𝑢(𝑣), 𝑢⟩ = ⟨𝑣, 𝑢⟩ − ⟨𝑣, 𝑢⟩ · ⟨𝑢, 𝑢⟩ = ⟨𝑣, 𝑢⟩ − ⟨𝑣, 𝑢⟩ = 0.

■

↩→ Corollary 5.1

Let 𝑉 be an inner product space and 𝑢 ∈ 𝑉 a unit vector. For each 𝑣 ∈ 𝑉 , | | proj𝑢(𝑣)| | ⩽ | |𝑣 | |.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. proj𝑢(𝑣) ⊥ 𝑤 ..= 𝑣−proj𝑢(𝑣), hence | | proj𝑢(𝑣)| | ⩽ | | proj𝑢(𝑣)+𝑤 | | = | |𝑣 | | by the Pythagorean theorem. ■

↩→ Theorem 5.2

Let 𝑉 be an inner product space and 𝑥, 𝑦 ∈ 𝑉 .

(a) (Cauchy-Banyakovski-Schwartz inequality) |⟨𝑥, 𝑦⟩| ⩽ | |𝑥 | | · | |𝑦 | |.

(b) (Triangle inequality) | |𝑥 + 𝑦 | | ⩽ | |𝑥 | | + ||𝑦 | |.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) If | |𝑦 | | = 0 then 𝑦 = 0𝑉 and 0 ⩽ 0 and we are done. Suppose | |𝑦 | | ≠ 0 and divide both sides by | |𝑦 | |:

⟨𝑥, | |𝑦 | |−1 · 𝑦⟩ ⩽ | |𝑥 | |,

ie, we need to prove |⟨𝑥, 𝑦⟩| ⩽ | |𝑥 | |, where 𝑢 a unit. But

|⟨𝑥, 𝑢⟩| = | |⟨𝑥, 𝑢⟩ · 𝑢 | | = | | proj𝑢(𝑥)| | ⩽ | |𝑥 | |

by the previous corollary.

(b) We equivalently prove | |𝑥 + 𝑦 | |2 ⩽ (| |𝑥 | | + ||𝑦 | |)2. We have:

| |𝑥 + 𝑦 | |2 = ⟨𝑥 + 𝑦, 𝑥 + 𝑦⟩ = ⟨𝑥, 𝑥⟩ + ⟨𝑥, 𝑦⟩ + ⟨𝑦, 𝑥⟩ + ⟨𝑦, 𝑦⟩

⩽ | |𝑥 | |2 + ||𝑦 | |2 + 2 |⟨𝑥, 𝑦⟩|
(by CBS)
⩽ | |𝑥 | |2 + ||𝑦 | |2 + 2| |𝑥 | | | |𝑦 | | = (| |𝑥 | | + ||𝑦 | |)2.
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■

⊛ Example 5.3

1. For F𝑛 , CS claims that
��∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖
�� ⩽ √∑𝑛

𝑖=1 |𝑥𝑖 |
2
√∑𝑛

𝑖=1 |𝑦𝑖 |
2, but ⟨𝑥, 𝑦⟩ = | |𝑥 | | | |𝑦 | | cos 𝛼, so this

simply follow from |cos 𝛼 | ⩽ 1.

2. For 𝑓 , 𝑔 ∈ 𝐶[0, 1],
∫ 1

0 𝑓 (𝑡)𝑔(𝑡)d𝑡 ⩽
√∫ 1

0 | 𝑓 (𝑡)|2 d𝑡
√∫ 1

0 |𝑔(𝑡)|2 d𝑡.

From the triangle inequality, it is natural to define 𝑑 : 𝑉 ×𝑉 → [0,∞) 𝑑(𝑢, 𝑣) ..= | |𝑢 − 𝑣 | | as the “distance”
between vectors 𝑢, 𝑣; indeed, one can show that such a 𝑑 defines a metric on 𝑉 .

↩→ Proposition 5.4: The Parallelogram Law

For an inner product space 𝑉 and 𝑢, 𝑣 ∈ 𝑉 ,

(a) 2| |𝑢 | |2 + 2| |𝑣 | |2 = | |𝑢 + 𝑣 | |2 + ||𝑣 − 𝑢 | |2.

(b) Re⟨𝑢, 𝑣⟩ = 1
2
(
| |𝑢 | |2 + ||𝑣 | |2 − ||𝑣 − 𝑢 | |2

)
ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let as a (homework) exercise. ■

5.3 Orthogonality and Orthonormal Bases

↩→ Definition 5.5: Orthogonal/Orthonormal

Call a set 𝑆 ⊆ 𝑉 orthogonal (resp. orthonormal) if the vectors in 𝑆 are pair-wise orthogonal to each (resp. in
addition, they are unit).

↩→ Proposition 5.5

Orthonormal sets of nonzero vectors are linearly independent.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 0𝑉 , 𝑣1, . . . , 𝑣𝑛 orthogonal. Then

⟨𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 , 𝑣𝑖⟩ = ⟨0𝑉 , 𝑣𝑖⟩ = 0

=⇒
𝑛∑
𝑗=1

𝑎 𝑗 ⟨𝑣 𝑗 , 𝑣𝑖⟩ = 𝑎𝑖 ⟨𝑣𝑖 , 𝑣𝑖⟩︸ ︷︷ ︸
≠0

,

hence 𝑎𝑖’s identically zero. ■

↩→ Lecture 32; Last Updated: Mon Apr 8 13:29:53 EDT 2024
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↩→ Definition 5.6: Orthonormal Basis

Let 𝑉 be an inner product space over F. An orthonormal basis 𝛽 for 𝑉 is a basis that is orthonormal.

