
MATH457 - Algebra 4
Representation Theory; Galois Theory

Based on lectures from Winter 2025 by Prof. Henri Darmon.
Notes by Louis Meunier

Contents
1 Representation Theory ................................................................................................................................................................................................................ 2

1.1 Introduction ........................................................................................................................................................................................................................... 2

1.2 Maschke’s Theorem ............................................................................................................................................................................................................. 4

1.3 Characters, Orthogonality, Number of Irreducible Representations ........................................................................................................................ 7

1.4 Fourier Analysis on Finite Abelian Groups ................................................................................................................................................................. 12

1.4.1 Application to Computing Particular Infinite Series .......................................................................................................................................... 14

1.5 Fourier Analysis on Non-Abelian Finite Groups ........................................................................................................................................................ 15

1.5.1 Random Products in Groups .................................................................................................................................................................................... 16

1.6 Character Tables of 𝑆4, 𝐴5 and GL3(𝔽2) .................................................................................................................................................................... 16

1.6.1 𝑆4 .................................................................................................................................................................................................................................... 17

1.6.2 𝐴5 ................................................................................................................................................................................................................................... 17

1.6.3 GL3(𝔽2) ........................................................................................................................................................................................................................ 18

1.7 Induced Representations .................................................................................................................................................................................................. 19

1.7.1 Back to GL3(𝔽2) ......................................................................................................................................................................................................... 21

1.8 Tensor Products .................................................................................................................................................................................................................. 23

1.9 Cute Applications of Representation Theory .............................................................................................................................................................. 25

1.9.1 The Pillaging Knights ................................................................................................................................................................................................ 25

1.9.2 Functions on Mathematical Objects with Symmetry Groups .......................................................................................................................... 26

1.9.3 Functions on a Cube .................................................................................................................................................................................................. 28

2 Midterm Practice ........................................................................................................................................................................................................................ 29

3 Galois Theory .............................................................................................................................................................................................................................. 36

3.1 Field Extensions .................................................................................................................................................................................................................. 37

3.2 Ruler and Compass Constructions ................................................................................................................................................................................. 38

3.3 Automorphisms of Field Extensions .............................................................................................................................................................................. 39

3.3.1 A Thorough Example ................................................................................................................................................................................................. 42

3.4 Properties of Galois Extensions ...................................................................................................................................................................................... 43

3.5 Splitting Fields .................................................................................................................................................................................................................... 45

3.5.1 Construction of a Splitting Field ............................................................................................................................................................................. 45

3.6 Properties of a Splitting Field .......................................................................................................................................................................................... 46

3.7 Finite Fields .......................................................................................................................................................................................................................... 47

3.8 Generalization of Galois ................................................................................................................................................................................................... 48

3.8.1 Computational Example ........................................................................................................................................................................................... 54

3.8.2 Complements of Galois Correspondance ............................................................................................................................................................. 55

3.9 Radical Extensions ............................................................................................................................................................................................................. 56

3.9.1 Automorphism Groups of Radical Extensions ..................................................................................................................................................... 57

3.9.2 Solvable Groups and the Main Theorem of Galois ............................................................................................................................................. 57

3.9.3 Solution to the Cubic, Revisted ............................................................................................................................................................................... 62

3.9.4 Back to Constructible Numbers .............................................................................................................................................................................. 64

3.10 The Fundamental Theorem of Algebra ........................................................................................................................................................................ 64

3.11 Systematic Computation of Galois Groups ................................................................................................................................................................ 65

3.12 “The Converse Problem of Galois Theory” ................................................................................................................................................................. 66

4 Final Exercises ............................................................................................................................................................................................................................ 67

https://notes.louismeunier.net


§1 Representation Theory
Recall that in studying group theory, we studied the notation of a group “acting” on a set.

Representation theory studies group actions on vector spaces, which takes the notion of a group
action on a set, and makes it compatible with the vector space structure.

§1.1 Introduction

↪Definition 1.1 (Linear Representation):  A linear representation of a group 𝐺 is a vector space 
𝑉 over a field 𝔽 equipped with a map 𝐺 × 𝑉 → 𝑉 that makes 𝑉 a 𝐺-set in such a way that for
each 𝑔 ∈ 𝐺, the map 𝑣 ↦ 𝑔𝑣 is a linear homomorphism of 𝑉.

This induces a homomorphism

𝜌 : 𝐺 → Aut𝔽(𝑉),

or, in particular, when 𝑛 = dim𝔽 𝑉 < ∞, a homomorphism

𝜌 : 𝐺 → GL𝑛(𝔽).

Alternatively, a linear representation 𝑉 can be viewed as a module over the group ring 
𝔽[𝐺] = {∑𝑔∈𝐺 : 𝜆𝑔𝑔 : 𝜆𝑔 ∈ 𝔽} (where we require all but finitely many scalars 𝜆𝑔 to be zero).

↪Definition 1.2 (Irreducible Representation):  A linear representation 𝑉 of a group 𝐺 is
called irreducible if there exists no proper, nontrivial subspace 𝑊 ⊊ 𝑉 such that 𝑊 is 𝐺-stable.

⊛ Example 1.1 :

1. Consider 𝐺 = ℤ/2 = {1, 𝜏}. If 𝑉 a linear representation of 𝐺 and 𝜌 : 𝐺 → Aut(𝑉). Then, 𝑉
uniquely determined by 𝜌(𝜏). Let 𝑝(𝑥) be the minimal polynomial of 𝜌(𝜏). Then, 
𝑝(𝑥) | 𝑥2 − 1. Suppose 𝔽 is a field in which 2 ≠ 0. Then, 𝑝(𝑥) | (𝑥 − 1)(𝑥 + 1) and so 𝑝(𝑥) has
either 1, −1, or both as eigenvalues and thus we may write

𝑉 = 𝑉+ ⊕ 𝑉−,

where 𝑉± ≔ {𝑣 | 𝜏𝑣 = ±𝑣}. Hence, 𝑉 is irreducible only if one of 𝑉+, 𝑉− all of 𝑉 and the
other is trivial, or in other words 𝜏 acts only as multiplication by 1 or −1.

2. Let 𝐺 = {𝑔1, …, 𝑔𝑁} be a finite abelian group, and suppose 𝔽 an algebraically closed field of
characteristic 0 (such as ℂ). Let 𝜌 : 𝐺 → Aut (𝑉) and denote 𝑇𝑗 ≔ 𝜌(𝑔𝑗) for 𝑗 = 1, …, 𝑁.
Then, {𝑇1, …, 𝑇𝑁} is a set of mutually commuting linear transformations. Then, there exists
a simultaneous eigenvector, say 𝑣, for {𝑇1, …, 𝑇𝑁}, and so span (𝑣) a 𝐺-stable subspace of 
𝑉. Thus, if 𝑉 irreducible, it must be that dim𝔽 𝑉 = 1.

↪Theorem 1.1 : If 𝐺 a finite abelian group and 𝑉 an irreducible finite dimensional
representation over an algebraically closed field of characteristic 0, then dim 𝑉 = 1.
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Proof. Let 𝜌 : 𝐺 → Aut(𝑉), label 𝐺 = {𝑔1, …, 𝑔𝑁} and put 𝑇𝑗 ≔ 𝜌(𝑔𝑗) for 𝑗 = 1, …, 𝑁.
Then, {𝑇1, …, 𝑇𝑁} a family of mutually commuting linear transformations on 𝑉. Then,
there is a simultaneous eigenvector 𝑣 for {𝑇1, …, 𝑇𝑁} and thus span(𝑣) is 𝑇1, …, 𝑇𝑁-
stable and so 𝑉 = span(𝑣). ■

↪Lemma 1.1 :  Let 𝑉 be a finite dimensional vector space over ℂ and let 𝑇1, …, 𝑇𝑁 : 𝑉 → 𝑉 be
a family of mutually commuting linear automorphisms on 𝑉. Then, there is a simultaneous
eigenvector for 𝑇1, …, 𝑇𝑁.

↪Proposition 1.1 : Let 𝔽 a field where 2 ≠ 0 and 𝑉 an irreducible representation of 𝑆3. Then,
there are three distinct (i.e., up to homomorphism) possibilities for 𝑉.

Proof. Let 𝜌 : 𝐺 → Aut(𝑉) and let 𝑇 = 𝜌((23)). Then, notice that 𝑝𝑇(𝑥) | (𝑥2 − 1) so 𝑇
has eigenvalues in {−1, 1}.

If the only eigenvalue of 𝑇 is −1, we claim that 𝑉 one-dimensional.

If 𝑇 has 1 as an eigenvalue. ■

↪Proposition 1.2 :  𝐷8 has a unique faithful irreducible representation, of dimension 2 over a
field 𝐹 in which 0 ≠ 2.

Proof. Write 𝐺 = 𝐷8 = {1, 𝑟, 𝑟2, 𝑟3, 𝑣, ℎ, 𝑑1, 𝑑2} as standard. Let 𝜌 be our irreducible,
faithful representation and let 𝑇 = 𝜌(𝑟2). Then, 𝑝𝑇(𝑥) | 𝑥2 − 1 = (𝑥 − 1)(𝑥 + 1) and so 
𝑉 = 𝑉+ ⊕ 𝑉−, the respective eigenspaces for 𝜆 = +1, −1 respectively for 𝑇. Then,
notice that since 𝑟2 in the center of 𝐺, both 𝑉+ and 𝑉− are preserved by the action of 𝐺,
hence one must be trivial and the other the entirety of 𝑉. 𝑉 can’t equal 𝑉+, else 𝑇 = 𝐼
on all of 𝑉 hence 𝜌 not faithful so 𝑉 = 𝑉−.

Next, it must be that 𝜌(ℎ) has both eigenvalues 1 and −1. Let 𝑣1 ∈ 𝑉 be such that 
ℎ𝑣1 = 𝑣1 and 𝑣2 = 𝑟𝑣1. We claim that 𝑊 ≔ span {𝑣1, 𝑣2}, namely 𝑉 = 𝑊 2-
dimensional.

We simply check each element. 𝑟𝑣1 = 𝑣2 and 𝑟𝑣2 = 𝑟2𝑣1 = −𝑣1 which are both in 𝑊
hence 𝑟 and thus ⟨𝑟⟩ fixes 𝑊. Next, ℎ𝑣1 = 𝑣1 and 𝑣𝑣2 = 𝑣𝑟𝑣1 = 𝑟ℎ𝑣1 = 𝑟𝑣1 = 𝑣2 (since 
𝑟ℎ𝑟−1 = 𝑣) and so ℎ𝑣2 = −𝑣2 and 𝑣𝑣1 = −𝑣1 and so 𝑊 𝐺-stable. Finally, 𝑑1 and 𝑑2 are
just products of these elements and so 𝑊 𝐺-stable. ■
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↪Definition 1.3 (Isomorphism of Representations) :  Given a group 𝐺 and two
representations 𝜌𝑖 : 𝐺 → Aut𝔽(𝑉𝑖), 𝑖 = 1, 2 an isomorphism of representations is a vector
space isomorphism 𝜑 : 𝑉1 → 𝑉2 that respects the group action, namely

𝜑(𝑔𝑣) = 𝑔𝜑(𝑣)

for every 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉1.

§1.2 Maschke’s Theorem

↪Theorem 1.2 (Maschke's) :  Any representation of a finite group 𝐺 over ℂ can be written as a
direct sum of irreducible representations, i.e.

𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑡,

where 𝑉𝑗 irreducible.

Remark 1.1 :  |𝐺| < ∞ essential. For instance, consider 𝐺 = (ℤ, +) and 2-dimensional
representation given by 𝑛 ↦ (1

0
𝑛
1). Then, 𝑛 ⋅ 𝑒1 = 𝑒1 and 𝑛 ⋅ 𝑒2 = 𝑛𝑒1 + 𝑒2. We have that ℂ𝑒1

irreducible then. But if 𝑣 = 𝑎𝑒1 + 𝑒2 ∈ 𝑊 ≔ 𝑉 \ ℂ𝑒1, then 𝐺𝑣 = (𝑎 + 1)𝑒1 + 𝑒2 so 𝐺𝑣 − 𝑣 =
𝑒1 ∈ 𝑊, contradiction.

Remark 1.2 :  ℂ essential. Suppose 𝐹 = ℤ/3ℤ and 𝑉 = 𝐹𝑒1 ⊕ 𝐹𝑒2 ⊕ 𝐹𝑒3, and 𝐺 = 𝑆3 acts on 𝑉
by permuting the basis vectors 𝑒𝑖. Then notice that 𝐹(𝑒1 + 𝑒2 + 𝑒3) an irreducible subspace in 
𝑉. Let 𝑊 = 𝐹(𝑤) with 𝑤 ≔ 𝑎𝑒1 + 𝑏𝑒2 + 𝑐𝑒3 be any other 𝐺-stable subspace. Then, by applying 
(123) repeatedly to 𝑤 and adding the result, we find that (𝑎 + 𝑏 + 𝑐)(𝑒1 + 𝑒2 + 𝑒3) ∈ 𝑊.
Similarly, by applying (12), (23), (13) to 𝑤, we find (𝑎 − 𝑏)(𝑒1 − 𝑒2), (𝑏 − 𝑐)(𝑒2 − 𝑒3), (𝑎 −
𝑐)(𝑒1 − 𝑒3) all in 𝑊. It must be that at least one of 𝑎 − 𝑏, 𝑎 − 𝑐, 𝑏 − 𝑐 nonzero, else we’d have 
𝑤 ∈ 𝐹(𝑒1 + 𝑒2 + 𝑒3). Assume wlog 𝑎 − 𝑏 ≠ 0. Then, we may apply (𝑎 − 𝑏)−1 and find 𝑒1 − 𝑒2 ∈
𝑊. By applying (23), (13) to this vector and scaling, we find further 𝑒2 − 𝑒3 and 𝑒1 − 𝑒3 ∈ 𝑊.
But then,

2(𝑒1 − 𝑒2) + 2(𝑒1 − 𝑒3) = 𝑒1 + 𝑒2 + 𝑒3 ∈ 𝑊,

so 𝐹(𝑒1 + 𝑒2 + 𝑒3) a subspace of 𝑊, a contradiction.

↪Proposition 1.3 :  Let 𝑉 be a representation of |𝐺| < ∞ over ℂ and let 𝑊 ⊆ 𝑉 a sub-
representation. Then, 𝑊 has a 𝐺-stable complement 𝑊′, such that 𝑉 = 𝑊 ⊕ 𝑊′.

Proof. Denote by 𝜌 the homomorphism induced by the representation. Let 𝑊0′ be
any complementary subspace of 𝑊 and let

𝜋 : 𝑉 → 𝑊
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be a projection onto 𝑊 along 𝑊0′, i.e. 𝜋2 = 𝜋, 𝜋(𝑉) = 𝑊, and ker(𝜋) = 𝑊0′. Let us
“replace” 𝜋 by the “average”

�̃� ≔
1

#𝐺 ∑
𝑔∈𝐺

𝜌(𝑔)𝜋𝜌(𝑔)−1.

Then the following hold:

(1) �̃� 𝐺-equivariant, that is �̃�(𝑔𝑣) = 𝑔�̃�(𝑣) for every 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉.

(2) �̃� a projection onto 𝑊.

Let 𝑊′ = ker(�̃�). Then, 𝑊′ 𝐺-stable, and 𝑉 = 𝑊 ⊕ 𝑊′. ■

We present an alternative proof to the previous proposition by appealing to the existence of a
certain inner product on complex representations of finite groups.

↪Definition 1.4 :  Given a vector space 𝑉 over ℂ, a Hermitian pairing/inner product is a
hermitian-bilinear map 𝑉 × 𝑉 → ℂ, (𝑣, 𝑤) ↦ ⟨𝑣, 𝑤⟩ such that
• linear in the first coordinate;
• conjugate-linear in the second coordinate;
• ⟨𝑣, 𝑣⟩ ∈ ℝ≥0 and equal to zero iff 𝑣 = 0.

↪Theorem 1.3 : Let 𝑉 be a finite dimensional complex representation of a finite group 𝐺.
Then, there is a hermitian inner product ⟨⋅, ⋅⟩ such that ⟨𝑔𝑣, 𝑔𝑤⟩ = ⟨𝑣, 𝑤⟩ for every 𝑔 ∈ 𝐺 and 
𝑣, 𝑤 ∈ 𝑉.

Proof. Let ⟨⋅, ⋅⟩0 be any inner product on 𝑉 (which exists by defining ⟨𝑒𝑖, 𝑒𝑗⟩0 = 𝛿𝑗
𝑖 and

extending by conjugate linearity). We apply “averaging”:

⟨𝑣, 𝑤⟩ ≔
1

#𝐺 ∑
𝑔∈𝐺

⟨𝑔𝑣, 𝑔𝑤⟩.

Then, one can check that ⟨⋅, ⋅⟩ is hermitian linear, positive, and in particular 𝐺-
equivariant. ■

From this, the previous proposition follows quickly by taking 𝑊′ = 𝑊⟂, the orthogonal
complement to 𝑊 with respect to the 𝐺-invariant inner product that the previous theorem
provides.

From this proposition, Maschke’s follows by repeatedly applying this logic. Since at each
stage 𝑉 is split in two, eventually the dimension of the resulting dimensions will become zero
since 𝑉 finite dimensional. Hence, the remaining vector spaces 𝑉1, …, 𝑉𝑡 left will necessarily be
irreducible, since if they weren’t, we could apply the proposition further.
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↪Theorem 1.4 (Schur's Lemma):  Let 𝑉, 𝑊 be irreducible representations of a group 𝐺. Then,

Hom𝐺(𝑉, 𝑊) =
⎩{
{⎨
{{
⎧0 if 𝑉 ≄

𝐺
𝑊

ℂ if 𝑉 ≃
𝐺

𝑊
,

where Hom𝐺(𝑉, 𝑊) = {𝑇 : 𝑉 → 𝑊 | 𝑇 linear and 𝐺 − equivariant}.

Proof. Suppose 𝑉 ≄
𝐺

𝑊 and let 𝑇 ∈ Hom𝐺(𝑉, 𝑊). Then, notice that ker(𝑇) a
subrepresentation of 𝑉 (a subspace that is a representation in its own right), but by
assumption 𝑉 irreducible hence either ker(𝑇) = 𝑉 or {0}.

If ker(𝑇) = 𝑉, then 𝑇 trivial, and if ker(𝑇) = {0}, then this implies 𝑇 : 𝑉 → im(𝑇) ⊂
𝑊 a representation isomorphism, namely im(𝑇) a irreducible subrepresentation of 𝑊.
This implies that, since 𝑊 irreducible, im(𝑇) = 𝑊, contradicting the original
assumption.

Suppose now 𝑉 ≃
𝐺

𝑊. Let 𝑇 ∈ Hom𝐺(𝑉, 𝑊) = End𝐺(𝑉). Since ℂ algebraically
closed, 𝑇 has an eigenvalue, 𝜆. Then, notice that 𝑇 − 𝜆𝐼 ∈ End𝐺(𝑉) and so ker(𝑇 −
𝜆𝐼) ⊂ 𝑉 a, necessarily trivial because 𝑉 irreducible, subrepresentation of 𝑉. Hence, 
𝑇 − 𝜆𝐼 = 0 ⇒ 𝑇 = 𝜆𝐼 on 𝑉. It follows that Hom𝐺(𝑉, 𝑊) a one-dimensional vector
space over ℂ, so namely ℂ itself. ■

↪Corollary 1.1 :  Given a general representation 𝑉 = ⨁𝑡
𝑗=1 𝑉

𝑚𝑗
𝑗 , where 𝑉𝑗’s are the irreducible

representations of 𝐺,

𝑚𝑗 = dimℂ Hom𝐺(𝑉𝑗, 𝑉).

Proof.

dim(Hom𝐺(𝑉𝑗, 𝑉)) = dim(Hom𝐺(𝑉𝑗, ⨁
𝑡

𝑖=1
𝑉𝑚𝑖

𝑖 )) = ∑
𝑡

𝑖=1
𝑚𝑖 ⋅ dim(Hom𝐺(𝑉𝑗, 𝑉𝑖))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝛿𝑗
𝑖

= 𝑚𝑗

■

↪Definition 1.5 (Trace) : The trace of an endomorphism 𝑇 : 𝑉 → 𝑉 is the trace of any matrix
defining 𝑇. Since the trace is conjugation-invariant, this is well-defined regardless of basis.

↪Proposition 1.4 :  Let 𝑊 ⊆ 𝑉 a subspace and 𝜋 : 𝑉 → 𝑊 a projection. Then, tr(𝜋) =
dim(𝑊).

Proof. Since 𝑉 finite dimensional, we may find a decomposition 𝑉 = 𝑊 ⊕ 𝑊⟂.
Taking a basis {𝑣1, …, 𝑣𝑡} for 𝑊 and {𝑣𝑡+1, …, 𝑣𝑛} for 𝑊⟂, respectively, we find a basis 
{𝑣1, …, 𝑣𝑛} for 𝑉, in which 𝜋(𝑣𝑖) = {0 1≤𝑖≤𝑡

1𝑡<𝑖≤𝑛  so tr(𝜋) = 𝑡 = dim(𝑉). ■
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↪Theorem 1.5 : If 𝜌 : 𝐺 → Aut𝔽(𝑉) a complex representation of 𝐺, then

dim(𝑉𝐺) =
1

#𝐺 ∑
𝑔∈𝐺

tr(𝜌(𝑔)),

where 𝑉𝐺 = {𝑣 ∈ 𝑉 : 𝑔𝑣 = 𝑣 ∀ 𝑔 ∈ 𝐺}.

Proof. Let 𝜋 = 1
#𝐺 ∑𝑔∈𝐺 𝜌(𝑔). Then,

𝜋2 = (
1

#𝐺)
2

∑
𝑔∈𝐺

∑
ℎ∈𝐺

𝜌(𝑔ℎ)

= (
1

#𝐺)
2
#𝐺 ∑

𝑔∈𝐺
𝜌(𝑔) = 𝜋.

We show 𝑉𝐺 = im(𝜋). If 𝑣 ∈ im(𝜋), then 𝑣 = 𝜋(𝑤), so for every ℎ ∈ 𝐺,

𝜌(ℎ)𝑣 =
1

#𝐺 ∑
𝑔∈𝐺

𝜌(ℎ𝑔)𝑤

=
1

#𝐺 ∑
ℎ𝑔∈𝐺

𝜌(ℎ𝑔)𝑤

= 𝜋(𝑤) = 𝑣,

so 𝑣 ∈ 𝑉𝐺. Conversely, if 𝑣 ∈ 𝑉𝐺, then

𝜋(𝑣) =
1

#𝐺 ∑
𝑔∈𝐺

𝜌(𝑔)𝑣 =
1

#𝐺 ∑
𝑔∈𝐺

𝑣 = 𝑣,

so 𝑣 ∈ im(𝜋). Hence, 𝜋 a projection with image 𝑉𝐺, so we conclude

dim(𝑉𝐺) = tr(𝜋) =
1

#𝐺 ∑
𝑔∈𝐺

tr(𝜌(𝑔)).

■

§1.3 Characters, Orthogonality, Number of Irreducible Representations

↪Definition 1.6 :  Let dim(𝑉) < ∞ and 𝐺 a group. The character of 𝑉 is the function

𝜒𝑉 : 𝐺 → ℂ, 𝜒𝑉(𝑔) ≔ tr(𝜌(𝑔)).

↪Proposition 1.5 : Characters are class functions, namely constant on conjugacy classes.

Proof. Follows from the fact that the trace of a matrix is conjugation invariant. ■
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↪Proposition 1.6 :  Given two representations 𝑉, 𝑊 of 𝐺, there is a natural action of 𝐺 on 
Hom(𝑉, 𝑊) given by 𝑔 ∗ 𝑇 = 𝑔 ∘ 𝑇 ∘ 𝑔−1. Then,

Hom(𝑉, 𝑊)𝐺 = {𝑇 : 𝑉 → 𝑊 | 𝑔 ∗ 𝑇 = 𝑇},

so

Hom(𝑉, 𝑊)𝐺 = Hom𝐺(𝑉, 𝑊).

Proof. The fact this well-defined simply follows from the well-definedness of the
actions of 𝐺 on 𝑉, 𝑊 respectively (namely, writing 𝑔 ∘ and ∘ 𝑔−1 are more formally 
𝜌𝑊(𝑔) ∘ and ∘ 𝜌𝑉(𝑔−1)). ■

↪Proposition 1.7 :  Suppose 𝑉 = 𝑉𝑚1
1 ⊕ ⋯ ⊕ 𝑉𝑚𝑡

𝑡  a representation of 𝐺 written in irreducible
form. Then,

Hom𝐺(𝑉𝑗, 𝑉) = ℂ𝑚𝑗.

Proof. By Maschke’s Theorem and Schur’s Lemma combined,

Hom𝐺(𝑉𝑗, 𝑉) = Hom𝐺(𝑉𝑗, 𝑉𝑚1
1 ⊕ ⋯ ⊕ 𝑉𝑚𝑡

𝑡 )

= ⨁
𝑡

𝑖=1
Hom𝐺(𝑉𝑗, 𝑉𝑖)

𝑚𝑖

= ℂ𝑚𝑗

■

↪Proposition 1.8 :  If 𝑉, 𝑊 are two representations, then so is 𝑉 ⊕ 𝑊 with point-wise action,
and 𝜒𝑉⊕𝑊 = 𝜒𝑉 + 𝜒𝑊 .

Proof. We may pick an appropriate basis for 𝑔 ∈ 𝐺 such that 𝑔 acts on 𝑉 ⊕ 𝑊 as

𝑔 =
⎝
⎜⎜⎛

[𝜌𝑉(𝑔)]
0

0
[𝜌𝑊(𝑔)]⎠

⎟⎟⎞,

since 𝑉, 𝑊 both 𝐺-stable, where 𝜌𝑉 , 𝜌𝑊  are the matrix representations of 𝑔 acting on 
𝑉, 𝑊 respectively. From this, it is immediate that tr(𝑔) = tr(𝜌𝑉(𝑔)) + tr(𝜌𝑊(𝑔)) =
𝜒𝑉 + 𝜒𝑊 . ■

↪Theorem 1.6 :  𝜒Hom(𝑉,𝑊) = 𝜒𝑉𝜒𝑊 .

Proof. Let 𝑔 ∈ 𝐺 and 𝑒1, …, 𝑒𝑛 an eigenbasis for 𝑉 such that 𝑔𝑒𝑖 = 𝜆𝑖𝑒𝑖 and 𝑓1, …, 𝑓𝑚 an
eigenbasis for 𝑊 such that 𝑔𝑓𝑗 = 𝜇𝑗𝑓𝑗. Then,
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{𝜑𝑗
𝑖 : 𝑉 → 𝑊 | 𝜑𝑗

𝑖(𝑒ℓ) = 𝑓𝑗 ⋅ 𝛿ℓ
𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}

is a basis for Hom(𝑉, 𝑊), upon which 𝑔 acts by

𝑔𝜑𝑗
𝑖(𝑔−1𝑒ℓ) = 𝑔𝜑𝑗

𝑖(𝜆−1
ℓ 𝑒ℓ)

= 𝜆−1
ℓ 𝑔𝑓𝑗𝛿ℓ

𝑖

= 𝜆−1
ℓ 𝜇𝑗𝛿ℓ

𝑖 ,

hence

tr(𝑔) =
⎝
⎜⎛∑

𝑛

𝑖=1
𝜆−1

ℓ
⎠
⎟⎞

⎝
⎜⎜
⎛∑

𝑚

𝑗=1
𝜇𝑗

⎠
⎟⎟
⎞ =

⎝
⎜⎛∑

𝑛

𝑖=1
𝜆𝑖

⎠
⎟⎞

⎝
⎜⎜
⎛∑

𝑚

𝑗=1
𝜇𝑗

⎠
⎟⎟
⎞ =

⎝
⎜⎜⎛∑

𝑛

𝑖=1
𝜆𝑖

⎠
⎟⎟⎞

⎝
⎜⎜
⎛∑

𝑚

𝑗=1
𝜇𝑗

⎠
⎟⎟
⎞ = 𝜒𝑉(𝑔)𝜒𝑊(𝑔)

where we use the fact that 𝜆−1 = 𝜆 being a root of unity, and complex conjugation is
linear. ■

↪Theorem 1.7 (Orthogonality of Irreducible Group Characters) :  Suppose 𝑉1, …, 𝑉𝑡 is a list of
irreducible representations of 𝐺 and 𝜒1, …, 𝜒𝑡 are their corresponding characters. Then, the 
𝜒𝑗’s naturally live in the space 𝐿2(𝐺) ≃ ℂ#𝐺, which we can equip with the inner product

⟨𝑓1, 𝑓2⟩ :
1

#𝐺 ∑
𝑔∈𝐺

𝑓1(𝑔)𝑓2(𝑔).

Then,

⟨𝜒𝑖, 𝜒𝑗⟩ = 𝛿𝑗
𝑖.

Proof.

⟨𝜒𝑖, 𝜒𝑗⟩ =
1

#𝐺 ∑
𝑔∈𝐺

𝜒𝑖(𝑔)𝜒𝑗(𝑔)

=
1

#𝐺 ∑
𝑔∈𝐺

𝜒Hom(𝑉𝑖,𝑉𝑗)
(𝑔)

= dimℂ(Hom (𝑉𝑖, 𝑉𝑗)
𝐺

)

=
⎩{
⎨
{⎧dimℂ(ℂ)𝑖 = 𝑗

dimℂ(0) 𝑖 ≠ 𝑗
= 𝛿𝑗

𝑖.

■

↪Corollary 1.2 :  𝜒1, …, 𝜒𝑡 are orthonormal vectors in 𝐿2(𝐺).

↪Corollary 1.3 :  𝜒1, …, 𝜒𝑡 linearly independent, so in particular 𝑡 ≤ #𝐺 = dim 𝐿2(𝐺).
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↪Corollary 1.4 :  𝑡 ≤ ℎ(𝐺) ≔ # conjugacy classes.

Proof. We have that 𝐿2
𝑐 (𝐺) ⊆ 𝐿2(𝐺), where 𝐿2

𝑐 (𝐺) is the space of ℂ-valued functions
on 𝐺 that are constant on conjugacy classes. It’s easy to see that dimℂ(𝐿2

𝑐 (𝐺)) = ℎ(𝐺).
Then, since 𝜒1, …, 𝜒𝑡 are class functions, the live naturally in 𝐿2

𝑐 (𝐺) and hence since
they are linearly independent, there are at most ℎ(𝐺) of them. ■

Remark 1.3 :  We’ll show this inequality is actually equality soon.

↪Theorem 1.8 (Characterization of Representation by Characters) :  If 𝑉, 𝑊 are two complex
representations, they are isomorphic as representations ⇔ 𝜒𝑉 = 𝜒𝑊 .

Proof. By Maschke’s, 𝑉 = 𝑉𝑚1
1 ⊕ ⋯ ⊕ 𝑉𝑚𝑡

𝑡  and hence 𝜒𝑉 = 𝑚1𝜒1 + ⋯ + 𝑚𝑡𝜒𝑡. By
orthogonality, 𝑚𝑗 = ⟨𝜒𝑉 , 𝜒𝑗⟩ for each 𝑗 = 1, …, 𝑡, hence 𝑉 completely determined by 𝜒𝑉 .

■

↪Definition 1.7 (Regular Representation):  Define

𝑉reg ≔ ℂ[𝐺] with left mult.

≃ 𝐿2(𝐺) with (𝑔 ∗ 𝑓 )(𝑥) ≔ 𝑓 (𝑔−1𝑥),

the “regular representation” of 𝐺.

Notice this is a #𝐺-dimensional vector space with basis elements {𝑔 : 𝑔 ∈ 𝐺}, with an
additional multiplication structure (namely, ℂ[𝐺] a ring, which is generally noncommutative
unless 𝐺 abelian).

↪Proposition 1.9 :  𝜒reg(𝑔) = {#𝐺 if 𝑔= id
0 else

.

