Louis Meunier Analysis I

MATH254

Course Outline:
 Fundamentals of set theory. Properties of the reals. Limits, limsup, liminf. Continuity. Functions. Differentiation.

References:
Understanding Analysis, Abbott; Introduction to Real Analysis, Bartle; Analysis I, Tao
Based on Lectures from Fall, 2023 by Prof. Vojkan Jaksic.

Contents

1 Logic, Sets, and Functions 3
1.1 Mathematical Induction \& The Naturals 3
1.2 Extensions: Integers, Rationals, Reals 6
1.2.1 The Insufficiency of the Rationals 6
1.3 Sets \& Set Operations 7
1.4 Functions 8
1.4.1 Properties of Functions 9
1.5 Reals 12
1.6 Density of Rationals in Reals 15
1.7 Cardinality 19
1.7.1 Power Sets 26
2 Sequences 27
2.1 Definitions 27
2.2 Properties of Limits 30
2.3 Limit Superior, Inferior 37
2.4 Subsequences and Bolzano-Weirestrass Theorem 42
2.5 Cauchy Sequences 45
2.6 Contractive Sequences 52
2.7 Euler's Number e 56
2.8 Limit Points 60
2.9 Properly Divergent Sequences 62
3 Functional Limits and Continuity 65
3.1 Sequential Characterization of Functional Limits 67
3.2 Left/Right Limits 71
3.3 Limits and Infinity 73
3.3.1

Infinite Limits . 73
3.3.2 Limits at Infinity . 74
3.3.3 Infinite Limits at Infinity . 75
3.4 Continuity . 75
3.4.1 Extensions By Continuity . 78
3.5 Continuity on Bounded \& Closed Interval . 78
3.6 Intervals in \mathbb{R}. 81
3.7 Uniform Continuity . 84
3.8 Sequential Characterization of Non-Uniform Continuity . 86
3.9 Monotone and Inverse Functions . 89
3.10 Continuous Inverse Theorem . 92

4 Differentiation
4.1 Introduction . 93
4.2 The Chain Rule . 96
4.3 Derivative of the Inverse Function . 97

5 Appendix
5.1 Interesting Results . 98

1 Logic, Sets, and Functions

1.1 Mathematical Induction \& The Naturals

The natural numbers, $\mathbb{N}=\{1,2,3, \ldots\}$, are specified by the 5 Peano Axioms:
(1) $1 \in \mathbb{N}^{1}$
(2) every natural number has a successor in \mathbb{N}
(3) 1 is not the successor of any natural number
(4) if the successor of x is equal to the successor of y, then x is equal to y^{2}

(5) the axiom of induction

The Axiom of Induction (AI), can be stated in a number of ways.

\hookrightarrow Axiom 1.1: AI.i

Let $S \subseteq \mathbb{N}$ with the properties:
(a) $1 \in S$
(b) if $n \in S$, then $n+1 \in S^{3}$
then $S=\mathbb{N}$.

Example 1.1

Prove that, for every $n \in \mathbb{N}, 1+2+\cdots+n=\frac{n(n+1)}{2}(\equiv(1))$

Proof (via AI.i). Let S be the subset of \mathbb{N} for which (1) holds; thus, our goal is to show $S=\mathbb{N}$, and we must prove (a) and (b) of AI.i.

- by inspection, $1 \in S$ since $1=\frac{1(1+1)}{2}=1$, proving (a)
- assume $n \in S$; then, $1+2+\cdots+n=\frac{n(n+1)}{2}$ by definition of S. Adding $n+1$
${ }^{1}$ using 0 instead of 1 is also valid, but we will use 1 here, and throughout the rest of course.
${ }^{2}$ axioms (2)-(4) can be equivalently stated in terms of a successor function $s(n)$ more rigorously, but won't here
${ }^{3}(a)$ is called the inductive base; (b) the inductive step. All AI restatements are equivalent in having both of these, and only differentiate on their specific values.
to both sides yields:

$$
\begin{align*}
1+2+\cdots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \tag{1}\\
& =(n+1)\left(\frac{n}{2}+1\right) \tag{2}\\
& =\frac{(n+1)(n+2)}{2} \tag{3}\\
& =\frac{(n+1)((n+1)+1)}{2} \tag{4}
\end{align*}
$$

Line (4) is equivalent to statement (1) (substituting n for $n+1$), and thus if $n \in S$, then $n+1 \in S$ and (b) holds. Thus, by AI.i, $S=\mathbb{N}$ and $1+2+\cdots+n=\frac{n(n+1)}{2}$ holds $\forall n \in \mathbb{N}$.

\circledast Example 1.2

Prove (by induction), that for every $n \in \mathbb{N}, 1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.
Proof. Follows a similar structure to the previous example. Let S be the subset of \mathbb{N} for which the statement holds. $1 \in S$ by inspection ((a) holds), and we prove (b) by assuming $n \in S$ and showing $n+1 \in S$ (algebraically). Thus, by AI.i, $S=\mathbb{N}$ and the statement holds $\forall n \in \mathbb{N}$.

This can also be proven directly (Gauss' method).
Proof (Gauss' method). Let $A(n)=1+2+3+\cdots+n$. We can write $2 \cdot A(n)=$ $1+2+3+\cdots+n+1+2+3+\cdots+n$. Rearranging terms (1 with n, 2 with $n-1$, etc.), we can say $2 \cdot A(n)=(n+1)+(n+1)+\cdots$, where $(n+1)$ is repeated n times; thus, $2 \cdot A(n)=n(n+1)$, and $A(n)=\frac{n(n+1)}{2}$.

\hookrightarrow Axiom 1.2: AI.ii

Let $S \subseteq \mathbb{N}$ s.t.

(a) $m \in S$
(b) $n \in S \Longrightarrow n+1 \in S$
then $\{m, m+1, m+2, \ldots\} \subseteq S$.

\circledast Example 1.3

Using AI.ii, prove that for $n \geq 2, n^{2}>n+1$.

Proof. Let $S \subseteq \mathbb{N}$ be the set of n for which the statement holds. $n=2 \Longrightarrow 4>3$, so the base case holds. Consider $n^{2}>n+1$ for some $n \geq 2$. Then, $(n+1)^{2}=$ $n^{2}+2 n+1>n+1+2 n+1=3 n+2>2 n+2>n+2$, hence $S=\{2,3,4, \cdots\}$ (all $n \geq 2$).

\hookrightarrow Axiom 1.3: Principle of Complete Induction, AI.iii

Let $S \subseteq \mathbb{N}$ s.t.
(a) $1 \in S$
(b) if $1,2, \ldots, n-1 \in S$, then $n \in S$
then $S=\mathbb{N}$.

Finally, combining AI.ii and AI.iii;
\hookrightarrow Axiom 1.4: AI.iv
Let $S \subseteq \mathbb{N}$ s.t.:
(a) $m \in S$
(b) if $m, m+1, \ldots, m+n \in S$, then $m+n+1 \in S$
then $\{m, m+1, m+2, \ldots\} \subseteq S$.

\hookrightarrow Theorem 1.1: Fundamental Theorem of Arithmetic

Every natural number n can be written as a product of one or more primes. ${ }^{4}$
${ }^{4} 1$ is not a prime number

Proof of theorem 1.1. Let S be the set of all natural numbers that can be written as a product of one or more primes. We will use AI.iv to show $S=\{2,3, \ldots\}$.

- (a) holds; 2 is prime and thus $2 \in S$
- suppose that $2,3, \ldots, 2+n \in S$. Consider $2+(n+1)$:
- if $2+(n+1)$ is prime, then $2+(n+1) \in S$, as all primes are products of 1 and themselves and are thus in S by definition.
- if $2+(n+1)$ is not prime, then it can be written as $2+(n+1)=a \cdot b$ where $a, b \in \mathbb{N}$, and $1<a<2+(n+1)$ and $1<b<2+(n+1)$. By the definition of $S, a, b \in S$, and can thus be written as the product of primes. Let $a=p_{1} \cdots \cdots p_{l}$ and $b=q_{1} \cdots \cdot q_{j}$, where the p 's and q 's are prime and $l, j \geq 1$. Then, $a \cdot b$ is a product of primes, and thus so is $2+(n+1)$. Thus, $2+(n+1) \in S$, and by AI.iv, $S=\{2,3,4, \ldots\}$

1.2 Extensions: Integers, Rationals, Reals

Consider the set of naturals $\mathbb{N}=\{1,2,3, \ldots\}$. Adding 0 to \mathbb{N} defines $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. We define the integers as the set $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$, or the set of all positive and negative whole numbers.

Within \mathbb{Z}, we can define multiplication, addition and subtraction, with the neutrals of 1 and 0 , respectively. However, we cannot define division, as we are not guaranteed a quotient in \mathbb{Z}. This necessitates the rationals, \mathbb{Q}. We define

$$
\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\right\}
$$

On \mathbb{Q}, we have the familiar operations of multiplication, addition, subtraction and properties of associativity, distributivity, etc. We can also define division, as $\frac{\frac{p}{q}}{\frac{p^{\prime}}{q^{\prime}}}=\frac{p q^{\prime}}{q p^{\prime}}$.

We can also define a relation $<$ between fractions, such that

- $x<y$ and $y<z \Longrightarrow x<z$
- $x<y \Longrightarrow x+z<y+z$
\mathbb{Q}, together with its operations and relations above, is called an ordered field.

1.2.1 The Insufficiency of the Rationals

We can consider historical reasoning for the extension of \mathbb{Q} to \mathbb{R}. Consider a right triangle of legs a, b and hypotenuse c. By the Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$. Consider further the case there $a=b=1$, and thus $c^{2}=2$. Does c exist in \mathbb{Q} ?
\hookrightarrow Proposition 1.1
$c^{2}=2, c \notin \mathbb{Q}$.