⊛ Example 5.4: Of Orthognormal Bases

(a) For F𝑛 , the standard basis is orthonormal with respect to the dot product; ⟨𝑒𝑖 , 𝑒 𝑗⟩ = 𝛿𝑖 𝑗 .

(b) For F4 with the dot product, 𝛼 ..= {(1, 0, 1, 0)𝑡 , (1, 0,−1, 0)𝑡 , (0, 1, 0, 1)𝑡 , (0, 1, 0,−1)𝑡} is an orthog-
onal basis; remark that to show this we need only to show that each vector is orthogonal by
proposition 5.5. We can turn this into an orthonormal basis by normalizing each vector:

| |(1, 0, 1, 0)| |2 = 1 + 0 + 1 + 0 = 2 =⇒ ||(1, 0, 1, 0)| | =
√

2,

and indeed each vector has norm
√

2, so

𝛽 ..= { 1√
2
· 𝑣 : 𝑣 ∈ 𝛼}

now an orthonormal basis.

↩→ Proposition 5.6: Benefits of Orthonormal Bases

Let 𝛽 ..= {𝑢1, 𝑢2, . . . , 𝑢𝑛} be an orthonormal basis for 𝑉 . Then:

(a) For every 𝑣 ∈ 𝑉 , the coordinates of 𝑣 in 𝛽 are just ⟨𝑣, 𝑢𝑖⟩ ie

𝑣 = ⟨𝑣, 𝑢1⟩ · 𝑢1 + ⟨𝑣, 𝑢2⟩ · 𝑢2 + · · · + ⟨𝑣, 𝑢𝑛⟩ · 𝑢𝑛
= proj𝑢1

(𝑣) + proj𝑢2
(𝑣) + · · · + proj𝑢𝑛 (𝑣).

In this case, the coefficients ⟨𝑣, 𝑢𝑖⟩ are called the Fourier coefficients of 𝑣 in 𝛽.

(b) For any linear operator 𝑇 : 𝑉 → 𝑉 , [𝑇]𝛽 = (⟨𝑇𝑢𝑗 , 𝑢𝑖⟩)𝑖 , 𝑗 , ie

[𝑇]𝛽 =

©­­­­­«
⟨𝑇𝑢1, 𝑢1⟩ ⟨𝑇𝑢2, 𝑢1⟩ · · · ⟨𝑇𝑢𝑛 , 𝑢1⟩
⟨𝑇𝑢1, 𝑢2⟩ ⟨𝑇𝑢2, 𝑢2⟩ · · · ⟨𝑇𝑢𝑛 , 𝑢2⟩

...
...

. . .
...

⟨𝑇𝑢1, 𝑢𝑛⟩ ⟨𝑇𝑢2, 𝑢𝑛⟩ · · · ⟨𝑇𝑢𝑛 , 𝑢𝑛⟩

ª®®®®®¬
.

In particular, remark that ⟨𝑇𝑢𝑗 , 𝑢𝑖⟩ is the (𝑖 𝑗)th element.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) Let 𝑣 = 𝑎1𝑢1 + · · · + 𝑎𝑛𝑣𝑛 be the unique representation of 𝑣 in 𝛽. Taking the inner product with 𝑢𝑖
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on both sides, then, we get

⟨𝑣, 𝑢𝑖⟩ =
𝑛∑
𝑗=1

𝑎 𝑗 ⟨𝑢𝑗 , 𝑢𝑖⟩ =
𝑛∑
𝑗=1

𝑎 𝑗𝛿 𝑗𝑖 = 𝑎𝑖 .

(b) The 𝑗th column of [𝑇]𝛽 is [𝑇𝑢𝑗]𝛽 = (⟨𝑇𝑢𝑗 , 𝑢1⟩, ⟨𝑇𝑢𝑗 , 𝑢2⟩, . . . , ⟨𝑇𝑢𝑗 , 𝑢𝑛⟩)𝑡 , by part (a).

■

Clearly, orthonormal bases are quite convenient; but does one always exist? More precisely, does every
inner product space admit an orthonormal basis? We will show that the finite dimensional ones always do.

↩→ Definition 5.7: Orthogonality to a Set

For a set 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑉 , we say that 𝑣 is orthogonal to 𝑆 and write 𝑣 ⊥ 𝑆 if 𝑣 is orthogonal to all vectors
in 𝑆.

↩→ Proposition 5.7

𝑣 ⊥ 𝑉 ⇐⇒ 𝑣 = 0𝑉

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let as a homework exercise. ■

↩→ Lemma 5.1

Suppose 𝛼 ..= {𝑢1, . . . , 𝑢𝑘} is an orthonormal set. For each 𝑣 ∈ 𝑉 , the vector

proj𝛼(𝑣) ..=

𝑘∑
𝑖=1

proj𝑢𝑖 (𝑣) =
𝑘∑

𝑖=1
⟨𝑣, 𝑢𝑖⟩𝑢𝑖

has the property that 𝑣 proj𝛼(𝑣) ⊥ 𝛼, in particular, 𝑣 = proj𝛼(𝑣) ⊥ proj𝛼(𝑣).