Proof. If 𝑔 = id, then 𝑔 simply acts as the identity on 𝑉reg and so has trace equal to
the dimension of 𝑉reg, which has as basis just the elements of 𝐺 hence dimension
equal to #𝐺. If 𝑔 ≠ id, then 𝑔 cannot fix any basis vector, i.e. any other element ℎ ∈ 𝐺,
since 𝑔ℎ = ℎ ⇔ 𝑔 = id. Hence, 𝑔 permutes every element in 𝐺 with no fixed points,
hence its matrix representation in the standard basis would have no 1s on the diagonal
hence trace equal to zero. ■
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↪Theorem 1.9 :  Every irreducible representation of 𝑉, 𝑉𝑗, appears in 𝑉reg at least once,
specifically, with multiplicity dimℂ(𝑉𝑗). Namely,

𝑉reg = 𝑉𝑑1
1 ⊕ ⋯ ⊕ 𝑉𝑑𝑡

𝑡 ,

where 𝑑𝑗 ≔ dimℂ(𝑉𝑗).

In particular,

#𝐺 = 𝑑2
1 + ⋯ + 𝑑2

𝑡 .

Proof. Write 𝑉reg = 𝑉𝑚1
1 ⊕ ⋯ ⊕ 𝑉𝑚𝑡

𝑡 . We’ll show 𝑚𝑗 = 𝑑𝑗 for each 𝑗 = 1, …, 𝑡. We find

𝑚𝑗 = ⟨𝜒reg, 𝜒𝑗⟩

=
1

#𝐺 ∑
𝑔∈𝐺

𝜒reg(𝑔)𝜒𝑗(𝑔)

=
1

#𝐺#𝐺 ⋅ 𝜒𝑗(id) = 𝜒𝑗(id) = 𝑑𝑗,

since the trace of the identity element acting on a vector space is always the dimension
of the space. In particular, then

#𝐺 = dimℂ(𝑉reg) = dimℂ(𝑉𝑑1
1 ⊕ ⋯ ⊕ 𝑉𝑑𝑡

𝑡 )

= 𝑑1 ⋅ dimℂ(𝑉1) + ⋯ + 𝑑𝑡 ⋅ dimℂ(𝑉𝑡)

= 𝑑2
1 + ⋯ + 𝑑2

𝑡 .

■

↪Theorem 1.10 : 𝑡 = ℎ(𝐺).

Proof. Remark that ℂ[𝐺] has a natural ring structure, combining multiplication of
coefficients in ℂ and internal multiplication in 𝐺. Define a group homomorphism

𝜌 = (𝜌1, …, 𝜌𝑡) : 𝐺 → Aut(𝑉1) × ⋯ × Aut(𝑉𝑡),

collecting all the irreducible representation homomorphisms into a single vector.
Then, this extends naturally by (ℂ-)linearity to a ring homomorphism

𝜌 : ℂ[𝐺] → Endℂ(𝑉1) ⊕ ⋯ ⊕ Endℂ(𝑉𝑡).

By picking bases for each Endℂ(𝑉𝑗), we find that dimℂ(Endℂ(𝑉𝑗)) = 𝑑2
𝑗  hence 

dimℂ(Endℂ(𝑉1) ⊕ ⋯ ⊕ Endℂ(𝑉𝑡)) = 𝑑2
1 + ⋯ + 𝑑2

𝑡 = #𝐺, as we saw in the previous
theorem. On the other hand, dimℂ(ℂ[𝐺]) = #𝐺 hence the dimensions of the two sides
are equal. We claim that 𝜌 an isomorphism of rings. By dimensionality as ℂ-vector
spaces, it suffices to show 𝜌 injective.
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Let 𝜃 ∈ ker(𝜌). Then, 𝜌𝑗(𝜃) = 0 for each 𝑗 = 1, …, 𝑡, i.e. 𝜃 acts as 0 on each of the
irreducibles 𝑉1, …, 𝑉𝑡. Applying Maschke’s, it follows that 𝜃 must act as zero on every
representation, in particular on ℂ[𝐺]. Then, for every ∑ 𝛽𝑔𝑔 ∈ ℂ[𝐺], 𝜃 ⋅ (∑ 𝛽𝑔𝑔) = 0
so in particular 𝜃 ⋅ 1 = 0 hence 𝜃 = 0 in ℂ[𝐺]. Thus, 𝜌 has trivial kernel as we wanted
to show and thus ℂ[𝐺] and Endℂ(𝑉1) ⊕ ⋯ ⊕ Endℂ(𝑉𝑡) are isomorphic as rings
(moreover, as ℂ-algebras).

We look now at the centers of the two rings, since they are (in general)
noncommutative. Namely,

𝑍(ℂ[𝐺]) = {∑ 𝜆𝑔𝑔 | (∑ 𝜆𝑔𝑔)𝜃 = 𝜃(∑ 𝜆𝑔𝑔) ∀ 𝜃 ∈ ℂ[𝐺]}.

Since multiplication in ℂ is commutative and “factors through” internal
multiplication, it follows that ∑ 𝜆𝑔𝑔 ∈ 𝑍(ℂ[𝐺]) iff it commutes with every group
element, i.e.

(∑ 𝜆𝑔𝑔)ℎ = ℎ(∑ 𝜆𝑔𝑔) ⇔ ∑
𝑔

(𝜆𝑔ℎ−1𝑔ℎ) = ∑
𝑔

𝜆𝑔𝑔

⇔ ∑
𝑔

𝜆ℎ−1𝑔ℎ𝑔 = ∑
𝑔

𝜆𝑔𝑔

⇔ 𝜆ℎ−1𝑔ℎ = 𝜆𝑔 ∀ 𝑔 ∈ 𝐺.

Hence, ∑ 𝜆𝑔𝑔 ∈ 𝑍(ℂ[𝐺]) iff 𝜆ℎ−1𝑔ℎ = 𝜆𝑔 for every 𝑔, ℎ ∈ 𝐺. It follows, then, that the
induced map 𝑔 ↦ 𝜆𝑔 a class function, and thus dimℂ(𝑍(ℂ[𝐺])) = ℎ(𝐺).

On the other hand, dimℂ(𝑍(Endℂ(𝑉𝑗))) = 1 (by representing as matrices, for
instance, one can see that only scalar matrices will commute with all other matrices),
hence dimℂ(𝑍(Endℂ(𝑉1) ⊕ ⋯ ⊕ Endℂ(𝑉𝑡))) = 𝑡. 𝜌 naturally restricts to an
isomorphism of these centers, hence we conclude justly 𝑡 = ℎ(𝐺). ■

Remark 1.4 :  By picking bases for each irreducible representation 𝑉1, …, 𝑉𝑡, we can realize
more concretely that

ℂ[𝐺] ≃ 𝑀𝑑1
(ℂ) ⊕ ⋯ ⊕ 𝑀𝑑𝑡

(ℂ),

where 𝑑𝑗 ≔ dim(𝑉𝑗); in short, then, ℂ[𝐺] completely determined, as a group-ring, by
• the number of conjugacy classes in 𝐺, 𝑡; and
• the dimension of each irreducible representation, 𝑑1, …, 𝑑𝑡.

In particular, then, there may exist two non-isomorphic groups with isomorphic group rings.
Namely, if two groups of equal size have the same number of conjugacy classes and the same
dimension of each irreducible representation, they will have isomorphic complex group rings.

§1.4 Fourier Analysis on Finite Abelian Groups
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↪Definition 1.8 :  For a finite group 𝐺, let

𝐿2(𝐺) = {square integrable functions 𝐺 → ℂ},

equipped with the 𝐿2-norm, ‖𝑓 ‖2 = 1
#𝐺 ∑𝑔∈𝐺|𝑓 (𝑔)|2. This is a vector space isomorphic to ℂ#𝐺.

We make the space a Hilbert space by defining

⟨𝑓1, 𝑓2⟩ =
1

#𝐺 ∑
𝑔∈𝐺

𝑓1(𝑔)𝑓2(𝑔).

↪Definition 1.9 :  Denote by ̂𝐺 = {𝜒1, …, 𝜒𝑁} the set of irreducible characters of 𝐺. Then, ̂𝐺 an
orthonormal family of functions in 𝐿2(𝐺).

We suppose for now 𝐺 abelian. In this case, # ̂𝐺 = #𝐺 so ̂𝐺 is an orthonormal basis for 𝐿2(𝐺)
(comparing dimensions). In particular, one can prove that ̂𝐺 is abstractly isomorphic to 𝐺 as a
group.

↪Definition 1.10 :  Given 𝑓 ∈ 𝐿2(𝐺), the function ̂𝑓 : ̂𝐺 → ℂ is defined by

̂𝑓 (𝜒) =
1

#𝐺 ∑
𝑔∈𝐺

𝜒(𝑔)𝑓 (𝑔),

called the Fourier transform of 𝑓  over 𝐺. Then,

𝑓 = ∑
𝜒∈�̂�

̂𝑓 (𝜒)𝜒,

is called the Fourier inversion formula.
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⊛ Example 1.2 :  Consider 𝐺 = ℝ/ℤ. 𝐿2(𝐺) space of ℂ-valued periodic functions on ℝ which
are square integrable on [0, 1]. Then, ̂𝐺 abstractly isomorphic to ℤ. Write ̂𝐺 = {𝜒𝑛 | 𝑛 ∈ ℤ}.
Then, remark that

𝜒𝑛 : ℝ/ℤ → ℂ×, 𝜒𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥

gives the characteristic function for any integer 𝑛. More precisely, its not hard to see that the
map ℝ → ℂ×, 𝑥 ↦ 𝑒2𝜋𝑖𝑛𝑥 factors through (is constant on integer multiples) ℤ.

To speak about orthogonality of members of ̂𝐺, we must define a norm. We can identity 
ℝ/ℤ with [0, 1], and so write

⟨𝑓1, 𝑓2⟩ ≔ ∫
1

0
𝑓1(𝑥)𝑓2(𝑥) d𝑥.

Then, its not hard to see

⟨𝜒𝑛, 𝜒𝑚⟩ = ∫
1

0
𝑒−2𝜋𝑖(𝑚−𝑛)𝑥 d𝑥 = 𝛿𝑛

𝑚.

⊛ Example 1.3 :  Let 𝐺 = ℤ/𝑁ℤ under addition. Note that 𝐺 then a subgroup of ℝ/ℤ, and in
particular,

̂𝐺 = {𝜒0, 𝜒1, …, 𝜒𝑁−1}, 𝜒𝑗(𝑘) ≔ 𝑒2𝜋𝑖𝑗𝑘/𝑁.

Then, one notices
𝜒𝑗1

⋅ 𝜒𝑗2
= 𝜒𝑗1+𝑗2

,

so there is indeed a natural group structure on ̂𝐺. Then, the Fourier transform in this case
gives, for 𝑓 ∈ 𝐿2(ℤ/𝑁ℤ),

̂𝑓 (𝑛) =
1
𝑁 ∑

𝑁−1

𝑘=0
𝑒−2𝜋𝑖𝑛𝑘/𝑁𝑓 (𝑘).

1.4.1 Application to Computing Particular Infinite Series
We consider an application of the theory we’ve developed on 𝐺 = ℤ/𝑁ℤ to study particular

infinite summations. Its well know that the harmonic series 1 + 1
2 + 1

3 + ⋯ diverges. A natural
extension is to study modified such series, for instance 1 − 1

3 + 1
5 − 1

7 + ⋯ and to ask if this
series converges, and if it does, to what?

To approach this question, we more generally consider, for 𝑓 ∈ 𝐿2(ℤ/𝑁ℤ) (i.e. a complex-
valued 𝑁-periodic function defined on the integers), the series

𝑆(𝑓 ) ≔ ∑
∞

𝑛=1

𝑓 (𝑛)
𝑛 ,
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when the summation exists. Remark then that 𝑓 ↦ 𝑆(𝑓 ) is linear. So, it suffices to consider the
value of 𝑆(𝑓 ) on a basis of 𝐿2(ℤ/𝑁ℤ), which we’ve derived in the previous example, namely 

̂𝐺 = {𝜒𝑗 : 𝑗 = 0, …, 𝑁 − 1}. We can explicitly compute 𝑆(𝜒𝑗):

𝑆(𝜒𝑗) = ∑
∞

𝑛=1

𝜒𝑗(𝑛)
𝑛

= ∑
∞

𝑛=1

𝑥𝑛

𝑛 , 𝑥 ≔ 𝑒
2𝜋𝑖𝑗

𝑁

= − log(1 − 𝑥),

where the final sequence converges on the unit circle in the complex plane centered at the 1 + 0𝑖.

In particular, if 𝑗 = 0, 𝑆(𝜒0) diverges. Otherwise, each 𝜒𝑗 maps onto the roots of unity hence
the convergence is well-defined. In particular, then, we find

𝑆(𝜒𝑗) =

⎩{
{⎨
{{
⎧

− log(1 − 𝑒2𝜋𝑖 𝑗
𝑁 ) if 𝑗 ≠ 0

0 else
.

Now, for a general function 𝑓 ∈ 𝐿2(ℤ/𝑁ℤ), we find by the Fourier inversion formula

𝑆(𝑓 ) = 𝑆( ̂𝑓 (0)𝜒0 + ⋯ + ̂𝑓 (𝑁 − 1)𝜒𝑁−1),

which certainly diverges if ̂𝑓 (0) ≠ 0. Otherwise, we find by linearity

𝑆(𝑓 ) = ∑
𝑁−1

𝑗=1

̂𝑓 (𝑗)(− log(1 − 𝑥)).

So, returning to our original example, we can define 𝑓 ∈ 𝐿2(ℤ/4ℤ) by 𝑓 (𝑛) =
⎩{
⎨
{⎧0 if 𝑛 even

1 if 𝑛=1+4𝑘
−1 if 𝑛=3+4𝑘

. Then,

we find

1 −
1
3 +

1
5 −

1
7 +

1
9 − ⋯ = 𝑆(𝑓 )

=
1
2𝑖(𝑆(𝜒1) − 𝑆(𝜒3))

=
1
2𝑖(− log(1 − 𝑖) + log(1 + 𝑖))

=
1
2𝑖(− log(√2) +

𝜋𝑖
4 + log(√2) +

𝜋𝑖
4 ) =

𝜋
4 .

§1.5 Fourier Analysis on Non-Abelian Finite Groups
When 𝐺 abelian, recall that ℂ[𝐺] was a commutative ring isomorphic to ⨁𝜒∈�̂� ℂ. More

generally, we find an isomorphism

Φ : ℂ[𝐺] → ⊕ℎ
𝑗=1 Endℂ(𝑉𝑗) ≃ ⊕ℎ

𝑗=1 𝑀𝑑𝑗×𝑑𝑗
(ℂ),

where ℎ = ℎ(𝐺), 𝑉𝑗 enumerate the irreducible representations of 𝐺, and 𝑑𝑗 ≔ dimℂ(𝑉𝑗).
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↪Definition 1.11 (Fourier Transform):  Given a function 𝑓 : 𝐺 → ℂ, denote by

𝜃𝑓 = ∑
𝑔∈𝐺

𝑓 (𝑔)𝑔

its corresponding element in ℂ[𝐺]. Then, its corresponding image under Φ in ⨁ End(𝑉𝑗) is
called the Fourier transform of 𝑓 , i.e.

̂𝑓 = (𝑇1, …, 𝑇ℎ) ∈ ⨁ End(𝑉𝑗),

a ℎ-tuple of matrices where 𝑇𝑖 a 𝑑𝑖 × 𝑑𝑖matrix.

1.5.1 Random Products in Groups

↪Definition 1.12 (Probability Measure on a Group):  A probability measure on a group 𝐺 is a
function 𝜇 : 𝐺 → [0, ∞) such that ∑𝑔 𝜇(𝑔) = 1. Then, we can view 𝜇 as living naturally both in
ℝ𝐺 and ℝ[𝐺] through the standard identification.

One of the key properties we notice by viewing 𝜇 as living in ℝ[𝐺] is in multiplication;
multiplication in ℝ[𝐺] corresponds to convolution of functions. Namely, if 𝜇1, 𝜇2 two measures
on 𝐺, then

(𝜇1 ⊛ 𝜇2)(𝑔) = ∑
(𝑔1,𝑔2)∈𝐺×𝐺,

𝑔1𝑔2=𝑔

𝜇1(𝑔1)𝜇2(𝑔2) = 𝜇1 ×ℝ[𝐺] 𝜇2

= ℙ(getting 𝑔 from a random product of 𝑔1, 𝑔2 with 𝑔𝑖 picked according to 𝜇𝑖).

For a fixed probability measure 𝜇, then, we wish to investigate the limiting behavior of 𝜇⊛𝑁 (𝜇
convolved with itself 𝑁 times for large 𝑁), which corresponds to the likelihood of obtaining a
particular element from large numbers of products in the group.

↪Definition 1.13 :  Define the support

supp(𝜇) = {𝑔 ∈ 𝐺 | 𝜇(𝑔) ≠ 0},

and the 2 subgroups

𝐺𝜇 ≔ subgroup generated by 𝑔 ∈ supp(𝜇),

𝐺+
𝜇 ≔ subgroup generated by {𝑔−1ℎ | 𝑔, ℎ ∈ supp(𝜇)}.

Notice then 𝐺+
𝜇 ⊂ 𝐺𝜇 ⊂ 𝐺.

↪Theorem 1.11 : Let 𝜇 a probability measure on 𝐺. Then, if 𝐺+
𝜇 = 𝐺, then lim𝑁→∞ 𝜇⊛𝑁 =

𝜇unif, where 𝜇unif the uniform probability distribution which assigns 1
#𝐺  to each element in 𝐺.

§1.6 Character Tables of 𝑆4, 𝐴5 and GL3(𝔽2)
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1.6.1 𝑆4

For 𝑆4, we denote the conjugacy classes by 1𝐴, 2𝐴, 2𝐵, 3𝐴, 3𝐵, 4𝐴 as the conjugacy classes of
elements of the form (), (12)(34), (12), (123), (1234) respectively.

1𝐴 2𝐴 2𝐵 3𝐴 4𝐴
𝜒1 1 1 1 1 1
𝜒2 1 1 −1 1 −1
𝜒3 2 2 0 −1 0
𝜒4 3 −1 1 0 −1
𝜒5 3 −1 −1 0 1

𝜒1 is the trivial representation. 𝜒2 is the sign representation given by 𝜎 ↦ sgn(𝜎) ∈ {−1, 1} ⊆
ℂ×. 𝜒3 comes from noticing that 𝐾4 = ℤ/2 × ℤ/2 = 1𝐴 ⊔ 2𝐴 ⊆ 𝑆4 gives 𝑆4/𝐾4 ≃ 𝑆3. We then can
find a new representation by composing the quotient map 𝜋 : 𝑆4 → 𝑆3 with a representation 𝜌 :
𝑆3 → Autℂ(𝑉). Remember that there are three irreducible representations of 𝑆3. The first two
are the trivial and sign, already accounted for here. The last is the unique two-dimensional
representation where 𝜒(2𝐴) = 0 and 𝜒(3𝐴) = −1 (these are the conjugacy classes in 𝑆3 now).
Under the quotient map, then, we find that
• since 1𝐴, 2𝐴 contained in 𝐾4, they are mapped to the identity in Aut(ℂ2) so have trace 2;
• 2𝐵, 4𝐴 must be mapped to elements of order 2 in 𝑆3 (i.e. in 2𝐴) under 𝜋 and thus must have

trace 0;
• 3𝐴 must map to elements of order 3 in 𝑆3 under 𝜋 so must have trace −1.

This characterizes 𝜒3.

𝜒4 comes from the standard representation on a 4 dimensional vector space (by permuting
basis vectors), then subtracting off the trivial representation. This results in a character where
each entry equals the number of fixed points each conjugacy class has, minus 1.

𝜒5 comes from considering the homomorphism representation found from 𝑉5 =
Hom(𝑉2, 𝑉4), where 𝑉2, 𝑉4 the vector spaces upon which 𝜒2, 𝜒4 “act”. Hence, 𝑉5 is a three
dimensional representation, with 𝜒5 = 𝜒2𝜒4.

1.6.2 𝐴5

For 𝐴5, denote the conjugacy classes 1𝐴, 2𝐴, 3𝐴, 5𝐴, 5𝐵.

1𝐴 2𝐴 3𝐴 5𝐴 5𝐵
𝜒1 1 1 1 1 1
𝜒2 4 0 1 −1 −1
𝜒3 5 1 −1 0 0
𝜒4 3 −1 0 1 + 𝜁 + 𝜁 −1 1 + 𝜁 2 + 𝜁 −2

𝜒5 3 −1 0 1 + 𝜁 2 + 𝜁 −2 1 + 𝜁 + 𝜁 −1

𝜒1 trivial. 𝜒2 comes from the standard representation, minus the trivial. 𝜒3 similarly comes from
the action of 𝐴5 on the coset space 𝑆5/𝐹20, or equivalently on 𝐴5/𝐷10, minus the trivial again.
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For the last two, we can check by dimensionality that it must be that the dimensions of both
must be 3, so we are looking for representations 𝜌 : 𝐴5 → Autℂ(ℂ3). Let 𝑔 ∈ 5𝐴. Notice then
that 𝑔 must have at most three eigenvalues, which are fifth roots of unity. But also, notice that 𝑔
and 𝑔−1 are conjugate in 𝐴5, and namely 𝑔, 𝑔−1 ∈ 5𝐴. Hence, since a linear transformation has
inverse eigenvalues of its inverse, it follows that the set of eigenvalues for 𝑔 must be closed
under taking inverses. So, the eigenvalues must be of the form {1, 𝜁 , 𝜁 −1} or {1, 𝜁 2, 𝜁 −2} where 𝜁
a primitive root of unity. It follows then that either tr(5𝐴) = 1 + 𝜁 + 𝜁 −1 or 1 + 𝜁 2 + 𝜁 −2, with,
by symmetrical argument, gives the trace of 5𝐵 since 𝑔 ∈ 5𝐴 ⇒ 𝑔2 ∈ 5𝐵.

Then, to find 𝜒(3𝐴) ≕ 𝑥3, taking the inner product with 𝜒2 we find

0 = 12 + 20𝑥3 − 12(1 + 𝜁 + 𝜁 −1) − 12(1 + 𝜁 2 + 𝜁 −2)

= 20𝑥3 − 12
⎝
⎜⎜⎜
⎛

1 + 𝜁 + 𝜁 2 + 𝜁 3 + 𝜁 4⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0 ⎠

⎟⎟⎟
⎞

⇒ 𝑥3 = 0.

From here, one can compute 𝜒(2𝐴) using orthogonality relations.

1.6.3 GL3(𝔽2)

size: 1 21 56 42 24 24
1𝐴 2𝐴 3𝐴 4𝐴 7𝐴 7𝐵

𝜒1 1 1 1 1 1 1
𝜒2 6 2 0 0 −1 −1
𝜒3 7 −1 1 −1 0 0

𝜒1 trivial. We consider 𝜒𝑉  given by 𝐺 acting on 𝔽3
2 in the standard way (as three by three

matrices) Then, the character is just given by the number of fixed points each element has, so in
this case the number of fixed nonzero vectors.
• 1𝐴 7, being the dimension
• A typical element of 2𝐴 looks like 

⎝
⎜⎜⎛

1
1

1

1⎠
⎟⎟⎞ which has trace 3.

• 𝑔 ∈ 3𝐴 has minimal polynomial (𝑥 − 1)(𝑥2 + 𝑥 + 1) so has a one-dimensional eigenspace so
fixes one nonzero vector.

• 𝑔 ∈ 4𝐴 has minimal polynomial (𝑥 − 1)3 so by similar reasoning as 3𝐴 fixes a one-
dimensional eigenspace.

• 𝑔 ∈ 7𝐴 or 7𝐵 must cyclically permute the basis vectors so fixes none so has trace 0.

In summary:

1𝐴 2𝐴 3𝐴 4𝐴 7𝐴 7𝐵
𝜒𝑉 7 3 1 1 0 0

This is not irreducible by checking orthogonality relations, but we obtain 𝜒2 by subtracting off 
𝜒1.

For 𝜒3, consider 𝑋 = {sylow − 7 subgroups}. One can check #𝑋 = 8, and we have a natural
action of 𝐺 on 𝑋 by conjugation, which is isomorphic to the action of 𝐺 on 𝐺/𝑁(Sylow − 7) so 
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𝐻 ≔ 𝑁(Sylow − 7) has cardinality 21. Then, the trace of each element is just the number of fixed
cosets each element has acting on 𝐺/𝐻. We then subtract off 1 from this number to obtain 𝜒3.

• 𝑔 ∈ 1𝐴 must have trace 8 so 𝜒3(1𝐴) = 7
• if 𝑔 ∈ 2𝐴, 𝑔𝑎𝐻 = 𝑎𝐻 ⇔ 𝑎−1𝑔𝑎 ∈ 𝐻, but 𝑔 of order 2 and thus so is 𝑎−1𝑔𝑎, but 𝐻 a group of

cardinality of order 21 so such an element can’t live in it.Thus 𝑔 has no fixed points and 
𝜒3(2𝐴) = −1. In particular 𝑔 as a permutation looks like 4 disjoint 2 cycles.

• if 𝑔 ∈ 4𝐴, similar reasoning follows and we find 𝜒3(4𝐴) = −1 and 𝑔 looks like 2 disjoint 4
cycles.

• 𝑔 ∈ 7𝐴, 7𝐵 must act as a 7-cycle and so has one fixed point and thus 𝜒3(7𝐴) = 𝜒3(7𝐵) = 0.
• we can compute 𝜒3(3𝐴) by checking the orthogonality relations by taking the inner product

of it with itself. Computing this we find that 𝜒3(3𝐴) = ±1. We conclude it must be 1 by
remarking that 3𝐴 acts on 𝐺/𝐻 either by a single 3 cycles (hence with 5 fixed points) or two
three cycles (hence with 2), so it must be that the second case holds which gives us a character
of 1.

§1.7 Induced Representations
Let 𝐺 a finite group and 𝐻 ⊆ 𝐺, and take 𝜒 ∈ Hom(𝐻, ℂ×) a one-dimensional representation

of 𝐻. Consider the space

𝑉𝜒 = {𝑓 : 𝐺 → ℂ | 𝑓 (𝑥ℎ) = 𝜒(ℎ) ⋅ 𝑓 (𝑥) ∀ ℎ ∈ 𝐻}.

Then,

↪Proposition 1.10 :
1. 𝐺 acts (linearly) on 𝑉𝜒  by the rule 𝑔𝑓 (𝑥) = 𝑓 (𝑔−1𝑥), ∀ 𝑥 ∈ 𝐺.
2. dim(𝑉𝜒) = [𝐺 : 𝐻]

Proof.
1. We need to show 𝑔𝑓 ∈ 𝑉𝜒 . We compute,

𝑔𝑓 (𝑥ℎ) = 𝑓 (𝑔−1(𝑥ℎ)) = 𝑓 ((𝑔−1𝑥)ℎ) = 𝜒(ℎ)𝑓 (𝑔−1𝑥) = 𝜒(ℎ)(𝑔𝑓 )(𝑥),

for any 𝑥 ∈ 𝐺, ℎ ∈ 𝐻, 𝑓 ∈ 𝑉𝜒 , as required.
2. Let 𝑎1, …, 𝑎𝑡 be a set of coset representatives for 𝐻, i.e. 𝐺 = 𝑎1𝐻 ⊔ ⋯ ⊔ 𝑎𝑡𝐻. Then, we

claim that the map 𝑓 ↦ (𝑓 (𝑎1), …, 𝑓 (𝑎𝑡)), 𝑉𝜒 → ℂ𝑡 a ℂ-vector space isomorphism.

Injective: If 𝑓  in the kernel of this map, then 𝑓 (𝑎1) = ⋯ = 𝑓 (𝑎𝑡) = 0. But 𝑓 ∈ 𝑉𝜒  so 
𝑓 (𝑎𝑗ℎ) = 𝜒(ℎ)𝑓 (𝑎𝑗) = 0 for any ℎ ∈ 𝐻, 𝑗 = 1, …, 𝑡. Any element in 𝐺 is in some 𝑎𝑗𝐻 so
equals 𝑎𝑗ℎ for some ℎ ∈ 𝐻, so we conclude that 𝑓  must be identically 0 and so this map
injective.

Surjective: Given (𝜆1, …, 𝜆𝑡) ∈ ℂ𝑡, define 𝑓  by 𝑓 (𝑎𝑗) ≔ 𝜆𝑗 for each 𝑗, and “extend”
naturally to behave under action of 𝐻, namely 𝑓 (𝑎𝑗ℎ) ≔ 𝜒(ℎ)𝑓 (𝑎𝑗) = 𝜒ℎ𝜆𝑗. ■

The representation 𝑉𝜒  is called the induced representation of 𝜒 from 𝐻 to 𝐺. We sometimes write

𝑉𝜒 = Ind𝐺
𝐻𝜒.
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If 𝐻 is a quotient of 𝐺, then any representation of 𝐻 gives a representation of 𝐺 (we’ve done this
many times before, such as with 𝑆4 and 𝑆3). But in general, these aren’t easy to come by. But if 𝐻
just a subgroup of 𝐺, which are far more common, then we can use the induced representation
technique above to look at representations of 𝐺.

Let 𝜓 : 𝐻 → ℂ× some one-dimensional representation of 𝐻 and 𝑉𝜓 = Ind𝐺
𝐻𝜓. We wish to find

the induced character 𝜒𝑉𝜓
.

We begin by looking for a basis for 𝑉𝜓. For any 𝑎 ∈ 𝐺, define 𝑓𝑎 ∈ 𝑉𝜓 defined by

𝑓𝑎 : 𝐺 → ℂ, 𝑓𝑎(𝑔) ≔
⎩{
⎨
{⎧𝜓(ℎ) if 𝑔 = 𝑎ℎ ∈ 𝑎𝐻

0 if 𝑔 ∉ 𝑎𝐻
.

Then, if 𝑎1, …, 𝑎𝑡 coset representatives for 𝐻 in 𝐺, 𝛽 ≔ {𝑓𝑎1
, …, 𝑓𝑎𝑡

} a basis for 𝑉𝜓.

Now, given 𝑔 ∈ 𝐺, what is the matrix of 𝑔 acting on 𝑉𝜓 with respect to the basis 𝛽? We have
that

𝑔 ⋅ 𝑓𝑎𝑗
(𝑥) = 𝑓𝑎𝑗

(𝑔−1𝑥) = 𝑓𝑔𝑎𝑗
(𝑥),

since, more precisely

𝑔𝑓𝑎𝑗
(𝑎𝑖) =

⎩{
⎨
{⎧0 if 𝑔−1𝑎𝑖 ∉ 𝑎𝑗𝐻

𝜓(ℎ) if 𝑔−1 = 𝑎𝑗ℎ
,

and we can extend to general 𝑔 ∈ 𝐺. Hence, if 𝑎1, …, 𝑎𝑡 are coset representatives, 𝑔𝑎𝑗𝐻 = 𝑎𝑖𝐻 for
each 𝑎𝑗 and some 𝑎𝑖, i.e. 𝑔 permutes the coset representatives, modulo 𝐻. Hence, 𝑔𝑎𝑗 = 𝑎𝑖ℎ𝑖𝑗 for
some ℎ𝑖𝑗 ∈ 𝐻. So,

𝑔𝑓𝑎𝑗
= 𝑓𝑎𝑖ℎ𝑖𝑗

= 𝜓(ℎ𝑖𝑗)𝑓𝑎𝑖
.

Write 𝑔𝑎𝑖𝐻 = 𝑎𝑖′𝐻 so 𝑔𝑎𝑖 = 𝑎𝑖′ℎ𝑖. With this, 𝑔𝑓𝑎1
= 𝜓(ℎ1)𝑓𝑎1′ , etc, and so in each 𝑖th column of our

matrix there is a single nonzero entry in the 𝑖′th row with entry 𝜓(ℎ𝑖).