Proof of proposition 1.1. Suppose $c \in \mathbb{Q}$. We can thus write $c=\frac{p}{q}$, where ${ }^{5} p, q \in \mathbb{N}$, and p, q share no common divisors, ie they are in "simplest form". Notably, p and q cannot both be even (under our initial assumption), as they would then share a divisor of 2 . We write

$$
\begin{aligned}
c & =\frac{p}{q} \\
c^{2}=2 & =\frac{p^{2}}{q^{2}} \\
2 q^{2} & =p^{2}
\end{aligned}
$$

$p \in \mathbb{N} \Longrightarrow p^{2} \in \mathbb{N}$, and thus p^{2}, and therefore ${ }^{6} p$, must be divisible by $2(\Longrightarrow p$ even $)$. Therefore, we can write $p=2 p_{1}, p_{1} \in \mathbb{N}$, and thus $2 q^{2}=\left(2 p_{1}^{2}\right)^{2} \Longrightarrow q^{2}=2 p_{1}^{2}$. By the same reasoning, q must now be even as well, contradicting our initial assumption that p and q share no common divisors. Thus, $c \notin \mathbb{Q}$.

1.3 Sets \& Set Operations

- $A \cup B=\{x: x \in A$ or $x \in B\}$
- $A \cap B=\{x: x \in A$ and $x \in B\}$
- $\bigcup_{i=1}^{\infty} A_{n}=\bigcup_{n \in \mathbb{N}} A_{n}=\left\{x: x \in A_{n}\right.$ for some $\left.n \in \mathbb{N}\right\}$
- $\bigcap_{i=1}^{\infty} A_{n}=\bigcap_{n \in \mathbb{N}} A_{n}=\left\{x: x \in A_{n} \forall n \in \mathbb{N}\right\}$
- $A^{C}=\{x: x \in X \text { and } x \notin A\}^{7}$

\hookrightarrow Theorem 1.2: De Morgan's Theorem(s)

Let A, B be sets. Then,
(a) $\quad(A \cap B)^{C}=A^{C} \cup B^{C}$
and
(b) $\quad(A \cup B)^{C}=A^{C} \cap B^{C}$.
${ }^{5}$ Note that in the definition of \mathbb{Q}, p, q are defined to be in \mathbb{Z}; however, as we are using a geometric argument, we can assume $c>0 \Longrightarrow$ $\operatorname{Sign}(p)=\operatorname{Sign}(q)$, and we can just take $p, q \in \mathbb{N}$ for convenience and wlog.
$\sqrt[6]{\text { even }}=$ even
${ }^{7} X$ is often omitted if it is clear
from context.

Proof of theorem 1.2. (b) (A similar argument follows...)
\hookrightarrow Proposition 1.2

$$
\begin{aligned}
& \text { (a) }\left(\bigcap_{n=1}^{\infty} A_{n}\right)^{C}=\bigcup_{n=1}^{\infty} A_{n}^{C} \\
& \text { (b) }\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{C}=\bigcap_{n=1}^{\infty} A_{n}^{C}
\end{aligned}
$$

Proof of proposition 1.2. Consider Proposition (b). Working from the left-hand side, we have

$$
\begin{aligned}
\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{C} & =\left\{x: x \notin \bigcup A_{n}\right\} \\
& =\left\{x: x \notin A_{n} \forall n \in \mathbb{N}\right\} \\
& =\bigcap\left\{x: x \notin A_{n}\right\} \\
& =\bigcap A_{n}^{C}
\end{aligned}
$$

(a) can be logically deduced from this result. Consider the RHS, $\bigcup A_{n}^{C}$. Taking the complement:

$$
\begin{aligned}
\left(\bigcup A_{n}^{C}\right) & \stackrel{\text { via (b) }}{=} \bigcap A_{n}^{C^{C}} \\
& =\bigcap A_{n}
\end{aligned}
$$

Taking the complement of both sides, we have $\bigcup A_{n}^{C}=\left(\bigcap A_{n}\right)^{C}$, proving (a).

1.4 Functions

\hookrightarrow Definition 1.1
Let A, B be sets. A function f is a rule assigned to each $x \in A$ a corresponding unique element $f(x) \in B$. We denote

$$
f: A \rightarrow B
$$

\hookrightarrow Definition 1.2

The domain of a function $f: A \rightarrow B$, denoted $\operatorname{Dom}(f)=A$. The range of f, denoted
$\operatorname{Ran}(f)=\{f(x): x \in A\}$. Clearly, $\operatorname{Ran}(f) \subseteq B$, though equality is not necessary.

\circledast Example 1.4

The function $f(x)=\sin x, f: \mathbb{R} \rightarrow[-1,1]$. Here, $\operatorname{Dom}(f)=\mathbb{R}$, and $\operatorname{Ran}(f)=$ $[-1,1]$.
\circledast Example 1.5: Dirichlet Function
$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\left\{\begin{array}{l}1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q}\end{array}\right.$. Despite not having a true "explicit" formula, so to speak, this is still a valid function (under modern definitions).

1.4.1 Properties of Functions

\hookrightarrow Proposition 1.3

Let $f: A \rightarrow B, C \subseteq A, f(C)=\{f(x): x \in C\}$. We claim $f\left(C_{1} \cup C_{2}\right)=$ $f\left(C_{1}\right) \cup f\left(C_{2}\right)$.

Proof. We will prove this by showing (1) \subseteq and $(2) \supseteq$.
(1) $y \in f\left(C_{1} \cup C_{2}\right) \Longrightarrow$ for some $x \in C_{1} \cup C_{2}, y=f(x)$. This means that either for some $x \in C_{1}, y=f(x)$, or for some $x \in C_{2}, y=f(x)$. This implies that either $y \in f\left(C_{1}\right)$, or $y \in f\left(C_{2}\right)$, and thus y must be in their union, ie $y \in C_{1} \cup C_{2}$.
(2) $y \in f\left(C_{1}\right) \cup f\left(C_{2}\right) \Longrightarrow y \in f\left(C_{1}\right)$ or $y \in f\left(C_{2}\right)$. This means that for some $x \in C_{1}, y=f(x)$, or for some $x \in C_{2}, y=f(x)$. Thus, x must be in $C_{1} \cup C_{2}$, and for some $x \in C_{1} \cup C_{2}, y=f(x) \Longrightarrow y \in f\left(C_{1} \cup C_{2}\right)$.
(1) and (2) together imply that $f\left(C_{1} \cup C_{2}\right)=f\left(C_{1}\right) \cup f\left(C_{2}\right)$.

\circledast Example 1.6

Let $A_{n}=1,2, \ldots$ be a sequence of sets. Prove that $f\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty} f\left(A_{n}\right)$.

Proof. Let $y \in f\left(\bigcup_{n=1}^{\infty} A_{n}\right)$. This implies that $\exists x \in \bigcup_{n=1}^{\infty} A_{n}$ s.t. $f(x)=y$. This implies that $x \in A_{n}$ for some n, and $y \in f\left(A_{n}\right)$ for that same "some" n, and thus y must be in the union of all possible $f\left(A_{n}\right)$, ie $y \in \bigcup f\left(A_{n}\right)$. This shows \subseteq, use similar logic for the reverse.
$f\left(C_{1} \cap C_{2}\right) \subseteq f\left(C_{1}\right) \cap f\left(C_{2}\right)^{8}$

Proof. $y \in f\left(C_{1} \cap C_{2}\right) \Longrightarrow$ for some $x \in C_{1} \cap C_{2}, y=f(x)$. This implies that for some $x \in C_{1}, y=f(x)$ and for some $x \in C_{2}, y=f(x)$. Note that this does not imply that these x 's are the same, ie this reasoning is not reversible as in the previous union case. This implies that $y \in f\left(C_{1}\right)$ and $y \in f\left(C_{2}\right) \Longrightarrow y \in f\left(C_{1}\right) \cap f\left(C_{2}\right)$.

\circledast Example 1.7

Prove that if $A_{n}, n=1,2, \ldots, f\left(\bigcap_{n=1}^{\infty} A_{n}\right) \subseteq \bigcap_{n=1}^{\infty} f\left(A_{n}\right)$.

Proof (Sketch). Use the same idea as in example 1.6, but, naturally, with intersections.

* Example 1.8

Take $f(x)=\sin x, A=\mathbb{R}, B=\mathbb{R}$, and take $C_{1}=[0,2 \pi], C_{2}=[2 \pi, 4 \pi]$. Then, $f\left(C_{1}\right)=[-1,1]$, and $f\left(C_{2}\right)=[-1,1]$. But $C_{1} \cap C_{2}=\{2 \pi\} ; f(\{2 \pi\})=\{\sin 2 \pi\}=$ $\{0\}$, and thus $f\left(C_{1} \cap C_{2}\right)=\{0\}$, while $f\left(C_{1}\right) \cap f\left(C_{2}\right)=[-1,1]$, as shown in proposition 1.4.