Thus, 𝑣 = proj𝛼(𝑣) + orth𝛼(𝑣) where orth𝛼(𝑣) ..= 𝑣 − proj𝛼, where proj𝛼(𝑣) ⊥ orth𝛼(𝑣).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We need to show that 𝑣 − proj𝛼(𝑣) ⊥ 𝑢𝑗 for each 𝑗 = 1, . . . , 𝑘. Fix 𝑗, then

⟨𝑣 − proj𝛼(𝑣), 𝑢𝑗⟩ = ⟨𝑣 − 𝑢𝑗⟩ − ⟨proj𝛼 , 𝑢𝑖⟩

= ⟨𝑣, 𝑢𝑗⟩ −
𝑘∑

𝑖=1
⟨𝑣, 𝑢𝑖⟩ ⟨𝑢𝑖 , 𝑢𝑗⟩︸  ︷︷  ︸

=𝛿𝑖 𝑗

= ⟨𝑣, 𝑢𝑗⟩ − ⟨𝑣, 𝑢𝑗⟩ = 0.

■
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5.4 Gram-Schmidt Algorithm

We describe now a process to
{𝑣1, 𝑣2, . . . , 𝑣𝑘}

independent set
⇝ {𝑢1, 𝑢2, . . . , 𝑢𝑘}

orthonormal set

with the property that for all ℓ = 1, . . . , 𝑘, Span({𝑣1, . . . , 𝑣ℓ }) = Span({𝑢1, . . . , 𝑢ℓ }).
The ℓ th step of the process takes

{𝑢1, . . . , 𝑢ℓ−1,︸         ︷︷         ︸
orthonormal

𝑣ℓ }⇝ {𝑢1, . . . , 𝑢ℓ−1, 𝑢ℓ }︸                ︷︷                ︸
orthonormal

Span({𝑢1 ,...,𝑢ℓ−1 ,𝑣ℓ })=Span({𝑢1 ,...,𝑢ℓ−1 ,𝑢ℓ })

.

Concretely, we replace 𝑣ℓ with

𝑣′ℓ
..= orth{𝑢1 ,...,𝑢ℓ−1}(𝑣ℓ ) ≡ 𝑣ℓ − proj{𝑢1 ,...,𝑢ℓ−1}(𝑣ℓ ) ≡ 𝑣ℓ −

ℓ−1∑
𝑖=1

⟨𝑣ℓ , 𝑢𝑖⟩𝑢𝑖 .

By lemma 5.1, this is indeed orthogonal to the preceding vectors; we need simply now to normalize it,
namely 𝑢ℓ

..= | |𝑣ℓ | |−1 · 𝑣′
ℓ
.

⊛ Example 5.5

𝑣1 ..= (1, 0, 1, 0), 𝑣2 ..= (1, 1, 1, 1), 𝑣3 ..= (0, 1, 2, 1).

First we take 𝑢1 ..= | |𝑣1 | |−1𝑣1 = 1√
2
(1, 0, 1, 0).

Then 𝑣′2 = 𝑣2 − ⟨𝑣2, 𝑢1⟩𝑢1 = 𝑣2 − 1√
2
(1 + 1) 1√

2
(1, 0, 1, 0) = (1, 1, 1, 1) − (1, 0, 1, 0) = (0, 1, 0, 1).

Normalizing, 𝑢2 ..= 1√
2
(0, 1, 0, 1).

Finally, 𝑣′3 = 𝑣3 − ⟨𝑣3, 𝑢1⟩𝑢1 − ⟨𝑣3, 𝑢2⟩𝑢2 = (−1, 0, 1, 0), and so 𝑢3 ..= 1√
2
(−1, 0, 1, 0), giving us a final

orthonormal set
{ 1√

2
(1, 0, 1, 0), 1√

2
(0, 1, 0, 1), 1√

2
(−1, 0, 1, 0).}

↩→ Corollary 5.2

Every finite dimensional inner product space admits an orthonormal basis.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Feed any basis to the process above. ■

↩→ Lecture 33; Last Updated: Fri Apr 5 13:54:28 EDT 2024
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↩→ Definition 5.8: Orthogonal Complement

Let 𝑉 be an inner product set. For a set 𝑆 ⊆ 𝑉 , its orthogonal complement is the subspace

𝑆⊥ ..= {𝑣 ∈ 𝑉 : 𝑣 ⊥ 𝑆}.