Thus,

𝜒𝑉𝜓
(𝑔) = ∑

𝑖 | 𝑔𝑎𝑖=𝑎𝑖ℎ𝑖,
ℎ𝑖∈𝐻

𝜓(ℎ𝑖) = ∑
𝑡

𝑖=1
̃𝜓(𝑎−1

𝑖 𝑔𝑎𝑖),

namely, we only sum over the ℎ𝑖’s that land the in the diagonal, which are only those that come
from 𝑔 fixing the respective cosets. We put ̃𝜓 to be 𝜓 on 𝐻 and 0 elsewhere. In all, them, we have
proven the following theorem.
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↪Theorem 1.12 :  Let 𝐻 ⊆ 𝐺 and 𝜓 : 𝐻 → ℂ× a one-dimensional representation of 𝐻. Then,
the induced character from 𝐻 to 𝐺 is given by

𝜒Ind𝐺
𝐻𝜓(𝑔) = ∑

𝑎𝐻∈𝐺/𝐻,
s.t. 𝑎−1𝑔𝑎∈𝐻

𝜓(𝑎−1𝑔𝑎) = ∑
𝑎∈𝐺/𝐻

̃𝜓(𝑎−1𝑔𝑎),

where

̃𝜓(𝑔) =
⎩{
⎨
{⎧0 if 𝑔 ∉ 𝐻

𝜓(ℎ) if 𝑔 ∈ 𝐻
.

Let’s massage.

↪Theorem 1.13 :

𝜒𝑉𝜓
(𝑔) = 𝜒Ind𝐺

𝐻𝜓(𝑔) =
#𝐺
#𝐻 ⋅

1
#𝐶(𝑔)

∑
𝛾∈𝐶(𝑔)∩𝐻

𝜓(𝛾),

where 𝐶(𝑔) the conjugacy class of the element 𝑔,

Proof.

𝜒𝑉𝜓
(𝑔) = ∑

𝑎𝐻∈𝐺/𝐻,
s.t. 𝑎−1𝑔𝑎∈𝐻

𝜓(𝑎−1𝑔𝑎)

=
1

#𝐻 ∑
𝑎∈𝐺,

s.t. 𝑎−1𝑔𝑎∈𝐻

𝜓(𝑎−1𝑔𝑎)

=
#𝑍(𝑔)

#𝐻 ∑
𝑎∈𝑍(𝑔)/𝐺,
s.t 𝑎−1𝑔𝑎∈𝐻

𝜓(𝑎−1𝑔𝑎)

=
#𝐺
#𝐻

1
#𝐶(𝑔)

∑
𝛾∈𝐶(𝑔)∩𝐻

𝜓(𝛾),

where 𝑍(𝑔) = {𝑏 ∈ 𝐺 | 𝑏𝑔 = 𝑔𝑏} the centralizer of 𝐺, where #𝑍(𝑔) = #𝐺
#𝐶(𝑔)  by the orbit-

stabilizer theorem (from 𝐺 acting on 𝐶(𝑔) by conjugation). ■

1.7.1 Back to GL3(𝔽2)
Let 𝐻 ⊆ 𝐺 = GL3(𝔽2) the normalizer of a Sylow-7 subgroup; then #𝐻 = 21 (8 Sylow-7

subgroups, 168
8 = 21). Let

𝜓 : 𝐻 → ℂ×

and

𝑉 = Ind𝐺
𝐻𝜓
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the induced character. Then, we know dim(𝑉) = 168/21 = 8. Let 𝑃7 be some Sylow-7 subgroup.
Then, we find that

𝐻/𝑃7 ≃ ℤ/3ℤ,

so our representation factors to

𝐻 ↠ ℤ/3ℤ → ℂ×,

1 ↦ 𝑒2𝜋𝑖/3.

So specializing our formula we found in the previous section, we know

𝜒𝑉𝜓
(𝑔) =

8
#𝐶(𝑔)

∑
𝛾∈𝐻∩𝐶(𝑔)

𝜓(𝛾).

We compute for 𝑔 in distinct conjugacy classes:

# 𝐶 𝜒𝑉𝜓

1 1𝐴 8

21 2𝐴 0

56 3𝐴 −1

42 4𝐴 0

24 7𝐴 1

24 7𝐵 1

• The case for 1𝐴 is simple.
• The case for 2𝐴 and 4𝐴 are trivial since for 𝐶 = 2𝐴, 4𝐴, 𝐶 ∩ 𝐻 = ⌀, since 𝐻 a group of odd

cardinality, and 𝐶 consists only of elements of even order, hence they must have empty
intersection, so the summation in the character formula is over nothing.

• For 3𝐴, we need to compute 3𝐴 ∩ 𝐻. We know that

𝜑 : 𝐻 ↠ ℤ/3ℤ,

so it must be that

𝑃7 ↦ 0, 7 elts of order 3 ↦ 1, 7 elts of order 3 ↦ 2,

so

3𝐴 ∩ 𝐻 = 𝜑−1(1) ⊔ 𝜑−1(2).

Hence,

𝜒𝑉𝜓
(3𝐴) =

1
7⎝

⎜⎜⎜
⎛ ∑

𝑔∈𝜑−1(1)
𝜓(𝑔) + ∑

𝑔∈𝜑−1(2)
𝜓(𝑔)

⎠
⎟⎟⎟
⎞

=
1
7[7𝑒2𝜋𝑖/3 + 7𝑒4𝜋𝑖/3]

= 𝑒2𝜋𝑖/3 + 𝑒4𝜋𝑖/3 = −1.
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• For 𝑔 ∈ 7𝐴,

𝜒𝑉𝜓
(𝑔) =

8
24 ∑

𝑔∈7𝐴∩𝐻
𝜓(𝑔).

Its easy to see 𝜓(𝑔) = 1, since 𝑔 of order 7. So, the difficulty lies in computing the size 7𝐴 ∩ 𝐻.
There are certainly 6 elements of order 7 in 𝐻, but which are in 7A versus 7B? The key fact to
notice is that, if 𝑔 ∈ 7𝐴, 𝑔2, 𝑔4 ∈ 7𝐴 as well, and 𝑔−1 = 𝑔6, 𝑔3 and 𝑔5 are in 7𝐵, which one
verifies by checking the minimal polynomials of the two sets of elements (either 𝑥3 + 𝑥 +
1, 𝑥3 + 𝑥2 + 1). Thus,

𝜒𝑉𝜓
(𝑔) =

1
3(1 + 1 + 1) = 1,

for both 𝑔 ∈ 7𝐴, 7𝐵.

One can take the inner product ⟨𝜒𝑉𝜓
, 𝜒𝑉𝜓

⟩ and find that it is equal to 1, hence this new
representation is irreducible. Naming this representation 𝜒4, we find the character table so far to
be (from the previous section):

size: 1 21 56 42 24 24
1𝐴 2𝐴 3𝐴 4𝐴 7𝐴 7𝐵

𝜒1 1 1 1 1 1 1
𝜒2 6 2 0 0 −1 −1
𝜒3 7 −1 1 −1 0 0
𝜒4 8 0 −1 0 1 1
𝜒5 𝑑5 ? ? ? ? ?
𝜒6 𝑑6 ? ? ? ? ?

We know then from the general theory that we are missing two representations. We know that
the sum of the squares of the dimensions should equal the cardinality of the group, so

168 = 1 + 36 + 49 + 64 + 𝑑2
5 + 𝑑2

6 ⇒ 𝑑2
5 + 𝑑2

6 = 18.

It’s not hard to see the only way this is possible is that 𝑑5 = 3, 𝑑6 = 3.

§1.8 Tensor Products
We are often interested in generating new representations from exists ones. Suppose 𝑉1, 𝑉2

are two representations.

• Direct sum:

𝑉1 ⊕ 𝑉2,

with character 𝜒𝑉1⊕𝑉2
= 𝜒𝑉1

+ 𝜒𝑉2
.

• Hom representation: given by 𝐺 acting on

Homℂ(𝑉1, 𝑉2),

given by
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𝑔 ∗ 𝑇 = 𝑔 ∘ 𝑇 ∘ 𝑔−1, 𝑔 ∈ 𝐺, 𝑇 ∈ Homℂ(𝑉1, 𝑉2),

which had character 𝜒Homℂ(𝑉1,𝑉2) = 𝜒𝑉1
⋅ 𝜒𝑉2

.

• Dual representation: given by the action on 𝑉∗
1 ≔ Hom(𝑉1, ℂ) defined by 𝑔ℓ = ℓ ∘ 𝑔−1. This

gives 𝜒𝑉∗
1

= 𝜒𝑉1

We define now the tensor representation:

↪Definition 1.14 (Tensor Product) :  Given representations 𝑉1, 𝑉2, put

𝑉1 ⊗ 𝑉2 = Homℂ(𝑉∗
1 , 𝑉2).

Then, one readily verifies dim(𝑉1 ⊗ 𝑉2) = dim(𝑉1) ⋅ dim(𝑉2).

More concretely, let 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2. Then for ℓ ∈ 𝑉∗
1 , we can define

𝑣1 ⊗ 𝑣2(ℓ) ≔ ℓ(𝑣1) ⋅ 𝑣2 ∈ 𝑉2.

One readily verifies that this definition genuinely defines an element of Homℂ(𝑉∗
1 , 𝑉2).

One notices too that ⊗ is bilinear in both arguments, namely for any 𝑣1, 𝑣1′ ∈ 𝑉1, 𝑣2, 𝑣2′ ∈ 𝑉2, 
𝜆 ∈ ℂ and ℓ ∈ 𝑉∗

1 , then

(𝜆𝑣1 + 𝑣1′) ⊗ 𝑣2 = 𝜆(𝑣1 ⊗ 𝑣2) + (𝑣1′ ⊗ 𝑣2),

and also

𝑣1 ⊗ (𝜆𝑣2 + 𝑣2′) = 𝜆(𝑣1 ⊗ 𝑣2) + (𝑣1 ⊗ 𝑣2′).

Let 𝑒1, …, 𝑒𝑛 a basis for 𝑉1 and 𝑓1, …, 𝑓𝑚 a basis for 𝑉2, and consider 𝑣1 = 𝑎1𝑒1 + ⋯ + 𝑎𝑛𝑒𝑛, 𝑣2 =
𝑏1𝑓1 + ⋯ + 𝑏𝑚𝑓𝑚 for 𝑎𝑖, 𝑏𝑗 ∈ ℂ. Then, using the bilinearity, we find

𝑣1 ⊗ 𝑣2 = (𝑎1𝑒1 + ⋯ + 𝑎𝑛𝑒𝑛) ⊗ (𝑏1𝑓1 + ⋯ + 𝑏𝑚𝑓𝑚)

= ∑ 𝑎𝑖𝑏𝑗(𝑒𝑖 ⊗ 𝑓𝑗),

so we find from this that the elements 𝑒𝑖 ⊗ 𝑓𝑗 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 span 𝑉1 ⊗ 𝑉2 and hence
define a basis.

Now, 𝐺 acts on 𝑉1 ⊗ 𝑉2 by the rule

𝑔 ⋅ (𝑣1 ⊗ 𝑣2) = (𝑔𝑣1) ⊗ (𝑔𝑣2).

Hence, we find

𝜒𝑉1⊗𝑉2
= 𝜒Hom (𝑉∗

1,𝑉2) = 𝜒𝑉∗
1

⋅ 𝜒𝑉2
= 𝜒𝑉1

⋅ 𝜒𝑉2
,

using the character properties above.

We can also prove this directly. Let 𝑔 ∈ 𝐺 and let 𝑒1, …, 𝑒𝑛 be a basis for 𝑉1 of eigenvectors for 
𝑔, and 𝑓1, …, 𝑓𝑚 a basis for 𝑉2 of eigenvectors for 𝑔. Suppose 𝑔 ⋅ 𝑒𝑖 = 𝜆𝑖𝑒𝑖, 𝑔 ⋅ 𝑓𝑗 = 𝜇𝑗𝑓𝑗, for some 
𝜆𝑖, 𝜇𝑗 ∈ ℂ. Then,

𝑔 ⋅ (𝑒𝑖 ⊗ 𝑓𝑗) = (𝑔 ⋅ 𝑒𝑖) ⊗ (𝑔 ⋅ 𝑓𝑗) = (𝜆𝑖𝑒𝑖 ⊗ 𝜇𝑗𝑓𝑗) = (𝜆𝑖𝜇𝑗)(𝑒𝑖 ⊗ 𝑓𝑗).
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Hence, we find

tr(𝜌𝑉1⊗𝑉2
)(𝑔) = ∑

𝑖=1,…,𝑛
𝑗=1,…,𝑚

𝜆𝑖𝜇𝑗 = ∑
𝑛

𝑖=1
𝜆𝑖 ∑

𝑚

𝑗=1
𝜇𝑗 = 𝜒𝑉1

(𝑔) ⋅ 𝜒𝑉2
(𝑔).

⊛ Example 1.4 (𝐴5) :  Recall the character table of 𝐴5,

1 15 20 12 12
1𝐴 2𝐴 3𝐴 5𝐴 5𝐵

𝜒1 1 1 1 1 1
𝜒2 4 0 1 −1 −1
𝜒3 5 1 −1 0 0
𝜒4 3 −1 0 1 + 𝜁 + 𝜁 −1 1 + 𝜁 2 + 𝜁 −2

𝜒5 3 −1 0 1 + 𝜁 2 + 𝜁 −2 1 + 𝜁 + 𝜁 −1

We consider various tensors of representations:

1𝐴 2𝐴 3𝐴 5𝐴 5𝐵
𝑉2 ⊗ 𝑉3 9 1 0 −1 −1

which we notice to equal the character of 𝜒4 ⊕ 𝜒5; namely, 𝑉2 ⊗ 𝑉3 ≃ 𝑉4 ⊕ 𝑉5.

Also

1𝐴 2𝐴 3𝐴 5𝐴 5𝐵
𝑉2 ⊗ 𝑉4 12 0 0 −1−√5

2
−1+√5

2

from which we find

𝑉2 ⊗ 𝑉4 ≃ 𝑉3 ⊕ 𝑉4 ⊕ 𝑉5.

§1.9 Cute Applications of Representation Theory

1.9.1 The Pillaging Knights
Suppose we are given 𝑁 knights, whom, after a long night of pillaging, sit at a round table to

share their spoils of war. Each knight decides to split his earnings equally among his two
neighbors. What happens after many iterations?

The wealth distribution may be modelled as a function on ℤ/𝑁ℤ; each knight is identified
with some element of ℤ/𝑁ℤ, and the wealth is given by 𝑓 : ℤ/𝑁ℤ → ℂ. Then,

𝑓 ∈ 𝐿2(ℤ/𝑁ℤ) = ⨁
𝑁−1

𝑗=0
ℂ ⋅ 𝑒2𝜋𝑖𝑗𝑥/𝑁.

Then, “wealth distribution” can be seen as a function 𝑇 : 𝐿2 → 𝐿2 given by

𝑇𝑓 (𝑥) ≔
1
2(𝑓 (𝑥 − 1) + 𝑓 (𝑥 + 1)).
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Namely, we can view iterating 𝑇 as iteratively distributing wealth, so 𝑇𝑀𝑓 (𝑥) would be the
wealth associated to knight 𝑥 after 𝑀 distributions. To understand this operator, we can analyze
how it acts on a basis for 𝐿2(ℤ/𝑁ℤ); we know this is simply given by 𝑓𝑗(𝑥) ≔ 𝑒2𝜋𝑖𝑗𝑥/𝑁 where 𝑗 =
0, …, 𝑁 − 1. Then,

𝑇𝑓𝑗(𝑥) = 𝑇𝑒2𝜋𝑖𝑗𝑥/𝑁 =
1
2(𝑒2𝜋𝑖𝑗(𝑥+1)/𝑁 + 𝑒2𝜋𝑖𝑗(𝑥−1)/𝑁)

=
1
2(𝑒2𝜋𝑖𝑗/𝑁 + 𝑒−2𝜋𝑖𝑗/𝑁)𝑒2𝜋𝑖𝑗𝑥/𝑁

= cos(2𝜋𝑗/𝑁)𝑒2𝜋𝑖𝑗𝑥/𝑁.

Then, we may write the Fourier series expansion of 𝑓  as 𝑓 = ̂𝑓 (0)𝑓0 + ̂𝑓 (1)𝑓1 + ⋯ + ̂𝑓 (𝑁 − 1)𝑓𝑁−1,
so the Fourier expansion of 𝑇𝑓  is given by

𝑇𝑓 = ̂𝑓 (0)𝑓0 + ̂𝑓 (1) cos(
2𝜋
𝑁 )𝑓1 + ⋯ + ̂𝑓 (𝑁 − 1) cos(

2𝜋(𝑁 − 1)
𝑁 )𝑓𝑁−1,

and hence

𝑇𝑓 (𝑗) = ̂𝑓 (𝑗) cos(
2𝜋𝑗
𝑁 ).

Then, iterating 𝑇 (distributing wealth) 𝑀 times, one finds that

̂𝑇𝑀𝑓 (𝑗) = ̂𝑓 (𝑗)(cos(
2𝜋𝑗
𝑁 ))

𝑀
,

for each 𝑗 = 0, …, 𝑁 − 1. Letting 𝑀 → ∞, this term will go to zero unless 𝑗 = 0, in which case 
lim𝑀→∞ 𝑇𝑀𝑓 (0) = ̂𝑓 (0).

What does this mean? This means that in the limiting wealth distribution, call it 𝑇lim𝑓 , the
only Fourier coefficient that survives is the one associated to the constant function 1, namely,

𝑇lim𝑓 (0) = ̂𝑓 (0).

So, we find in particular for every 𝑥 ∈ ℤ/𝑁ℤ, by the Fourier inversion formula, that

𝑇lim𝑓 (𝑥) = ∑
𝑁−1

𝑗=0
𝑇lim𝑓 (𝑗) ⋅ 𝑓𝑗 = ̂𝑓 (0) =

1
𝑁 ∑

𝑁−1

𝑦=0
𝑓 (𝑦).

I.e., the limiting wealth distribution of every knight 𝑥 is simply the average of what they all
started with, so this splitting profit completely equalized the wealth around the table. How
equitable!

1.9.2 Functions on Mathematical Objects with Symmetry Groups
Let 𝑋 a “mathematical object”, 𝐺 a group of symmetries and 𝑉 = 𝐿2(𝑋) = ℂ-valued

functions on 𝑋. We assume 𝑋 finite (hence 𝐺 finite and 𝑉 finite). We are interested in studying
operators 𝑇 : 𝐿2(𝑋) → 𝐿2(𝑋).
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Suppose for instance 𝑋 a set of vertices of a graph; define for 𝜑 ∈ 𝐿2(𝑋), (𝑇𝜑)(𝑥) =
∑(𝑦,𝑥) an edge 𝜑(𝑦); 𝑇 the adjacent operator, extended to functions on ℂ. We claim 𝑇 commutes
with the action of 𝐺; write 𝑦 ∼ 𝑥 if the vertex 𝑦 adjacent to the vertex 𝑥:

(𝑇 ∘ 𝑔)(𝜑)(𝑥) = 𝑇(𝑔𝜑)(𝑥)

= ∑
𝑦∼𝑥

(𝑔𝜑)(𝑦)

= ∑
𝑦∼𝑥

𝜑(𝑔−1𝑦),

while on the other hand

(𝑔 ∘ 𝑇)(𝜑)(𝑥) = 𝑔(𝑇(𝜑))(𝑥)

= 𝑇(𝜑)(𝑔−1𝑥)

= ∑
𝑦∼𝑔−1𝑥

𝜑(𝑦),

which are equal upon change of index.

Suppose 𝑋 the faces of a cube, and 𝑉 = 𝐿2(𝑋). Define

𝑇𝜑(𝐹) =
1
4 ∑

𝐹′ adjacent to 𝐹
𝜑(𝐹′).

What is the spectrum of 𝑇?

↪Theorem 1.14 : If 𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑡, where the 𝑉𝑗’s are distinct irreducible representations of
𝐺, then 𝑇 maps 𝑉𝑗 to itself, and in particular acts as a scalar on 𝑉𝑗.

Proof. 𝑇 can be written as a 𝑡 × 𝑡 “matrix of matrices”, (𝑇𝑖𝑗), where 𝑇𝑖𝑗 : 𝑉𝑗 → 𝑉𝑖.
Moreover, each 𝑇𝑖𝑗 ∈ Hom𝐺(𝑉𝑗, 𝑉𝑖) (being 𝐺-equivariant). More specifically:

↑

𝜂𝑗

↑𝑇

↟

𝜋𝑖

↑𝑇𝑖𝑗

𝑉 𝑉

𝑉𝑗 𝑉𝑖

Where 𝜂𝑗 ∈ Hom𝐺(𝑉𝑗, 𝑉) the inclusion map, 𝜋𝑖 ∈ Hom𝐺(𝑉, 𝑉𝑖) the projection map
(one readily verifies they are actually 𝐺-equivariant) and by construction 𝑇 ∈
Hom𝐺(𝑉, 𝑉); hence, 𝑇𝑖𝑗 = 𝜋𝑖𝑇𝜂𝑗 ∈ Hom𝐺(𝑉𝑗, 𝑉𝑖). By Schur’s Lemma, then, 𝑇𝑖𝑗 =
{

0 if 𝑖≠𝑗
𝜆𝑖 if 𝑖=𝑗

.

So, if 𝑣 ∈ 𝑉𝑗, 𝑇(𝑣) ∈ 𝑉𝑗 since
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𝑇(𝑣) = 𝜋1𝑇(𝑣) + 𝜋2𝑇(𝑣) + ⋯ + 𝜋𝑡𝑇(𝑣)
= 𝑇1𝑗𝑣 + ⋯ + 𝑇𝑡𝑗𝑣

= 𝑇𝑗𝑗𝑣 = 𝜋𝑗𝑣.

■

Remark 1.5 :  More generally whenever 𝑇 : 𝑉 → 𝑉 is linear and 𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑡, then we
may write

𝑣 = (𝑣1, …, 𝑣𝑡)
𝑡,

where 𝑣𝑗 ∈ 𝑉𝑗 i.e. 𝑣 = 𝑣1 + ⋯ + 𝑣𝑡. In this notation,

𝑇𝑣 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛𝑇11

𝑇21
⋮

𝑇𝑡1

𝑇12
𝑇21

𝑇𝑡2

…
⋮

⋯

𝑇1𝑡
𝑇2𝑡

⋮
𝑇𝑡𝑡⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

⋅

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝑣1
𝑣2
⋮

𝑣𝑡⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

,

where 𝑇𝑖𝑗 ∈ Hom(𝑉𝑗, 𝑉𝑖).

1.9.3 Functions on a Cube
Let 𝑋 = set of faces of a cube, and 𝑉 = 𝐿2(𝑋) acted on by 𝐺 = 𝑆4, the symmetry group the

cube. Let 𝑇 : 𝑉 → 𝑉 be defined by

𝑇(𝜓)(𝑥) =
1
4 ∑

𝑦∼𝑥
𝜓(𝑦),

where 𝑦 ∼ 𝑥 means 𝑦, 𝑥 are adjacent faces; the sum is over all faces adjacent to 𝑥. Notice that 𝑇 is 
𝐺-equivariant; moreover we can view it as a 4-way “sharing” of the value on adjacent faces, as in
the knight example but now sitting on a cube rather than a circle.

We aim to decompose 𝐿2(𝑋) into a sum of irreducible representations. We have the character
table of 𝑆4;

1 6 3 8 6
1𝐴 2𝐴 2𝐵 3𝐴 4𝐴

𝜒1 1 1 1 1 1
𝜒2 1 −1 1 1 −1
𝜒3 2 0 2 −1 0
𝜒4 3 1 −1 0 −1
𝜒5 3 −1 −1 0 1

𝐿2(𝑋) 6 0 2 0 2

If 𝜒 the character of 𝐿2(𝑋) then 𝜒 = 𝑚1𝜒1 + ⋯ + 𝑚5𝜒5; we determine 𝑚𝑖 by taking the inner
product of 𝜒 with each of the irreducible characters; whence we may write
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𝐿2(𝑋) = 𝑉1 ⊕ 𝑉3 ⊕ 𝑉5

= {constant functions} ⊕ 𝐿2(𝑋)+,0 ⊕ 𝐿2(𝑋)−

We’ll say a function 𝜑 : 𝑋 → ℂ is even if 𝜑(𝑥) = 𝜑(𝑥′) where 𝑥′ the face opposite of 𝑥. The space,
call it 𝐿2(𝑋)+, of even functions is naturally 𝐺-stable; if 𝜑 ∈ 𝐿2(𝑋)+ and 𝑔 ∈ 𝐺, then 𝑔𝜑(𝑥) =
𝑔𝜑(𝑥′) while also 𝜑(𝑔−1)𝑥 = 𝑔𝜑(𝑥), 𝜑(𝑔−1𝑥′) = 𝑔𝜑(𝑥′), hence we find 𝜑(𝑔−1𝑥) = 𝜑(𝑔−1𝑥′),
hence 𝐺 sends even functions to even functions.

This space already contains constant functions, so we want to consider the complementary
space;

𝐿2(𝑋)+,0 ≔
⎩{
⎨
{⎧𝜑 : 𝑋 → ℂ | 𝜑 even and ∑

𝑥∈𝑋
𝜑(𝑥) = 0

⎭}
⎬
}⎫.

Similarly, consider 𝐿2(𝑋)− =space of odd functions = {𝜑 : 𝑋 → ℂ| 𝜑(𝑥′) = −𝜑(𝑥)}.

Our 𝑇 above preserves 𝑉1, 𝑉3, 𝑉5. Namely,

𝑇(𝟙𝑋) = 𝟙𝑋,

so 1 an eigenvalue with eigenvector “1”. If 𝜑 ∈ 𝑉5,

𝑇(𝜑) = 0,

so 0 an eigenvalue with multiplicity 3. If 𝜑 ∈ 𝑉3, suppose 𝜑 𝑎, 𝑏, 𝑐 on adjacent faces so 𝑎 + 𝑏 +
𝑐 = 0; then

𝑇(𝜑)(𝑥) =
1
4(𝑎 + 𝑎 + 𝑐 + 𝑐) = −

1
2𝑏 = −

1
2𝜑(𝑥),

so

𝑇𝜑 = −
1
2𝜑,

hence −1
2  an eigenvalue with multiplicity 2.

§2 Midterm Practice

↪Proposition 2.1 :  Let 𝐺 = 𝐷8 be the dihedral group of order 8. Write down the character
table of 𝐺.

Proof. We can realize 𝐺 as a subgroup of 𝑆4 by identifying vertices of the square with
numbers 1 through 4; this gives the following class equation for 𝐺:

𝐺 = {1} ⊔ {(13)(24)} ⊔ {(1234), (1432)} ⊔ {(12)(34), (14)(23)} ⊔ {(24), (13)}
≕ (1) ⊔ (2) ⊔ (3) ⊔ (4) ⊔ (5).

Remark that (1) ∪ (2) ≃ ℤ/2ℤ, and in particular is equal to the center of 𝐺. Hence, if
we let 𝜌 be a representation of 𝐺, we can “factor through” the center, and consider
instead

𝜌 : 𝐺/(1) ∪ (2) → Autℂ(𝑉).
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One readily verifies that 𝐺/(1) ∪ (2) ≃ 𝐾4, which is an abelian group hence every such
irreducible representation is one-dimensional, and in particular there are 4 of them. In
each, 𝜒((2)) = 𝜒((1)) = 1, and 𝜒 is always just a second root of unity (namely either 1
or minus 1). In particular, we can choose 𝜒((3)) and 𝜒((5)) to be either 1 or minus 1,
then 𝜒((4)) is must be equal to the product of these. This gives 4 total options;

(1) (2) (3) (4) (5)
𝜒1 1 1 1 1 1
𝜒2 1 1 1 −1 −1
𝜒3 1 1 −1 −1 1
𝜒4 1 1 −1 1 −1
𝜒5 2 −2 0 0 0

The last row can either be computed via orthogonality relations, or by considering the
action of 𝐷8 described in Proposition 1.2. ■

↪Proposition 2.2 :  Let 𝐺 be a finite group in which every element is conjugate to its inverse.
(a) Give an example of such a group.
(b) Show that the character of any complex representation of such a group is real-valued (all
the entries of the character table are real).

Proof. (a) 𝑆𝑛, among others.

(b) We know 𝜒(𝑔−1) = 𝜒(𝑔) (always). But if 𝑔 conjugate to 𝑔−1, since 𝜒 a class
function, 𝜒(𝑔−1) = 𝜒(𝑔) so combining these two equalities we find 𝜒(𝑔) = 𝜒(𝑔),
which is only possible if 𝜒(𝑔) real, namely has no imaginary part. ■

↪Proposition 2.3 :  Let 𝐺 a finite group and 𝜌 : 𝐺 → GL𝑛(ℝ) a homomorphism. Show that for
any integer 𝑡 ≥ 1, the matrix

𝑀 = ∑
order(𝑔)=𝑡

𝜌(𝑔)

is diagonalizable.

Proof. There exists a 𝐺-equivariant inner product (⋅, ⋅) on ℝ𝑛 (by replacing any
arbitrary inner product with an averaging over the group). Then, for any 𝑥, 𝑦 ∈ ℝ𝑛, we
find

(𝑀𝑥, 𝑦) = ∑
ord(𝑔)=𝑡

(𝜌(𝑔)𝑥, 𝑦) = ∑
ord(𝑔)=𝑡

(𝑥, 𝜌(𝑔)−1𝑦) =
⎝
⎜⎜⎜
⎛𝑥, ∑

ord(𝑔)=𝑡
𝜌(𝑔−1)𝑦

⎠
⎟⎟⎟
⎞,

but ord(𝑔) = ord(𝑔−1), so we may change indices 𝑔 → 𝑔−1 without changing the
summation, and find
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(𝑀𝑥, 𝑦) =
⎝
⎜⎜⎜
⎛𝑥, ∑

ord(𝑔)=𝑡
𝜌(𝑔)𝑦

⎠
⎟⎟⎟
⎞ = (𝑥, 𝑀𝑦),

hence 𝑀 = 𝑀∗, namely 𝑀 self-adjoint. By the spectral theorem, it follows that 𝑀
diagonalizable. ■

↪Proposition 2.4 : Let 𝜒 be the character of a 2-dimensional representation of a finite group 
𝐺, and assume that 𝑔 is of order 4 for which 𝜒(𝑔) = 0. Prove that 𝜒(𝑔2) is either plus or minus
2.

Proof. Suppose 𝜌(𝑔) = (𝑎
𝑐

𝑏
−𝑎), so 𝜒(𝑔) = 0 as needed. Then,

𝜌(𝑔2) = (𝑎2 + 𝑏𝑐
0

0
𝑎2 + 𝑏𝑐

),

so 𝜒(𝑔2) = 2(𝑎2 + 𝑏𝑐), while also 𝑔 of order 4 so

𝐼 = 𝜌(𝑔4) =
⎝
⎜⎜⎜
⎜⎛(𝑎2 + 𝑏𝑐)2

0

0

(𝑎2 + 𝑏𝑐)2
⎠
⎟⎟⎟
⎟⎞,

hence 𝑎2 + 𝑏𝑐 = ±1, and thus

𝜒(𝑔2) = ±2.

■

↪Proposition 2.5 :  Let 𝐷8 be the dihedral group on 4 elements and 𝑄 the group of
quaternions. Show that the group rings ℂ[𝐷8] and ℂ[𝑄] are isomorphic, but the group rings 
ℝ[𝐷8] and ℝ[𝑄] are not.

Proof. Recall from proving that the number of irreducible representations is equal to
the number of conjugacy classes of a group, we know

ℂ[𝐷8] = Endℂ(𝑉1) ⊕ ⋯ ⊕ Endℂ(𝑉5),

where 𝑉1, …, 𝑉5 enumerate the irreducible representations; recall that we have four 1-
dimensional representations and a final 2-dimensional representations, we find by
picking bases for each 𝑉𝑖 that

ℂ[𝐷8] = ℂ ⊕ ℂ ⊕ ℂ ⊕ ℂ ⊕ 𝑀2(ℂ).