\hookrightarrow Definition 1.3: Inverse Image of a Set

Let $f: A \rightarrow B$ and $D \subseteq B$. The inverse image of D by F is denoted $f^{-1}(D)^{9}$ and is defined as

$$
f^{-1}(D)=\{x \in A: f(x) \in D\} .
$$

\circledast Example 1.9

$$
\begin{aligned}
& A=[0,2 \pi], B=\mathbb{R}, f(x)=\sin x, D=[0,1] . \\
& \qquad f^{-1}(D)=\{x \in A: f(x) \in D\}=\{x \in[0,2 \pi]: \sin (x) \in[0,1]\}=[0, \pi] .
\end{aligned}
$$

\hookrightarrow Proposition 1.5

Given function f and sets D_{1}, D_{2},
(a) $f^{-1}\left(D_{1} \cup D_{2}\right)=f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$
${ }^{8} \mathrm{NB}$: the reverse is not always true, ie these sets are not always equal; "lack" of equality is more "common" than not.
${ }^{9}$ Note that this is not equivalent to the typical definition of an inverse function; f^{-1} may not exist
(b) $f^{-1}\left(D_{1} \cap D_{2}\right)=f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)^{10}$
\hookrightarrow Proposition 1.6: \star
Let $A_{n}, n=1,2,3 \ldots$ Then,
(a) $f^{-1}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1}\left(A_{n}\right)$
(b) $f^{-1}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\bigcap_{n=1}^{\infty} f^{-1}\left(A_{n}\right)$

Proof. ${ }^{11}$
(a)

$$
\begin{aligned}
x \in f^{-1}\left(\bigcup_{n=1}^{\infty} A_{n}\right) & \Longleftrightarrow f(x) \in \bigcup_{n=1}^{\infty} A_{n} \\
& \Longleftrightarrow f(x) \in A_{n} \text { for some } n \in \mathbb{N} \\
& \Longleftrightarrow x \in f^{-1}\left(A_{n}\right) \text { for some } n \in \mathbb{N} \\
& \Longleftrightarrow x \in \bigcup_{n=1}^{\infty} f^{-1}\left(A_{n}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
x \in f^{-1}\left(\bigcap_{n=1}^{\infty} A_{n}\right) & \Longleftrightarrow f(x) \in \bigcap_{n=1}^{\infty} A_{n} \\
& \Longleftrightarrow f(x) \in A_{n} \text { for all } n \in \mathbb{N} \\
& \Longleftrightarrow x \in f^{-1}\left(A_{n}\right) \text { for all } n \in \mathbb{N} \\
& \Longleftrightarrow x \in \bigcap_{n=1}^{\infty} f^{-1}\left(A_{n}\right)^{12}
\end{aligned}
$$

Remark 1.1. $f: A \rightarrow B, A_{1} \subseteq A$. Given $f\left(A_{1}^{C}\right)$ and $f\left(A_{1}\right)^{C}$, there is no general relation between the two.

For instance, take $A=[0,6 \pi], B=[-1,2], C=[0,2 \pi]$, and $f(x)=\sin x$. Then, $f(C)=[-1,1]$, and $f\left(C^{C}\right)=f([-1,0))=[-1,1]$, but $f(C)^{C}=[-1,1]^{C}=(1,2]$, and $f\left(C^{C}\right) \neq f(C)^{C}$; in fact, these sets are disjoint.
${ }^{10}$ Just see next proposition; if you really need convincing, just use 2 rather than ∞ as the upper limit of the unions/intersections and use the same proof.
${ }^{12}$ This is a "proof by definitions" as I like to call it.
${ }^{12}$ Similar proof can be used to prove proposition 1.5 , less generally.

Let $f: A \rightarrow B$ and let $D \subseteq B$. Then $f^{-1}\left(D^{C}\right)=\left[f^{-1}(D)\right]^{C}$.

Proof.

$$
\begin{aligned}
f^{-1}\left(D^{C}\right) & =\left\{x: f(x) \in D^{C}\right\}=\{x: f(x) \notin D\} \\
{\left[f^{-1}(D)\right]^{C} } & =[\{x: f(x) \in D\}]^{C}=\left\{x: x \notin f^{-1}(D)\right\}=\{x: f(x) \notin D\}
\end{aligned}
$$

1.5 Reals

\hookrightarrow Axiom 1.5: Of Completeness

Any non-empty subset of \mathbb{R} that is bound from above has at least one upper bound (also called the supremum).

In other words; let $A \subseteq \mathbb{R}$ and suppose A is bounded from above (A has at a least upper bound). Then $\sup (A)$ exists.

Real numbers, algebraically, have the same properties as the rationals; we have addition, multiplication, inverse of non-zero real numbers, and we have the relation $<$. All together, \mathbb{R} is an ordered field.

\hookrightarrow Definition 1.4

Let $A \subseteq \mathbb{R}$. A number $b \in \mathbb{R}$ is called an upper bound for A if for any $x \in A, x \leq B$.
A number $l \in \mathbb{R}$ is called a lower bound for A if for any $x \in A, x \geq l$.

\hookrightarrow Definition 1.5: The Least Upper Bound

Let $A \subseteq \mathbb{R}$. A real number s is called the least upper bound for A if the following holds:
(a) s is an upper bound for A
(b) if b is any other upper bound for A, then $s \leq b$.

The least upper bound of a set A is unique, if it exists; if s and s^{\prime} are two least upper bounds, then by (a), s and s^{\prime} are upper bound for A, and by (b), $s \leq s^{\prime}$ and $s^{\prime} \leq s$, and
thus $s=s^{\prime}$.
This least upper bound is called the supremum of A, denoted $\sup (A)$.

\hookrightarrow Definition 1.6: The Greatest Lower Bound

Let $A \subset \mathbb{R}$. A number $i \in \mathbb{R}$ is called the greatest lower bound for A if the following holds:
(a) i is a lower bound for A
(b) if l is any other lower bound for A, then $i \geq l$.

If i exists, it is called the infimum of A and is denoted $i=\inf (A)$, and is unique by the same argument used for $\sup (A)$.

\hookrightarrow Proposition 1.8

Let ${ }^{13} A \subseteq \mathbb{R}$ and let s be an upper bound for A. Then $s=\sup (A)$ iff for any $\varepsilon>0$, there exists $x \in A$ s.t. $s-\varepsilon<x$.

Proof. We have two statements:
I. $s=\sup (A)$;
II. For any $\varepsilon>0, \exists x \in A$ s.t. $s-\varepsilon<x$;
and we desire to show that $\mathrm{I} \Longleftrightarrow$ II.

- I $\Longrightarrow \mathrm{II}$: Let $\varepsilon>0$. Then, since $s=\sup (A), s-\varepsilon$ cannot be an upper bound for A (as s is the least upper bound, and thus $s-\varepsilon<s$ cannot be an upper bound at all). Thus, there exists $x \in A$ such that $s-\varepsilon<x$, and thus if I holds, II must hold.
- II \Longrightarrow I: suppose that this does not hold, ie II holds for an upper bound s for A , but $s \neq \sup (A)$. Then, there exists some upper bound b of A s.t. $b<s$. Take $\varepsilon=s-b$. $\varepsilon>0$, and since II holds, there exists $x \in A$ such that $s-\varepsilon<x$. But since $s-\varepsilon=b$ and thus $b<x$, then b cannot be an upper bound for A, contradicting our initial condition. So, if II \Longrightarrow I does not hold, we have a "impossibility", ie a value b which is an upper bound for A which cannot be an upper bound, and thus II $\Longrightarrow \mathrm{I}$.
${ }^{13}$ Note that this, and
proposition 1.9 that follows,
are not definitions: they are
restatements, and do
technically require proof.

Let $A \subseteq \mathbb{R}$ and let i be a lower bound for A. Then $i=\inf (A) \Longleftrightarrow$ for every $\varepsilon>0$ there exists $x \in A$ s.t. $x<i+\varepsilon$. ${ }^{14}$
${ }^{14}$ Use similar argument to proof of previous proposition.

Remark 1.2. ?? 1.5 can also be expressed in terms of infimum. Define $-A=\{-x: x \in A\}$. Then, if b is an upper bound for A, then $b \geq x \forall x \in A$, then $-b \leq-x \forall x \in A$, ie $-b$ is a lower bound of $-A$. Similarly, ifl is a lower bound for $A,-l$ is an upper bound for $-A$.

Thus, if A is bounded from above, then

$$
-\sup (A)=\inf (-A)
$$

and if A is bounded from below,

$$
-\inf (A)=\sup (-A)
$$

\hookrightarrow Axiom 1.6: AC (infimum)

Let $A \subseteq \mathbb{R}$; if A bounded from below, $\inf (A)$ exists.
\hookrightarrow Definition 1.7: max, min
Let $A \subseteq \mathbb{R}$. An $M \in A$ is called a maximum of A if for any $x \in A, x \leq M . M$ is an upper bound for A, but also $M \in A$.

If M exists, then $M=\sup (A) ; M$ is an upper bound, and if b any other upper bound, then $b \geq M$, because $M \in A$, and thus $M=\sup (A)$.

NB: $M=\max (A)$ need not exist, while $\sup (A)$ must exist. Consider $A=[0,1)$; $\sup (A)=1$, but there exists no $\max (A)$.

The same logic exists for the existence of minimum vs infimum (consider $(0,1)$, with no maximum nor minimum).

\hookrightarrow Theorem 1.3: Nested interval property of \mathbb{R}

Let $I_{n}=\left[a_{n}, b_{n}\right]=\left\{x: a_{n} \leq x \leq b_{n}\right\}, n=1,2,3 \ldots$ be an infinite sequence of bounded, closed intervals s.t.

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots I_{n} \supseteq I_{n+1} \supseteq \ldots
$$

Then, $\bigcap_{n=1}^{\infty} I_{n} \neq \varnothing$ (note that this does not hold in \mathbb{Q}).

Proof. ${ }^{15}$ We have $I_{n}=\left[a_{n}, b_{n}\right], I_{n+1}=\left[a_{n+1}, b_{n+1}\right], \ldots$. And the inclusion $I_{n} \supseteq I_{n+1}$. $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}, \forall n \geq 1$. So, the sequence a_{n} (left-end) is increasing, and the sequence b_{n} (right-end) is decreasing.

We also have that for any $n, k \geq 1, a_{n} \leq b_{k}$. We see this by considering two cases:

- Case 1: $n \leq k$, then $a_{n} \leq a_{k}$ (as a_{n} is increasing), and thus $a_{n} \leq a_{k} \leq b_{k}$.
- Case 2: $n>k$, then $a_{n} \leq b_{n} \leq b_{k}$ (again, as b_{n} is decreasing).

Let $A=\left\{a_{n}: n \in \mathbb{N}\right\}$. Then, A is bounded from above by any b_{k} (as in our inequality we showed above). Let $x=\sup (A)$, which must exist by ?? 1.5.

Note that as a result, $x \geq a_{n}$ for all n, and for all $k, x \leq b_{k}$, as x is the lowest upper bound and must be \leq all other upper bounds, and so for all $n \geq 1, a_{n} \leq x \leq b_{n}$, ie $x \in I_{n} \forall n \geq 1$, and thus $x \in \bigcap_{n=1}^{\infty} I_{n}$ and so $\bigcap_{n=1}^{\infty} \neq \varnothing$.