↩→ Proposition 5.8

𝑆⊥ indeed a subspace as in the definition (even if 𝑆 is not).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑣, 𝑤 ∈ 𝑆⊥, 𝑎 ∈ F. Then for each 𝑠 ∈ 𝑆, ⟨𝑣+ 𝑎𝑤, 𝑠⟩ = ⟨𝑣, 𝑠⟩ + 𝑎 · ⟨𝑤, 𝑠⟩ = 0+ 𝑎 ·0, hence 𝑣+ 𝑎𝑤 ∈ 𝑆⊥. ■

Remark 5.3. We previously used 𝑆⊥ to denote the annihilator of 𝑆, with 𝑆⊥ ⊆ 𝑉∗, ie the linear functionals that are 0 on
𝑆, while now we are talking about 𝑆⊥ ⊆ 𝑉 as the set of vectors orthogonal to 𝑆; this is slightly abusive notation. We shall
see why to follow (indeed, we have a natural bĳection between the two, which we shall show).

↩→ Theorem 5.3

Let 𝑉 be an inner product space and let 𝑊 ⊆ 𝑉 be a finite dimensional subspace.

(a) For each 𝑣 ∈ 𝑉 , there is a unique decomposition 𝑣 = 𝑤 + 𝑤⊥ such that 𝑤 ∈ 𝑊 and 𝑤⊥ ∈ 𝑊⊥. We
call such a 𝑤 the orthogonal projection of 𝑣 onto 𝑊 , and denote it proj𝑊 (𝑣).

(b) 𝑉 = 𝑊 ⊕𝑊⊥. In particular, if dim(𝑉) < ∞, then

dim(𝑊⊥) = dim(𝑉) − dim(𝑊).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence: Let 𝛼 ..= {𝑤1, 𝑤2, . . . , 𝑤𝑘} be an orthonormal basis for𝑊 , which exists since dim(𝑊) < ∞
(corollary 5.2). Let 𝑤 ..= proj𝛼(𝑣), then, 𝑤⊥ ..= 𝑣 −𝑤 is orthogonal to 𝛼 by lemma 5.1, hence orthogonal to
the span Span(𝛼) = 𝑊 .
Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness: Suppose there exist two such decompositions, 𝑤 + 𝑤⊥ = 𝑣 = 𝑤′ + 𝑤′

⊥. Note that since 𝑣 − 𝑤

and 𝑣 −𝑤′ are both orthogonal to 𝑊 , so is their difference, ie 𝑣 −𝑤, 𝑣 −𝑤′ ∈ 𝑊⊥ =⇒ (𝑣 −𝑤) − (𝑣 −𝑤′) =
𝑤′ − 𝑤 ∈ 𝑊⊥, being a subspace. But 𝑤 − 𝑤′ ∈ 𝑊 as well, and is also orthogonal to 0, so it must be that
𝑤 − 𝑤′ = 0𝑉 and thus 𝑤 = 𝑤′.

(b) By (a), 𝑉 = 𝑊 + 𝑊⊥. It remains to show that 𝑊 ∩ 𝑊⊥{0𝑉}; but for 𝑤 ∈ 𝑊 , 𝑤 ∈ 𝑊 and 𝑤 ∈ 𝑊⊥

simultaneously only if 𝑤 = 0𝑉 .

■

Remark 5.4. If 𝛼, 𝛽 two different orthonormal bases for a finite dimensional subspace 𝑊 , then proj𝛼(𝑣) = proj𝛽(𝑣) for
all 𝑣 ∈ 𝑉 , because proj𝑊 (𝑣) is unique.

↩→ Theorem 5.4

For any finite dimensional subspace 𝑊 ⊆ 𝑉 and for each 𝑣 ∈ 𝑉 , the orthogonal projection proj𝑊 (𝑣) is the
unique closest vector to 𝑉 in 𝑊 .
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

↩→ Proposition 5.9

Let 𝑊 ⊆ 𝑉 be a finite dimensional subspace. Then

(a) proj𝑊 : 𝑉 → 𝑉 a linear operator.

(b) A linear operator 𝑇 : 𝑉 → 𝑉 is a projection (onto Im(𝑇)) operator iff Ker(𝑇) = Im(𝑇)⊥.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let as a (homework) exercise. ■

↩→ Corollary 5.3

Let 𝑊 ⊆ 𝑉 be a finite dimensional subspace. Then (𝑊⊥)⊥ = 𝑊 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. By definition 𝑊 ⊆ (𝑊⊥)⊥; we show the converse. Let 𝑣 ∈ (𝑊⊥)⊥. Then, 𝑣 = 𝑤 + 𝑤⊥ for some vectors
𝑤 ∈ 𝑊 and 𝑤⊥ ∈ 𝑊⊥. We know ⟨𝑣, 𝑤⊥⟩ = 0, so

| |𝑣 | |2 = ⟨𝑣, 𝑣⟩ = ⟨𝑣, 𝑤 + 𝑤⊥⟩ = ⟨𝑣, 𝑤⟩ + ⟨𝑣, 𝑤⊥⟩

= ⟨𝑣, 𝑤⟩ = ⟨𝑣, 𝑤⊥⟩ = ⟨𝑤 + 𝑤⊥, 𝑤⊥⟩ = ⟨𝑤, 𝑤⟩ = | |𝑤 | |2.

On the other hand, | |𝑣 | |2 = | |𝑤 | |2 + ||𝑤⊥ | |2, so it must be that | |𝑤⊥ | |2 = 0 hence 𝑤⊥ = 0𝑉 and thus 𝑣 = 𝑤 ∈ 𝑊

and the proof is complete. ■

5.6 Riesz Representation and Adjoint

Let 𝑉 be an inner product space. For each 𝑤 ∈ 𝑉 , we can define a linear functional 𝑓𝑤 ∈ 𝑉∗ as follows:
𝑓𝑤(𝑣) ..= ⟨𝑣, 𝑤⟩. It turns out that for a finite dimensional 𝑉 , every linear functional is of this form.