But 𝑄 has the same number of irreducible representations with the same dimensions,
hence

ℂ[𝑄] = ℂ ⊕ ℂ ⊕ ℂ ⊕ ℂ ⊕ 𝑀2(ℂ),

hence the two are isomorphic.
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For ℝ[𝐷8], recall that all of the representations are real-valued, so we may realize
the same type of isomorphism, and fnd

ℝ[𝐷8] = ℝ ⊕ ℝ ⊕ ℝ ⊕ ℝ ⊕ 𝑀2(ℝ).

However, in 𝑄, all of the representations are real other than the 2-dimensional one,
which cannot be realized as a 2-dimensional representation over ℝ; however, as a
group ring,

ℝ[𝑄] = ℝ ⊕ ℝ ⊕ ℝ ⊕ ℝ ⊕ ℍ,

where ℍ the ring of Hamiltonian quaternions. This is a 4-dimensional real-vector
space (namely, we can identify it as a subspace of 𝑀4(ℝ) by identifying 𝑖 with (1

1
1

−1), 
𝑗 with (−1

1
1
1), and 𝑘 with (0

1
−1
0 )). Hence, these two real-valued group rings cannot be

isomorphic. ■

↪Proposition 2.6 : Write down the character table of the symmetry group 𝐺 = 𝑆4 of the cube.
Write the character of the permutation representation of 𝐺 acting on the 8 vertices of the cube,
and use the character table to write this character as a sum of irreducible characters.

Proof. See Table 1 for the character table of 𝐺 (and its derivation). The character 𝜒𝐶 of
the permutation representation is given, for each conjugacy class, the number of fixed
points of 𝐺 acting on the vertices (derived here):

1𝐴 2𝐴 2𝐵 3𝐴 4𝐴
𝜒𝐶 8 0 0 2 0

To write 𝜒𝐶 as a sum of irreducible characters, take the inner product of 𝜒𝐶 with each
irreducible character; one should find

𝜒𝐶 = 𝜒1 + 𝜒2 + 𝜒4 + 𝜒5.

■

↪Proposition 2.7 :  Let 𝐶 be a conjugacy class in a finite group 𝐺. Show that the element

𝛼𝐶 ≔ ∑
𝑔∈𝐶

𝑔 ∈ ℂ[𝐺]

belongs to the center of the complex group ring of 𝐺. If 𝜌 : 𝐺 → GL𝑛(ℂ) is an irreducible
representation of 𝐺, show that the matrix

𝜌(𝛼𝐶) ≔ ∑
𝑔∈𝐶

𝜌(𝑔) ∈ 𝑀𝑛(ℂ)

is a scalar matrix and write down the scalar in terms of the character of 𝜌.

Proof. If suffices to check that 𝛼𝐶 commutes with every ℎ ∈ 𝐺 since ℂ is obviously
commutative; we find
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ℎ𝛼𝐶ℎ−1 = ∑
𝑔∈𝐶

ℎ𝑔ℎ−1 = ∑
�̃�∈𝐶

̃𝑔 = 𝛼𝐶,

where the summation remains fixed under the change of indexing ̃𝑔 = ℎ𝑔ℎ−1, since
conjugacy classes are by virtue closed under conjugation.

Next, we can view 𝜌(𝛼𝐶) as a homomorphism 𝑉 → 𝑉 where 𝑉 = ℂ𝑛 the
corresponding vector space representation. In this case, the same proof as above gives
that 𝜌(𝛼𝐶) actually a 𝐺-equivariant homomorphism on 𝑉, and so by Schur’s Lemma, 
𝜌(𝛼𝐶) = 𝜆𝐼𝑛 for some 𝜆 ∈ ℂ. To compute 𝜆, we can compute traces; on the one hand,
we have tr(𝜆𝐼𝑛) = 𝑛 ⋅ 𝜆, while also

tr(𝜌(𝛼𝐶)) = ∑
𝑔∈𝐶

tr(𝜌(𝛼𝐶)) = ∑
𝑔∈𝐶

𝜒(𝑔) = #𝐶 ⋅ 𝜒(𝐶),

where 𝜒 the corresponding character of 𝜌, and where we use the fact that 𝜒 constant
on conjugacy classes. Comparing these, we conclude 𝜆 = #𝐶⋅𝜒(𝐶)

𝑛 ; noting that 𝑛 = 𝜒(1),
then

𝜌(𝛼𝐶) =
#𝐶 ⋅ 𝜒(𝐶)

𝜒(1) 𝐼𝑛.

■

↪Proposition 2.8 :  State Maschke’s Theorem about complex finite dimensional
representations of finite groups. Give a counterexample to illustrate that it can fail to be true
when 𝐺 = ℤ is the infinite cyclic group.

Proof. See Thm. 1.2 for the statement. The typical counter example is the two-
dimensional representation of ℤ given by 𝑛 ↦ (1

0
𝑛
1). One can show that while ℂ ⋅ 𝑒1

an irreducible one-dimensional subspace, there is no complementary irreducible one-
dimensional space. ■

↪Proposition 2.9 :  Let 𝑄 = {±1, ±𝑖, ±𝑗, ±𝑘} be the Quaternion group of order 8. What are the
dimensions of the irreducible representations of 𝑄? Realize the abstract group 𝑄 as a
“concrete” group of matrices with complex entries.

Proof. There are 4 irreducible representations of dimension 1, and a unique (faithful)
irreducible representation of dimension 2 (the first four can be found by modding out
the center of 𝑄 which gives a homomorphism to ℤ/2ℤ × ℤ/2ℤ; the last can be found
by just computing orthogonality relations).

The “concrete” realization, as a subgroup of GL2(ℂ), is given by 1 ↔ 𝐼2, −1 ↔ −𝐼2,
and

𝑖 ↔ (𝑖
0

0
−𝑖), 𝑗 ↔ (0

1
−1
0 ), 𝑘 ↔ ( 0

−𝑖
−𝑖
0 ),
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with −𝑖, −𝑗, −𝑘 defined in the obvious way (this, of course, up to conjugation of every
element; this certainly isn’t unique). ■

↪Proposition 2.10 :  Let 𝐶1, 𝐶2, 𝐶3 be three conjugacy classes in a finite group 𝐺, and let 
𝑁(𝐶1, 𝐶2, 𝐶3) be the number of solutions to the equation 𝑔1𝑔2𝑔3 = 1 with 𝑔𝑗 ∈ 𝐶𝑗 (with 1 ≤
𝑗 ≤ 3). Show that

𝑁(𝐶1, 𝐶2, 𝐶3) =
#𝐶1#𝐶2#𝐶3

#𝐺 ∑
𝜒

𝜒(𝐶1)𝜒(𝐶2)𝜒(𝐶3)
𝜒(1) ,

where the sum is taken over the irreducible characters 𝜒 of 𝐺, and 𝜒(𝐶𝑗) is a notation for 𝜒(𝑔)
with 𝑔 any element of 𝐶𝑗.

Proof. (A First Proof) The key observation is to notice that, using the notations of 3
questions ago, consider the element 𝛼𝐶1

𝛼𝐶2
𝛼𝐶3

∈ ℂ[𝐺];one notices that the coefficient
of this element corresponding to the identity in 𝐺 is equal to 𝑁(𝐶1, 𝐶2, 𝐶3). We’d like
to “pick out” this element, which we can do by taking the inner product of the element
with 𝜒reg, the character of the regular representation; this gives on the one hand

𝜒reg(𝛼𝐶1
𝛼𝐶2

𝛼𝐶3
) = #𝐺 ⋅ 𝑁(𝐶1, 𝐶2, 𝐶3).

On the other hand, we know that 𝜒reg = ∑𝜒 𝜒(1) ⋅ 𝜒, where the summation ranges
over the irreducible representations of 𝐺; so, it suffices to find the character of 
𝛼𝐶1

𝛼𝐶2
𝛼𝐶3

 on each representation. If 𝜌 an irreducible representation with character 𝜒,
then using three questions ago, we find

𝜒(𝛼𝐶1
𝛼𝐶2

𝛼𝐶3
) = tr(𝜌(𝛼𝐶1

)𝜌(𝛼𝐶2
)𝜌(𝛼𝐶3

))

= tr(
#𝐶1 ⋅ 𝜒(𝐶1)

𝜒(1) ⋅
#𝐶2 ⋅ 𝜒(𝐶2)

𝜒(1) ⋅
#𝐶3 ⋅ 𝜒(𝐶3)

𝜒(1) 𝐼𝜒(1))

= #𝐶1#𝐶2#𝐶3
𝜒(𝐶1)𝜒(𝐶2)𝜒(𝐶3)

𝜒(1)2 .

Hence, we find that

#𝐺 ⋅ 𝑁(𝐶1, 𝐶2, 𝐶3) = 𝜒reg(𝛼𝐶1
𝛼𝐶2

𝛼𝐶3
)

= ∑
𝜒

𝜒(1)𝜒(𝛼𝐶1
𝛼𝐶2

𝛼𝐶3
)

= #𝐶1#𝐶2#𝐶3 ∑
𝜒

𝜒(𝐶1)𝜒(𝐶2)𝜒(𝐶3)
𝜒(1) ,

giving the answer upon dividing both sides by #𝐺. ■

Proof. (A Second Proof) Recall the isomorphism of rings

𝜌 = (𝜌1, …, 𝜌ℎ) : ℂ[𝐺] → ⨁
ℎ

𝑖=1
Endℂ(𝑉𝑖),
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developed earlier to find the number of irreducible characters of a group. From
question 2., we know that

𝜌(𝛼𝐶1
𝛼𝐶2

𝛼𝐶3
) = (𝜌1(𝛼𝐶1

)𝜌1(𝛼𝐶2
)𝜌1(𝛼𝐶3

), …, 𝜌ℎ(𝛼𝐶1
)𝜌ℎ(𝛼𝐶2

)𝜌ℎ(𝛼𝐶3
))

=
⎝
⎜⎜⎛#𝐶1#𝐶2#𝐶3

𝜒1(𝐶1)𝜒1(𝐶2)𝜒1(𝐶3)
𝜒1(1) 𝐼𝜒1(1), …, #𝐶1#𝐶2#𝐶3

𝜒ℎ(𝐶1)𝜒ℎ(𝐶2)𝜒ℎ(𝐶3)
𝜒𝑔(1)

𝐼𝜒ℎ(1)
⎠
⎟⎟⎞

= #𝐶1#𝐶2#𝐶3 ⋅
⎝
⎜⎜⎛

𝜒1(𝐶1)𝜒1(𝐶2)𝜒1(𝐶3)
𝜒1(1) 𝐼𝜒1(1), …,

𝜒ℎ(𝐶1)𝜒ℎ(𝐶2)𝜒ℎ(𝐶3)
𝜒𝑔(1)

𝐼𝜒ℎ(1)
⎠
⎟⎟⎞,

where 𝜒𝑖 the character of 𝜌𝑖. Restricting to the vector space structure of ℂ[𝐺], we know
that ℂ[𝐺] ≃ 𝐿2(𝐺), the space of complex-valued functions on 𝐺. Then, notice that 
𝑁(𝐶1, 𝐶2, 𝐶3) is the coefficient of 𝛼𝐶1

𝛼𝐶2
𝛼𝐶3

 corresponding to 1 in the group ring, or,
viewing this element as a function, call it 𝑓 , in 𝐿2(𝐺), the value of 𝑓 (1). 𝐿2(𝐺) is
endowed with a natural inner product, and we can find 𝑓 (1) by taking the inner
product of 𝑓  with the function 𝛿1 : 𝐺 → ℂ given by 𝛿1(𝑔) = {1 if 𝑔= id

0 else
, which gives

⟨𝑓 , 𝛿1⟩ =
1

#𝐺 ⋅ 𝑓 (1).

On the other hand, there is a corresponding natural inner product on the vector space 
⨁ℎ

𝑖=1 Endℂ(𝑉𝑖). Namely, on each space Endℂ(𝑉𝑖), the natural inner product is

⟨𝐴, 𝐵⟩∗ ≔ tr(𝐴𝐵∗),

where 𝐵∗ denotes the conjugate transpose of 𝐵. Then, the inner product on the direct
sum of the spaces is given by the sum such inner products on each component, i.e.
given 𝐴 = (𝐴1, …, 𝐴ℎ), 𝐵 = (𝐵1, …, 𝐵ℎ), we define

⟨𝐴, 𝐵⟩+ ≔ ∑
ℎ

𝑖=1
tr(𝐴𝑖𝐵∗

𝑖 ).

I claim that this inner product is “equivalent” to the original one on 𝐿2(𝐺). Namely,
given 𝑓1, 𝑓2 ∈ 𝐿2(𝐺), note that 𝜌𝑖(𝑓2)∗ = 𝜌𝑖(𝑓2) = 𝜌𝑖(𝑓 −1

2 ), so we find

⟨𝜌(𝑓1), 𝜌(𝑓2)⟩+ = ∑
ℎ

𝑖=1
tr(𝜌𝑖(𝑓1)𝜌𝑖(𝑓2)∗)

= ∑
ℎ

𝑖=1
tr(𝜌𝑖(𝑓1)𝜌𝑖(𝑓 −1

2 ))

= ∑
ℎ

𝑖=1
tr(𝜌𝑖(𝑓1𝑓 −1

2 ))

= ∑
𝜒

𝜒(𝑓1𝑓 −1
2 )

Finally, notice that

𝜌(𝛿1) = (𝜌1(1), …, 𝜌ℎ(1)) = (𝐼𝜒1(1), …, 𝐼𝜒ℎ(1))
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From which we find

⟨𝜌(𝑓 ), 𝜌(𝛿1)⟩+ = ∑
ℎ

𝑖=1
tr(#𝐶1#𝐶2#𝐶3

𝜒𝑖(𝐶1)𝜒𝑖(𝐶2)𝜒𝑖(𝐶3)
𝜒𝑖(1) 𝐼𝜒𝑖(1))

= ∑
𝜒

#𝐶1#𝐶2#𝐶3 ⋅ 𝜒(𝐶1)𝜒(𝐶2)𝜒(𝐶3)

■

§3 Galois Theory
The original motivation of Galois Theory was the study of polynomial equations and so-

called “solvability by radicals”. More modernly, the motivation is in the study of fields via their
symmetries.

One original question was with solving the cubic equation, 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0. We outline
the proof here. Without loss of generality, one assumes 𝑎 = 1 and 𝑏 = 0, by dividing by 𝑎 (if 𝑎 =
0, this reduces to a quadratic) and making an appropriate summation. This gives the so-called
“depleted cubic” equation, we write

𝑥3 + 𝑝𝑥 + 𝑞 = 0.

Writing 𝑥 = 𝑢 + 𝑣, we find

(𝑢 + 𝑣)3 + 𝑝(𝑢 + 𝑣) + 𝑞 = 0

⇒ 𝑢3 + 𝑣3 + 3𝑢𝑣(𝑢 + 𝑣) + 𝑝(𝑢 + 𝑣) + 𝑞 = 0

⇒ [𝑢3 + 𝑣3 + 𝑞] + (3𝑢𝑣 + 𝑝)(𝑢 + 𝑣) = 0;

then, if 𝑢3 + 𝑣3 + 𝑞 = 0 and 3𝑢𝑣 + 𝑝 = 0, we find a solution; namely, we have now a system of
two equations

⎩{
⎨
{⎧𝑢3 + 𝑣3 = −𝑞

𝑢𝑣 = −𝑝
3

.

Cubing the second, we find

⎩{
{⎨
{{
⎧𝑢3 + 𝑣3 = −𝑞

𝑢3𝑣3 = −𝑝3

27

,

from which we see 𝑢3 and 𝑣3 are solutions to a quadratic equation

𝑥2 + 𝑞𝑥 −
𝑝3

27 = 0;

this equation is often called the “quadratic resolvent” of the cubic. Hence, by applying the
quadratic formula, we know

𝑢3, 𝑣3 =
−𝑞 ± √𝑝2 + 4𝑝3/27

2

so
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𝑢, 𝑣 =
3

⎷
√√
√

−𝑞 ± √𝑝2 + 4𝑝3/27
2 .

Substituting back to our original expression, we find our general solution

𝑥 =
3

⎷
√√
√

−𝑞 + √𝑝2 + 4𝑝3/27
2 +

3

⎷
√√
√

−𝑞 − √𝑝2 + 4𝑝3/27
2

to the cubic equation. One notices that this should give 9 solutions (3 cube roots exists, for each
cube root), and in general gives complex numbers. We’ll discuss the implications of this to
follow.

There is a similar formula for the general quartic equation, involving square, cube, and fourth
roots, with a similar method leading to a resolvent cubic. However, attempting the same method
for the quintic equation leads to a resolvent sextic equation, which is clearly no help at all. We’ll
see that this is intimately tied to the symmetries, namely, the symmetry groups, of the roots of
the respective polynomials.

§3.1 Field Extensions

↪Definition 3.1 (Field Extension):  If 𝐸 and 𝐹 are fields, we say 𝐸 is an extension of 𝐹 if 𝐹 is a
subfield of 𝐸; we’ll often denote 𝐸/𝐹.

Note that if 𝐸 an extension of 𝐹, then 𝐸 is also a vector space over 𝐹 (by “forgetting” the
multiplication).

↪Definition 3.2 (Degree) :  The degree of 𝐸 over 𝐹 is the dimension of 𝐸 as an 𝐹 vector space,
often denoted [𝐸 : 𝐹] = dim𝐹(𝐸). We call then 𝐸 a finite extension of 𝐹 if [𝐸 : 𝐹] < ∞.

⊛ Example 3.1 :
1. Consider 𝐸 = ℂ and 𝐹 = ℝ, then [𝐸 : 𝐹] = 2 (with, for instance, basis {1, 𝑖}).
2. Consider 𝐸 = ℂ and 𝐹 = ℚ, then [𝐸 : 𝐶] = ∞.
3. Let 𝐹 be any field and let 𝐸 = 𝐹[𝑥]/(𝑝(𝑥)) where 𝑝(𝑥) irreducible, hence 𝐸 is a field itself. 𝐸

an extension of 𝐹, since 𝐹 can be realized as a subfield via the constant polynomials in 𝐸.
Then, [𝐸 : 𝐹] = deg(𝑝(𝑥)).

4. Let 𝐸 = 𝐹(𝑥) = fraction field of 𝐹[𝑥] = { 𝑓 (𝑥)
𝑔(𝑥) | 𝑓 , 𝑔 ∈ 𝐹[𝑥], 𝑔 ≠ 0}. By similar reasoning to 3.,

this also an extension of 𝐹, but now [𝐸 : 𝐹] = ∞ (for instance, {𝑥𝑛 : 𝑛 ∈ ℕ} is an infinite,
linearly independent subset of 𝐸).

↪Theorem 3.1 (Multiplicativity of Degree) :  Given finite extensions 𝐾 ⊂ 𝐹 ⊂ 𝐸, we have

[𝐾 : 𝐸] = [𝐸 : 𝐹] ⋅ [𝐹 : 𝐾].
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Proof. Put 𝑛 ≔ [𝐸 : 𝐹], 𝑚 ≔ [𝐹 : 𝐾]. Let 𝛼1, …, 𝛼𝑛 be a basis for 𝐸 as an 𝐹-vector space
and 𝛽1, …, 𝛽𝑚 a basis for 𝐹 as a 𝐾-vector space. Now, notice that if 𝑎 ∈ 𝐸, then

𝑎 = 𝜆1𝛼1 + … + 𝜆𝑛𝛼𝑛,

for 𝜆𝑖 ∈ 𝐹. Then, 𝜆𝑖 may be viewed as elements of the vector space 𝐹 over 𝐾, so we may
write

𝜆𝑖 = 𝜆𝑖1𝛽1 + ⋯ + 𝜆𝑖𝑚𝛽𝑚,

for some 𝜆𝑖𝑗 ∈ 𝐾. Hence,

𝑎 = (𝜆11𝛽1 + ⋯ + 𝜆1𝑚𝛽𝑚)𝛼1 + (𝜆21𝛽1 + … + 𝜆2𝑚𝛽𝑚)𝛼2 + ⋯ + (𝜆𝑛1𝛽1 + ⋯ + 𝜆𝑛𝑚𝛽𝑚)𝛼𝑛

= ∑
1≤𝑖≤𝑛

∑
1≤𝑗≤𝑚

𝜆𝑖𝑗𝛼𝑖𝛽𝑗.

Since the representation in each basis {𝛼𝑖}, {𝛽𝑗} was unique, it must be that this
representation also unique. Thus, {𝛼𝑖𝛽𝑗}1≤𝑖≤𝑛

1≤𝑗≤𝑚
 is a 𝐾-basis for 𝐸, so dim𝐾(𝐸) = 𝑚 ⋅ 𝑛 =

dim𝐹(𝐸) ⋅ dim𝐾(𝐹). ■

§3.2 Ruler and Compass Constructions

↪Definition 3.3 :  A complex number is said to be constructible by ruler and compass if it can be
obtained from ℚ by successive applications of the field operations plus extractions of square
roots.

The set of elements constructible by ruler and compass is an extension of ℚ of infinite degree.
Namely, each extraction of a square root can be abstractly realized as adjoining a square root of
an element, say 𝑎, that doesn’t have a rational square root to ℚ, which forms a field extension 
ℚ(√𝛼). We can repeat this process, adjoining new elements and constructing further
extensions. A number is then solvable by constructible by ruler and compass if it is contained in
some field extension of ℚ obtained via some finite number of adjoinments of square roots.

↪Theorem 3.2 :  If 𝛼 ∈ ℝ is the root of an irreducible cubic polynomial over ℚ, then 𝛼 is not
constructible by ruler and compass.

Proof. Suppose otherwise, that 𝛼 is constructible. Then, there exists fields ℚ ⊆ 𝐹1 ⊆
𝐹2 ⊆ ⋯ ⊆ 𝐹𝑛 with [𝐹𝑖+1 : 𝐹𝑖] = [𝐹1 : ℚ] = 2 for each 𝑖 (namely, 𝐹𝑖+1 = 𝐹𝑖(√𝑎𝑖) for some
𝑎𝑖 in 𝐹𝑖 such that √𝑎𝑖 ∉ 𝐹𝑖). Hence, by multiplicativity we know [𝐹𝑛 : ℚ] = 2𝑛. On the
other hand, if 𝑝 the irreducible (over ℚ) cubic polynomial for which 𝛼 is a root, 
ℚ(𝛼) = ℚ[𝑥]/𝑝(𝑥), so [ℚ(𝛼) : ℚ] = 3.

So, it must be that 𝐹𝑛 an extension of 𝑄(𝛼) so [𝐹𝑛 : ℚ(𝛼)] = 𝑑 ∈ ℕ, but by
multiplicativity, 3𝑑 = 2𝑛 which is impossible.
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↑

3

↑

2𝑛

↑

𝑑
𝐹𝑛

ℚ(𝛼)

ℚ

■

⊛ Example 3.2 :
1. 𝑝(𝑥) = 𝑥3 − 2 has root 𝛼 = 3√2 (“duplicating the cube”).
2. 𝑝(𝑥) = 4𝑥3 + 3𝑥 + 1

2  has root 𝑟 = cos(2𝜋
9 ) (“trisection of the angle”).

§3.3 Automorphisms of Field Extensions

↪Definition 3.4 (Algebraic) :  An element 𝛼 in an extension 𝐸 over 𝐹 is said to be algebraic if it
is the root of a polynomial 𝑓 ∈ 𝐹[𝑥].

⊛ Example 3.3 :  √2, 𝑖 are algebraic over 𝑄, but 𝜋, for instance, is not. In fact, one can show the
set of algebraic numbers in ℝ over ℚ is countable.

↪Lemma 3.1 :  If 𝐸 a finite extension of 𝐹, any 𝛼 in 𝐸 is algebraic.

Proof. Put 𝑛 ≔ [𝐸 : 𝐹] and let 𝛼 ∈ 𝐸. Then, {1, 𝛼, …, 𝛼𝑛} must be a linearly dependent
subset of 𝐸, hence there must exist scalars 𝑎𝑖 ∈ 𝐹 such that 𝑎0 + 𝑎1𝛼 + ⋯ + 𝑎𝑛𝛼𝑛 = 0.
Letting 𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 completes the proof. ■

↪Definition 3.5 (Automorphisms of a Field Extension):  The automorphism group of 𝐸/𝐹 is
defined as the group

Aut(𝐸/𝐹) =
⎩{
⎨
{⎧

𝜎 : 𝐸 → 𝐸
𝜎(𝑥 + 𝑦) = 𝜎(𝑥) + 𝜎(𝑦)

𝜎(𝑥𝑦) = 𝜎(𝑥)𝜎(𝑦)
𝜎|𝐹 = id ⎭}

⎬
}⎫

.

In particular, 𝜎 ∈ Aut(𝐸/𝐹) respects the field structure on 𝐸, and leaves the distinguished
subfield 𝐹 in 𝐸 invariant.
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Remark 3.1 :  Note that an automorphism is a bĳection 𝐸 → 𝐸 which is a homomorphism of
rings. In particular, any homomorphism 𝜑 : 𝐸 → 𝐸 is automatically injective, so if [𝐸 : 𝐹] < ∞, 
𝜑 injective ⇔ 𝜑 surjective. This is because, assuming 𝜑(𝑥) = 0, then if 𝑥 ≠ 0, 1 = 𝜑(1) =
𝜑(𝑥)𝜑(𝑥−1) = 0, which is impossible unless 0 = 1, so 𝑥 = 0. Hence, we need not specify this
condition of bĳectivity in the definition above.

↪Corollary 3.1 :  𝜎(1) = 1, 𝜎(0) = 0 and 𝜎(𝑎−1) = 𝜎(𝑎)−1 for 𝜎 ∈ Aut(𝐸/𝐹).

↪Proposition 3.1 :  If [𝐸 : 𝐹] < ∞, Aut(𝐸/𝐹) acts on 𝐸 with finite orbits.

Proof. Let 𝛼 ∈ 𝐸, and 𝑓 (𝑥) = 𝛼𝑛𝑥𝑛 + ⋯ + 𝑎1𝑥 + 𝑎0 a polynomial with coefficients in 𝐹
such that 𝑓 (𝛼) = 0, which exists since 𝛼 must be algebra since [𝐸 : 𝐹] < ∞. Then, notice
that

𝜎(𝑓 (𝛼)) = 𝜎(0) = 0

on the one hand, while also

𝜎(𝑓 (𝛼)) = 𝜎(𝑎𝑛𝛼𝑛 + ⋯ + 𝑎1𝛼 + 𝑎0) = 𝑎𝑛𝜎(𝛼)𝑛 + ⋯ + 𝑎1𝜎(𝛼) + 𝑎0 = 𝑓 (𝜎(𝛼)),

using each of the defining axioms of Aut(𝐸/𝐹). Hence, 𝜎(𝛼) also a root of 𝑓 , and thus

OrbAut(𝐸/𝐹)(𝛼) ⊂ {roots of 𝑓 in 𝐸},

which is a finite set, since 𝑓  has finite degree 𝑛 hence at most 𝑛 roots. Thus, 
OrbAut(𝐸/𝐹)(𝜎) must also be finite. ■

Remark 3.2 :  Notice that we only used the fact that 𝛼 was algebraic, not the full scope of the
finiteness of 𝐸/𝐹. In fact, the same proof applies when 𝐸/𝐹 “algebraic”, namely when every
element of 𝐸 algebraic.

↪Theorem 3.3 :  If [𝐸 : 𝐹] < ∞, then #Aut(𝐸/𝐹) < ∞.

Proof. Let 𝛼1, …, 𝛼𝑛 generate 𝐸 over 𝐹 so 𝐸 = 𝐹(𝛼1, …, 𝛼𝑛). Then if 𝜎 ∈ Aut(𝐸/𝐹), it is
completely determined by the 𝑛-tuple (𝜎𝛼1, …, 𝜎𝛼𝑛). By the previous proof, we know
that

(𝜎𝛼1, …, 𝜎𝛼𝑛) ⊆ Orb𝐺(𝛼1) × ⋯ × Orb𝐺(𝛼𝑛),

where 𝐺 ≔ Aut(𝐸/𝐹). The set on the RHS is finite by the previous proof, and thus 𝜎  is
determined by a finite amount of “data”, and thus there can exist only finitely many 
𝜎 ’s. ■
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⊛ Example 3.4 :  If 𝐸/𝐹 generated by a single element 𝛼 (so 𝐸 = 𝐹(𝛼)), let 𝑝(𝑥) ∈ 𝐹[𝑥] be the
minimal polynomial of 𝛼. Then, 𝐹(𝛼) ≃ 𝐹[𝑥]/(𝑝(𝑥)), so [𝐹(𝛼) : 𝐹] = deg(𝑝(𝑥)). Then, 𝜎 ∈
Aut(𝐹(𝛼)/𝐹) completely determined by 𝜎(𝛼) ∈ {roots of 𝑝(𝑥)}. This set has cardinality at
most deg(𝑝(𝑥)) = [𝐹(𝛼) : 𝐹]; thus,

#Aut(𝐸/𝐹) ≤ [𝐸 : 𝐹].

We’ll see this holds more generally.

↪Theorem 3.4 :  If 𝐸/𝐹 is any finite extension of fields, then #Aut(𝐸/𝐹) ≤ [𝐸 : 𝐹].

Proof. We prove by induction on the number of generators of 𝐸 over 𝐹. Namely, we
write 𝐸 = 𝐹(𝛼1, …, 𝛼𝑛).

Let 𝑀 be any extension of 𝐹, fixed. We’ll consider the space Hom𝐹(𝐸, 𝑀), and we’ll
prove the slightly stronger statement that #Hom𝐹(𝐸, 𝑀) ≤ [𝐸 : 𝐹], which proves the
desired result by setting 𝑀 = 𝐸.

Consider 𝑛 = 1. Then, 𝐸 = 𝐹(𝛼) = 𝐹[𝛼], so

[𝐸 : 𝐹] = deg 𝑝𝛼(𝑥) ≕ 𝑑,

where 𝑝𝛼(𝑥) the minimal degree polynomial in 𝐹[𝑥] that is satisfied by 𝛼. Then, any 𝜑
in the space of interest Hom𝐹(𝐸, 𝑀) is completely determined by the image of 𝛼. In
particular, if 𝑝𝛼(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑑−1𝑥𝑑−1, then

0 = 𝜑(0) = 𝜑(𝑝𝛼(𝛼)) = 𝑎0 + 𝑎1𝜑(𝛼) + ⋯ + 𝑎𝑑−1𝜑(𝛼)𝑑−1 = 0,

so, the map 𝜑 ↦ 𝜑(𝛼) is an inclusion Hom𝐹(𝐸, 𝑀) → {roots of 𝑝𝛼(𝑥)}. Since the set on
the right is a set of size at most 𝑑, the proof follows.

Suppose now the case for 𝑛 and let 𝐸 = 𝐹(𝛼1, …, 𝛼𝑛+1), and let 𝐹′ = 𝐹(𝛼1, …, 𝛼𝑛). If 
𝐹′ = 𝐸, we’re done. Else, we have the set-up,

𝐹―𝑑1𝐹′ = 𝐹(𝛼1, …, 𝛼𝑛)―𝑑2𝐸 = 𝐹′(𝛼𝑛+1).

Let 𝑔(𝑥) ∈ 𝐹′[𝑥] be the minimal polynomial of 𝛼𝑛+1, so 𝑑2 = deg 𝑔(𝑥). Consider the
restriction map

Hom𝐹(𝐸, 𝑀) → Hom𝐹(𝐹′, 𝑀).

By the induction hypothesis, since 𝐹′ generated by 𝑛 elements, we have 
#Hom𝐹(𝐹′, 𝑀) ≤ 𝑑1 = [𝐹′ : 𝐹]. Now, give 𝜑0 ∈ Hom𝐹(𝐹′, 𝑀), we’d like to compute
how many 𝜑′ : 𝐸 → 𝑀 such that 𝜑|𝐹′ = 𝜑0. Really, then, we need to consider how many
options there are of 𝜑(𝛼𝑛+1). We know that 𝛼𝑛+1 is a root of 𝑔(𝑥) = 𝜆𝑑2

𝑥𝑑2 + ⋯ +
𝜆1𝑥 + 𝜆0 where 𝜆𝑗 ∈ 𝐹′. Then,

0 = 𝜑(𝑔(𝛼𝑛+1)) = 𝜑(𝜆𝑑2
)𝜑(𝛼𝑛+1)𝑑2 + ⋯ + 𝜑(𝜆1)𝜑(𝛼𝑛+1) + 𝜑(𝜆0).
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However, note that 𝜆𝑑2
 not in 𝐹 so 𝜑 not constant on the 𝜆𝑖’s, as in the previous case.