Remark 1.3. The proof above emphasized the left-end points; it can equivalently be proven via the right-end points, and using $y=\inf \left(\left\{b_{n}: n \in \mathbb{N}\right\}\right)=\inf (B)$, rather than $\sup (A)$, and showing that $y \in \bigcap I_{n}$.

Remark 1.4 (\star). Note too that, if $x=\sup (A)$ and $y=\inf (B)$, then $x, y \in \bigcap_{n=1}^{\infty} I_{n}$; in fact, $\bigcap_{n=1}^{\infty} I_{n}=[x, y]$. This can be done by

- Use the main proof to show $x \in \bigcap I_{n}$
- Use the previous remark to show $y \in \bigcap I_{n}$
- Show $x \leq y \Longrightarrow[x, y] \subseteq \bigcap I_{n}$
- Show $\bigcap I_{n} \subseteq[x, y] \Longrightarrow$ equality.

Remark 1.5. The intervals I_{n} must be closed; if not, eg $I_{n}=\left(0, \frac{1}{n}\right)$, then $\bigcap_{n=1}^{\infty} I_{n}=\varnothing$.
Say $\bigcap I_{n} \neq \varnothing$; take then some $x \in \bigcap I_{n}$. Then, $x \in\left(0, \frac{1}{n}\right) \forall n \in \mathbb{N}$. But by proposition 1.10, $\forall x \in \mathbb{R}, \exists N \in \mathbb{N}$ s.t. $\frac{1}{N}<x$. Clearly, x must be greater than 0 to exist in the intersection; hence, there will always exist some sufficiently large N such that $\frac{1}{N}<x \Longrightarrow x \notin$ $\left(1, \frac{1}{N}\right) \Longrightarrow x \notin \bigcap I_{n} \Longrightarrow \bigcap I_{n}=\varnothing$.
${ }^{15}$ Sketch: show that the left-end points are increasing and the right-end points are decreasing. Show either that all the left-end points are bounded from above or that all the right-end points are bounded from below. As a result, there exists a sup/inf (depending on which end you choose) of the set of all the right/left points. For the sup case, all upper bounds must be \geq sup, and thus the sup is in all I_{n}, and thus in their intersect, and thus the intersect is not empty.
(a) For any $x \in \mathbb{R}$, there exists a natural number n s.t. $n>x$.
(b) For any $y \in \mathbb{R}$ satisfying $y>0, \exists n \in \mathbb{N}$ such that $\frac{1}{n}<y$.

Remark 1.6. (a) states that \mathbb{N} is not a bounded subset of \mathbb{R}.
Remark 1.7. (b) follows from (a) by taking $x=\frac{1}{y}$ in (a), then $\exists n \in \mathbb{N}$ s.t. $n>\frac{1}{y} \Longrightarrow \frac{1}{n}<y$, and thus we need only prove (a).

Remark 1.8. Recall that \mathbb{Q} is an ordered field (operations + , and a relation $<$). \mathbb{Q} can be extended to a larger ordered field with extended definitions of these operations/relations, such that it contains elements that are larger than any natural numbers (ie, not bounded above). This is impossible in \mathbb{R} due to $A C$.

Proof. Suppose (a) not true in \mathbb{R}, ie \mathbb{N} is bounded from above in \mathbb{R}. Let $\alpha=\sup \mathbb{N}$, which exists by AC.

Consider $\alpha-1$; since $\alpha-1<\alpha, \alpha-1$ is not an upper bound of \mathbb{N}. So, there exists some $n \in \mathbb{N}$ s.t. $\alpha-1<n$; then, $\alpha<n+1$ where $n+1 \in \mathbb{N}$, and thus α is also not an upper bound, as there exists a natural number that is greater than α. This contradicts the assumption that $\alpha=\sup \mathbb{N}$, so (a) must be true.

\hookrightarrow Theorem 1.4: Density

Let $a, b \in \mathbb{R}$ s.t. $a<b$. Then, $\exists x \in \mathbb{Q}$ s.t. $a<x<b$.

Remark 1.9. If you take $a \in \mathbb{R}$ and $\varepsilon>0$, then by the theorem, $\exists x \in \mathbb{Q}$ where $x \in$ ($a-\varepsilon, a+\varepsilon$). So any real number can be approximated arbitrarily closely (via choose of ε) by a rational number.

Proof. Since $b-a>0$, by (b) of proposition $1.10, \exists n \in \mathbb{N}$ s.t. $\frac{1}{n}<b-a$, ie $n a+1<n b$.
Let $m \in \mathbb{Z}$ s.t. $m-1 \leq n a<m$. Such an integer must exists since $\bigcup_{m \in \mathbb{Z}}[m-1, m)=\mathbb{R}$, the family $[m-1, m), m \in \mathbb{Z}$ makes partitions of \mathbb{R}. Then, $n a<m$ gives that $a<\frac{m}{n}$. On the other hand, $m-1 \leq n a$ gives $m \leq n a+1<n b$. So $\frac{m}{n}<b$ and it follows that $\frac{m}{n}$ satisfies $a<\frac{m}{n}<b$.

In the proof, we used the claim:
\hookrightarrow Proposition 1.11
If $z \in \mathbb{R}$, then there exists $m \in \mathbb{Z}$ s.t. $m-1 \leq z<m$.

Proof. Let S be a non-empty subset of \mathbb{N}. Then S has the least element; $\exists m \in S$ s.t. $m \leq$ $n, \forall n \in S$.

We can assume $z \geq 0$; if $0 \leq z<1$, then we are done (take $m=1$), and assume that $z \geq 1$. Let now $S=\{n \in \mathbb{N}: z<n\}, \neq \varnothing$ by proposition 1.10 , (a). Let m be the least element of S. It exists by Well-Ordering Property; then, since $m \in S, z<m$. But, we also have $m-1 \leq z$, otherwise, if $z<m-1$ then $m-1 \in S$ and then m is not the least element of S. Thus, we have $m-1 \leq z<m$, as required.

\hookrightarrow Theorem 1.5

The set J of irrationals is also dense in \mathbb{R}. That is, if $a, b \in \mathbb{R}, a<b, \exists$ irrational y s.t. $a<y<b$ (noting that $J=\mathbb{R} \backslash \mathbb{Q}$).

Proof. Fix $y_{0} \in \mathbb{J}$. Consider $a-y_{0}, b-y_{0} . a-y_{0}<b-y_{0}$, and by density of rationals, $\exists x \in \mathbb{Q}$ s.t. $a-y_{0}<x<b-y_{0}$. Then, $a<y_{0}+x<b$; let $y=x+y_{0}$, and we have $a<y<b$.

Note that y cannot be rational; if $y \in \mathbb{Q}, y=x+y_{0} \Longrightarrow y-x=y_{0}$, and since $x \in \mathbb{Q}$, $y-x \in \mathbb{Q} \Longrightarrow y_{0} \in \mathbb{Q}$, contradicting the original choice of $y_{0} \notin \mathbb{Q}$. Thus, $y \in J$.

\hookrightarrow Theorem 1.6

\exists a unique positive real number α s.t. $\alpha^{2}=2$.

Proof. We show both uniqueness, existence: ${ }^{16}$
Uniqueness: if $\alpha^{2}=2$ and $\beta^{2}=2, \alpha \geq 0, \beta \geq 0$, then $0=\alpha^{2}-\beta^{2}=(\alpha-\beta)(\alpha+\beta)>$ 0 , and so $\alpha-\beta=0 \Longrightarrow \alpha=\beta$.

- Existence: consider the set $A=\left\{x \in \mathbb{R}: x \geq 0\right.$ and $\left.x^{2}<2\right\}$. A is not empty as $1 \in A$. The set of A is bounded above by 2 , since if $x \geq 2$, then $x^{2} \geq 4>2$, so $x \notin A$. So, by AC, $\sup A$ exists; let $\alpha=\sup A$. We will show that $\alpha^{2}=2$, by showing that both $\alpha^{2}<2$ and $\alpha^{2}>2$ are contradictions.

$$
\alpha^{2}<2
$$

For any $n \in \mathbb{N}$ we expand

$$
\left(\alpha+\frac{1}{n}\right)^{2}=\alpha^{2}+\frac{2 \alpha}{n}+\frac{1}{n^{2}} \leq \alpha^{2}+\frac{2 \alpha+1}{n}
$$

noting that $\frac{1}{n^{2}} \leq \frac{1}{n}$ for $n \geq 1$.
Let $y=\frac{2-\alpha^{2}}{2 \alpha+1}$, which is strictly positive. By proposition $1.10, \exists n_{0} \in \mathbb{N}$ s.t.

$$
\frac{1}{n_{0}}<\frac{2-\alpha^{2}}{2 \alpha+1} \text { or } \frac{2 \alpha+1}{n_{0}}<2-\alpha^{2} .
$$

Substituting this n_{0} into our inequality, we have

$$
\left(\alpha+\frac{1}{n_{0}}\right)^{2} \leq \alpha^{2}+\frac{2 \alpha+1}{n_{0}}<\alpha^{2}+2-\alpha^{2}=2 .
$$

Since $\alpha+\frac{1}{n_{0}}$ is positive, $\alpha+\frac{1}{n_{0}} \in A$. But, since $\alpha=\sup A, \alpha+\frac{1}{n_{0}} \leq \alpha$, which is impossible, so $\alpha^{2}<2$ cannot be true.
$\alpha^{2}>2$
Take $n \in \mathbb{N}$;

$$
\left(\alpha-\frac{1}{n}\right)^{2}=\alpha^{2}-\frac{2 \alpha}{n}+\frac{1}{n^{2}}>\alpha^{2}-\frac{2 \alpha}{n}
$$

Now, let $y=\frac{\alpha^{2}-2}{2 \alpha} ; y>0$, and by proposition $1.10, \exists n_{0} \in \mathbb{N}$ s.t.

$$
\frac{1}{n_{0}}<\frac{\alpha^{2}-2}{2 \alpha}, \text { or } \frac{2 \alpha}{n_{0}}<\alpha^{2}-2
$$

Substituting this n_{0}, we have

$$
\left(\alpha-\frac{1}{n_{0}}\right)^{2}>\alpha^{2}-\frac{2 \alpha}{n_{0}}>\alpha^{2}+2-\alpha^{2}=2 .
$$

So for any $x \in A$, we have $\left(\alpha-\frac{1}{n_{0}}\right)^{2}>2>x^{2}$. $\alpha-\frac{1}{n_{0}}>0$, and $x>0$, since $x \in A$. Then, $\left(\alpha-\frac{1}{n_{0}}\right)^{2}>x^{2}$ gives that $\alpha-\frac{1}{n_{0}}>x$.
So, $\alpha-\frac{1}{n_{0}}>x$ for all $x \in A$. So $\alpha-\frac{1}{n_{0}}$ is an upper bound for A, but since $\alpha=\sup A, \alpha-\frac{1}{n_{0}} \geq \alpha$ ie $\alpha \geq \alpha+\frac{1}{n_{0}}$, which is impossible. So $\alpha^{2}>2$ cannot be true.