↩→ Theorem 5.5: Riesz Representation Theorem

Let 𝑉 be a finite dimensional inner product space. Then, for each 𝑓 ∈ 𝑉∗, there is a unique 𝑤 ∈ 𝑉 such
that 𝑓 = 𝑓𝑤 , ie 𝑓 (𝑣) = ⟨𝑣, 𝑤⟩ for all 𝑣 ∈ 𝑉 .

On other words, the map 𝑉 → 𝑉∗, 𝑤 ↦→ 𝑓𝑤 is a linear isomorphism.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence:Existence: fix 𝑓 ∈ 𝑉∗ and let 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} be an orthonormal basis for 𝑉 . Then, for each 𝑣 ∈ 𝑉 ,
𝑣 = ⟨𝑣, 𝑣1⟩𝑣1 + · · · + ⟨𝑣, 𝑣𝑛⟩𝑣𝑛 hence

𝑓 (𝑣) = ⟨𝑣, 𝑣1⟩ 𝑓 (𝑣1) + · · · + ⟨𝑣, 𝑣𝑛⟩ 𝑓 (𝑣𝑛)

= ⟨𝑣, 𝑓 (𝑣1)𝑣1⟩ + · · · + ⟨𝑣, 𝑓 (𝑣𝑛)𝑣𝑛⟩

= ⟨𝑣, 𝑓 (𝑣1)𝑣1 + · · · + 𝑓 (𝑣𝑛)𝑣𝑛⟩,
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hence, taking 𝑤 ..= 𝑓 (𝑣1)𝑣1 + · · · + 𝑓 (𝑣𝑛)𝑣𝑛 gives us existence.

Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness:Uniqueness: Suppose 𝑓𝑤1 = 𝑓 = 𝑓𝑤2 so 𝑓𝑤1−𝑤2 = 𝑓𝑤1 − 𝑓𝑤2 = 0𝑉∗ ie ∀ 𝑣 ∈ 𝑉 , ⟨𝑣, 𝑤1 −𝑤2⟩ = 𝑓𝑤1−𝑤2 = 0. Hence,
𝑤1 − 𝑤2 = 0 =⇒ 𝑤1 = 𝑤2 and uniqueness holds.

As such, existence gives us injectivity and uniqueness gives us surjectivity of 𝑤 ↦→ 𝑓𝑤 . ■

↩→ Lecture 34; Last Updated: Mon Apr 8 13:46:12 EDT 2024

↩→ Theorem 5.6: Adjoint

Let 𝑉 be finite dimensional, 𝑇 : 𝑉 → 𝑉 . There exists a unique linear operator 𝑇∗ : 𝑉 → 𝑉 called the
adjoint of 𝑇 such that for all two vectors 𝑣, 𝑤 ∈ 𝑉 ,

⟨𝑇(𝑣), 𝑤⟩ = ⟨𝑣, 𝑇∗(𝑤)⟩.

Remark 5.5. Because this is an implicit definition, we must always work with this definition; there’s no real way to work
with 𝑇∗ directly

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. For a fixed 𝑤 ∈ 𝑉 , define 𝑓𝑤 ∈ 𝑉∗ by 𝑓𝑤(𝑣) ..= ⟨𝑇𝑣, 𝑤⟩, which is indeed a linear functional on𝑉 (to check).
By theorem 5.5, there is a unique element �̃� ∈ 𝑉 such that 𝑓𝑤 = 𝑓�̃� , ie 𝑓𝑤(𝑣) = ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, �̃�⟩ = 𝑓�̃� for any
𝑣 ∈ 𝑉 . Setting 𝑇∗(𝑤) ..= �̃�, we find that 𝑇∗ fulfills the required definition; we need only to check 𝑇∗ linear.

Let𝑤1, 𝑤2 ∈ 𝑉, 𝑎 ∈ F, then𝑇∗(𝑎𝑤1+𝑤2) the unique vector 𝑢 ∈ 𝑉 such that ⟨𝑇𝑣, 𝑎𝑤1+𝑤2⟩ = ⟨𝑣, 𝑇∗(𝑎1𝑤1+𝑤2)⟩,
so it suffices to check that 𝑎𝑇∗𝑤1 + 𝑇∗𝑤2 also satisfies this (by uniqueness). Indeed,

⟨𝑇𝑣, 𝑎𝑤1 + 𝑤2⟩ = 𝑎⟨𝑇𝑣, 𝑤1⟩ + ⟨𝑇𝑣𝑤2⟩ = 𝑎⟨𝑣, 𝑇∗𝑤1⟩ + ⟨𝑣, 𝑇∗𝑤2⟩ = ⟨𝑣, 𝑎𝑇∗𝑤1 + 𝑇∗𝑤2⟩,

and so this must equal ⟨𝑣, 𝑇∗(𝑎𝑤1 + 𝑤2)⟩ by uniqueness. ■

↩→ Proposition 5.10: Matrix Representation of Adjoint

(a) Let 𝑇 : 𝑉 → 𝑉 be a linear operator on a finite dimensional 𝑉 and let 𝛽 be an orthonormal basis for 𝑉 .
Then

[𝑇∗]𝛽 = [𝑇]∗𝛽 ,

where, for 𝐴 ∈ 𝑀𝑛(F), 𝐴∗ denotes its conjugate transpose/adjoint of 𝐴, for clear reasons.