However, we can write then

= 𝜑0(𝜆𝑑2
)𝜑(𝛼𝑛+1)𝑑2 + ⋯ + 𝜑0(𝜆1)𝜑(𝛼𝑛+1) + 𝜑0(𝜆0),

so 𝜑(𝛼𝑛+1) is a root of the polynomial “𝜑0(𝑔(𝑥)) ∈ 𝑀[𝑥]”, by which we mean the
polynomial 𝑔(𝑥) with the coefficients evaluated on 𝜑0. There are at most 𝑑2 choices of
roots of this new polynomial, hence at most 𝑑2 choices for 𝜑(𝛼𝑛+1). Thus, we find

#Hom𝐹(𝐸, 𝑀) ≤ 𝑑1 ⋅ 𝑑2 = [𝐸 : 𝐹],

by multiplicativity of the degrees. ■

↪Definition 3.6 (Galois) :  An extension 𝐸/𝐹 is said to be Galois if #Aut(𝐸/𝐹) = [𝐸 : 𝐹], in
which case we write Gal(𝐸/𝐹) = Aut(𝐸/𝐹).

⊛ Example 3.5 :  Let 𝐸 = ℂ and 𝐹 = ℝ so [𝐸 : 𝐹] = 2. Then, the conjugation map

𝑐 : ℂ → ℂ, 𝑥 + 𝑖𝑦 ↦ 𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝑦

is an automorphism of ℂ/ℝ. So,

Aut(ℂ/ℝ) = {1, 𝑐};

there couldn’t possible be any more maps else the previous upper bound would be
contradicted.

⊛ Example 3.6 :  Let 𝐹 = ℚ and 𝐸 = ℚ(3√2) = ℚ[𝑥]/(𝑥3 − 2). We can also consider this as a
subfield of ℝ by identifying 3√2 with the distinct real cube root of 2. Then,

Aut(ℚ(3√2)/ℚ) ↔ {roots of 𝑥3 − 2 over ℚ(3√2)},

since 3√2 must be mapped to another element which cubes to 3. However, there is only one
such element, namely itself, so the only possible automorphism is the identity and so 
# Aut(ℚ(3√2)/ℚ) = 1 < 3.

3.3.1 A Thorough Example
Consider now 𝐹 = ℚ and 𝐸 = ℚ(3√2, 𝜁) where 𝜁 3 = 1 (but is not 1) so 𝜁  satisfies the quadratic

equation 𝑥2 + 𝑥 + 1; so, we can realize ℚ(3√2, 𝜁) ⊂ ℂ. Moreover, note that [ℚ(3√2, 𝜁) : ℚ] = 6;

we have as basis {1, 3√2, 3√2
2
, 𝜁 , 𝜁 3√2, 𝜁 3√2

2
}.

Alternatively, one can use the multiplicativity of the degree to deduce this number; this
“sequence of extensions” is visualized below.
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We wish to compute # Aut(𝐸/ℚ). Let 𝜑 be an automorphism; then, since 𝐸 generated by 3√2
and 𝜁 , 𝜑 is completely determined by what it maps 3√2 and 𝜁  to.

First, 𝜑(𝜁) must be a root of the polymomial 𝑥2 + 𝑥 + 1, so there are precisely two
possibilities, 𝜁  and 𝜁 . Similarly, 𝜑(3√2) must be a root of the polynomial 𝑥3 − 2 (in 𝐸). So, it may
of course map to 3√2, but also, since 𝜁 3 = 𝜁 3 = 1, 𝜁 ⋅ 3√2 and 𝜁 ⋅ 3√2 are also roots of 𝑥3 − 2. Hence,
there are 2 possibilities for 𝜑(𝜁) and 3 for 𝜑(3√2), for a total of 6 automorphisms.

We can more concretely determined the group structure of Aut(𝐸/ℚ). Being a group of order
6, it must be (isomorphic to) either ℤ/6ℤ or 𝑆3. We claim it is the second case. The easiest way to
show this is that Aut(𝐸/ℚ) can be made to act transitively on a set of 3 elements. Let 𝑟1 =
3√2, 𝑟2 = 𝜁 3√2, 𝑟3 = 𝜁 3√2 enumerate the roots of 𝑥3 − 2 in 𝐸. Then, the automorphisms in 
Aut(𝐸/ℚ) have a natural induced action on the roots. We can tabulate the possibilities; across
the top, we write what 𝜁  is mapped to by a given 𝜑, and across the left we write what 3√2 is
mapped to:

𝜁 → 𝜁 𝜁 → 𝜁
3√2 → 3√2 id (𝑟2𝑟3)

3√2 → 𝜁 3√2 (𝑟1𝑟2𝑟3) (𝑟1𝑟2)
3√2 → 𝜁 3√2 (𝑟1𝑟3𝑟2) (𝑟1𝑟3)

To compute these, consider for instance the 𝜑 such that 𝜑(𝜁) = 𝜁  and 𝜑(3√2) = 𝜁 3√2. Then, 
𝜑(𝑟1) = 𝑟2, and

𝜑(𝑟2) = 𝜑(𝜁 3√2) = 𝜑(𝜁)𝜑(3√2) = 𝜁𝜁 3√2 = 𝜁 3√2 = 𝑟3,

and finally

𝜑(𝑟3) = 𝜑(𝜁)𝜑(3√2) = 𝜁𝜁 3√2 = 3√2 = 𝑟1,

so, 𝜑 acts as the 3-cycle (𝑟1𝑟2𝑟3) on the set of roots.

Hence, we conclude that

Aut(𝐸/ℚ) = Gal(𝐸/ℚ) = 𝑆3.

§3.4 Properties of Galois Extensions
Throughout, we assume 𝐸/𝐹 a finite Galois extension, and we put 𝐺 = Gal(𝐸/𝐹).
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Denote by 𝐸𝐺 = {𝛼 ∈ 𝐸 | 𝑔𝛼 = 𝛼 ∀ 𝑔 ∈ 𝐺} the set of fixed points of 𝐸 under 𝐺.

↪Proposition 3.2 : 𝐸𝐺 is a subfield of 𝐸 which contains 𝐹, so we have the inclusion of
extensions 𝐸 ⊃ 𝐸𝐺 ⊃ 𝐹.

Proof. If 𝑥, 𝑦 ∈ 𝐸 are fixed under 𝐺, then 𝑔(𝑥 + 𝑦) = 𝑔𝑥 + 𝑔𝑦 = 𝑥 + 𝑦, with a similar
computation for products. So, 𝐸𝐺 closed under addition, multiplication and is
moreover a subfield.

For the second claim, note that by definition, automorphisms of 𝐸/𝐹 are constant on
elements of 𝐹, so certainly 𝐹 ⊂ 𝐸𝐺. ■

↪Theorem 3.5 :  𝐸𝐺 = 𝐹.

Proof. We have

𝐸―𝐸𝐺―𝐹,

of extensions. Consider now Aut(𝐸/𝐸𝐺). This certainly contains 𝐺 as a subgroup. We
know then

[𝐸 : 𝐹] = #𝐺 ≤ #Aut(𝐸/𝐸𝐺) ≤ [𝐸 : 𝐸𝐺].

But we know that [𝐸 : 𝐸𝐺] divides [𝐸 : 𝐹] by multiplicativity, so we conclude that [𝐸 :
𝐸𝐺] = [𝐸 : 𝐹] hence [𝐸𝐺 : 𝐹] = 1. Thus, 𝐸𝐺 = 𝐹. ■

↪Theorem 3.6 :  If 𝑓 (𝑥) is an irreducible polynomial in 𝐹[𝑥] which has a root in 𝐸, then 𝑓 (𝑥)
splits completely into linear factors in 𝐸[𝑥].

More generally for non-Galois groups, if an extension has this property, we say 𝐸/𝐹 is
normal.

Proof. Let 𝑟 ∈ 𝐸 be a root of 𝑓 (𝑥). Let {𝑟1, …, 𝑟𝑛} be the orbit of 𝑟 under the action of 𝐺
and consider the polymomial

𝑔(𝑥) = (𝑥 − 𝑟1)(𝑥 − 𝑟2)⋯(𝑥 − 𝑟𝑛)

= 𝑥𝑛 − 𝜎1𝑥𝑛−1 + 𝜎2𝑥𝑛−2 + ⋯ + (−1)𝑛𝜎𝑛 ∈ 𝐸[𝑥],

where 𝜎1, …, 𝜎𝑛 are the so-called “elementary symmetric functions” in 𝑟1, …, 𝑟𝑛.
Namely,
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𝜎1 = 𝑟1 + ⋯ + 𝑟𝑛,

𝜎2 = 𝑟1𝑟2 + 𝑟2𝑟3 + ⋯ + 𝑟𝑛−1𝑟𝑛 = ∑
1≤𝑖<𝑗≤𝑛

𝑟𝑖𝑟𝑗

𝜎3 = ∑
1≤𝑖<𝑗<𝑘≤𝑛

𝑟𝑖𝑟𝑗𝑟𝑘,

⋮
𝜎𝑛 = 𝑟1⋯𝑟𝑛.

Remark that each 𝜎𝑖 invariant under permutations of the 𝑟𝑖’s. Hence, in particular, 
𝜎𝑖 ∈ 𝐸𝐺; by construction, the 𝑟𝑖’s were defined as the orbit of our original root 𝑟 under
the action of 𝐺 i.e. 𝐺 acts on the set {𝑟1, …, 𝑟𝑛} by permutation. So, the expression 𝜎𝑖 is
an element of 𝐸, which is invariant under the action of 𝐺 and so by definition in 𝐸𝐺.
But remember, 𝐸/𝐹 Galois thus 𝐸𝐺 = 𝐹 so each 𝜎𝑖 ∈ 𝐹.

In particular, then, 𝑔(𝑥) a polynomial with coefficients in 𝐹 so 𝑔(𝑥) ∈ 𝐹[𝑥].
Remember our original 𝑓 (𝑥) is irreducible in 𝐹[𝑥] so namely is the minimal irreducible
polymomial on 𝑟 over 𝐹; any other polymomial that vanishes on 𝑟 must be divisible by 
𝑓 , hence 𝑓 (𝑥)|𝑔(𝑥), from which we conclude 𝑓 (𝑥) factors completely into linear factors
in 𝐸[𝑥]. ■

§3.5 Splitting Fields
Let 𝐹 be a field and 𝑓 (𝑥) ∈ 𝐹[𝑥].

↪Definition 3.7 (Splitting Field) :  A splitting field of 𝑓 (𝑥) is an extension 𝐸/𝐹 satisfying:

1. 𝑓 (𝑥) factors into linear factors in 𝐸[𝑥], namely,

𝑓 (𝑥) = (𝑥 − 𝑟1)⋯(𝑥 − 𝑟𝑛)

for 𝑟𝑖 ∈ 𝐸;
2. 𝐸 is generated as a field by the roots 𝑟1, …, 𝑟𝑛.

3.5.1 Construction of a Splitting Field
We’ll construct a splitting field by induction on deg(𝑓 (𝑥)) = 𝑛. If 𝑛 = 1, there’s nothing to do

and 𝐸 = 𝐹. Let then deg(𝑓 (𝑥)) = 𝑛 + 1 and let 𝑝(𝑥) be an irreducible factor of 𝑓 (𝑥). Then, let

𝐿 ≔ 𝐹[𝑥]/(𝑝(𝑥)).

𝐿 a field, since 𝑝 irreducible, and it contains a root of 𝑝(𝑥) and hence by 𝑓 (𝑥), by construction.
Let 𝑟 be the root of 𝑝(𝑥) in 𝐿; namely, recall that 𝑟 = 𝑥 + (𝑝(𝑥)). Then, 𝑥 − 𝑟 divides 𝑓 (𝑥) in 𝐿[𝑥],
so 𝑓 (𝑥) = (𝑥 − 𝑟)𝑔(𝑥) for some 𝑔 of degree 𝑛. By the induction hypothesis, we can construction 𝐸
to be a splitting field of 𝑔(𝑥) over 𝐿; then, in particular, 𝑓  also splits over 𝐸, so 𝐸 also a splitting
field of 𝑓 , completing the construction.

Pictorally, viewing 𝐿 as 𝐹 adjoining a root 𝑟1 of 𝑓 , we have:
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↑

↑

↑

↑

𝐹 𝑓 (𝑥)

𝐿 = 𝐹(𝑟1) (𝑥 − 𝑟1)𝑔(𝑥) = 𝑓 (𝑥)

𝐿2 = 𝐿(𝑟2) (𝑥 − 𝑟2)ℎ(𝑥) = 𝑔(𝑥)

⋮

𝐿𝑁 (𝑥 − 𝑟1)(𝑥 − 𝑟2)⋯(𝑥 − 𝑟𝑁) = 𝑓 (𝑥)

Noting that, by virtue, this process terminates after finitely many iterations since 𝑓  of fintie
degree.

Remark 3.3 :  It’s very hard to compute the degree of a splitting field of 𝑓 (𝑥), since at each
iteration of the construction several, or just a single, new root of the polynomial will be
adjoined.

In particular, if 𝑓 (𝑥) is irreducible of degree 𝑛 and 𝐸 the splitting field of 𝑓 (𝑥), then

𝑛 ≤ [𝐸 : 𝐹] ≤ 𝑛!.

The lower bound comes from the fact that we need to adjoin at least one root of 𝑓  to 𝐹 to get to
𝐸; if a single adjointment suffices to include all the roots of 𝑓 , then [𝐸 : 𝐹] = 𝑛. The upper
bound comes from the “worst-case”, where the first root adjoinment adds no other roots of 𝑓
to 𝐹(𝑟1), and 𝑓 (𝑥) = (𝑥 − 𝑟1)𝑔(𝑥) where 𝑔 irreducible over 𝐹(𝑟1), and this repeats at each
iteration (at each stage, only exactly one root is added). In this case, [𝐸 : 𝐹] = [𝐸 : 𝐹(𝑟𝑛)] ⋅
[𝐹(𝑟𝑛) : 𝐹(𝑟𝑛−1)]⋯[𝐹(𝑟1) : 𝐹] = 𝑛!.

§3.6 Properties of a Splitting Field

↪Theorem 3.7 :  If 𝑓 (𝑥) ∈ 𝐹[𝑥] and 𝐸, 𝐸′ are splitting fields of 𝑓 (𝑥) over 𝐹, then 𝐸 and 𝐸′ are
isomorphic as extensions of 𝐹 i.e. there is an isomorphisms of fields between 𝐸 and 𝐸′ that is
constant on 𝐹.

Proof. We proceed by induction on 𝑛 = deg(𝑓 (𝑥)).

If 𝑛 = 1, then 𝐸 = 𝐸′ = 𝐹.

Suppose the case for all polynomials of degree 𝑛 and take 𝑓  a polynomial of degree 
𝑛 + 1. Let 𝑝(𝑥) be an irreducible factor of 𝑓 (𝑥) and let 𝑟 be a root of 𝑝(𝑥) in 𝐸, 𝑟′ a root
of 𝑝(𝑥) in 𝐸′. Then, we have the “inclusion of fields”:
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↑ ↑

↑ ↑

𝐹

𝐹(𝑟) 𝐹(𝑟′)

𝐸 𝐸′

We know then that 𝐹(𝑟) and 𝐹(𝑟′) are isomorphic, since 𝐹(𝑟) = 𝐹[𝑥]/(𝑝(𝑥)) = 𝐹(𝑟′)
Let 𝜑 be an isomorphism from 𝐹(𝑟) to 𝐹(𝑟′).

Let 𝐿 = 𝐹(𝑟) =
𝜑

𝐹(𝑟′), so 𝐸, 𝐸′ are both extensions of 𝐿. Then, 𝐸 and 𝐸′ are both
splitting fields of 𝑔(𝑥) where 𝑔(𝑥)(𝑥 − 𝑟) = 𝑓 (𝑥). By the induction hypothesis, then, 
𝐸, 𝐸′ are isomorphic as extensions of 𝐿. ■

Remark 3.4 :  This theorem establishes a type of uniqueness of splitting fields, up to
isomorphism. However, remark that in constructing our isomorphism, we had to pick,
arbitrarily, roots 𝑟, 𝑟′ and “identify” them, so to speak. There is no canonical or natural way to
pick such roots. Hence, while the two splitting fields 𝐸, 𝐸′ are isomorphic, the possible
isomorphism between them is not unique.

↪Proposition 3.3 :  If 𝐸/𝐹 is Galois, then 𝐸 is the splitting field of a polynomial 𝑓 (𝑥) ∈ 𝐹[𝑥].

Proof. Since [𝐸 : 𝐹] < ∞, let 𝛼1, …, 𝛼𝑛 be a finite set of generators for 𝐸 over 𝐹. Let 
𝑓1, …, 𝑓𝑛 be irreducible polynomials in 𝐹[𝑥] having 𝛼1, …, 𝛼𝑛 as roots. Let 𝑓 (𝑥) =
𝑓1(𝑥)𝑓2(𝑥)⋯𝑓𝑛(𝑥). By normality, all the 𝑓𝑗’s factor completely in 𝐸[𝑥], hence so does 𝑓 .
So, the roots of 𝑓 (𝑥) generate 𝐸/𝐹 so 𝐸 is the splitting field of 𝑓 (𝑥). ■

§3.7 Finite Fields
If 𝐹 a finite field (a field that is finite as a set), then there is some unique minimal 𝑝 such that 

1 + ⋯ + 1 = 𝑝 ⋅ 1 = 0 (for if no such 𝑝 existed, 𝐹 would not be finite). Moreover, 𝑝 must be prime,
for if not then 0 = 𝑝 = 𝑎 ⋅ 𝑏 for nonzero elements 𝑎, 𝑏, so 𝑎, 𝑏 are zero divisors in 𝐹, which is
impossible since 𝐹 a field. We often denote by 𝑝 = char(𝐹), and call then ℤ/𝑝ℤ ⊂ 𝐹 the prime
(sub)field of 𝐹. Let 𝑛 = dim𝔽𝑝

(𝐹) be the dimension of 𝐹 as vector space over this prime field.
Then, we conclude #𝐹 = 𝑝𝑛; every finite field has cardinality a prime power.

Conversely, given some prime 𝑝 and some integer 𝑛, does there exist an integer 𝑛 such that 
#𝐹 = 𝑝𝑛? We’ll prove this in the affirmative.

↪Theorem 3.8 :  Given a prime 𝑝 and 𝑛 ≥ 1, there is a field of cardinality 𝑝𝑛; in fact, it is
unique up to isomorphism.

Proof. Note that if 𝐹 a field of cardinality 𝑝𝑛, 𝐹× is an abelian group of cardinality 
𝑝𝑛 − 1. Then, for every 𝑥 ∈ 𝐹×, 𝑥𝑝𝑛−1 = 1, so
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𝑥𝑝𝑛 − 𝑥 = 0, ∀ 𝑥 ∈ 𝐹 = 𝐹× ∪ {0}.

In particular, 𝐹 is the collection of roots of the polynomial of 𝑥𝑝𝑛 − 𝑥.

With this in mind, then, for a fixed prime 𝑝 and integer 𝑛 ≥ 1, let 𝐹 be the splitting
field of the polynomial 𝑥𝑝𝑛 − 𝑥 over 𝔽𝑝. We claim that 𝐹 has cardinality 𝑝𝑛.

Note that 𝑥𝑝𝑛 − 𝑥 has distinct roots in any extension of 𝔽𝑝. Since 𝑓 ′(𝑥) = −1 (in the
extension), we know that gcd(𝑓 (𝑥), 𝑓 ′(𝑥)) = 1 so there are no multiple roots. Hence, 
#𝐹 ≥ 𝑝𝑛. Conversely, note that the set of roots of 𝑥𝑝𝑛 − 𝑥 is itself a field; so, #𝐹 ≤ 𝑝𝑛 and
thus #𝐹 = 𝑝𝑛.

By the previous section, 𝐹 being a splitting field of a polynomial, it is unique up to
isomorphism, completing the proof of the theorem. ■

A natural extension of this theorem is to ask whether 𝐹 is Galois over 𝔽𝑝.

↪Definition 3.8 (Frobenius Homomorphism):  The map 𝜑 : 𝐹 → 𝐹 defined by 𝜑(𝛼) = 𝛼𝑝 is
called the Frobenius homomorphism of 𝐹.

Because 𝜑 is a homomorphism of fields, 𝜑 is an injection. 𝜑 is also 𝔽𝑝-linear, so 𝜑 in particular
an automorphism of 𝐹. So, 𝜑 ∈ Aut(𝐹/𝔽𝑝). What is the order of 𝜑? We know that

𝜑𝑘(𝛼) = 𝛼𝑝𝑘 ,

so we wish to find the minimal 𝑘 such that 𝛼𝑝𝑘 = 𝛼 for all 𝛼 ∈ 𝐹. Then, for such a 𝑘, the
polynomial 𝑥𝑝𝑘 − 𝑥 has at least 𝑝𝑛 roots in 𝐹 so it must be that 𝑘 ≥ 𝑛 since any polymomial has at
most its degree number of roots. But we know also that 𝜑𝑛 = id, since by the very construction
of 𝐹 as a splitting field, 𝛼𝑝𝑛 = 𝛼 for every 𝛼 ∈ 𝐹. So, 𝑘 = 𝑛 i.e. 𝜑 of order 𝑛 in Aut(𝐹/𝔽𝑝). Hence,
we know that ℤ/𝑛ℤ ⊂ Aut(𝐹/𝔽𝑝), in particular #Aut(𝐹/𝔽𝑝) ≥ 𝑛.

From the general theory, we also know that Aut(𝐹/𝔽𝑝) ≤ [𝐹 : 𝔽𝑝] = 𝑛, and thus we know
precisely that #Aut(𝐹/𝔽𝑝) = 𝑛. Thus, we have in summary the following theorem:

↪Theorem 3.9 :  𝐹 is a Galois extension of 𝔽𝑝, whose Galois group is the cyclic group ℤ/𝑛ℤ,
with a canonical generator given by the Frobenius automorphism. Concretely,

Gal(𝐹/𝔽𝑝) = {1, 𝜑, 𝜑2, …, 𝜑𝑛−1}.

⊛ Example 3.7 :  Let 𝑞 = 8 = 23, then 𝐹 = 𝔽2[𝑥]/(𝑥3 + 𝑥 + 1) a (really, the) field of cardinality 
8. By the theory we’ve developed here, we also know that 𝐹 the splitting field of the
polynomial 𝑥8 − 𝑥 over 𝔽2.

§3.8 Generalization of Galois
Here, we aim to extend some of the definitions from previous sections to apply to field

extensions of infinite degree.
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↪Definition 3.9 (Normal) :  An extension 𝐸/𝐹 is said to be normal if every irreducible
polynomial in 𝐹[𝑥] with a root in 𝐸 splits into linear factors in 𝐸[𝑥].

↪Theorem 3.10 : If 𝐸/𝐹 Galois, then 𝐸 is normal over 𝐹.

Proof. In the finite case this was proven Thm. 3.6. ■

We can present a (partial) converse to this statement subject to some technicality.

↪Definition 3.10 (Separable) :  An extension 𝐸/𝐹 is separable if every irreducible polynomial
with a root in 𝐸 has no multiple roots in 𝐸.

↪Proposition 3.4 :  If char(𝐹) = 0, every extension of 𝐹 is separable.

Proof. Let 𝑓 (𝑥) be irreducible in 𝐹[𝑥]. Suppose 𝑓 (𝑥) = (𝑥 − 𝑟)𝑒𝑔(𝑥) in 𝐸[𝑥]. Then,

𝑓 ′(𝑥) = 𝑒(𝑥 − 𝑟)𝑒−1𝑔(𝑥) + (𝑥 − 𝑟)𝑒𝑔′(𝑥).

Then, observe that if 𝑒 > 1, then 𝑟 still a root of 𝑓 ′(𝑥). In particular, then 𝑟 a root of 
gcd(𝑓 (𝑥), 𝑓 ′(𝑥)) ∈ 𝐹[𝑥].

Suppose now char(𝐹) = 0. Write

𝑓 (𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0, 𝑎𝑖 ∈ 𝐹,

so

𝑓 ′(𝑥) = 𝑛𝑎𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2 + ⋯ + 𝑎1.

Then, gcd(𝑓 , 𝑓 ′) must divide 𝑓 . But 𝑓  irreducible, so it must be that gcd(𝑓 , 𝑓 ′) = 1 or 𝑓 ;
clearly 𝑓  cannot divide 𝑓 ′ since 𝑓 ′ has degree 𝑛 − 1 and 𝑓  has degree 𝑛, and thus 
gcd(𝑓 , 𝑓 ′) = 1 from which we conclude from our observations above that 𝑓  cannot have
any multiple roots. ■

Remark 3.5 :  We implicitly used the assumption on the characteristic of the field when taking
the derivative; in particular, since char(𝐹) = 0, taking the derivative only reduced the degree
by 1, namely, 𝑛 ≠ 0. If, say, char(𝐹) = 𝑝, then for instance the polynomial of degree 𝑝, 𝑓 (𝑥) =
𝑥𝑝, has derivative 𝑓 ′(𝑥) = 𝑝𝑥𝑝−1 = 0, of degree 0. In this case, we find gcd(𝑓 , 𝑓 ′) = 𝑓 .

↪Theorem 3.11 : If 𝐸/𝐹 is finite Galois, then it is separable.

↪Theorem 3.12 :  If 𝐸/𝐹 is a finite, normal and separable, then 𝐸/𝐹 is Galois.
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Proof. Recall our proof of #Aut(𝐸/𝐹) ≤ [𝐸 : 𝐹]; the proof of this theorem is identical
to that one, but replacing certain inequalities with equalities using the extra
hypotheses of normality and separability.

We’ll prove by induction the more general statement #Hom𝐹(𝐾, 𝐸) = [𝐾 : 𝐹], where 
𝐹 ⊆ 𝐾 ⊆ 𝐸, inducting on the degree of 𝐾 over 𝐹.

Put 𝑛 ≔ [𝐾 : 𝐹]. If 𝑛 = 1, then Hom𝐹(𝐾, 𝐸) = Hom𝐹(𝐹, 𝐸) = {id} so this is trivial.

Suppose the case for 𝑛 − 1. Suppose firstly that 𝐾 = 𝐹(𝛼) = 𝐹[𝑥]/𝑝(𝑥) where 𝑝(𝛼) =
0 and 𝑝(𝑥) irreducible over 𝐹 with deg(𝑝) = [𝐾 : 𝐹]. Then,

Hom𝐹(𝐾, 𝐸) = Hom𝐹(𝐹(𝛼), 𝐸) = {roots of 𝑝(𝑥) in 𝐸},

since any homomorphism is constant on 𝐹 so determined by 𝛼. Namely, we try to
construct a ring homomorphism

𝜑 : 𝐹[𝑥]/𝑝(𝑥) → 𝐸

or equivalently, 𝜑 : 𝐹[𝑥] → 𝐸 such that 𝑝 ∈ ker(𝜑); hence 𝑝(𝜑(𝑥)) = 0.

By normality and separability, #{roots of 𝑝(𝑥) in 𝐸} = deg(𝑝(𝑥)) = [𝐾 : 𝐹].

Suppose now more generally that 𝐾 = 𝐹(𝛼1, …, 𝛼𝑡) = 𝐹(𝛼1, …, 𝛼𝑡−1)(𝛼𝑡) ≕ 𝐾𝑡−1(𝛼𝑡),
such that 𝐾𝑡−1 ⊊ 𝐾 (else, would be done). By assumption, [𝐾𝑡−1 : 𝐹] < [𝐾 : 𝐹] = 𝑛 so
our induction hypothesis applies and we know #Hom𝐹(𝐾𝑡−1, 𝐸) = [𝐾𝑡−1 : 𝐹]. We need
now to show that there are exactly [𝐾 : 𝐾𝑡−1] extensions of 𝜑0 : 𝐾𝑡−1 → 𝐸 for each 
𝜑0 ∈ Hom𝐹(𝐾𝑡−1, 𝐸).

Let 𝑝(𝑥) be the minimal polynomial of 𝛼𝑡 over 𝐾𝑡−1 so deg 𝑝(𝑥) = [𝐾 : 𝐾𝑡−1] and we
can identify 𝐾 = 𝐾𝑡−1[𝑥]/(𝑝(𝑥)). If 𝜑|𝐾𝑡−1

= 𝜑0, then since 𝑝(𝛼𝑡) = 0,

𝜑(𝑝(𝛼𝑡)) = 𝑝𝜑0(𝜑(𝛼𝑡)) = 0;

for, if

𝑝(𝑥) = 𝑎𝑚𝑥𝑚 + ⋯ + 𝑎1𝑥 + 𝑎0,

with 𝑎𝑖 ∈ 𝐾𝑡−1, then we denote

𝑝𝜑0(𝑥) = 𝜑0(𝑎𝑚)𝑥𝑚 + ⋯ + 𝜑0(𝑎1)𝑥 + 𝜑0(𝑎0),

i.e. 𝑝 with the coefficients evaluted on 𝜑0. Then, 𝜑0(𝑎𝑖) ∈ 𝐸 so 𝑝𝜑0(𝑥) ∈ 𝐸[𝑥]. So, 𝜑(𝛼𝑡)
a root of 𝑝𝜑0(𝑥) in 𝐸[𝑥].

We claim 𝑝𝜑0(𝑥) splits into distinct linear factors in 𝐸[𝑥]. It suffices to prove that 𝑝𝜑0

has a single root in 𝐸, by normality.

We know 𝑝(𝑥) has a root in 𝐸, namely 𝛼𝑡, so 𝑝(𝑥)|𝑔(𝑥) where 𝑔(𝑥) the minimal
polynomial of 𝛼𝑡 over 𝐹. By normality and separability, 𝑔 splits into linear factors over 
𝐸, and thus 𝑝𝜑0 |𝑔𝜑0. But 𝑔 has coefficients in 𝐹 so 𝑔𝜑0 = 𝑔 thus 𝑝𝜑0 |𝑔. so 𝑝𝜑0(𝑥) has
exactly [𝐾 : 𝐾𝑡−1] roots. Thus, we can conclude

#Hom𝐹(𝐾, 𝐸) = #Hom𝐹(𝐾𝑡−1, 𝐸) × #{extensions 𝜑 of 𝜑0 : 𝐾𝑡−1 → 𝐹}

= [𝐾𝑡−1 : 𝐹][𝐾 : 𝐾𝑡−1] = [𝐾 : 𝐹],
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so taking 𝐾 = 𝐸, we conclude

#Hom𝐹(𝐸, 𝐸) = #Aut(𝐸/𝐹) = [𝐸 : 𝐹].

■

This motivates the following definition generalization, with the benefit that it works for infinite
degree extensions.

↪Definition 3.11 (Galois Extension):  An extension 𝐸/𝐹 is said to be Galois if it is normal and
separable over 𝐹.

In summary we’ve proven the following:

↪Theorem 3.13 :  If 𝐸/𝐹 is a finite extension, then TFAE:
1. #Aut(𝐸/𝐹) = [𝐸 : 𝐹];
2. 𝐸 is normal and separable over 𝐹;
3. 𝐸 is a (“the”, up to isomorphism) splitting field of a separable polynomial over 𝐹.

↪Proposition 3.5 :  If 𝐸/𝐹 is a Galois extension and 𝐾 is any subfield of 𝐸 containing 𝐹, then 
𝐸/𝐾 is also Galois.