Thus, $\alpha^{2}=2$.
${ }^{16}$ Proof sketch: uniqueness is clear. Existence follows from showing that α^{2} cannot be either $<$ or >2. This is done by contradiction, taking some number slightly

Remark 1.10. A similar argument gives that for any $x \in \mathbb{R}, x \geq 0, \exists!\alpha \in \mathbb{R}, \alpha \geq 0$ such that $\alpha^{2}=x$. This x is called the square root of x, denoted $\alpha=\sqrt{x}$.

Remark 1.11. For any natural number $m \geq 2$ and $x \geq 0, \exists!\alpha \in \mathbb{R}, \alpha \geq 0$ s.t. $\alpha^{m}=x$. The proof is similar, and we call α the m-th root of x.

Remark 1.12. Our last proof also gives that \mathbb{Q} cannot satisfy AC. Suppose it does, ie any set in \mathbb{Q} bounded from above has a supremum $\in \mathbb{Q}$. Then, consider $B=\left\{x \in \mathbb{Q}: x \geq 0\right.$ and $x^{2}<$ $2\}$; set $\alpha=\sup B$. The exact same proof can be used, but we will not be able to find an upper bound in \mathbb{Q}.

1.7 Cardinality

\hookrightarrow Definition 1.8

Let $f: A \rightarrow B$.

1. f injective (one-to-one) if $a_{1} \neq a_{2} \Longrightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)$
2. f surjective (onto) if for any $b \in B \exists a \in A$ s.t. $f(a)=b$.
3. f bijective if both.

\hookrightarrow Definition 1.9: Composition

If $f: A \rightarrow B, g: B \rightarrow C$, the composite map $h=g \circ f$ is define by $h(x)=g(f(x))$.
Note that $h: A \rightarrow C$.

\circledast Example 1.10

Consider functions f, g.

1. If f, g injective, so is $h=g \circ f$
2. If f, g bijective, then so is h
3. If $\exists E \subseteq C$, then $h^{-1}(E)=f^{-1}\left(g^{-1}(E)\right)$

\hookrightarrow Definition 1.10

The inverse function ${ }^{17}$ is defined only for bijective map $f: A \rightarrow B . y \in B, f^{-1}(y)=x$ where $x \in A$ s.t. $f(x)=y$.
${ }^{17}$ Not the same as the inverse image of a set by a function, which is defined for any function.

\circledast Example 1.11

1. $A=\mathbb{R}, B=(0, \infty), f(x)=e^{x}$. f is a bijection, and $f^{-1}(y)=\ln y, y \in$ $(0, \infty)$.
2. $A=\left(-\frac{\pi}{2}, \frac{\pi}{2}, B=\mathbb{R}\right) . f(x)=\tan x, f^{-1}(y)=\arctan y$

\hookrightarrow Definition 1.11: Equal Cardinalities

Let A, B be two sets. We say A, B have the same cardinality, denote $A \sim B$ if there exists a bijective function $f: A \rightarrow B$.

\circledast Example 1.12

Let $E=\{2,4,6, \ldots\}$ (even natural numbers). Define $f: \mathbb{N} \rightarrow E$ by $f(n)=2 n$.
Thus, f is a bijection, and $\mathbb{N} \sim E{ }^{18}$

[^0]\hookrightarrow Theorem 1.7
The relation \sim is a relation of equivalence.

1. $A \sim A$
2. if $A \sim B$, then $B \sim A$
3. if $A \sim B$ and $B \sim C$, then $A \sim C$

\hookrightarrow Definition 1.12: Countable

A set A is countable if $\mathbb{N} \sim A$.

Remark 1.13. According to this, finite sets are not countable; this is just a convention. Sometimes, we say a set is countable if it is finite or to above definition holds, where we say that a set is countably infinite if it is infinite and countable.

Other times, finite sets are treated separately than countable sets.
\hookrightarrow Theorem 1.8
Suppose that $A \subseteq B$.

1. If B is finite or countable, then so is A
2. If A is infinite and uncountable, then so is B

\hookrightarrow Definition 1.13: Cartesian Product

If A, B sets, $A \times B=\{(a, b): a, b \in A, B\}$.
\hookrightarrow Proposition 1.12
$\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$; there exists a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.
\hookrightarrow Proposition 1.13
Let A be a set. The following are equivalent statements:
(a) A is finite or a countable set;
(b) there exists a surjection from \mathbb{N} onto A;
(c) there exists a injection from A into \mathbb{N}.

Proof. We proceed by proving that each statement implies the next (and thus are equivalent).

- (a) \Longrightarrow (b): Suppose A is finite and has \mathbb{N} elements. Then there exists a bijection $h:\{1,2, \ldots n\} \rightarrow A$. We now define a map $f: \mathbb{N} \rightarrow A$, by setting

$$
f(m)= \begin{cases}h(m) & \text { if } m \leq n \\ h(n) & \text { if } m>n\end{cases}
$$

f is surjective, and thus (b) holds. If (a) countable, \exists bijection $f: \mathbb{N} \rightarrow A$, and any bijection is a surjection, so (b) also holds.

- (b) \Longrightarrow (c): Let $h: \mathbb{N} \rightarrow A$ be a surjection, whose existence is guaranteed by (b). Then, for any $a \in A$, the set

$$
h^{-1}(\{a\})=\{m \in \mathbb{N}: h(m)=n\} \neq \varnothing \text {, }
$$

since h is a surjection. Then, by the well-ordering property of \mathbb{N}, the set $h^{-1}(\{a\})$ has a least element.
If n is the least element of $h^{-1}(\{a\})$, we set $f(a)=$. This defines a function

$$
f: A \rightarrow \mathbb{N}
$$

and we aim to show that f is injective, ie that $f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}$.
Suppose $f\left(a_{1}\right)=f\left(a_{2}\right)=n$. Then, n is the least element of $h^{-1}\left(\left\{a_{1}\right\}\right)$ and of $h^{-1}\left(\left\{a_{2}\right\}\right)$, and in particular, $h(n)=a_{1}$ and $h(n)=a_{2}$, and thus $a_{1}=a_{2}$ and so f is indeed injective.

- (c) \Longrightarrow (a): Let $f: A \rightarrow \mathbb{N}$ be an injection, whose existence is guaranteed by (c). Consider the range of f, ie

$$
f(A)=\{f(a): a \in A\} .
$$

Since f an injection, f is a bijection between A and $f(A)$.
Otoh, $f(A) \subseteq \mathbb{N}$, and so by theorem $1.8, f(A)$ is either finite or countable, and there exists a bijection between A and some set that is either fininte or countable. Thus, A must also be finite or countable, and so (a) holds.

\hookrightarrow Theorem 1.9

Let $A_{n}, n=1,2, \ldots$ be a sequence of sets such that each A_{n} is either finite or countable. Then, their union

$$
A=\bigcup_{n=1}^{\infty} A_{n}
$$

is also either finite or countable.

Proof. We will use (a) \Longleftrightarrow (b) from proposition 1.13 to prove this.
Since each A_{n} finite or countable, by (a) \Longrightarrow (b), there exists a surjection

$$
\varphi_{n}: \mathbb{N} \rightarrow A_{n}
$$

Now, let $h: \mathbb{N} \times \mathbb{N} \rightarrow A$, (the union) by setting

$$
h(n, m)=\varphi_{n}(m) .
$$

We aim to show that h is also surjective.
If $a \in \bigcup_{n=1}^{\infty} A_{n}$, then $a \in A_{n}$ for some $n \in \mathbb{N}$. Since $\varphi_{n}: \mathbb{N} \rightarrow A_{n}$ is a surjection, there exists an $m \in \mathbb{N}$ s.t. $\varphi_{n}(m)=a$. By definition of h, we have

$$
h(n, m)=a
$$

and thus h is a surjection.
By proposition 1.12 , there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, and we can define the composite map

$$
h \circ f: \mathbb{N} \rightarrow A\left(=\cup_{n=1}^{\infty} A_{n}\right)
$$

which is a surjection as both h, f are surjections. So, there exists a surjection from $\mathbb{N} \rightarrow A$, and by proposition $1.13,(\mathrm{~b}) \Longrightarrow(\mathrm{a})$, and thus $A=\bigcup_{n=1}^{\infty} A_{n}$ is also finite or countable.

Remark 1.14. If $A=\bigcup_{n=1}^{\infty} A_{n}$, where each A_{n} is either finite or countable, and at least one A_{n} is countable, then A is countable.

Remark 1.15. If A_{1}, \ldots, A_{n} are finitely many finite or countable sets then their union $A_{1} \cup$ $\cdots \cup A_{n}$ is also finite or countable (essentially just previous proof where we use n instead of ∞ for the upper limit of the union...).
\hookrightarrow Theorem 1.10
The set \mathbb{Q} of rational numbers is countable.