(b) For any 𝐴 ∈ 𝑀𝑛(F), the adjoint of 𝐿𝐴 : F𝑛𝑡𝑜F𝑛 is 𝐿𝐴∗ ie 𝐿∗
𝐴
= 𝐿𝐴∗ .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) Recall that the (𝑖 𝑗)th entry of [𝑇∗]𝛽 with 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} is ⟨𝑇∗𝑣 𝑗 , 𝑣𝑖⟩, which equals ⟨𝑣𝑖 , 𝑇∗(𝑣 𝑗)⟩ =

⟨𝑇𝑣𝑖 , 𝑣 𝑗⟩ = (𝑗𝑖)th entry of [𝑇]𝛽, hence [𝑇∗]𝛽 = [𝑇]𝑡𝛽 = [𝑇]∗𝛽.

(b) This is a special case of (a) with 𝛽 being the standard basis, ie 𝑣𝑖 = 𝑒𝑖 . We have [𝐿∗
𝐴
]𝛽 is the matrix 𝐵 such

that 𝐿∗
𝐴
= 𝐿𝐵, and by (a) 𝐵 = [𝐿𝐴]∗𝛽 = 𝐴∗.

■

5.6 Inner Product Spaces: Riesz Representation and Adjoint 78



↩→ Proposition 5.11: Adjoint versus Other Operations

Let 𝑇 : 𝑉 → 𝑉 on 𝑉 with 𝑉 finite dimensional. Then:

(a) 𝑇 ↦→ 𝑇∗ : Hom(𝑉,𝑉) → Hom(𝑉,𝑉) is conjugate linear.

(b) (𝑇1 ◦ 𝑇2)∗ = 𝑇∗
2 ◦ 𝑇∗

1 .

(c) 𝐼∗
𝑉
= 𝐼𝑉 .

(d) (𝑇∗)∗ = 𝑇.

(e) If 𝑇 invertible, so is 𝑇∗ and (𝑇∗)−1 = (𝑇−1)∗.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We prove (a), the rest are left as (homework) exercises. For any 𝑣, 𝑤 ∈ 𝑉 ,

⟨(𝑇1 + 𝑇2)(𝑣), 𝑤⟩ = ⟨𝑇1𝑣, 𝑤⟩ + ⟨𝑇2𝑣, 𝑤⟩ = ⟨𝑣, 𝑇∗
1𝑤⟩ + ⟨𝑣, 𝑇∗

2𝑤⟩ = ⟨𝑣, 𝑇∗
1𝑤 + 𝑇∗

2𝑤⟩ = ⟨𝑣, (𝑇∗
1 + 𝑇∗

2 )𝑤⟩.

Similarly, for 𝑎 ∈ F, we have for all 𝑣, 𝑤 ∈ 𝑉 ,

⟨𝑎𝑇(𝑣), 𝑤⟩ = 𝑎⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑎𝑇∗𝑤⟩ = ⟨𝑣, (𝑎𝑇∗)𝑤⟩.

■

↩→ Proposition 5.12: Kernel and Image of Adjoint

Let 𝑇 : 𝑉 → 𝑉 , 𝑉 finite dimensional. Then

(a) Im(𝑇∗)⊥ = Ker(𝑇);

(b) Ker(𝑇∗) = Im(𝑇)⊥.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Remark that because dim(𝑉) < ∞, Im(𝑇∗) = Ker(𝑇)⊥ ⇐⇒ Im(𝑇∗)⊥ = Ker(𝑇).
For each 𝑣 ∈ 𝑉 ,

𝑣 ∈ Im(𝑇∗)⊥ ⇐⇒ ∀𝑢 ∈ Im(𝑇∗), ⟨𝑣, 𝑢⟩ = 0 ⇐⇒ ∀𝑤 ∈ 𝑉, ⟨𝑣, 𝑇∗𝑤⟩ = 0

⇐⇒ ∀𝑤 ∈ 𝑉, ⟨𝑇𝑣, 𝑤⟩ = 0 ⇐⇒ 𝑇𝑣 = 0𝑉 ⇐⇒ 𝑣 ∈ Ker(𝑇)

(a)(b) Apply (a) to 𝑇∗, ie Im(𝑇∗∗)⊥ = Ker(𝑇∗), but 𝑇∗∗ = 𝑇 and the proof is complete.