Proof. This is immediate from 3. of the previous theorem, and from 2.; if 𝛼 ∈ 𝐸, 𝐸/𝐹 is
normal and separable so there is a polynomial 𝑓 (𝑥) ∈ 𝐹[𝑥] which is irreducible, splits
into distinct linear factors in 𝐸, and satisfies 𝑓 (𝛼) = 0. Let 𝑔(𝑥) be the minimal
polynomial of 𝛼 over 𝐾 so 𝑔(𝑥) ∈ 𝐾[𝑥], 𝑔(𝛼) = 0 and 𝑔 irreducible. So, 𝑓 (𝑥) ∈ 𝐾[𝑥] as
well so it must be by minimality that 𝑔|𝑓 , in 𝐾[𝑥]. So, it must be that 𝑔 splits into
distinct linear factors in 𝐸[𝑥] since 𝑓  does. Hence, 𝐸/𝐾 normal and separable.

Another way of seeing this is the following, using part 1. Let 𝐺 = Gal(𝐸/𝐹) and 𝑋 =
Hom𝐹(𝐾, 𝐸). We saw last time that #𝑋 = [𝐾 : 𝐹]. We have a natural action of 𝐺 on 𝑋; if 
𝜑 ∈ 𝑋 and 𝜎 ∈ 𝐺, then define

𝜎 ∗ 𝜑 ≔ 𝜎 ∘ 𝜑.

It turns out that 𝑋 actually a transitive 𝐺-set. Previously, we showed that any 𝜑 : 𝐾 → 𝐸
extends to a map ̃𝜑 : 𝐸 → 𝐸; then if 𝜑1, 𝜑2 : 𝐾 → 𝐸, let 𝜎 = ̃𝜑1 ∘ ̃𝜑−1

2 . By the orbit-
stabilizer theorem, then, we find that

#𝑋 ⋅ #Stab𝐺(id : 𝐾 → 𝐸) = #𝐺.

We know #𝑋 = [𝐾 : 𝐹] and #𝐺 = [𝐸 : 𝐹]. Moreover, the elements of 𝐺 that fix id : 𝐾 →
𝐸 are precisely the number of elements that fix 𝐾, hence #Aut(𝐸/𝐾); so, rearranging,
we find

#Aut(𝐸/𝐾) =
[𝐸 : 𝐹]
[𝐾 : 𝐹],
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which is equal to [𝐸 : 𝐾] by multiplicativity. ■

Remark 3.6 :  Note that 𝐾 need not be Galois over 𝐹 in this setup.

↪Theorem 3.14 :  The map 𝐾 ↦ Gal(𝐸/𝐾) is an injection from {subfields 𝐹 ⊂ 𝐾 ⊂ 𝐸} →
{subgroups of Gal(𝐸/𝐹)}.

Proof. We can show there exists a left-inverse to this map, namely, given 𝐻 =
Gal(𝐸/𝐾), how can you recover 𝐾 from 𝐻? Let 𝐾 = 𝐸𝐻. ■

↪Corollary 3.2 :  If 𝐸/𝐹 is finite Galois, then there are finitely many fields 𝐹 ⊂ 𝐾 ⊂ 𝐸.

Proof. Gal(𝐸/𝐹) is a finite group so has finitely many subgroups. From the previous
theorem, then since the map from subfields to subgroupsis injective there are at most 
#{subgroups} distinct subfields. ■

↪Corollary 3.3 :  If 𝐸/𝐹 is any finite separable extension, then there are finitely many subfields
𝐹 ⊂ 𝐾 ⊂ 𝐸.

Proof. If 𝐸 is separable, 𝐸 is generated by 𝛼1, …, 𝛼𝑡 where the 𝛼𝑗 is the root of a
separable polynomial 𝑔𝑗(𝑥) ∈ 𝐹[𝑥]. Let �̃� be the splitting field of 𝑔1(𝑥)⋯𝑔𝑗(𝑥). Then, 
�̃�/𝐹 Galois, and 𝐸 ⊂ �̃�, hence by the previous corollary there are finitely many fields 
𝐹 ⊂ 𝐾 ⊂ �̃� and thus those 𝐾 which are also subsets of 𝐸 is less than this finite number.

■

Remark 3.7 :  𝐸/𝐹 separable is essential in this corollary. Consider 𝐹 = 𝔽𝑝(𝑢, 𝑣) the field of
rational functions in 𝑢, 𝑣, two indeterminates. Let 𝐸 = 𝐹(𝑢1/𝑝, 𝑣1/𝑝). Then, 𝐾𝛼 = 𝐹(𝑢1/𝑝 +
𝛼𝑣1/𝑝) for 𝛼 ∈ 𝐹 are distinct subfields of 𝐸 containing 𝐹. This extension not separable because 
𝑥𝑝 − 𝑢 = (𝑥 − 𝑢1/𝑝)

𝑝
 is irreducible over 𝐹 but has 𝑢1/𝑝 as a 𝑝-fold repeated root.

↪Theorem 3.15 (Primitive Element Theorem):  If 𝐸/𝐹 is finite and separable, then there exists
an 𝛼 ∈ 𝐸 such that 𝐸 = 𝐹(𝛼) = 𝐹[𝛼] ≃ 𝐹[𝑥]/(𝑝𝛼(𝑥)), where 𝑝𝛼(𝑥) is the minimal polynomial of
𝛼 in 𝐸/𝐹.

Proof. If the ground field 𝐹 is finite, then the result is clear because then 𝐸 is also
finite, so 𝐸× is cyclic so finitely generated.

Suppose then 𝐹 infinite. We know 𝐸 = 𝐹(𝛼1, …, 𝛼𝑛); we proceed by induction by 𝑛. If 
𝑛 = 1 we’re done. Suppose 𝑛 = 2, and let 𝐸 = 𝐹(𝛼, 𝛽). Consider 𝐸𝑡 ≔ 𝐹(𝛼 + 𝑡𝛽) where 
𝑡 ∈ 𝐹, which is an extension of 𝐹 and a subfield of 𝐸. There are infinitely many 𝑡’s, but
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by the previous theorem can only be finitely many 𝐸𝑡’s. In particular, there must be 
𝑡1, 𝑡2 ∈ 𝐹 such that 𝐸𝑡1

= 𝐸𝑡2
, namely

𝐸0 ≔ 𝐹(𝛼 + 𝑡1𝛽) = 𝐹(𝛼 + 𝑡2𝛽).

Then, 𝛼 + 𝑡1𝛽, 𝛼 + 𝑡2𝛽 ∈ 𝐸0, so in particular (𝑡1 − 𝑡2)𝛽 ∈ 𝐸0 (by subtracting), and by
construction 𝑡1 ≠ 𝑡2, so we can divide out and conclude 𝛽 ∈ 𝐸0. So, subtracting 𝑡1 ⋅ 𝛽
from 𝛼 + 𝑡1𝛽, we conclude 𝛼, 𝛽 ∈ 𝐸0, so 𝐸0 ⊃ 𝐸, but the converse was by construction,
so we conclude 𝐸0 = 𝐸.

Suppose the case for 𝑛 and let 𝐸 = 𝐹(𝛼1, …, 𝛼𝑛+1). We may rewrite this as 
𝐹(𝛼1, …, 𝛼𝑛)(𝛼𝑛+1). Applying the induction hypothesis, we find this equal to 𝐸 =
𝐹(𝛽)(𝛼𝑛+1) = 𝐹(𝛽, 𝛼𝑛+1), and so applying the 𝑛 = 2 case, we are done. ■

Remark 3.8 :  The separability assumption is key in the statement. Consider 𝐹 = 𝔽𝑝(𝑢, 𝑣) and 
𝐸 = 𝔽𝑝(𝑢1/𝑝, 𝑣1/𝑝), an extension of degree 𝑝2 over 𝐹. We claim there is no primitive element.
Suppose 𝛼 ∈ 𝐸 is such that 𝛼 = 𝑅(𝑢1/𝑝, 𝑣1/𝑝) =

𝑓 (𝑢1/𝑝,𝑣1/𝑝)

𝑔(𝑢1/𝑝,𝑣1/𝑝)
. then, 𝛼𝑝 = 𝑓 (𝑢,𝑣)

𝑔(𝑢,𝑣) ∈ 𝐹, so [𝐹(𝛼) :

𝐹] = 1 or 𝑝 for every 𝛼 ∈ 𝐸. In particular, this means 𝐹(𝛼) ≠ 𝐸. Hence, the primitive element
theorem doesn’t apply; there are infinitely many distinct subfields.

We glossed over the computation of the degree. Note that 𝑢1/𝑝 satisfies the polynomial 
𝑥𝑝 − 𝑢 which is irreducible. 𝑣1/𝑝 satisfies 𝑥𝑝 − 𝑣, which we claim has no roots in 𝐹(𝑢1/𝑝). If 
𝑣 = 𝑅(𝑢1/𝑝, 𝑣)

𝑝
= 𝑅(𝑢, 𝑣𝑝), which is impossible so 𝑣 not a 𝑝th power in 𝐹(𝑢1/𝑝). So, 

[𝐹(𝑢1/𝑝, 𝑣1/𝑝) : 𝐹] = 𝑝2 by multiplicativity.

We use this theorem to prove the converse of Thm. 3.14.

↪Proposition 3.6 :  [𝐸 : 𝐸𝐻] = #𝐻.

Proof. By the primitive element theorem, 𝐸 = 𝐸𝐻(𝛼) for some 𝛼 ∈ 𝐸. Consider 𝐻𝛼 =
orbit of 𝛼 under 𝐻 = {𝛼1, …, 𝛼𝑛}. We claim #𝐻𝛼 = #𝐻. It must be that Stab𝐻(𝛼) = {1},
since if 𝑔𝛼 = 𝛼, 𝑔 acts as the identity on 𝐸 hence equals id in 𝐻. From the orbit-
stabilizer theorem, we conclude the claim.

Consider then 𝑝(𝑥) = (𝑥 − 𝛼1)⋯(𝑥 − 𝛼𝑛) ∈ 𝐸𝐻[𝑥], which is in this space since upon
expansion each of the coefficients are fixed under 𝐻. 𝑝(𝛼) = 0; moreover, we claim 𝑝(𝛼)
is irreducible over 𝐸𝐻. 𝐻 acts transitively on the roots of the polynomial, by design, so
it must be irreducible; if it weren’t, then there would be two (or more) orbits of the
roots of the polynomial.

Thus, we conclude [𝐸 : 𝐸𝐻] = deg(𝑝) = 𝑛 = #𝐻. ■

↪Corollary 3.4 :  𝐻 = Gal(𝐸/𝐸𝐻).

In particular, this establishes the following maps:
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{ subfields
𝐹 ⊂ 𝐾 ⊂ 𝐸

} ⟶𝐾↦ Gal(𝐸/𝐾)

⟵
𝐸𝐻↤𝐻

{subgroups
𝐻 ⊂ 𝐺

}

and so

↪Theorem 3.16 (Galois Correspondance) :  These two maps are mutually inverse bĳections.

There is additionally a partial ordering on both of these sets by inclusion, and these maps
respect this ordering; namely,

𝐹 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ 𝐸 ⇒ Gal(𝐸/𝐾1) ⊃ Gal(𝐸/𝐾2),

and similarly

𝐻1 ⊂ 𝐻2 ⊂ 𝐺 ⇒ 𝐸𝐻1 ⊃ 𝐸𝐻2.

Namely, we say the Galois correspondance is “inclusion reversing”.

3.8.1 Computational Example
Let 𝐹 = ℚ and 𝐸 be the splitting field of 𝑥4 − 2. Let 𝑟 = 4√2 and 𝐸0 = ℚ(4√2) so 𝑥4 − 2 ∈

𝐸0[𝑥]. Moreover, we automatically gain another root, −4√2 ∈ 𝐸0, so this polynomial factors

𝑥4 − 2 = (𝑥 − 4√2)(𝑥 + 4√2)(𝑥2 + √2),

where here we are formally defining √2 = (4√2)
2
; this is no further reducible, so we need to

adjoin another element. Let 𝐸 = 𝐸0[𝑥]/(𝑥2 + √2). Note that then √−√2 = 𝑖4√2 = 𝑖𝑟; namely, we
can view 𝐸 = 𝐸0(𝑖𝑟) = 𝐸0(𝑖). So, we have

↑4

↑2
↑

8

ℚ

ℚ(𝑟)

𝐸 = ℚ(𝑟, 𝑖)

Then, there are 4 roots in 𝐸 of 𝑥4 − 2, namely ±4√2, ±𝑖4√2, and moreover 𝜎 ∈ Gal(𝐸/ℚ) is
determined by (𝜎(𝑟), 𝜎(𝑖)) where 𝜎(𝑟) can map to any root and 𝜎(𝑖) can map to 𝑖 or −𝑖.

Consider the automorphism 𝜎(4√2) = 𝑖4√2, 𝜎(𝑖) = 𝑖. Then, 𝜎  acts on the set of roots as a 4-
cycle. Another is 𝜏(4√2) = 4√2, 𝜏(𝑖) = −𝑖. Then, 𝜏 swaps ±4√2. In particular, 𝜎, 𝜏 then generated
the entire group, from which we readily see that Gal(𝐸/ℚ) ≃ 𝐷8.

Let us relabel Gal(𝐸/ℚ) = {1, 𝑟, 𝑟2, 𝑟3, 𝐷1, 𝐷2, 𝑉, 𝐻} in the familiar way, and explore all the
possible subfields on 𝐸. By the Galois correspondance, we can begin by loooking at the list of all
subgroups by inclusion:
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↑ ↑↑

↑ ↑↑↑ ↑ ↑ ↑

↑↑

↑

↑↑

{1, 𝑟, 𝑟2, 𝑟3} {1, 𝑉, 𝐻, 𝑟2}{1, 𝐷1, 𝐷2, 𝑟2}

{1, 𝑟2}{1, 𝐷1} {1, 𝐷2} {1, 𝑉} {1, 𝐻}

{1}

𝐷8

This is the so-called “lattice” of subgroups of 𝐷8. For each such subgroup 𝐻 ⊂ 𝐷8, we can
compute 𝐸𝐻 and find the following picture;

↑

2
↑

2

↑

2

↑2 ↑
2

↑ 2↑

2
↑

2
↑
2

↑

2

↑

2

↑

2
↑

2

↑

2

↑

2

ℚ

ℚ(√2) ℚ(𝑖) ℚ(√−2)

𝐸

ℚ(𝑖, √2)ℚ(4√2) ℚ(𝑖4√2) ℚ((1 + 𝑖)4√2) ℚ((1 − 𝑖)4√2)

3.8.2 Complements of Galois Correspondance

↪Proposition 3.7 :  If 𝜎 ∈ Gal(𝐸/𝐹) and 𝐹 ⊂ 𝐾 ⊂ 𝐸, 𝜎𝐾 = {𝜎𝑥 | 𝑥 ∈ 𝐾} is also a subfield of 
𝐸/𝐹. Moreover, if 𝐻 corresponds to 𝐾 under the Galois correspondance, then 𝜎𝐻𝜎−1

corresponds to 𝜎𝐾 under the correspondance.

↪Theorem 3.17 :  Given 𝐹 ⊂ 𝐾 ⊂ 𝐸, where 𝐸/𝐹 Galois, TFAE:
1. 𝜎𝐾 = 𝐾 for every 𝜎 ∈ Gal(𝐸/𝐹);
2. 𝐾 is Galois over 𝐹;
3. Gal(𝐸/𝐾) is a normal subgroup of Gal(𝐸/𝐹).

Proof. (1. ⇒ 3.) Let 𝐻 = Gal(𝐸/𝐾). 𝜎𝐾 = 𝐾 for all 𝜎 ∈ 𝐺 = Gal(𝐸/𝐹) implies, under
the Galois correspondance, 𝜎𝐻𝜎−1 = 𝐻 for every 𝜎 ∈ 𝐺 so in particular 𝐻 normal in 
𝐺.
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(1. ⇒ 2.) Restriction gives a homomorphism 𝜂 : Gal(𝐸/𝐹) → Aut(𝐾/𝐹) (noting that
this is only well-defined because of assumption 1; namely, since 𝐾 is “𝐺-stable” in a
sense, we can restrict the domain of 𝐺 to act only on 𝐾). We have that ker(𝜂) = {𝜎 :
𝜎 fixes 𝐾 pointwise} = Gal(𝐸/𝐾) hence by the isomorphism theorem 
Gal(𝐸/𝐹)/Gal(𝐸/𝐾) ↪ Aut(𝐾/𝐹). Counting the size of the LHS, we readily find

#(Gal(𝐸/𝐹)/Gal(𝐸/𝐾)) =
[𝐸 : 𝐹]
[𝐸 : 𝐾] = [𝐾 : 𝐹],

while #Aut(𝐾/𝐹) ≤ [𝐾 : 𝐹], so it must be that equality is achieved i.e. #Aut(𝐾/𝐹) =
[𝐾 : 𝐹], and in particular we find the isomorphism

Gal(𝐸/𝐹)/Gal(𝐸/𝐾) ≃ Gal(𝐾/𝐹).

Other directions left as an exercise.

(3. ⇒ 1.) Let 𝐻 ≔ Gal(𝐸/𝐾). We know by the previous proposition that for 𝜎 ∈
Gal(𝐸/𝐹), 𝜎𝐻𝜎−1 = Gal(𝐸/𝜎𝐾). But 𝐻 normal in Gal(𝐸/𝐾) so 𝜎𝐻𝜎−1 = 𝐻. By the
“mutual bĳectiveness” of the Galois correspondance, it must be that 𝜎𝐾 = 𝐾.

(2. ⇒ 1.) For every 𝜑 ∈ Gal(𝐾/𝐹), we know there are [𝐸 : 𝐾] extensions ̃𝜑 : 𝐸 → 𝐾
(which can thus be viewed 𝐸 → 𝐸 so in Gal(𝐸/𝐹)). Since #Gal(𝐾/𝐹) = [𝐾 : 𝐹], it follows
that we have [𝐾 : 𝐹] ⋅ [𝐸 : 𝐾] = [𝐸 : 𝐹] automorphisms of 𝐸/𝐹 which arise from
extensions of 𝜑 ∈ Gal(𝐾/𝐹), but this the entire size of the group so every such
automorphism is of this form and thus is invariant on 𝐾. ■

§3.9 Radical Extensions

↪Definition 3.12 (Radical Extension):  An extension 𝐸/𝐹 is called a radical extension if there
exists an integer 𝑛 ≥ 1 and element 𝑎 ∈ 𝐹 such that 𝐸 = 𝐹(𝑛√𝑎). I.e., assuming 𝑥𝑛 − 𝑎
irreducible in 𝐹[𝑥], then 𝐸 = 𝐹[𝑥]/(𝑥𝑛 − 𝑎).

↪Definition 3.13 (Tower of Radicals) :  A tower of radical extensions 𝐸/𝐹 is a sequence of
extensions

𝐹 = 𝐸0 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ ⋯ ⊂ 𝐸𝑛 = 𝐸,

where for each 𝑖 = 1, …, 𝑛, 𝐸𝑖 is a radical extension of 𝐸𝑖−1 i.e. 𝐸𝑖 = 𝐸𝑖−1(𝑛𝑖√𝑎𝑖) where 𝑎𝑖 ∈ 𝐸𝑖−1
and 𝑛𝑖 ≥ 1 an integer.

A classical question in Galois theory is whether every finite extension of ℚ is contained in a
tower of radical extensions; another way of phrasing this is given a polynomial 𝑓 (𝑥) ∈ ℚ[𝑥], can
its roots be expressed in terms of radicals?

Recall that we said an element 𝛼 ∈ ℂ is constructible if it is contained in a tower of quadratic
extensions. We saw that not every algebraic number 𝛼 was constructible by showing that if 
[ℚ(𝛼) : ℚ] = 3, 𝛼 is not constructible since any tower of quadratic extensions had to have a
degree of a power of 2 over ℚ. We’d like to similarly find some kind of invariant of a general
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radical extension. However, the degree of such an extension is too crude, without enough
structure. Rather, we’ll look at properties of the corresponding automorphism group of such
extensions.

3.9.1 Automorphism Groups of Radical Extensions
Let 𝐸 = 𝐹(𝑎1/𝑛) a radical extension. What can we say about Aut(𝐸/𝐹)? In general, it may be

trivial (For instance ℚ(3√2)/ℚ). What conditions do we need to put on 𝐹 for 𝐹(𝑎1/𝑛) ⊂ splitting
field of 𝑥𝑛 − 𝑎?

Given a single root 𝑎1/𝑛, then notice that every other root of the form 𝜁 𝑘𝑎1/𝑛 for 𝑘 = 0, …, 𝑛 − 1
where 𝜁  a primitive 𝑛th root of unity. Hence, we have the following:

↪Theorem 3.18 :  Suppose 𝐹 contains 𝑛 distinct 𝑛th roots of unity, and let 𝜇𝑛(𝐹) ≔ {𝑥 ∈
𝐹× | 𝑥𝑛 = 1} ≃ ℤ/𝑛ℤ be the group of such elements. Then, 𝐹(𝑎1/𝑛) is Galois with abelian
Galois group. Moreover, this group is canonically a subgroup of 𝜇𝑛(𝐹).

Proof. If 𝜎 ∈ 𝐹(𝑎1/𝑛), then 𝜎(𝑎1/𝑛) must map to some other element which, raising to
the 𝑛, equals 𝑎 itself. Then, since 𝐹 contains 𝑛 distinct 𝑛th roots of unity, then we know
moreover that

𝜎(𝑎1/𝑛) = 𝜁𝜎 ⋅ 𝑎1/𝑛,

where 𝜁𝜎 ∈ 𝜇𝑛(𝐹) a root of unity. Moreover, then, this root of unity completely
determines the action of 𝜎  so we may define a map

𝜂 : Aut(𝐹(𝑎1/𝑛)) → 𝜇𝑛(𝐹), 𝜎 ↦ 𝜁𝜎 , where 𝜎(𝑎1/𝑛) = 𝜁𝜎 ⋅ 𝑎1/𝑛.

Then, one verifies that this is a group homomorphism, and if 𝜎 ∈ ker(𝜂), then it must
be that 𝜁𝜎 = 1 so 𝜎 = idAut hence 𝜂 an injection. Thus, Aut(𝐹(𝑎1/𝑛)) can be realized as
a subgroup of 𝜇𝑛(𝐹), which is abstractly isomorphic to ℤ/𝑛ℤ, which is abelian thus 
Aut(𝐹(𝑎1/𝑛)) itself abelian.

Finally, 𝐹(𝑎1/𝑛)/𝐹 can be viewed as the splitting field of 𝑓 (𝑥) ≔ 𝑥𝑛 − 𝑎 over 𝐹, since it
contains all of the roots of 𝑓 , and is minimally generated. Thus, the extension is Galois
after all.

■

3.9.2 Solvable Groups and the Main Theorem of Galois

↪Definition 3.14 (Solvable) : A finite group 𝐺 is said to be solvable if there is a sequence of
subgroups

{1} ⊂ 𝐺1 ⊂ 𝐺2 ⊂ ⋯ ⊂ 𝐺𝑛 = 𝐺,

such that:
1. 𝐺𝑖−1 ◁ 𝐺𝑖 (𝐺𝑖−1 normal in 𝐺𝑖) for each 𝑖 = 1, …, 𝑛;
2. 𝐺𝑖/𝐺𝑖−1 is abelian for each 𝑖 = 1, …, 𝑛.
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Remark 3.9 :  A given 𝐺𝑖 need not be normal in the whole 𝐺, just 𝐺𝑖+1.

⊛ Example 3.8 :
1. Any abelian group is solvable, {1} ◁ 𝐺
2. 𝑆3 is solvable, {1} ◁ 𝐴3 ◁ 𝑆3
3. 𝑆4 is solvable, {1} ◁ 𝑉 ≔ {(), (12)(34), (13)(24), (14)(23)} ≃ ℤ/2ℤ × ℤ/2ℤ ◁ 𝐴4 ◁ 𝑆4, with

𝑆4/𝐴4 = ℤ/2ℤ, 𝐴4/𝑉 = ℤ/3ℤ.
4. 𝑆5 is not solvable; the only normal subgroup is 𝐴5, and 𝐴5 contains no normal subgroups

(indeed, then, 𝐴5 also not solvable).

We’ll assume throughout that the remainder that char(𝐹) = 0. The main theorem we’d like to
get at:

↪Theorem 3.19 : If 𝐸/𝐹 is a tower of radical extensions, then it is contained in a Galois
extension �̃�/𝐹 with solvable Galois group.

Namely, one can “detect” if a given field extension is a tower of radical extensions by checking if
it can be embedded in a Galois extension with solvable Galois group.

↪Proposition 3.8 :  If 𝐺 is a solvable group, then any quotient 𝐺 of 𝐺 is solvable.

Proof. Write

1 ◁ 𝐺1 ◁ 𝐺2 ◁ ⋯ ◁ 𝐺𝑛 = 𝐺.

For 𝐺 to be a quotient of 𝐺 means in particular that there is a surjective map 𝜂 : 𝐺 ↠ 𝐺.
Then, simply take the restriction of 𝜂 to each subgroup 𝐺𝑖, call this 𝜂𝑖 : 𝐺𝑖 ↠ 𝐺𝑖, i.e. 
𝐺𝑖 = 𝜂(𝐺𝑖). Then, 𝜂 induces a homomorphism

𝜂𝑖 : 𝐺𝑖/𝐺𝑖−1 → 𝐺𝑖/𝐺𝑖−1, 𝑎𝐺𝑖−1 ↦ 𝜂(𝑎)𝐺𝑖−1.

One readily verifies that this map surjective. Thus, 𝐺𝑖/𝐺𝑖−1 is the image of a surjective
map of an abelian group and thus abelian itself.

In particular, we have the following picture:

↟𝜂1 ↟𝜂2 ↟𝜂𝑛−1 ↟𝜂
{1} ◁ 𝐺1 ◁ 𝐺2 ◁ ⋯ ◁ 𝐺𝑛−1◁ 𝐺𝑛 = 𝐺

{1} ◁ 𝐺1 ◁ 𝐺2 ◁ ⋯ ◁ 𝐺𝑛−1◁ 𝐺𝑛

■
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Proof (Of Thm. 3.19) . Suppose 𝐹 = 𝐸0 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 = 𝐸 where 𝐸𝑖 = 𝐸𝑖−1(𝑎1/𝑚
𝑖 ) for 

𝑎𝑖 ∈ 𝐸𝑖−1. We prove by induction on 𝑛.

For 𝑛 = 1, 𝐸 = 𝐹(𝛼) with 𝛼𝑚 = 𝑎 ∈ 𝐹. Let �̃� be the splitting field of 𝑥𝑚 − 𝑎, i.e. �̃� =
𝐹(𝜁 , 𝛼) = 𝐹(𝜁)(𝛼). Then, we have the tower

𝐹 ⊂ 𝐹(𝜁) ⊂ 𝐹(𝜁)(𝛼).

Then, denoting 𝜎𝑎 ∈ Gal(𝐹(𝜁)/𝐹) which maps 𝜁 ↦ 𝜁 𝑎 (for 𝑎 ∈ (ℤ/𝑚ℤ)×), one readily
verifies 𝜎𝑎 ∘ 𝜎𝑏 = 𝜎𝑎𝑏 so in particular we obtain an injection

Gal(𝐹(𝜁)/𝐹) ↪ (ℤ/𝑚ℤ)×.

This gives in particular Gal(𝐹(𝜁)/𝐹) abelian. Then, since 𝜁 ∈ 𝐹(𝜁), it follows that 
Gal(𝐹(𝜁 , 𝛼)/𝐹(𝜁)) is also abelian, being a subgroup of ℤ/𝑚ℤ (more concretely, as the
group of 𝑚th roots of unity) as well. Finally, Gal(𝐹(𝛼, 𝜁)/𝐹) is abelian too since it is a
splitting field.

Let 𝐺1 = Gal(𝐹(𝜁 , 𝛼)/𝐹(𝜁)) and 𝐺 = Gal(𝐹(𝜁 , 𝛼)/𝐹). We claim 𝐺1 normal in 𝐺.
Indeed,

𝐹(𝜁 , 𝛼)𝐺1 = 𝐹(𝜁)

is Galois over 𝐹, and since under the Galois correspondance

𝐺 ↔ 𝐹, 𝐺1 ↔ 𝐹(𝜁), 1 ↔ 𝐹(𝜁 , 𝛼),

and since 𝐹(𝜁)/𝐹 is Galois, the corresponding Galois group 𝐺1 is normal in 𝐺, and so
again by the correspondance 𝐺/𝐺1 = Gal(𝐹(𝜁)/𝐹) ⊂ (ℤ𝑚ℤ)×. Thus, 𝐹(𝛼) ⊂ 𝐹(𝛼, 𝜁)
which is Galois with solvable Galois group, thus proving the base case.

Suppose the claim for 𝑛 − 1. We have

𝐸𝑛−1 ⊂ 𝐸𝑛 = 𝐸𝑛−1(𝛽)⊂

�̃�𝑛−1

,

where 𝛽𝑚 = 𝑏 ∈ 𝐸𝑛−1. By the induction hypothesis, �̃�𝑛−1/𝐹 is solvable.

Let {𝑏1, …, 𝑏𝑡} be the orbit of 𝑏 under Gal(�̃�𝑛−1/𝐹) and let

𝑔(𝑥) ≔ (𝑥𝑚 − 𝑏1)(𝑥𝑚 − 𝑏2)⋯(𝑥𝑚 − 𝑏𝑡).

Then, 𝑔 ∈ 𝐹[𝑥], since it’s coefficients are fixed under Gal(�̃�𝑛−1/𝐹). Let �̃�𝑛 be the
splitting field of 𝑔(𝑥) over 𝐹. In particular, we can write

�̃�𝑛 = �̃�𝑛−1(𝑚√𝑏1, 𝑚√𝑏2, …, 𝑚√𝑏𝑡, 𝜁),

where 𝜁  an 𝑚th root of unity. Then, we can view this as the following tower of
extensions:
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↑

⊂ (ℤ/𝑚ℤ)×

↑

𝐻

�̃�𝑛−1

�̃�𝑛−1(𝜁)

�̃�𝑛−1(𝜁, 𝑚√𝑏1, 𝑚√𝑏2, …, 𝑚√𝑏𝑡)

Then, we find that similar to the base case, Gal(�̃�𝑛−1(𝜁)/�̃�𝑛−1) ⊂ (ℤ/𝑚ℤ)×, and if
we put 𝐻 = Gal(�̃�𝑛/�̃�𝑛−1(𝜁)), automorphisms here are determined by how they act
on an 𝑡 tuple of 𝑚th roots, and thus

𝐻 ⊆ ℤ/𝑚ℤ × ⋯ × ℤ/𝑚ℤ,

so in particular 𝐻 abelian and 𝐻 ◁ 𝐺 ≔ Gal(�̃�𝑛/�̃�𝑛−1), and so that 𝐺/𝐻 ⊂ (ℤ/𝑚ℤ)×.
Thus, we find that 𝐺 is solvable and normal in Gal(�̃�𝑛/𝐹) and so Gal(�̃�𝑛/𝐹)/𝐺 is
solvable thus Gal(�̃�𝑛/𝐹) is solvable.

↑

↑

Galois + Solvable

↑

↑

↑
↑

↑

↑

⊂ (ℤ/𝑚ℤ)×

↑

�̃�𝑛 = �̃�𝑛−1(𝑏1/𝑚
1 , …, 𝑏1/𝑚

𝑡 )

𝐸𝑛 = 𝐸𝑛−1(𝑏1/𝑚)

𝐸𝑛−1

𝐹

�̃�𝑛−1

�̃�𝑛−1(𝜁)

■

↪Theorem 3.20 (Main Theorem of Galois) : If 𝑓 (𝑥) ∈ 𝐹[𝑥] is solvable by radicals, then Gal(𝑓 )
is a solvable group (where char(𝐹) = 0).

Proof. If 𝑓 (𝑥) is solvable, then 𝐸 the splitting field of 𝐹 is contained in a tower of
radical extensions. Therefore, 𝐸 is contained in a solvable extension of 𝐹, say �̃�;
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𝐹 ⊂ 𝐸 ⊂ �̃�.

If 𝐺 = Gal(𝐸/𝐹), then, 𝐺 is a quotient of �̃�/𝐹 and thus 𝐺 is solvable. ■

↪Theorem 3.21 :  If 𝑓 (𝑥) is a quintic polynomial and Gal(𝑓 ) = 𝑆5, then 𝑓 (𝑥) is not solvable by
radicals.