Proof. We write

$$
\mathbb{Q}=A_{0} \cup A_{1} \cup A_{2},
$$

where $A_{0}=\{0\}, A_{1}=\left\{\frac{m}{n}: m, n \in \mathbb{N}\right\}$, and $A_{2}=\left\{-\frac{m}{n}: m, n \in \mathbb{N}\right\}$.
Let us show that A_{1} is countable; define

$$
h: \mathbb{N} \times \mathbb{N} \rightarrow A_{1}, f(m, n)=\frac{m}{n}
$$

h is clearly a surjection; if $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ is a bijection, then by proposition $1.12, h \circ f$: $\mathbb{N} \rightarrow A_{1}$ is a surjection. By proposition $1.13, A_{1}$ is countable.

We prove that A_{2} countable in essentially the same way.
Then, $A_{0} \cup A_{1} \cup A_{2}$ is also countable, as it is the union of countable sets, and thus \mathbb{Q} is also countable.

The set \mathbb{R} of real numbers is uncountable. ${ }^{19}$

Proof. We will argue by contradiction; suppose \mathbb{R} is countable, then show that the nested interval property (theorem 1.3) of the real line fails.
Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a bijection, setting $f(1)=x_{1}, f(2)=x_{2}, \ldots, f(n)=x_{n}, \ldots$; we can then list the elements of \mathbb{R} as $\mathbb{R}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right\}$.
We can now construct a sequence $I_{n}, n \in \mathbb{N}$ of bounded, closed intervals, such that I_{1} does not contain x_{1}.

If $x_{2} \notin I_{1}$, then $I_{2}=I_{1}$. If $x_{2} \in I_{1}$, then divide I_{1} into four equal closed intervals.
Call the leftmost/rightmost of these intervals I_{1}^{\prime} and $I_{1}^{\prime \prime}$ respectively. We know that $x_{2} \in I_{1}$, so we must have that either $x_{2} \notin I_{1}^{\prime}$ or $x_{2} \notin I_{1}^{\prime \prime}$ If $x_{2} \notin I_{1}^{\prime}$, then $I_{2}=I_{1}^{\prime}$. If $x_{2} \notin I_{1}^{\prime \prime}$, then $I_{2}=I_{1}^{\prime \prime}$.
Thus, we have constructed I_{1}, I_{2} s.t.

$$
I_{1} \supseteq I_{2} \text { and } x_{1} \notin I_{1}, x_{2} \notin I_{2} .
$$

Consider x_{3}; if $x_{3} \notin I_{2}$, then $I_{3}=I_{2}$. If $x_{3} \in I_{2}$, we repeat the "dividing" process as before. Since $x_{3} \in I_{2}$, either $x_{3} \notin I_{2}^{\prime}$ or $x_{3} \notin I_{2}^{\prime \prime}$. If $x_{3} \notin I_{2}^{\prime}, I_{3}=I_{2}^{\prime}$. Else, if $x_{3} \notin I_{2}^{\prime \prime}, I_{3}=I_{2}^{\prime \prime}$.
We have now that

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \text { and } x_{1} \notin I_{1}, x_{2} \notin I_{2}, x_{3} \notin I_{3},
$$

and we can continue this construction to obtain an infinite sequence of bounded, closed intervals I_{n} s.t.

$$
I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \supseteq I_{n+1} \supseteq \cdots,
$$

and for each $n, x_{n} \notin I_{n}$.
Consider the intersection of all these I_{n} 's,

$$
\bigcap_{n=1}^{\infty} I_{n} .
$$

For every $m, x_{m} \notin I_{m}$, so for every $m \in \mathbb{N}, x_{m} \notin \bigcap_{n=1}^{\infty} I_{n}$, and so $\mathbb{R}=\left\{x_{1}, x_{2}, \ldots x_{m}, \ldots\right\}$ has an empty intersection with this intersection, ie

$$
\mathbb{R} \cap\left(\bigcap_{n=1}^{\infty} I_{n}\right)=\varnothing
$$

Otoh, $\bigcap_{n=1}^{\infty} I_{n} \subseteq \mathbb{R}$, so we must have that $\bigcap_{n=1}^{\infty} I_{n}=\varnothing$ contradicting the nested interval
property of the real line which states that this intersection must not be empty. We thus have a contradiction, and our assumption that \mathbb{R} countable fails. ${ }^{20}$

\hookrightarrow Proposition 1.14

The set J of all irrational numbers in \mathbb{R} is uncountable.

Proof. We have that $\mathbb{R}=\mathbb{Q} \cup J$. If J countable, then \mathbb{R} would also be countable as the union of two countable sets (as we showed \mathbb{Q} countable in theorem 1.10). \mathbb{R} uncountable, so J is also uncountable.

\hookrightarrow Proposition 1.15

The set $(-1,1) \subseteq \mathbb{R}$ is uncountable.

Proof. We can write $\mathbb{R}=\bigcup_{n=1}^{\infty}(-n, n)$. If each $(-n, n)$ is countable, then \mathbb{R} would also be countable, as a countable union of countable sets. Thus, there must exist some $n_{0} \in$ \mathbb{N} s.t. $\left(-n_{0}, n_{0}\right)$ is not countable. The map

$$
f:\left(-n_{0}, n_{0}\right) \rightarrow(-1,1), f(x)=\frac{x}{n_{0}}
$$

is a bijection, and so $(-1,1)$ is uncountable.
\circledast Example 1.13
Show that the map

$$
f(x)=\frac{x}{1-x^{2}}
$$

is a bijection between $(-1,1)$ and \mathbb{R} ie $(-1,1) \sim \mathbb{R}$.

Proof. Surjection is fairly trivial (if stuck, consider the graph of the function).
Injection; given $f(x)=f(y)$ where $x, y \in(-1,1)$,

$$
\begin{array}{r}
\frac{x}{1-x^{2}}=\frac{y}{1-y^{2}} \\
x-x y^{2}=y-y x^{2} \\
x-y=x y^{2}-y x^{2}=x y(y-x) \\
x-y=-x y(x-y) \\
\Longrightarrow-x y=1 \Longrightarrow x y=-1, \text { or } x-y=0
\end{array}
$$

$x y=-1$ is impossible given the domain of the function, hence $x-y=0 \Longrightarrow$
\hookrightarrow Proposition 1.16
Any bounded non-empty open interval $(a, b) \in \mathbb{R}$ is uncountable.

Proof. We will construct a bijection $f:(a, b) \rightarrow \mathbb{R}$ so that $(a, b) \sim \mathbb{R}$. Since \mathbb{R} is uncountable, so must (a, b).

The map

$$
f(x)=\frac{2(x-a)}{b-a}-1
$$

is a bijection between (a, b) and $(-1,1)$, and we have shown that $(-1,1) \sim \mathbb{R}$, so $(a, b) \sim$ \mathbb{R}, and thus any open interval has the same cardinality as \mathbb{R}.

Example 1.14

Prove that \exists bijection between $[0,1)$ and $(0,1)$, and conclude that $[0,1) \sim(0,1) \sim$ \mathbb{R}. Then conclude for any $a<b,[a, b) \sim \mathbb{R}$.

1.7.1 Power Sets

\hookrightarrow Definition 1.14: Power Set

Let A be a set. The power set of $A \mathrm{~m}$ denoted $\mathcal{P}(A)$ is the collection of all subsets of A.
Generally, if A finite of size $n, \mathcal{P}(A)$ has 2^{n} elements.
\hookrightarrow Theorem 1.12: Cantor Power Set Theorem
Let A be any set. Then there exists no surjection from A onto $\mathcal{P}(A) .{ }^{21}$
${ }^{21}$ Certified Classic

Proof. Suppose that there exists a surjection,

$$
f: A \rightarrow \mathcal{P}(A)
$$

Let $D \subseteq A$ defined as

$$
D=\{a \in A: a \notin f(a)\} .
$$

Since $D \subseteq \mathcal{P}(A)$, and f is surjective, there must exist some $a_{0} \in A$ s.t. $f\left(a_{0}\right)=D$.
We have two cases:

1. $a_{0} \in D$. But then, by definition of $D, a_{0} \notin f\left(a_{0}\right)=D$, so $a_{0} \in D$ is not possible as it implies $a_{0} \notin D$.
2. $a_{0} \notin D$. But then, since $D=f\left(a_{0}\right), a_{0} \notin f\left(a_{0}\right)$, and so by definition of $D, a_{0} \in D$, which is again not possible.

So, the assumption of a surjection existing has led to $a_{0} \in A$ such that neither $a_{0} \in D$ nor $a_{0} \notin D$, which is impossible. Thus there can be no surjective f.
Notice, though, that there exists an injection $A \rightarrow \mathcal{P}(A), a \mapsto\{a\}$, and thus there is an injection but no bijection.
Thus, we can say that $\mathcal{P}(A)$ is strictly bigger than A.

2 Sequences

2.1 Definitions

\hookrightarrow Definition 2.1

Let A be a set. An A-valued sequence indexed by \mathbb{R} is a map

$$
x: \mathbb{N} \rightarrow A
$$

The value $x(n)$ is called the n-th element of the sequence. One writes $x(n)=x_{n}$, or lists its elements

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \equiv\left\{x_{n}\right\}_{n \in \mathbb{N}} \equiv\left(x_{n}\right)_{n \in \mathbb{N}} \equiv\left\{x_{n}\right\} .
$$

\hookrightarrow Definition 2.2: Convergence

We say that a sequence $\left(x_{n}\right)$ converges to a real number x if for every $\varepsilon>0, \exists N \in$ \mathbb{N} s.t. for all $n \geq N$ we have

$$
\left|x_{n}-x\right|<\varepsilon .
$$

If sequence $\left(x_{n}\right)$ converges to x, we write $\lim _{n \rightarrow \infty} x_{n}=x$.

\circledast Example 2.1

Let $\left(x_{n}\right)$ be a sequence defined by $x_{n}=\frac{1}{n}, n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof. Let $\varepsilon>0$. Let $N \in \mathbb{N}$ s.t. $N>\frac{1}{\varepsilon}$. Then for $n \geq N$, we have that

$$
0<\frac{1}{n} \leq \frac{1}{N}<\varepsilon
$$

So, for $n \geq N,\left|x_{n}-0\right|<\varepsilon$, and so the limit is 0 .