■

↩→ Corollary 5.4

Let 𝑇 : 𝑉 → 𝑉 on 𝑉 𝑛-dimensional inner product space. Then rank(𝑇) = rank(𝑇∗) and nullity(𝑇) =

nullity(𝑇∗).
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. rank(𝑇∗) = dim(Im(𝑇∗)) = dim(Ker(𝑇)⊥) = 𝑛 − nullity(𝑇) = rank(𝑇) and it follows by the dimension
theorem that nullity(𝑇∗) = 𝑛 − rank(𝑇∗) = 𝑛 − rank(𝑇) = nullity(𝑇). ■

↩→ Lecture 35; Last Updated: Wed Apr 10 13:40:28 EDT 2024

↩→ Corollary 5.5

Let 𝑇 : 𝑉 → 𝑉 , 𝑉 finite dimensional. For 𝜆 ∈ F, 𝜆 an eigenvalue iff 𝜆 an eigenvalue of 𝑇∗.

Remark 5.6. But the corresponding eigenvectors may be different in general.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝜆 an eigenvalue of 𝑇 ⇐⇒ nullity(𝑇 − 𝜆𝐼𝑉) > 0 ⇐⇒ nullity((𝑇 − 𝜆𝐼𝑉)∗) = nullity(𝑇∗ − 𝜆𝐼𝑉) > 0 ⇐⇒
𝜆 an eigenvalue of 𝑇∗. ■

↩→ Lemma 5.2: Schur’s Lemma (Orthonormal Version)

Let 𝑇 : 𝑉 → 𝑉 on 𝑉 finite dimensional and suppose that 𝑝𝑇(𝑡) splits. Then there is an orthonormal basis
𝛽 for 𝑉 such that [𝑇]𝛽 upper triangular.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Because 𝑝𝑇(𝑡) splits, 𝑇, hence by corollary 5.5 also 𝑇∗, has eigenvalues. We prove by induction on
𝑛 ..= dim(𝑉). For 𝑛 = 1, matrix is upper triangular so we are done.

Suppose 𝑛 ⩾ 2 and the statement holds for 𝑛 − 1. Let 𝜆 be an eigenvalue and 𝑣𝑛 a corresponding normal
(wlog by normalizing it) eigenvector for 𝑇∗, ie 𝑇∗(𝑣𝑛) = 𝜆𝑣𝑛 . Let 𝑊 ..= Span({𝑣𝑛}). Then, 𝑊⊥ is 𝑇-invariant:
indeed, if 𝑣 ⊥ 𝑊 , then 𝑣 ⊥ 𝑣𝑛 ie ⟨𝑣, 𝑣𝑛⟩ = 0, then ⟨𝑇𝑣, 𝑣𝑛⟩ = ⟨𝑣, 𝑇∗(𝑣𝑛)⟩ = ⟨𝑣,𝜆𝑣𝑛⟩ = 𝜆⟨𝑣, 𝑣𝑛⟩ = 0 so 𝑇𝑣 ⊥ 𝑊 .

Now, dim(𝑊⊥) = 𝑛 − dim(𝑊) = 𝑛 − 1 and 𝑇𝑊⊥ : 𝑊⊥ → 𝑊⊥, so by induction applied to 𝑇𝑊⊥ , there is
an orthonormal basis 𝛼 ..= {𝑣1, . . . , 𝑣𝑛−1} of 𝑊⊥ such that [𝑇𝑊⊥]𝛼 is upper triangular. Then, 𝛽 ..= 𝛼 ∪ {𝑣𝑛} =

{𝑣1, . . . , 𝑣𝑛−1, 𝑣𝑛} is an orthonormal basis for 𝑉 , and

[𝑇]𝛽 =
©­­«

| | |
[𝑇(𝑣1)]𝛽 · · · [𝑇(𝑣𝑛−1)]𝛽 [𝑇(𝑣𝑛)]𝛽

| | |

ª®®¬ =

©­­­­­«
| | |

[𝑇𝑊⊥(𝑣1)]𝛼 · · · [𝑇𝑊⊥(𝑣𝑛−1)]𝛼 [𝑇(𝑣𝑛)]𝛽
| | |
0 0 |

ª®®®®®¬
(by induction assumption) =

©­­­­­­­­«

★ ★ ★ · · · ★

0 ★
. . . · · · ★

0 0 . . .
. . . ★

0 0 . . . ★ ★

0 0 · · · 0 ★

ª®®®®®®®®¬
,

which is upper triangular. ■

Remark 5.7. If 𝑇, 𝑇∗ had precisely the same eigenvectors, then using precisely the same proof, we could get that [𝑇]𝛽
diagonal, since then 𝑇𝑣𝑛 = 𝜆𝑣𝑛 . This would happen, for instance, if 𝑇 = 𝑇∗, but this condition can be relaxed:
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↩→ Definition 5.9: Normality

𝑇 : 𝑉 → 𝑉 is called

• normal if 𝑇 and 𝑇∗ commute, ie 𝑇 ◦ 𝑇∗ = 𝑇∗ ◦ 𝑇;

• self-adjoint if 𝑇 = 𝑇∗.

⊛ Example 5.6

(a) Orthogonal projections are self-adjoint.