To show this theorem not vacuous, we first show that there exists such a polynomial, with 𝐹 =
ℚ.

↪Proposition 3.9 : Let 𝐺 be a transitive subgroup of 𝑆5 containing a transposition. Then, 𝐺 =
𝑆5.

Proof. 𝐺 transitive implies 5|#𝐺 by orbit-stabilizer so we can assume WLOG that 𝜎 =
(12345) ∈ 𝐺 and 𝜏 = (12) ∈ 𝐺. Conjugating 𝜏 by 𝜎, 𝜎2, 𝜎3, 𝜎4, we further find 
(23), (34), (45), (51) ∈ 𝐺. Further conjugating 𝜏 by (23) we find (13) ∈ 𝐺. We can then
conjugate this element by 𝜎 , and repeat, and ultimately find al the transpositions are
in 𝐺. Since such elements generate 𝑆5, we conclude 𝐺 = 𝑆5. ■

↪Proposition 3.10 :  Let 𝑓 (𝑥) be a polynomial of degree 5 satisfying:
1. 𝑓 (𝑥) is irreducible over ℚ;
2. 𝑓 (𝑥) has exactly three real roots.

Then, Gal(𝑓 ) = 𝑆5.

Proof. Let 𝑟1, …, 𝑟5 the roots of 𝑓  and so 𝐸 = ℚ(𝑟1, …, 𝑟5) the splitting field of 𝑓 . We
want to show that there exists an automorphism of order 2 that acts on the roots as a
transposition, since then by the previous proposition we’d be done since condition 1.
ensures Gal(𝐸/ℚ) is transitive acting on the roots.

We can embed 𝐸 ⊂ ℂ/ℝ. The only automorphisms of ℂ/ℝ are the identity and
complex conjugation. Then, restricting complex conjugation to 𝐸/ℚ, we find a
automorphism of order 2, and since 3 of the roots are real, this conjugation will leave
them fixed, hence we are indeed done. ■

We prove now a converse of Thm. 3.20:

↪Theorem 3.22 : Every solvable extension of 𝐹 is constructible by radicals.

Proof. We remark first:
1. It is enough to show this for abelian 𝐸/𝐹, since 𝐸 solvable so 𝐹 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 = 𝐸,

and each quotient abelian. So if we can prove for each “subextension”, we’re done.
2. We can assume 𝐹 contains the 𝑛th roots of unity where 𝑛 = [𝐸 : 𝐹] by just adjoining

them if not.
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Now, we can view 𝐸 as an 𝐹-linear representation of 𝐺 = Gal(𝐸/𝐹). Since 𝐺 abelian, we
know each of its irreducible representations are one-dimensional. We can write then

𝐸 = ⨁
𝜒∈�̂�

𝐸[𝜒],

̂𝐺 = Hom(𝐺, 𝐹×), 𝐸[𝜒] = {𝑣 ∈ 𝐸 | 𝜎𝑣 = 𝜒(𝜎)𝑣 ∀ 𝜎 ∈ 𝐺},

since we can identify one dimensional representations with maps into 𝐹× (where we
are crucially using that 𝐹 contains enough roots of unity).

We claim dim𝐹 𝐸[𝜒] ≤ 1. Suppose 𝑣 ∈ 𝐸[𝜒] and 𝑣 ≠ 0, and let 𝑤 ∈ 𝐸[𝜒]. We claim
they differ by a scalar. Consider 𝑤

𝑣 ∈ 𝐸. For any 𝜎 ∈ 𝐺

𝜎(
𝑤
𝑣 ) =

𝜎(𝑤)
𝜎(𝑣) =

𝜒(𝜎)𝑤
𝜒(𝜎)𝑣 =

𝑤
𝑣 ,

hence 𝑤
𝑣 ∈ 𝐸𝐺 = 𝐹 so 𝑤 = 𝜆𝑣 for some 𝜆 ∈ 𝐹. It follows that 𝐸[𝜒] = 𝐹 ⋅ 𝑣, so 𝐸[𝜒] has

dimension (at most) 1.

Let us compare now dimension on each side; on the one hand,

dim𝐹 𝐸 = [𝐸 : 𝐹] = #𝐺 = 𝑛,

while

dim𝐹 ⨁
𝜒

𝐸[𝜒] = ∑
𝑛

𝑖=1
dim𝐹 𝐸[𝜒] ≤ # ̂𝐺 = 𝑛,

so equality must actually be attained, and in particular each 𝐸[𝜒] must have
dimension one (i.e. every irreducible component ‘appears’ precisely once). Thus, we
find that 𝐸 is isomorphic to the regular representation of 𝐺, namely 𝐹[𝐺], as a
representation of 𝐺.

Remark 3.10 : This is in fact always true for abelian extensions, for general, not
necessarily abelian 𝐺.

For each 𝜒 ∈ ̂𝐺, let 𝑦𝜒 ∈ 𝐸[𝜒] be a basis (generator), so

𝐸 = 𝐹(𝑦𝜒 : 𝜒 ∈ ̂𝐺).

For any 𝜎 ∈ 𝐺, then

𝜎(𝑦𝑛
𝜒) = 𝜎(𝑦𝜒)

𝑛
= (𝜒(𝜎) ⋅ 𝑦𝜒)

𝑛
= 𝜒(𝜎)𝑛 ⋅ 𝑦𝑛

𝜒 = 𝑦𝑛
𝜒 ,

since 𝜒(𝜎) some 𝑛th root of unity, since 𝐺 abelian. So, 𝑦𝑛
𝜒 ≕ 𝑎𝜒 ∈ 𝐸𝐺 = 𝐹, and thus 

𝑦𝜒 = 𝑎
1
𝑛
𝜒  and in particular

𝐸 = 𝐹(𝑎1/𝑛
𝜒 : 𝜒 ∈ ̂𝐺),

completing the proof. ■

3.9.3 Solution to the Cubic, Revisted
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Recall we can write any cubic with distinct roots (over ℚ) as 𝑥3 + 𝑝𝑥 + 𝑞 = (𝑥 − 𝑟1)(𝑥 −
𝑟2)(𝑥 − 𝑟3) with 𝐺 ⊂ 𝑆3 the Galois group of 𝐸 = ℚ(𝑟1, 𝑟2, 𝑟3), which acts transitively on the roots
so either ℤ/3ℤ or 𝑆3. We have

ℚ −2 𝐾 −ℤ/3ℤ 𝐸.

Let 𝜎 = (𝑟1𝑟2𝑟2). We want to diagonalize 𝜎 . It should have eigenvalues 1, 𝜁  or 𝜁 2 where 𝜁  a
primitive 3rd root of unity. Consider 𝑣1 = 𝑟1 + 𝜁𝑟2 + 𝜁 2𝑟3, then 𝜎𝑣1 = 𝜁 2𝑣1 and 𝑣2 = 𝑟1 + 𝜁 2𝑟2 +
𝜁𝑟3, then 𝜎𝑣2 = 𝜁𝑣2. So, these two vectors are eigenvectors. There are a plethora of eigenvectors
with eigenvalue 1, such as the symmetric functions on 𝑟1, 𝑟2, 𝑟3. Then, we find in particular that

𝑣3
1, 𝑣3

2 ∈ 𝐸𝜎(𝜁) = 𝐾(𝜁),

and so

𝑟1 + 𝜁𝑟2 + 𝜁 2𝑟3 = 3√𝐴, 𝑟1 + 𝜁 2𝑟2 + 𝜁𝑟3 = 3√𝐵,

where 𝐴, 𝐵 ∈ 𝐾(𝜁). We don’t like 𝜁  here; if we add these two, we find

2𝑟1 − 𝑟2 − 𝑟3 = 3√𝐴 + 3√𝐵.

In particular, recall that in our “depleted cubic”, the sum of the roots equals zero, so this
simplifies

3𝑟1 = 3√𝐴 + 3√𝐵 ⇒ 𝑟1 = 3√ 𝐴
27 + 3√ 𝐵

27 .

Similarly, we can study the quartic equation. We have the chain of normal subgroups

𝑆4 ▷ 𝐴4 ▷ 𝑉(▷ {1, 𝜏} ▷) ▷ 1,

namely 𝑆4 solvable. Let 𝑓 (𝑥) be quartic and 𝐸 the splitting field of 𝑓 , assuming Gal(𝑓 ) = 𝑆4. By
this chain of normal subgroups above and the Galois correspondance, we should find a
corresponding sequence of subfields fixed by the corresponding subgroups

ℚ ⊂ 𝐾 ⊂ 𝐿 ⊂ 𝐿′ ⊂ 𝐸.

By looking at the degrees, the first would append a square root, the second a cube root, and the
last two another two square roots.

Consider 𝑉 ◁ 𝑆4. We know 𝐿 Galois over ℚ, and so Gal(𝐿/ℚ) = 𝑆4/𝑉 = 𝑆3. This seems to
imply we can reduce our quartic to a cubic! Suppose 𝑓  factors

𝑓 (𝑥) = (𝑥 − 𝑟1)(𝑥 − 𝑟2)(𝑥 − 𝑟3)(𝑥 − 𝑟4).

We seek a polynomial 𝑔(𝑥) ∈ ℚ[𝑥] such that the splitting field of 𝑔 is 𝐿. In particular, we wish to
find an element in 𝐸 that is fixed under 𝑉 but not globally fixed by 𝑆4. Consider 𝑟 ≔ 𝑟1𝑟2 + 𝑟3𝑟4.
It is fixed under 𝑉, but under the action of 𝑆4 can map to 𝑟1𝑟3 + 𝑟2𝑟4 and 𝑟1𝑟4 + 𝑟2𝑟3, so in
particular 𝑟 has 3 Galois conjugates. The minimal polynomial of 𝑟 (namely, the “cubic
resolvent”) can be written

𝑔(𝑥) = (𝑥 − (𝑟1𝑟2 + 𝑟3𝑟4))(𝑥 − (𝑟1𝑟3 + 𝑟2𝑟4))(𝑥 − (𝑟1𝑟4 + 𝑟2𝑟3)) ∈ 𝐸𝑆4[𝑥] = ℚ[𝑥].
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Let us assume 𝑓 (𝑥) = 𝑥4 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 where 𝑎, 𝑏, 𝑐 ∈ ℚ. We wish then to find the coefficients of
𝑔 in terms of 𝑎, 𝑏, 𝑐.

𝑔(𝑥) = 𝑥3 − (𝑟1𝑟2 + 𝑟3𝑟4 + 𝑟1𝑟3 + 𝑟2𝑟4 + 𝑟1𝑟4 + 𝑟2𝑟3)𝑥2 + ⋯

The quadratic term is the pairwise product, which we see to be equal to 𝑎 (namely the second
symmetric function) so 𝑔(𝑥) = 𝑥3 − 𝑎𝑥2 + ⋯. The remaining terms can be found with a little
more work, but ultimately are polynomials in 𝑎, 𝑏, 𝑐.

3.9.4 Back to Constructible Numbers
Recall that we showed that if a number 𝛼 is constructible by ruler and compass, then [ℚ(𝛼) :

ℚ] = 2𝑡 for some 𝑡 ≥ 0. Let 𝑓 (𝑥) be any irreducible polymomial of degree 8 over ℚ. Assume that
𝑓 (𝑥) has a Galois group 𝑆8. Then, [ℚ(𝛼) : ℚ] = 8, but we claim 𝛼 not solvable. Under the Galois
correspondance, we have the following setup then:

↑↑
↑↑

↑

8
↑

2

↑
4 ↑

↑
↑ ↑

𝑆7 ℚ(𝛼)

𝑆8 ℚ

𝐾𝐻

In particular, if ℚ(𝛼) were constructible, then we should be able to “insert” an intermediary
field 𝐾 such that it has a Galois group 𝐻 such that 𝑆8 ⊃ 𝐻 ⊃ 𝑆7. But this is not possible:

↪Proposition 3.11 :  For 𝑛 ≥ 4, 𝑆𝑛−1 is a maximal subgroup of 𝑆𝑛.

Proof. If such a subgroup existed, 𝐻 ⊂ 𝑆𝑛, then 𝑆𝑛 acts on 𝑆𝑛/𝐻 which implies a map
𝑆𝑛 ↠ 𝑆𝑡 for some 𝑡 < 𝑛. ■

This leads to an improved theorem:

↪Theorem 3.23 : 𝛼 is constructible by ruler and compass if and only if ℚ(𝛼) is contained in a
Galois 𝐸/ℚ with #Gal(𝐸/ℚ) = 2𝑡.

Indeed, this suggests the following theorem:

↪Theorem 3.24 : Every group of cardinality 𝑝𝑡 is solvable where 𝑝 prime.

Indeed, such a group must have nontrivial center 𝑍(𝐺). From here, one can proceed by
induction on 𝐺/𝑍(𝐺), which will now be a group of a smaller prime power.

§3.10 The Fundamental Theorem of Algebra
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Using some ideas from Galois theory (and a little group theory recall), we prove the
fundamental theorem of algebra:

↪Theorem 3.25 : ℂ is algebraically closed.

Recall that “algebraically closed” means that every polynomial 𝑓 ∈ ℝ[𝑥] splits into linear factors
in ℂ. So, we equivalently prove that there are no non-trivial extensions 𝐾 of ℂ over ℝ; for,
supposing 𝑓 ∈ ℝ[𝑥] has a root 𝑟 ∉ ℂ, then 𝐾 = ℂ(𝑟) an extension of ℂ. We show that no such 𝐾
can exist.

We’ll use the following facts:
1. Every polynomial of odd degree in ℝ[𝑥] has a root in ℝ (this is by the intermediate value

theorem, since if such a polynomial 𝑓  diverges to ±∞ at 𝑥 → ∞, then 𝑓 → ∓∞ at 𝑥 → −∞ and
thus must somewhere be equal to zero); thus every odd degree extension of ℝ is trivial.

2. Every quadratic equation in ℂ[𝑥] has a root in ℂ (just following from the quadratic formula).

Proof. Let 𝐾 be a finite extension of ℂ and 𝐾′ the Galois closure of 𝐾 over ℝ:

↑

𝑆

↑

↑

↑2

↑

𝑚

↑

𝐺

↑

𝐺0

↑

↑2

𝐾′ 𝐾

ℂ

ℝ

𝐹 𝐿

Let 𝐺 be the Galois group of 𝐾′ over ℝ. Then, #𝐺 = 2𝑡𝑚 for some 𝑚 odd, so by the
Sylow theorems, 𝐺 has a subgroup of cardinality 2𝑡, call it 𝑆, and let 𝐹 = (𝐾′)𝑆 be the
corresponding field extension over ℝ. Then, [𝐹 : ℝ] = 𝑚, which is odd. By the
previous remarks, 𝐹 = ℝ, and thus 𝑆 must equal 𝐺 and in particular #𝐺 = 2𝑡.

Let 𝐺0 ≔ Gal(𝐾′/ℂ), then #𝐺0 = 2𝑡−1. If 𝐺0 is nontrivial, then it contains a
subgroup 𝐺00 of index 2 in 𝐺0. Let 𝐿 = (𝐾′)𝐺00 be the corresponding field. Then, 𝐿 is a
quadratic extension of ℂ, which doesn’t exist and thus we have a contradiction, i.e. 
𝐿 = ℂ. Thus, it must be that 𝐺0 is trivial, and hence 𝐾′ = ℂ, and in particular 𝐾 = ℂ. ■

§3.11 Systematic Computation of Galois Groups
Consider a polynomial 𝑓  in variables 𝑥1, …, 𝑥𝑟 over ℚ, where 𝐺 ≔ Gal(𝑓 ) ⊆ 𝑆𝑛. Define the

resolvent of 𝑓  as

𝑅(𝑥1, …, 𝑥𝑛) ≔ ∏
𝜎∈𝑆𝑛

(𝑟1𝑥𝜎1 + 𝑟2𝑥𝜎2 + ⋯ + 𝑟𝑛𝑥𝜎𝑛).

This polynomial lives in 𝐸𝐺[𝑥1, …, 𝑥𝑛] = ℚ[𝑥1, …, 𝑥𝑛]. This polynomial factors, in ℚ[𝑥1, …, 𝑥𝑛],
into
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𝑅(𝑥1, …, 𝑥𝑛) = ∏
𝜎∈𝑆𝑛/𝐺 ⎩{

⎨
{⎧ ∏

𝜎∈Σ
(𝑟1𝑥𝜎1 + ⋯ + 𝑟𝑛𝑥𝜎𝑛)

⎭}
⎬
}⎫

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑅Σ

= ∏
Σ∈𝑆𝑛/𝐺

𝑅Σ,

where Σ iterates over the cosets of 𝑆𝑛/𝐺. Then, there is a natural action on the set of factors {𝑅Σ}
by left-multiplication on the indexing variable.

Moreover, this action is transitive.

↪Theorem 3.26 :  𝐺 = Stab𝑆𝑛
(𝑅1) where 𝑅1 = 𝑅𝐺 with 𝐺 being thought of as a coset in 𝑆𝑛/𝐺.

Proof. If 𝜏 ∈ 𝐺, then by changing indexing variable,

𝜏 ⋅ 𝑅𝐺 = ∏
𝜎∈𝐺

(𝑟1𝑥𝜏𝜎1 + ⋯ + 𝑟𝑛𝑥𝜏𝜎𝑛)

= ∏
𝜏𝜎∈𝐺

(𝑟1𝑥𝜏𝜎1 + ⋯ + 𝑟𝑛𝑥𝜏𝜎𝑛)

= ∏
𝜎∈𝜏−1𝐺

(𝑟1𝑥𝜏𝜎1 + ⋯ + 𝑟𝑛𝑥𝜏𝜎𝑛)

= 𝑅𝐺,

since 𝜏−1𝐺 = 𝐺 as 𝜏 ∈ 𝐺 itself. So, 𝐺 ⊂ Stab𝑆𝑛
(𝑅1). Moreover, by orbit-stabilizer,

#Stab𝑆𝑛
(𝑅1) =

#𝑆𝑛
#Orb(𝑅1)

.

But since the action transitive, #Orb(𝑅1) = number of factors of 𝑅 = size of 𝑆𝑛/𝐺 =
#𝑆𝑛/#𝐺. Thus, #Stab𝑆𝑛

(𝑅1) = #𝐺 from which we conclude Stab𝑆𝑛
(𝑅1) = 𝐺 indeed. ■

There are more efficient ways, particularly over finite field. Suppose 𝑓 (𝑥) ∈ 𝔽𝑝[𝑥]. Then, recall
that 𝑥𝑝 − 𝑥 has as factors every element in 𝔽𝑝. Then,

gcd(𝑓 (𝑥), 𝑥𝑝 − 𝑥) = ∏
𝑓 (𝑟)=0

(𝑥 − 𝑟).

This still isn’t necessarily easy, but one can begin by rewriting 𝑥𝑝 − 𝑥 mod 𝑓 (𝑥); one begins by

writing 𝑥𝑝 = 𝑥(𝑥
𝑝−1

2 )
2
 mod 𝑓 (𝑥). Then, one proceeds by computing via the Euclidean

algorithm, which will be on the order of about log(𝑝) (?).

Given some 𝑓 ∈ ℚ[𝑥], then, one can, through manipulation, place 𝑓 ∈ ℤ[𝑥] (by clearing
denominators, etc). Then, one can consider 𝑓 mod 𝑝 ∈ ℤ/𝑝ℤ[𝑥] for various 𝑝 to study its roots
using the above algorithm.

§3.12 “The Converse Problem of Galois Theory”
One natural converse to our work above is whether given a group 𝐺, does there exist an

extension 𝐸/ℚ with Gal(𝐸/ℚ) = 𝐺? This is still very much open, but the following holds:
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↪Theorem 3.27 : For any finite group 𝐺, there exists 𝐸/𝐹 with [𝐹 : ℚ] < ∞ with Gal(𝐸/𝐹) =
𝐺.

The idea is to:

1. Embed 𝐺 ⊂ 𝑆𝑛 (Lagrange), and suppose wlog 𝑛 prime.
2. We see 𝐸/ℚ is an extension with Galois group 𝑆𝑛.
3. Let 𝐹 = 𝐸𝐺, then by Galois correspondance Gal(𝐸/𝐹) = 𝐺.

§4 Final Exercises

↪Proposition 4.1 :  Let 𝑓 (𝑥) be an irreducible polynomial over 𝐹 and assume that 𝑓 (𝑥)/(𝑥 − 𝑟)
remains irreducible over 𝐹(𝑟) where 𝑟 is a root of 𝑓 (𝑥). Show that the Galois group of 𝑓 (𝑥) over
𝐹 acts doubly transitively on the set of roots of 𝑓 .

Proof. Denote by 𝐸 the splitting field of 𝑓  over 𝐹. Let 𝑟1 ≠ 𝑟3 and 𝑟2 ≠ 𝑟4 be four roots
of 𝑓  in 𝐸. Since Gal(𝐸/𝐹) acts transitively on the roots, let 𝜑 such that 𝜑(𝑟1) = 𝑟2. We
know then 𝜑(𝑟3) some other root of 𝑓 , not equal to 𝑟2 since 𝑟1 ≠ 𝑟3. Then, 𝑓 (𝑥)/(𝑥 − 𝑟2)
remains irreducible in 𝐹(𝑟2)/𝐹, hence Gal(𝐸/𝐹(𝑟2)) acts transitively on the set of roots
of 𝑓 , minus 𝑟2. So, let 𝜓 in this group such that 𝜓(𝜑(𝑟3)) = 𝑟4. Then, 𝜓 will fix 𝑟2, thus

𝜓 ∘ 𝜑(𝑟1) = 𝜓(𝑟2) = 𝑟2, 𝜓 ∘ 𝜑(𝑟3) = 𝑟4,

and 𝜓 ∘ 𝜑 ∈ Gal(𝐸/𝐹), completing the proof of double transitivity.

■

↪Proposition 4.2 :  Suppose that 𝑓 (𝑥) is a polynomial of degree 𝑛 over 𝐹 = ℚ satisfying the
hypotheses in Q1, and assume that 𝑓 (𝑥) has exactly 𝑛 − 2 real roots. Show that the Galois
group of 𝑓 (𝑥) is equal to 𝑆𝑛.

Proof. The existence of a pair of complex conjugate roots means there is a
transposition in 𝐺 = Gal(𝑓 ). 𝐺 then a doubly-transitive subgroup of 𝑆𝑛 containing a
transposition, which we assume wlog is (𝑟1𝑟2) acting on the set of roots of 𝑓 . For any
two roots 𝑟3 ≠ 𝑟4, pick 𝜑 ∈ 𝐺 such that 𝜑(𝑟3) = 𝑟1, 𝜑(𝑟4) = 𝑟2, appealing to double-
transitivity. Then,

(𝜑−1 ∘ (𝑟1𝑟2) ∘ 𝜑)(𝑟𝑘) =

⎩{
{⎨
{{
⎧𝑟4 if 𝑘 = 3

𝑟3 if 𝑘 = 4
𝑟𝑘 o.w.

,

hence 𝜑−1 ∘ (𝑟1𝑟2) ∘ 𝜑 = (𝑟3𝑟4). In this manner, we can generate every transposition in 
𝐺, hence since such elements generate 𝑆𝑛, we conclude 𝐺 = 𝑆𝑛. ■
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↪Proposition 4.3 :  Let 𝐺 be a finite group. Show that there exists fields 𝐸 ⊃ 𝐹 for which 
Gal(𝐸/𝐹) is isomorphic to 𝐺.

Proof. Let 𝑛 be such that 𝐺 ⊂ 𝑆𝑛, appealing to Lagrange; assume wlog 𝑛 is prime.
Then, let 𝑓 (𝑥) ∈ ℚ[𝑥] be an irreducible polynomial with exactly 2 complex roots and 
𝑛 − 2 real roots. Let 𝐸 be the splitting field of 𝑓 (𝑥) over ℚ. Then, we claim 𝐻 ≔
Gal(𝐸/ℚ) = 𝑆𝑛.

First, 𝐻 acts transitively on the set of 𝑛 roots of 𝑓 (𝑥) so 𝑛|#𝐻. By Sylow, there is a
copy of ℤ/𝑛ℤ ⊂ 𝐻, hence an 𝑛-cycle, in 𝐻, WLOG (12…𝑛).

Then, since there is a complex conjugate pair of roots of 𝑓 , complex conjugation i.e. a
transposition exists in 𝐻, call it (𝑎𝑏).

Since 𝑛 prime, (𝑎𝑏), (12…𝑛) generate 𝑆𝑛 thus 𝐻 = 𝑆𝑛. Namely, this isn’t true for
general 𝑛, but what is true for general 𝑛 is (12), (12…𝑛) generates 𝑆𝑛. However, if we let
𝜎 ≔ (12…𝑛) and 𝑘 such that 𝜎𝑘(𝑎) = 𝑏, then since 𝑛 prime, 𝜎𝑘 still an 𝑛-cycle, and so if
we relabel 𝑎 ↔ 1 and 𝑏 ↔ 2, then in this relabelling (𝑎𝑏) ↔ (12) and 𝜎𝑘 ↔ (12…𝑛)
which together generate 𝑆𝑛.

Finally, let 𝐹 = 𝐸𝐺. By the Galois correspondance, Gal(𝐸/𝐹) = 𝐺. ■

↪Proposition 4.4 : Let 𝑝 be a prime and let 𝑓 (𝑥) be a polynomial of degree 𝑝 + 1 over a field 𝐹,
whose galois group is isomorphic to the group PGL2(𝔽𝑝). Show that the splitting field of 𝑓 (𝑥)
over 𝐹 is generated over 𝐹 by any three of its roots 𝑟1, 𝑟2, 𝑟3. Show that 𝑓 (𝑥)/(𝑥 − 𝑟1) is
irreducible over 𝐹(𝑟1) and 𝑓 (𝑥)/(𝑥 − 𝑟1)(𝑥 − 𝑟2) is irreducible over 𝐹(𝑟1, 𝑟2).

↪Proposition 4.5 : List all the subfields of the field ℚ(𝜁) generated by a primitive 8th root of
unity.

Proof. Let 𝐺 = Gal(ℚ(𝜁)/ℚ) (which is galois being the splitting field of 𝑥4 + 1).
There are 4 primitive 8th roots of unity, ±√2

2 ± √2
2 𝑖, just label 𝜁 = √2

2 + √2
2 𝑖. Any

homomorphism 𝜑 ∈ 𝐺 is determined by 𝜑 and moreover must map 𝜑 to another
primitive 8th root of unity, so one of either 𝜁 , −𝜁, 𝜁 , −𝜁 ; viewing 𝜑 as a permutation on 
{𝜁 , −𝜁, 𝜁 , −𝜁}, we readily find:

𝜁 ↦ 𝜁 ()
𝜁 ↦ −𝜁 (12)(34)
𝜁 ↦ 𝜁 (13)(24)

𝜁 ↦ −𝜁 (14)(23)

From here we see 𝐺 ≃ ℤ/2 × ℤ/2, which has four subgroups, the identity and three
copies of ℤ/2:
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𝐻1 ≔ ⟨(12)(34)⟩ ⟿ fixes 𝑖 (since 𝑖 = 𝜁 2 ↦ (−𝜁)2 = 𝜁 2 = 𝑖)

𝐻2 ≔ ⟨(13)(24)⟩ ⟿ fixes 𝜁 + 𝜁 = √2

𝐻3 ≔ ⟨(14)(23)⟩ ⟿ fixes √2𝑖 (since √2𝑖 = 𝜁 − 𝜁 ↦ −𝜁 + 𝜁 = √2𝑖)

𝐻4 ≔ 1 ⟿ fixes ℚ

Appealing to the galois correspondance, we find the following subfield
correspondance:

↑ 2 ↑2 ↑

2

↑

2 ↑2 ↑ 2
𝐺

𝐻1 𝐻2 𝐻3

𝐻4

⟿

↑ 2

↑2 ↑

2
↑

2 ↑2

↑ 2
ℚ

ℚ(𝑖) ℚ(√2) ℚ(√2𝑖)

ℚ(𝜁)

In summary, the five distinct subfields of ℚ(𝜁) are itself, ℚ(𝑖), ℚ(√2), ℚ(√2𝑖), ℚ.
Note that there are no further subfields of ℚ since ℚ generated by 1.

One can approach this differently by using the (unproven in this class) fact that 
Gal(ℚ(𝜁𝑛)/ℚ) = (ℤ/𝑛ℤ)× where 𝜁𝑛 a primitive 𝑛th root of unity. In this case, this
idenfication is clear through association of exponent of 𝜁  with element of (ℤ/8ℤ)×. I personally
prefer my approach… ■

↪Proposition 4.6 : Show that the extension ℚ(√2 + √2) is Galois over ℚ, and compute its

Galois group.

Proof.

Let 𝑓 (𝑥) = (𝑥2 − 2)2 − 2 = 𝑥4 − 4𝑥2 + 2 ∈ ℚ[𝑥]. Letting 𝑟1 ≔ √2 + √2, 𝑟2 ≔ −𝑟1, 
𝑟3 ≔ √2 − √2 and 𝑟4 ≔ −𝑟3 enumerates the roots of 𝑓 . Then, certainly ℚ(𝑟1, 𝑟3)/ℚ the
splitting field of 𝑓  and ℚ(𝑟1) ⊂ ℚ(𝑟1, 𝑟3). We claim this is an equality, namely that 
𝑟3 ∈ ℚ(𝑟1). Indeed, notice that

𝑟1𝑟3 = √(2 + √2)(2 − √2) = √2,

and √2 ∈ ℚ(𝑟1) since 𝑟2
1 − 2 = √2. Thus, 𝑟3 = √2 ⋅ 𝑟−1

1 ∈ ℚ(𝑟1). Thus, ℚ(𝑟1) =
ℚ[𝑥]/(𝑓 (𝑥)) so is Galois over ℚ.

Moreover, since 𝑓  of degree 4, [ℚ(𝑟1) : ℚ] = 4, so we have two options for the
Galois group. Consider the map 𝑟1 ↦ 𝑟3. One verifies that this is a 4-cycle acting on the
roots of 𝑓 , from which it follows that Gal(ℚ(𝑟1)/ℚ) = ℤ/4ℤ.
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Note that, more generally, if ℚ(√𝑑) a quadratic extension of ℚ and we adjoin additional

elements √𝑎 + 𝑏√𝑑, √𝑎 − 𝑏√𝑑, that we have the relation √𝑎 + 𝑏√𝑑 ⋅ √𝑎 − 𝑏√𝑑 = √𝑎2 − 𝑏2𝑑 so
if in particular 𝑎2 − 𝑏2𝑑 a perfect square in ℚ or ℚ(√𝑑), then we are in a similar situation to
the above.

■

↪Proposition 4.7 :  Show that the symmetric group 𝑆12 contains subgroups of cardinality
31104 and 82994 (Hint: 31104 = (3!)4 ⋅ 4! and 82294 = (4!)3 ⋅ 3!). Explain how you might try to
go about constructing degree 12 polynomials with those Galois groups.

Proof. Let 𝐻1 be the subgroup of 𝑆12 consisting of 𝑆3 × 𝑆3 × 𝑆3 × 𝑆3 (acting disjointly
on 1, 2, 3; 4, 5, 6; etc) times 𝑆4, with 𝑆4 acting on {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12} by
identifying 1 ↔ 4 ↔ 7 ↔ 10 etc. (namely, if 1 ↦ 4 then 2 ↦ 5 and 3 ↦ 6 etc) (??). Then, 
#𝐻1 = (#𝑆3)4 ⋅ #𝑆4 = (3!)44!. Similarly, let 𝐻2 be the same construction interchanging 
𝑆4 with 𝑆3 wherever they appear.

To try to construct degree polynomials with such Galois groups, we can appeal to
the method of question 3 by beginning with an irreducible polynomial of degree 12
over ℚ with Galois group equal to 𝑆12 (which may be hard to do who knows), let 𝐸/ℚ
be its splitting field, and let 𝐹 = 𝐸𝐻𝑖. Then, 𝐹 Galois over 𝐸 with Galois group 𝐻𝑖. By
Proposition 3.3, every (finite degree) Galois extension is a splitting field, so there is
some polymomial 𝑔(𝑥) ∈ 𝐹[𝑥] with Galois group 𝐻𝑖. ■

Remark 4.1 :  The following questions are all connected, aimed at culminating with the final
proposition.