\hookrightarrow Definition 2.3: Quantifier of Limit \star

The limit can be written in terms of quantifiers.

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

means that

$$
(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall n \geq N)\left(\left|x_{n}-x\right|<\varepsilon\right)
$$

\circledast Example 2.2
Prove ${ }^{22}$ that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}}=1
$$

Proof. Let $\varepsilon>0$. Let N be a natural number such that $N>\frac{1}{\sqrt{\varepsilon}}$. Then, for $n \geq N$,

$$
\left|\frac{n^{2}+1}{n^{2}}-1\right|=\left|\frac{n^{2}+1-n^{2}}{n^{2}}\right|=\frac{1}{n^{2}} \leq \frac{1}{N^{2}}<\varepsilon
$$

\hookrightarrow Definition 2.4: Divergent Sequences

If a sequence $\left(x_{n}\right)$ does not converge to any real number x, we say that the sequence is divergent. For instance, consider

$$
x_{n}=(-1)^{n}, n \geq 1
$$

The sequence alternates between 1 and -1 and so intuitively does not converge. How do we prove it?

Proof. By contradiction; suppose that $x_{n}=(-1)^{n}$ be a converging sequence. Let $x=$ $\lim _{n \rightarrow \infty} x_{n}$. Take $\varepsilon=1$, then $\exists N \in \mathbb{N}$ s.t. for all $n \geq N$ we have that $\left|x-x_{n}\right|<\varepsilon=1$.
${ }^{22}$ Work backwards to start; how can you simply the sequence (that is, build a string of inequalities) such that defining an N in terms of ε becomes apparent?

Consider indices $n=N, n=N+1$. We have

$$
\left|x_{N+1}-x_{N}\right|=\left|x_{n+1}-x+x-x_{N}\right| \leq \underbrace{\left|x_{N+1}-x\right|+\left|x-x_{N}\right|}_{\text {triangle inequality }}<1+1=2 .
$$

But we also have that

$$
\left|(-1)^{N+1}-(-1)^{N}\right|=\left|(-1)^{N+1}+(-1)^{N+1}\right|=2
$$

We thus have that $2<2$, which is a contradiction. Thus, x_{n} is not convergent.

* Example 2.3

Evaluate the following examples using the ε definition:

1. $\lim _{n \rightarrow \infty} \frac{\sin n}{\sqrt[3]{n}}=0$
2. $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$
3. $\lim _{n \rightarrow \infty} \frac{(1+2+\cdots+n)^{2}}{n^{4}}=\frac{1}{4}$

Proof.

1. For all $\varepsilon>0$; take $\frac{1}{N}<\varepsilon^{3} \Longrightarrow \frac{1}{\sqrt[3]{N}}<\varepsilon$. Then, $\forall n \geq N$,

$$
\begin{array}{r}
n \geq N \Longrightarrow \sqrt[3]{n} \geq \sqrt[3]{N} \Longrightarrow \frac{1}{\sqrt[3]{n}} \leq \frac{1}{\sqrt[3]{N}} \\
-1 \leq \sin n \leq 1 \Longrightarrow|\sin n| \leq 1 \Longrightarrow\left|\frac{\sin n}{\sqrt[3]{n}}\right| \leq\left|\frac{1}{\sqrt[3]{N}}\right| \leq \frac{1}{\sqrt[3]{N}}<\varepsilon \\
\Longrightarrow \lim _{n \rightarrow \infty} \frac{\sin n}{\sqrt[3]{n}}=0
\end{array}
$$

2. Take $\frac{1}{N} \leq \varepsilon$. Then, $\forall \varepsilon>0, \forall n \geq N \Longrightarrow \frac{1}{n} \leq \frac{1}{N}$,

$$
\begin{array}{r}
\frac{n!}{n^{n}}>0 \Longrightarrow\left|\frac{n!}{n^{n}}\right|=\frac{n!}{n^{n}}=\frac{n(n-1)(n-2) \cdots 1}{n \cdot n \cdots n}=\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{1}{n} \\
\leq 1 \cdot 1 \cdots 1 \cdot \frac{1}{n} \\
\leq \frac{1}{n} \leq \frac{1}{N}<\varepsilon \\
\Longrightarrow \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
\end{array}
$$

3. Note first that $(1+2+\cdots+n)^{2}=\left(\frac{n(n+1)}{2}\right)^{2}$ (see example 1.1). Take $\frac{1}{N}<\frac{\varepsilon}{2}$;
then, $\forall \varepsilon>0$, we have that $\forall n \geq N$,

$$
\begin{array}{r}
\left|\frac{(1+2+\cdots+n)^{2}}{n^{4}}-\frac{1}{4}\right|=\frac{\frac{n^{2}(n+1)^{2}}{4}}{n^{4}}-\frac{n^{4}}{n^{4}}=\frac{n^{4}+2 n^{3}+n^{2}-n^{4}}{n^{4}} \\
=\frac{2 n^{3}+n^{2}}{n^{4}}=\frac{2 n+1}{n^{2}} \leq \frac{2 n}{n^{2}} \leq \frac{2}{n} \leq \frac{2}{N}<\varepsilon \\
\Longrightarrow \lim _{n \rightarrow \infty} \frac{(1+2+\cdots+n)^{2}}{n^{4}}=\frac{1}{4}
\end{array}
$$

2.2 Properties of Limits

\hookrightarrow Lemma 2.1: Triangle Inequality

For $x, y, z \in \mathbb{R}$,
(i) $\quad|x+y| \leq|x|+|y| ; \quad$ (ii) $\quad|x-y| \leq|x-z|+|z-y|^{23}$

Sketch proof. $(i):|x+y|=\left\{\begin{array}{ll}x+y & x+y \geq 0 \\ -(x+y) & x+y \leq 0\end{array}\right.$. So if $x+y \geq 0,|x+y|=x+y \leq$ $|x|+|y|$.

If $x+y>0,|x+y|=-(x+y)=(-x)+(-y) \leq|x|+|y|$.
(ii): $|x-y|=|x-z+z-y| \leq|x-z|+|z-y|$ (using (i)).
\hookrightarrow Theorem 2.1: \star
A limit of a sequence is unique. In other words, if the sequence is converging, then its limit is unique. The sequence cannot converge to two distinct numbers x and $y .{ }^{24}$

Proof. By contradiction; suppose $\exists\left(x_{n}\right)$ s.t. $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} x_{n}=y$, and that $x \neq y$.
Take $\varepsilon=\frac{|x-y|}{2}$. Since $x \neq y$, we have that $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} x_{n}=x, \exists N_{1} \in \mathbb{N}$ s.t. for $n \geq N_{1},\left|x_{n}-x\right|<\varepsilon$.
Similarly, since $\lim x_{n}=y, \exists N_{2} \in \mathbb{N}$ s.t for $g \geq N_{2},\left|x_{n}-y\right|<\varepsilon$.
${ }^{23}$ Generally, proofs involving
limits will consist of 1)
picking/defining an ε based
on given limit/series
definitions, and then 2) using
triangle inequality/related
techniques to reach the
desired conclusion.
${ }^{24}$ Proof sketch: contradiction, assume two distinct limits, and take ε as their midpoint. Arrive at a contradiction by using triangle inequalities to show that $|x-y|<|x-y|$, and thus the limits cannot be distinct.

Take some $n \geq \max \left(N_{1}, N_{2}\right)$; then

$$
\begin{aligned}
|x-y|=\left|x-x_{n}+x_{n}-y\right| & \leq\left|x-x_{n}\right|+\left|x_{n}-y\right| \\
& <\varepsilon+\varepsilon=|x-y| \\
& \Longrightarrow|x-y|<|x-y|, \perp
\end{aligned}
$$

\hookrightarrow Theorem 2.2

Any converging sequence is bounded. ${ }^{25}$

In other words, if $\left(x_{n}\right)$ is a converging sequence,

$$
\exists M>0 \text { s.t. }\left|x_{n}\right| \leq M \forall n \geq 1 .
$$

Proof. Let $\left(x_{n}\right)$ be a converging sequence, and $x=\lim _{n \rightarrow \infty} x_{n}$. Take $\varepsilon=1$ in the definition of the limit; then, $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N,\left|x_{n}-x\right|<1$.
This gives that for $n \geq N,\left|x_{n}\right|=\left|x_{n}-x+x\right| \leq\left|x_{n}-x\right|+|x|<1+|x|$.
Let now $M=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N-1}\right|+(1+|x|)$. Then, for any $n \geq 1,\left|x_{n}\right| \leq M$;
If $n \leq N-1$, then $\left|x_{n}\right|$ is a summand in M, and thus $\left|x_{n}\right| \leq M$.
If $n \geq N$, then we have by the choice of N that $\left|x_{n}\right|<1+|x| \leq M$.
Thus, for all $n \geq 1,\left|x_{n}\right| \leq M$, and is thus bounded given $\left(x_{n}\right)$ converges.

\hookrightarrow Proposition 2.1: Algebraic Properties of Limits

Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences such that ${ }^{26}$

$$
\lim x_{n}=x, \quad \lim y_{n}=y
$$

Then:

1. For any constant $c, \lim c \cdot x_{n}=c \cdot \lim x_{n}=c \cdot x$
2. $\lim \left(x_{n}+y_{n}\right)=\lim x_{n}+\lim y_{n}=x+y$
3. $\lim x_{n} \cdot y_{n}=\left(\lim x_{n}\right)\left(\lim y_{n}\right)=x \cdot y$
4. Suppose $y \neq 0, y_{n} \neq 0 \forall n \geq 1$. Then, $\lim \frac{x_{n}}{y_{n}}=\frac{\lim x_{n}}{\lim y_{n}}=\frac{x}{y}$
${ }^{25}$ Take $\varepsilon=1$, which is greater than $\left|x_{n}-x\right|$ by limit definition for $n \geq N$ for some N. We then use this to show that $\left|x_{n}\right|<1+|x|$, then construct a summation M such that it bounds $\left|x_{n}\right|$; it is equal to $\left|x_{1}\right|+\left|x_{2}\right|+\cdots$ up to $\left|x_{N-1}\right|$, then plus $1+|x|$. We have finished.
${ }^{26}$ Note that the contrary of these statements need not hold; ie, if $\lim \left(x_{n} \cdot y_{n}\right)$ exists, this does not imply the existence of $\lim x_{n}$ and

Remark 2.1. Let X be the collection of all sequences of real numbers, $X=\left\{\left(x_{n}\right): x_{n}\right.$ is a sequence $\}$. If $\left(x_{n}\right) \in X$ and $c \in \mathbb{R}$, we can define $c \cdot\left(x_{n}\right)=\left(c \cdot x_{n}\right)^{27}$; this defines scalar multiplication on X.