Let 𝑊 ⊆ 𝑉 a subspace and 𝑃 the orthogonal projection onto 𝑊 . Fix 𝑢, 𝑣 ∈ 𝑉 . Then 𝑢 =

𝑃(𝑢) + 𝑢′, 𝑣 = 𝑃(𝑣) + 𝑣′, 𝑢′, 𝑣′ ∈ 𝑊⊥. Then

⟨𝑃𝑢, 𝑣⟩ = ⟨𝑃𝑢, 𝑃𝑢 + 𝑣′⟩ = ⟨𝑃𝑢, 𝑃𝑣⟩ + ⟨𝑃𝑢, 𝑣′⟩︸   ︷︷   ︸
=0

= ⟨𝑃𝑢, 𝑃𝑣⟩,

and similarly,
⟨𝑢, 𝑃𝑣⟩ = ⟨𝑃𝑢 + 𝑢′, 𝑃𝑣⟩ = ⟨𝑃𝑢, 𝑃𝑣⟩ + ⟨𝑢′, 𝑃𝑣⟩ = ⟨𝑃𝑢, 𝑃𝑣⟩,

hence ⟨𝑃𝑢, 𝑣⟩ = ⟨𝑢, 𝑃𝑣⟩.

(b) If 𝑃 : 𝑉 → 𝑉 an orthogonal projection and𝜆 ∈ C\R then (𝜆𝑃)∗ = 𝜆𝑃 ≠ 𝜆𝑃 so𝜆𝑃 not self-adjoint,
but it is still normal;

(𝜆𝑃)(𝜆𝑃)∗ = (𝜆𝑃)(𝜆𝑃) = (𝜆2)(𝑃2) = (𝜆𝑃)(𝜆𝑃) = (𝜆𝑃)∗(𝜆𝑃).

(c) Let 𝑉 = 𝑊1 ⊕𝑊2 ⊕ · · · ⊕𝑊𝑘 , where 𝑊𝑖 |𝑊𝑗 , 𝑖 ≠ 𝑗. Then for any 𝜆1,𝜆2, . . . ,𝜆𝑘 ∈ F, the operator
𝑇 ..= 𝜆1 proj𝑊1

+ · · · + 𝜆𝑘 proj𝑊𝑘
is normal.

↩→ Proposition 5.13: Properties of Normal Operators

Let 𝑇 : 𝑉 → 𝑉 be a normal linear operator on 𝑉 finite dimensional.

(a) | |𝑇𝑣 | | = | |𝑇∗𝑣 | | for all 𝑣 ∈ 𝑉 .

(b) 𝑇 − 𝑎𝐼𝑉 (or more generally 𝑝(𝑇) for any polynomial 𝑝(𝑡), ie the powers of 𝑇 are normal) is normal.

(c) For all 𝑣 ∈ 𝑉 , 𝑣 an eigenvector of 𝑇 corresponding to eigenvalue 𝜆 ⇐⇒ 𝑣 an eigenvector of 𝑇∗

corresponding to 𝜆.

(d) For distinct eigenvectors 𝜆1 ≠ 𝜆2, Eig𝑇(𝜆1) ⊥ Eig𝑇(𝜆2).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. !
= indicates use of the normality assumption.
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(a) | |𝑇𝑣 | |2 = ⟨𝑇𝑣, 𝑇𝑣⟩ = ⟨𝑣, 𝑇∗𝑇𝑣⟩ !
= ⟨𝑣, 𝑇𝑇∗𝑣⟩ = ⟨𝑣, 𝑇∗∗𝑇∗𝑣⟩ = ⟨𝑇∗𝑣, 𝑇∗𝑣⟩ = | |𝑇∗𝑣 | |2.

(b) (𝑇 − 𝑎𝐼𝑉)(𝑇∗ − 𝑎𝐼𝑉) = 𝑇𝑇∗ − 𝑎𝑇∗ − 𝑎𝑇 − 𝑎𝑎𝐼𝑉
!
= 𝑇∗𝑇 − 𝑎𝑇∗ − 𝑎𝑇 − 𝑎𝑎𝐼𝑉 = (𝑇∗ − 𝑎𝐼𝑉)(𝑇 − 𝑎𝐼𝑉). Similar proof

follows for general polynomials.

(c) 𝑣 an eigenvector of 𝑇 corresponding to 𝜆 ⇐⇒ (𝑇 − 𝜆𝐼𝑉)(𝑣) = 0 ⇐⇒ ||(𝑇 − 𝜆𝐼𝑉)(𝑣)| | = 0
! by (a)
⇐⇒

||(𝑇∗ − 𝜆𝐼𝑉)(𝑣)| | = 0 ⇐⇒ 𝑣 an eigenvector of 𝑇∗ corresponding to 𝜆.

(d) Let 𝑣1 ∈ Eig𝑇(𝜆1), 𝑣2 ∈ Eig𝑇(𝜆2). Then 𝜆1⟨𝑣1, 𝑣2⟩ = ⟨𝜆1𝑣1, 𝑣2⟩ = ⟨𝑇𝑣1, 𝑣2⟩
!
= ⟨𝑣1, 𝑇

∗𝑣2⟩ = ⟨𝑣1,𝜆2𝑣2⟩ =

𝜆2⟨𝑣1, 𝑣2⟩ so (𝜆1 − 𝜆2)(⟨𝑣1, 𝑣2⟩) = 0, but 𝜆1,𝜆2 assumed distinct hence ⟨𝑣1, 𝑣2⟩ = 0 and 𝑣1 ⊥ 𝑣2.

■

↩→ Lecture 36; Last Updated: Wed Apr 10 14:27:27 EDT 2024
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