↪Proposition 4.8 :  Let 𝐺 be a transitive subgroup of the symmetric group 𝑆𝑛 on 𝑛 letters, and
let 𝐻 be a normal subgroup of 𝐺. Show that the action of 𝐺 on the set 𝑋 ≔ {1, …, 𝑛} induces a
natural action of 𝐺 on the set 𝑋𝐻 ≔ {𝐻𝑥 : 𝑥 ∈ 𝑋} of sets of 𝑋 consisting of the orbits for 𝐻 in 
𝑋. Use this to conclude that all the 𝐻-orbits in 𝑋 have the same cardinality. Give an example
to illustrate the failure of this conclusion when 𝐻 is not assumed to be normal in 𝐺.

Proof. Define the action ∗ on 𝑋𝐻 by

𝑔 ∗ 𝐻𝑥 = 𝑔𝐻𝑥 = 𝐻(𝑔𝑥),

the second equality following from normalcy ie 𝑔𝐻 = 𝐻𝑔 for every 𝑔 ∈ 𝐺. This is a
group action; the composition axioms are clear. Moreover, we need to show it is well-
defined, ie the definition is independent of choice of orbit representative 𝑥. Suppose 
𝐻𝑥 = 𝐻𝑦. Then, 𝑦 ∈ 𝐻𝑥 so there is some ℎ ∈ 𝐻 such that 𝑦 = ℎ𝑥. Then, on the one
hand,

𝑔 ∗ 𝐻𝑥 = 𝐻(𝑔𝑥),
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while also

𝑔 ∗ 𝐻𝑦 = 𝑔 ∗ 𝐻(ℎ𝑥) = 𝐻(𝑔ℎ𝑥).

By normalcy, 𝑔ℎ𝑔−1 = ℎ̃ ∈ 𝐻 so

𝐻(𝑔ℎ𝑥) = 𝐻ℎ̃𝑔𝑥 = 𝐻(𝑔𝑥),

so this indeed well-defined. Thus, we conclude #𝐻𝑥 = #𝐻𝑦 for any 𝑥, 𝑦 ∈ 𝑋 since by
transitivity of 𝐺 there is some 𝑔 ∈ 𝐺 such that 𝑔𝑥 = 𝑦 so 𝑔𝐻𝑥 = 𝐻𝑦 hence #𝐻𝑥 = #𝐻𝑦.

For a counterexample when 𝐻 not assumed to be normal, we have that 𝐷8 a
transitive subgroup of 𝑆4 and 𝐻 ≔ ⟨(13)⟩ a (not normal) subgroup of 𝐷8 (viewed as
“D1” reflection), while 𝐻 ⋅ 1 = {1, 3} and 𝐻 ⋅ 2 = {2}.

■

↪Proposition 4.9 : Let 𝑝 be a prime number. Show that any non-trivial normal subgroup of a
transitive subgroup of 𝑆𝑝 also acts transitively on {1, …, 𝑝}.

Proof. We have 𝑋 = ⨆𝐻𝑥∈𝑋𝐻
𝐻𝑥, and since by the previous question each 𝐻𝑥 has the

same cardinality,

𝑝 = #𝑋 = #𝑋𝐻 ⋅ #(𝐻 ⋅ 1),

which since 𝑝 prime would imply either #𝑋𝐻 = 𝑝 or 1. In the former case, this implies 
#(𝐻 ⋅ 𝑥) = 1 for every 𝑥 ∈ 𝑋 which is only possible if 𝐻 trivial, so we must be the latter
case, in which case #(𝐻𝑥) = 𝑝 so in particular the orbit 𝐻𝑥 is all of 𝑋 so 𝐻 acts
transitively on 𝑋 as well. ■

↪Proposition 4.10 :  Show that any transitive subgroup of 𝑆𝑝 contains a non-trivial Sylow 𝑝
subgroup of cardinality 𝑝.

Proof. Let 𝐺 be such a subgroup. By transitivity and orbit-stabilizer, we know #𝐺 =
#𝑋 ⋅ #Stab𝐺(1) = 𝑚𝑝 so 𝑝|#𝐺. Moreover, #𝐺|𝑝! since 𝐺 ⊂ 𝑆𝑝, so we may write #𝐺 = 𝑝 ⋅ 𝑡
where 𝑝 ∤ 𝑡, i.e. the highest power of 𝑝 in #𝐺 is 1. By Sylow theorems, there is a Sylow 𝑝
-subgroup of cardinality 𝑝 in 𝐺. ■

↪Proposition 4.11 :  Let 𝐺 be a transitive subgroup of 𝑆𝑝 and let 𝐻 be a non-trivial normal
subgroup of 𝐺. Show that any Sylow 𝑝-subgroup of 𝐺 is also contained in 𝐻.

Proof. By 4.9, 𝐻 also transitive so by 4.10 there is certainly a Sylow 𝑝-subgroup in 𝐻,
call it 𝑃. This must also be then a Sylow 𝑝-subgroup of 𝐺. By the second Sylow
theorem, any two Sylow 𝑝 sub-groups are conjugate, so for any other Sylow 𝑝-
subgroup 𝑃1 ⊂ 𝐺, 𝑃1 = 𝑔𝑃𝑔−1 for some 𝑔 ∈ 𝐺. But since 𝐻 normal in 𝐺, 𝑔𝑃𝑔−1 remains
in 𝐻 so 𝑃1 ⊂ 𝐻 as well, thus any Sylow 𝑝-subgroup of 𝐺 is also a subgroup of 𝐻. ■
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↪Proposition 4.12 :  Show that any transitive solvable subgroup of 𝑆𝑝 contains a unique Sylow 
𝑝 subgroup, and hence is contained in the normalizer of its Sylow 𝑝-subgroup.

Proof. Write {1} = 𝐺0 ◁ 𝐺1 ◁ ⋯ ◁ 𝐺𝑡 = 𝐺 ⊂ 𝑆𝑝. Since 𝐺 transitive and 𝐺𝑡−1 ◁ 𝐺, by
4.9, 𝐺𝑡−1 itself transitive. Then, 𝐺𝑡−2 is a normal subgroup of 𝐺𝑡−1 so 𝐺𝑡−2 also
transitive, etc, thus each 𝐺𝑖 transitive, being a normal subgroup of a transitive
subgroup of 𝑆𝑝. Then, by 4.11, any Sylow 𝑝-subgroup of 𝐺 is contained in 𝐺𝑡−1, and
thus arguing inductively we find that any Sylow 𝑝-subgroup of 𝐺 contained in 𝐺𝑖. In
particular, any subgroup Sylow 𝑝-subgroup is contained in 𝐺1, but by solvability 𝐺1
abelian. So, since any two Sylow 𝑝-subgroups 𝑃1, 𝑃2 are conjugate ie 𝑃1 = 𝑔𝑃2𝑔−1 for
some 𝑔 ∈ 𝐺, and since both 𝑃1, 𝑃2 ⊂ 𝐺1, it must be that 𝑃1 = 𝑃2 since 𝑔𝑃2𝑔−1 =
𝑔𝑔−1𝑃2 = 𝑃2 (with the multiplication occuring in 𝐺1 now). Thus, we conclude that
there is only one such Sylow-𝑝 subgroup in the top level 𝐺.

Hence, 𝐺 ⊂ 𝑁(𝑃) (in 𝑆𝑝).

■

↪Proposition 4.13 :  After identifying 𝑋 ≔ {1, …, 𝑝} with ℤ/𝑝ℤ, show that the normalizer of
the Sylow 𝑝-subgroup generated by the cyclic permutation 𝑇 : 𝑥 ↦ 𝑥 + 1 is the group of affine
linear transformations of the form 𝑥 ↦ 𝑎𝑥 + 𝑏 with 𝑎 ∈ (ℤ/𝑝ℤ)× and 𝑏 ∈ ℤ/𝑝ℤ.

Proof. Let 𝑃 = ⟨𝑇⟩ be the relevant Sylow 𝑝-subgroup. Let 𝜎 ∈ 𝑁(𝑃), so by
assumption there is an 𝑎 ∈ 𝑋 such that 𝜎𝑇𝜎−1 = 𝑇𝑎 (𝑇𝑎 = 𝑇 ∘ ⋯ ∘ 𝑇). Then, for any 
𝑥 ∈ 𝑋, (𝜎𝑇)𝑥 = (𝑇𝑎𝜎)𝑥; the LHS becomes

𝜎(𝑥 + 1),

while the RHS becomes

𝜎(𝑥) + 𝑎,

so in short

𝜎(𝑥 + 1) = 𝜎(𝑥) + 𝑎,

for any 𝑥 ∈ 𝑋. Let 𝑏 ≔ 𝜎(0), then

𝜎(1) = 𝑏 + 𝑎
𝜎(2) = 𝜎(1) + 𝑎 + 𝑎 = 𝑏 + 2𝑎

⋱
𝜎(𝑥) = 𝑎𝑥 + 𝑏,

with the final form following by induction if you like. Thus, 𝜎  indeed acts as an affine
linear transformation, noting that 𝑎, 𝑏 were dependent only on 𝜎 , and that it suffices to
look at 𝜎𝑇 since 𝑇 generates 𝑃.

Precisely, this says 𝑁(𝑃) is contained in the group of affine linear transformations,
so one need show the converse inclusion. This is clear enough. ■
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↪Proposition 4.14 :  Show that any transitive solvable subgroup of 𝑆𝑝 is conjugate to a
subgroup of the group of affine linear transformations of cardinality 𝑝(𝑝 − 1) described in
4.13.

Proof. By 4.12, there is a unique sylow �̃� subgroup in 𝐺 and that 𝐺 ⊂ �̃� ≔ 𝑁(�̃�) in 
𝑆𝑝. With 𝑃 the sylow 𝑝-subgroup from 4.13, we know �̃� = 𝑔𝑃𝑔−1 for some 𝑔 ∈ 𝑆𝑝. I
claim the normalizers are �̃�, 𝑁 ≔ 𝑁(𝑃) are also conjugate by 𝑔. Let 𝜎 ∈ 𝑁 and ℎ̃ ∈ �̃�,
so 𝑔𝜎𝑔−1 ∈ 𝑔𝑁𝑔−1 and also there is an ℎ ∈ 𝑃 such that ℎ̃ = 𝑔ℎ𝑔. Then,

(𝑔𝜎𝑔−1)ℎ̃(𝑔𝜎𝑔−1)−1 = 𝑔𝜎𝑔−1𝑔ℎ𝑔𝑔𝜎−1𝑔−1 = 𝑔𝜎ℎ𝜎−1𝑔−1.

Since 𝜎 ∈ 𝑁, 𝜎ℎ𝜎−1 ∈ 𝑃 and thus 𝑔𝜎ℎ𝜎−1𝑔−1 ∈ �̃�. So in short, 𝑔𝜎𝑔−1 ∈ �̃� indeed thus
𝑔𝑁𝑔−1 ⊂ �̃�. A similar computation shows the other inclusion. Thus, 𝐺 a subgroup of 
�̃� = 𝑔𝑁𝑔−1 i.e. is conjugate to a subgroup of 𝑁 = {𝑎𝑥 + 𝑏 | 𝑎 ∈ (ℤ/𝑝ℤ)×, 𝑏 ∈ ℤ/𝑝ℤ}, as
we aimed to show. ■

↪Proposition 4.15 :  Prove the theorem of Galois, quote “an irreducible polynomial 𝑓  of prime
degree 𝑝 is solvable by radicals if and only if the splitting field of 𝑓  is generated by any two roots of 𝑓 .”

Proof. (⇒) The main theorem of Galois theory tells us that under these hypotheses, 
𝐺 ≔ Gal(𝑓 ) is solvable. Moreover, since deg(𝑓 ) = 𝑝 prime, 𝐺 ⊂ 𝑆𝑝. 𝐺 acts transitively
on the 𝑝-sized set of roots of 𝑓 , so 𝐺 a transitive solvable subgroup of 𝑆𝑝, so by 4.14, is
conjugate to a subgroup of 𝑁. Let 𝑟1, 𝑟2 be any two distinct roots of 𝑓  and let 𝐻 =
Gal(𝐸/𝐹(𝑟1, 𝑟2)) where 𝐸 the splitting field of 𝐸 over 𝐹. Then, this group also conjugate
to a subgroup of 𝑁, which fixes two elements 𝑟1, 𝑟2. I claim 𝐻 must be trivial. A typical
element of 𝐻 can be realized as an affine linear action (up to conjugation, but
whatever) 𝜎 : 𝑥 ↦ 𝑎𝑥 + 𝑏. 𝜎𝑟1 = 𝑟1, 𝜎𝑟2 = 𝑟2 so thus

𝑎𝑟1 + 𝑏 = 𝑟1, 𝑎𝑟2 + 𝑏 = 𝑟2.

This gives a system of linear equations.Canceling 𝑏, we find

𝑟1(1 − 𝑎) = 𝑟2(1 − 𝑎).

Here we have two cases: if 𝑎 = 1, then 𝑏 must equal zero so we have the trivial element
which must be in 𝐻 anyways. Else, 1 − 𝑎 is invertible hence 𝑟1 = 𝑟2, a contradiction to
the distinctness of the roots. Thus, the only possibility is 𝐻 = {1} i.e. 
Gal(𝐸/𝐹(𝑟1, 𝑟2)) = {1}, which is only possible if 𝐸 = 𝐹(𝑟1, 𝑟2), as we aimed to show.

(⇐) Now 𝐹(𝑟1, 𝑟2)/𝐹 the splitting field of 𝑓 , and still 𝐺 ≔ Gal(𝑓 ) a transitive
subgroup of 𝑆𝑝. It suffices to show that 𝐺 is solvable.

By general theory [𝐹(𝑟1, 𝑟2) : 𝐹] ≤ 𝑝(𝑝 − 1) since it arises from 𝐹 from the
adjoinment of two roots of 𝑓 , hence #𝐺 ≤ 𝑝(𝑝 − 1). By transitivity, 𝑝 | #𝐺, so thus 𝐺 has
a sylow 𝑝-subgroup, and moreover it must be unique by the bound on the cardinality
of 𝐺. So, 𝐺 ⊂ 𝑁(𝑃), the normalizer of its sylow 𝑝-subgroup in 𝑆𝑝; namely, 𝑃 is normal
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in 𝐺. By the previous questions, then, 𝐺 conjugate to a subgroup of the affine linear
subgroup, call it 𝑁, of cardinality 𝑝(𝑝 − 1) in 𝑆𝑝, the normalizer of 𝑃𝑝 ≔ ⟨(12⋯𝑝)⟩ in 
𝑆𝑝. Then, remark that

𝑁/𝑃𝑝 ≃ (ℤ/𝑝ℤ)×,

and thus 𝐺/𝑃 conjugate to a subgroup of (ℤ/𝑝ℤ)×, and is thus abelian. Hence, we
have a chain 1 ◁ 𝑃 ◁ 𝐺 with 𝐺/𝑃 abelian and 𝑃 ≃ ℤ/𝑝ℤ abelian, thus 𝐺 solvable, from
which it follows 𝑓  solvable by radicals. ■

Remark 4.2 : Everything that appears after this is just miscellanea.

↪Proposition 4.16 : Compute the sum

1 −
1
2 +

1
4 −

1
5 +

1
7 −

1
8 + ⋯ = ∑

∞

𝑛=1

𝑎𝑛
𝑛 ,

where 𝑎𝑛 ≔
⎩{
⎨
{⎧0 if 3|𝑛

1 if 𝑛=1+3𝑘
−1 if 𝑛=−1+3𝑘

.

Proof. Notice that 𝑎𝑛 can be viewed as a function ℤ/3ℤ → ℂ. The space of such
functions is spanned by the set of irreducible characters of ℤ/3ℤ; since this group
abelian (and moreover cyclic), its irreducible characters are given by

𝜒𝑘(𝑛) ≔ 𝑒2𝜋𝑖𝑛𝑘/3 = 𝜁 𝑛𝑘, 𝑘 = 0, 1, 2; 𝑛 ∈ ℤ/3ℤ,

and 𝜁 ≔ 𝑒2𝜋𝑖/3 a primitive third root of unity. Then, we should be able to find complex
scalars 𝜆0, 𝜆1, 𝜆2 such that

𝑎𝑛 = 𝜆0𝜒0(𝑛) + 𝜆1𝜒1(𝑛) + 𝜆2𝜒2(𝑛).

Taking inner products of both sides wrt 𝜒𝑘 for each 𝑘 yields

𝜆𝑘 = (𝑎𝑛, 𝜒𝑘) =
1
3(𝑎0𝜒𝑘(0) + 𝑎1𝜒𝑘(1) + 𝑎2𝜒𝑘(2)) =

𝜁 𝑘 − 𝜁 −𝑘

2 ,

so in particular,

𝜆0 = 0

𝜆1 =
𝜁 − 𝜁 −1

3

𝜆2 =
𝜁 2 − 𝜁 −2

3 = −𝜆1.

Hence, we find
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∑
∞

𝑛=1

𝑎𝑛
𝑛 = 𝜆1

⎣
⎢
⎡∑

∞

𝑛=1

(𝜁)𝑛

𝑛 − ∑
∞

𝑛=1

(𝜁 2)𝑛

𝑛 ⎦
⎥
⎤

= 𝜆1[− log(1 − 𝜁) + log(1 − 𝜁 2)]

= 𝜆1
⎣
⎢⎡log

⎝
⎜⎛1 − 𝜁 2

1 − 𝜁 ⎠
⎟⎞

⎦
⎥⎤

= 𝜆1 log(1 + 𝜁)

= 𝜆1 log(−𝜁 −1)

= 𝜆1[log(−1) + log(𝑒4𝜋𝑖/3)]

= 𝜆1[𝑖𝜋 + 4𝜋𝑖/3]

= 𝜆1 ⋅
7
3𝜋𝑖

= 7/9 ⋅ 𝜋𝑖[𝜁 − 𝜁 −1]

= 7/9 ⋅ 𝜋𝑖 ⋅ 𝑖√3 = −
7√3

9 𝜋.

We used above that:
• − log(1 − 𝑥) = ∑∞

𝑛=1
𝑥𝑛

𝑛
• 𝜁 = 𝑒2𝜋𝑖/3 = 1

2 + 𝑖√3
2 .

I did this myself, I don't know if its fully correct. The logic is right at the very least. ■

↪Proposition 4.17 :  Let 𝑛 > 1 and 𝑠 ∈ ℝ the (unique) positive real 𝑛-th root of 2. Prove that 
{𝑎0 + 𝑎1𝑠 + ⋯ + 𝑎𝑛−1𝑠𝑛−1 : 𝑎𝑖 ∈ ℚ} is a field, and find the inverse of (1 + 3√2) as a linear
combination of powers of 3√2.

Proof. This set can be viewed as ℚ(𝑠) = ℚ[𝑥]/(𝑥𝑛 − 2) so a field, since 𝑥𝑛 − 2
irreducible over ℚ (how do you show this?).

Then, with 𝑠 = 3√2,

1
1 + 𝑠 =

1
1 + 𝑠 ⋅

1 − 𝑠 + 𝑠2

1 − 𝑠 + 𝑠2 =
1
3(1 − 𝑠 + 𝑠2).

Alternatively,

1
1 + 𝑠 = ∑

∞

𝑘=0
(−𝑠)𝑘

= 1 − 𝑠 + 𝑠2⏟⏟⏟⏟⏟
≕𝐴𝑠

−𝑠3 + 𝑠4 − 𝑠5⏟⏟⏟⏟⏟⏟⏟
=−2𝐴𝑠

+ 𝑠6 − 𝑠7 + 𝑠8⏟⏟⏟⏟⏟
=4𝐴𝑠

+ ⋯

= 𝐴𝑠 ∑
∞

𝑘=0
(−2)𝑘 =

1
3𝐴𝑠 =

1
3(1 − 𝑠 + 𝑠2).

■
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↪Proposition 4.18 :  Let 𝑓 (𝑥) ∈ 𝐹[𝑥] be an irreducible polynomial over a field 𝐹. If 𝐸 an
extension of 𝐹 whose degree is relatively prime to the degree of 𝑓 (𝑥), show that 𝑓 (𝑥) remains
irreducible in 𝐸[𝑥].

Proof. Let 𝑝 an irreducible factor of 𝑓  in 𝐸[𝑥], say of degree 𝑟. Let 𝛼 a root of 𝑝. Let 
𝐹(𝛼) = 𝐹[𝑥]/(𝑓 (𝑥)), and similarly consider 𝐸(𝛼). Then, [𝐸(𝛼) : 𝐸] ⋅ [𝐸 : 𝐹] = [𝐸(𝛼) :
𝐹(𝛼)] ⋅ [𝐹(𝛼) : 𝐹] so 𝑟 ⋅ [𝐸 : 𝐹] = 𝑛 ⋅ [𝐸(𝛼) : 𝐹(𝛼)]. Then, 𝑛 | 𝑟 ⋅ [𝐸 : 𝐹], but 𝑛 relatively
prime to [𝐸 : 𝐹] so 𝑛 | 𝑟, implying 𝑝 = 𝑓  so 𝑓  remains irreducible in 𝐸[𝑥]. ■

↪Proposition 4.19 :  Let 𝑓 (𝑥), 𝑛 ≥ 5, over 𝐹 such that Gal(𝑓 /𝐹) = 𝑆𝑛, and let 𝑟 be a root of 𝑓  in
its splitting field. Show that there are no proper subextensions of 𝐹(𝑟)/𝐹.

Proof. Let 𝐸 the splitting field of 𝑓  over 𝐹, and suppose 𝐹 ⊂ 𝐾 ⊂ 𝐹(𝑟). Since [𝐹(𝑟) :
𝐹] = 𝑛 and [𝐸 : 𝐹] = 𝑛!, we have in particular Gal(𝐸/𝐹(𝑟)) = 𝑆𝑛−1. Then, Gal(𝐸/𝐾) a
subgroup of 𝑆𝑛 which contains 𝑆𝑛−1 as a subgroup, i.e. 𝑆𝑛−1 ⊂ Gal(𝐸/𝐾) ⊂ 𝑆𝑛. No
such subgroup exists, as 𝑆𝑛−1 maximal in 𝑆𝑛. ■

↪Proposition 4.20 :  Let 𝑓 (𝑥) irreducible, sextic polynomial over 𝐹 with Galois group 𝑆6. Show
that the splitting field 𝐸 contains an element 𝛼 such that
• 𝐹(𝛼) of degree 6 over 𝐹;
• 𝐹(𝛼) is not isomorphic to 𝐹[𝑥]/(𝑓 (𝑥)).

Proof. Let 𝐻 ⊂ 𝑆6 be the “exceptional” copy of 𝑆5 in 𝑆6 that doesn’t arise from fixing
an element. Let 𝐾 = 𝐸𝐻. By the primitive element theorem, there is an 𝛼 ∈ 𝐾 such that 
𝐾 = 𝐹(𝛼). Then, [𝐹(𝛼) : 𝐹] = [𝐸:𝐹]

[𝐸:𝐹(𝛼)] = 6!
5! = 6. 𝐹(𝛼) not isomorphic to 𝐹(𝑥)/(𝑓 (𝑥)) since

this field isomorphic to 𝐸𝐻′ where 𝐻′ a copy of 𝑆5 in 𝑆6 that fixes a root, and while 
𝐻′ ≃ 𝐻, they are not equal in 𝑆6 so by the Galois correspondance these two fields
aren’t isomorphic. ■

↪Proposition 4.21 :  Let 𝐾 = ℚ(√𝑑) a quadratic extension of ℚ. Does there exist an extension
𝐸/ℚ with Gal(𝐸/ℚ) = ℤ/4ℤ and 𝐾 ⊂ 𝐸?

Proof. Let 𝐸 = 𝐾(√𝑟 + 𝑠√𝑑) for some 𝑟, 𝑠 tbd. The minimal polynomial of this square

root over 𝐾 is 𝑥2 − 𝑟 + 𝑠√𝑑. Over ℚ, though, we have 𝑓 (𝑥) = (𝑥2 − (𝑟 + 𝑠√𝑑))(𝑥2 −

(𝑟 − 𝑠√𝑑)) = 𝑥4 − 2𝑟𝑥2 + 𝑟2 − 𝑠2𝑑. (Alternatively, (𝑥2−𝑟
𝑠 )

2
− 𝑑 has the root satisfying

it, then just monify it.) Then, 𝔼/ℚ is Galois if and only if 𝑟 − 𝑠√𝑑 is a square in 𝐸
namely 𝛼2 = 𝑟 − 𝑠√𝑑 ∈ 𝐸. We claim that such an 𝛼 not in 𝐾. Indeed, if it were, then we
could apply 𝜏 ∈ Gal(𝐾/ℚ) such that 𝜏√𝑑 = −√𝑑 thus this would imply 𝑟 + 𝑠√𝑑 =
𝜏(𝛼2) = (𝜏𝛼)2 namely 𝑟 + 𝑠√𝑑 a square in 𝐾, which we took by definition to not be the
case.
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Next, we claim 𝛼
√𝑟+𝑠√𝑑

∈ 𝐾. We show this by showing this element fixed by 𝜎 ∈

Gal(𝐸/𝐾) where 𝜎√𝑟 + 𝑠√𝑑 = −√𝑟 + 𝑠√𝑑. Then, under this automorphism, 𝛼 ↦ −𝛼,
thus this ratio maps to −𝛼/(−√𝑟 + 𝑠√𝑑) = 𝛼/√𝑟 + 𝑠√𝑑 so it is indeed fixed thus in 𝐾.

Hence, 𝑟+𝑠√𝑑

𝑟−𝑠√𝑑
= 𝛽2 for 𝛽 ∈ 𝐾. Simplifying, we find (𝑟 + 𝑠√𝑑)(𝑟 − 𝑠√𝑑) a square in 

𝐾, equal to 𝑟2 − 𝑑𝑠2. Hence, we must have that 𝑟2 − 𝑑𝑠2 a square in 𝐾×.

We consider then two cases:

1. 𝑟2 − 𝑑𝑠2 = 𝑡2 for 𝑡 ∈ ℚ×

2. 𝑟2 − 𝑑2 = 𝑑𝑡2 for 𝑡 ∈ ℚ×

We can write 𝐸 = ℚ(√𝑟 + 𝑠√𝑑, −√𝑟 + 𝑠√𝑑, √𝑟 − 𝑠√𝑑, −√𝑟 − 𝑠√𝑑) ≕ ℚ(𝑟1, …, 𝑟4).

Now,

𝑟1𝑟3 =
⎩{
⎨
{⎧𝑡 case 1

√𝑑𝑡 case 2
, 𝑟1𝑟4 = −𝑟1𝑟3 =

⎩{
⎨
{⎧−𝑡 case 1

−√𝑑𝑡 case 2
.

We try to compute the respective automorphisms groups in each case.

Case 1: If 𝜑(𝑟1) = 𝑟2, then √𝑑 is fixed thus 𝜑(𝑟2) = 𝜑(𝑟1), so 𝜑(𝑟3) = 𝑟4 and 𝜑(𝑟4) =
𝑟3 (by the relation above).

If 𝜑(𝑟1) = 𝑟3, then 𝜑(𝑟2) = 𝑟4 (since 𝑟2 = −𝑟1) and 𝜑(𝑟3) = 𝑡
𝜑(𝑟1) = 𝑡

𝑟3
= 𝑟1 so 

𝜑(𝑟4) = 𝑟2.

If 𝜑(𝑟1) = 𝑟4, then 𝜑(𝑟2) = 𝑟3 and 𝜑(𝑟3) = 𝑡
𝜑(𝑟1) = 𝑡

𝑟4
= − 𝑡

𝑟1
= −𝑟3 = 𝑟2. In short,

every automorphism of order 2 so Gal(𝐸/ℚ) = ℤ/2ℤ × ℤ/2ℤ.

Case 2: Consider the case 𝜑(𝑟1) = 𝑟3. Then 𝜑(𝑟2) = 𝑟4 while 𝜑(𝑟3) =
𝜑(√𝑑𝑡)

𝜑(𝑟1) =

−√𝑑𝑡
𝑟3

= −𝑟1 = 𝑟2, using the fact that 𝜑(√𝑑𝑡) = 𝜑( 𝑟2
1−𝑟
𝑠 ) = 𝑟2

3−𝑟
𝑠 = −√𝑑𝑡. In particular, 

𝜑 is of order 4, so it must be that Gal(𝐸/ℚ) = ℤ/4ℤ.

So, ℚ(√𝑟 + 𝑠√𝑑) is a Galois extension with cyclic Galois group iff 𝑟2 − 𝑠2𝑑 = 𝑑𝑡2 for

some 𝑡 ∈ ℚ×. ■

Remark 4.3 : The following are from here.

↪Proposition 4.22 :

Proof. (a) ℚ(3√2)/ℚ, (b) 𝔽2(𝑡1/2)/𝔽2(𝑡), (c) 𝔽2(𝑡1/6)/𝔽2(𝑡) ■

↪Proposition 4.23 :

Proof. Done in class. ■
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↪Proposition 4.24 :

Proof. Done in class. ■

↪Proposition 4.25 :

Proof. Let 𝑔(𝑥) = (𝑥 − (𝑟1𝑟2 + 𝑟3𝑟4))(𝑥 − (𝑟1𝑟3 + 𝑟2𝑟4))(𝑥 − (𝑟1𝑟4 + 𝑟2𝑟3)), then 
𝑔(𝑥) = 𝑥3 − (𝑠1 + 𝑠2 + 𝑠3)𝑥2 + (𝑠1𝑠2 + 𝑠2𝑠3 + 𝑠1𝑠3)𝑥 − 𝑠1𝑠2𝑠3 with the coefficients fixed
by 𝑆4 so 𝑔 ∈ 𝐹[𝑥] indeed. ■

↪Proposition 4.26 :

Proof. This was a homework assignment; show that the operator is 𝐺-equivariant
(using the fact that 𝑓  a class function), and conclude by Schur’s that it is a scalar
matrix. Find the scalar by taking traces of both sides. ■

↪Proposition 4.27 :

Proof. (a) There are two non-conjugate copies of 𝑆4 in 𝐺 ≔ GL3(𝔽2), so take 𝑋1, 𝑋2 to
be 𝐺/𝑆4 for each copy of 𝑆4 then #𝑋1 = 168

24 = 7.

(b) Show that the characters are equal by computing the number of fixed points
some 𝑔 has acting on 𝑋𝑖.

(c) Take 𝐸𝐻 for each copy 𝐻 of 𝑆4. Then, since the copies aren’t conjugate, the
resulting fields won’t be isomorphic. ■

↪Proposition 4.28 :

Proof. (a) 𝑎0 ≠ 0 (⇒ derivative test, ⇐ if 𝑎 = 0, 0 a multiple root)

(b) The set of roots is closed under addition, so fixing 𝑛 distinct roots 𝑟1, …, 𝑟𝑛, any
other root of the form 𝑎1𝑟1 + ⋯ + 𝑎𝑛𝑟𝑛 which can be expressed “vectorally” as 
(𝑎1, …, 𝑎𝑛).

(c) Since 𝑓 (𝑥)/𝑥 irreducible over 𝔽𝑝, 𝔽𝑝(𝛼) = 𝔽𝑝[𝑥]/(𝑓 (𝑥)/𝑥) a finite field extension
of 𝔽𝑝, where 𝛼 a root of 𝑓 (𝑥)/𝑥. Every finite extension of 𝔽𝑝 of degree 𝑚 is Galois, with
cyclic Galois group isomorphic to ℤ/𝑚ℤ, so in particular 𝔽𝑝(𝛼) Galois and thus
normal and separable over 𝔽𝑝, and thus 𝑓  attains all its roots in 𝔽𝑝(𝛼) since it attained
one. Thus, 𝔽𝑝(𝛼) the splitting field of 𝑓  and thus its Galois group is ℤ/𝑝𝑛−1ℤ. ■
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