We can also define addition; if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are two sequences in X, then $\left(x_{n}\right)+\left(y_{n}\right)=$ $\left(x_{n}+y_{n}\right)$. Then, with these two operations X is a vector space.

\circledast Example 2.4

Take $x_{n}=(-1)^{n}, y_{n}=(-1)^{n+1}, n \geq 1$.
$\left(x_{n}\right)+\left(y_{n}\right)=0, x_{n} \cdot y_{n}=-1$, and so $\lim x_{n}+y_{n}=0, \lim x_{n} \cdot y_{n}=-1$, while neither $\lim x_{n}$ nor $\lim y_{n}$ exist.

Proof (part 3. of proposition 2.1). Take ${ }^{28} \lim x_{n}=x, \lim y_{n}=y$. Since $\left(x_{n}\right)$ is converging, it is bound by theorem 2.2, and there exists $M>0$ s.t. $\forall n \geq 1,\left|x_{n}\right| \leq M$.

Now,

$$
\begin{align*}
\left|x_{n} y_{n}-x y\right| & =\left|x_{n} y_{n}-x_{n} y+x_{n} y-x y\right| \\
& \leq\left|x_{n} y_{n}-x_{n} y\right|+\left|x_{n} y-x y\right| \\
& =\left|x_{n}\right| \cdot\left|y_{n}-y\right|+|y| \cdot\left|x_{n}-x\right| \\
& \leq M \cdot\left|y_{n}-y\right|+|y| \cdot\left|x_{n}-x\right| \tag{i}
\end{align*}
$$

Let $\varepsilon>0$; since $\lim y_{n}=y$, there exists $N_{1} \in \mathbb{N}$ s.t. $n \geq N_{1},\left|y_{n}-y\right|<\frac{\varepsilon}{2 M}$. Sim, since $\lim x_{n}=x, \exists N_{2} \in \mathbb{N}$ s.t. $\left|x_{n}-x\right|<\frac{\varepsilon}{2(|y|+1)}$
Let $N=\max \left(N_{1}, N_{2}\right), n \geq N$. Then, we have, with (i),

$$
\text { (i) } \begin{aligned}
\left|x_{n} y_{n}-x y\right| & \leq M \cdot\left|y_{n}-y\right|+|y| \cdot\left|x_{n}\right|-x \\
& <M \cdot \frac{\varepsilon}{2 M}+|y| \cdot \frac{\varepsilon}{2(|y|+1)} \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} .
\end{aligned}
$$

Thus, for $n \geq N,\left|x_{n} y_{n}-x y\right|<\varepsilon$, and by definition of the limit, $\lim x_{n} y_{n}=x y$.

\hookrightarrow Theorem 2.3: Order Properties of Limits

Let $\left(x_{n}\right),\left(y_{n}\right)$ be two sequences such that

$$
\lim x_{n}=x, \quad \lim y_{n}=y
$$

${ }^{28}$ Proof sketch: take an upper bound of x_{n}. Then, show that $\left|x_{n} y_{n}-x y\right|<\varepsilon$, by using triangle inequalities to show inequality to a combination of M, arbitrarily small values (by def of limits of x_{n}, y_{n} resp,), and $|y|$.

1. $x_{n} \geq 0 \forall n \Longrightarrow x \geq 0$.
2. $x_{n} \geq y_{n} \forall n \Longrightarrow x \geq y$.
3. c is constant since $c \leq x_{n} \forall n \geq 1 \Longrightarrow c \leq x . x_{n} \leq c \forall n \geq 1 \Longrightarrow x_{n} \leq c$.

Remark 2.2. 2., 3. follow from 1. Set $z_{n}=x_{n}-y_{n} \forall n \geq 1$. Then, $z_{n} \geq 0 \forall b \geq 1$, $\lim z_{n}=\lim \left(x_{n}-y_{n}\right)=\lim x_{n}-\lim y_{n}($ as these limits exist $)=x-y$. By 1., $\lim z_{n} \geq 0$, and so either $x-y \geq 0$ or $x \geq y$.

Proof of 1. Suppose 1. does not hold; suppose $\exists\left(x_{n}\right)$ s.t. $\lim x_{n}=x, x_{n} \geq 0 \forall \geq$, but $x<0$.

Let $\varepsilon>0$ s.t. $x<-2 \varepsilon<0$. With this $\varepsilon, \lim x_{n}=x$ gives that $\exists N \in \mathbb{N}$ s.t. $\forall n \geq$ $N,\left|x_{n}-x\right|<\varepsilon$, or particularly, $x_{n}-x<\varepsilon$.
Then, $x_{n}<\varepsilon+x$, and since $x<-2 \varepsilon$, we have $\forall n \geq N, x_{n}<-\varepsilon$, and thus $\forall n \geq N$, $x_{n}<0$, a contradiction.

\hookrightarrow Theorem 2.4: The Squeeze Theorem

Let $\left(x_{n}\right),\left(y_{n}\right),\left(z_{n}\right)$ be sequences such that $x_{n} \leq y_{n} \leq z_{n}, \forall n \geq 1$, and $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} z_{n}=\ell$, then $\lim _{n \rightarrow \infty} y_{n}=\ell .{ }^{29}$

Proof. Let $\varepsilon>0$. Since $\lim x_{n}=\ell$, there $\exists N_{1} \in \mathbb{N}$ s.t. $\forall n \geq N_{1},\left|x_{n}-\ell\right|<\varepsilon$.
Since $\lim z_{n}=\ell$, there $\exists N_{2} \in \mathbb{N}$ s.t. $\forall n \geq N_{2},\left|z_{n}-\ell\right|<\varepsilon$.
Take $N=\max \left\{N_{1}, N_{2}\right\}$ and take $n \geq N$. Then,

$$
y_{n} \leq z_{n} \Longrightarrow y_{n}-\ell \leq z_{n}-\ell \leq\left|z_{n}-\ell\right|<\varepsilon
$$

since $n \geq \max \left\{N_{1}, N_{2}\right\} \Longrightarrow n \geq N_{2}$.
Now, we have that

$$
y_{n} \geq x_{n} \Longrightarrow y_{n}-\ell \geq x_{n}-\ell>-\varepsilon
$$

since $\left|x_{n}-\ell\right|<\varepsilon$ for $n \geq N_{1}$, and our n is $\geq \max \left\{N_{1}, N_{2}\right\}$. Thus, for $n \geq N$,

$$
-\varepsilon<y_{n}-\ell<\varepsilon \Longrightarrow\left|y_{n}-\ell\right|<\varepsilon,
$$

and thus $\lim y_{n}=\ell$, by definition.

\hookrightarrow Definition 2.5: Increasing/Decreasing

A sequence $\left(x_{n}\right)$ is called increasing if $x_{n+1} \geq x_{n} \forall n \in \mathbb{N}$, and is decreasing if $x_{n+1} \leq$ $x_{n} \forall n \in \mathbb{N}$.
${ }^{29}$ Sketch: This follows a similar technique to many that follow. Use the definitions of the limits of x_{n}, z_{n} to take an arbitrary ε, and an N for each respective limit. Take the max of these N 's, and show that for all $n \geq \max N_{i}$, you can show that $\mathrm{f} y_{n}-l$ is less than show that $\mathrm{f} y_{n}-l$ is less than
ε and greater than $-\varepsilon$. Really, this is just a proof of applying definitions correctly.
\hookrightarrow Definition 2.6: Bounded from above/below
A sequence $\left(x_{n}\right)$ is called bounded from above if there exists some $M \in \mathbb{R}$ s.t. $x_{n} \leq$ $M \forall n \geq 1$.
Sequence $\left(x_{n}\right)$ is bounded from below if there exists some $M \in \mathbb{R}$ s.t. $x_{n} \geq M \forall n \geq$ 1.

\hookrightarrow Theorem 2.5: Monotone Convergence Theorem

The following relate to bounded above/below and increasing/decreasing sequences: ${ }^{30}$

1. Let $\left(x_{n}\right)$ be an increasing sequence that is bounded from above. Then $\left(x_{n}\right)$ is converging.
2. Let $\left(x_{n}\right)$ be a decreasing sequence that is bounded from below. then $\left(x_{n}\right)$ is converging.
Proof (of 1). Let $A=\left\{x_{n}: n \geq 1\right\}$. Since $\left(x_{n}\right)$ is bounded above by M, the set A is bounded from above. Let $\alpha=\sup A$, which exists by AC.
Let $\varepsilon>0$. Since α is the least upper bound for $A, \alpha-\varepsilon$ is not an upper bound of A $(\alpha-\varepsilon<\alpha)$. Hence, there must exist some $N \in \mathbb{N}$ such that $\alpha-\varepsilon<x_{N}$ (if it didn't exist, then α wouldn't be the supremum \ldots). Then, for $n \geq N$, and since (x_{n}) increasing,

$$
\alpha-\varepsilon<x_{N} \leq x_{n} \leq \alpha
$$

Then, for all $n \geq N$,

$$
\alpha-\varepsilon<x_{n} \leq \alpha \Longrightarrow-\varepsilon<x_{n}-\alpha \leq 0,
$$

and so $\left|x_{n}-\alpha\right|<\varepsilon$ for $n \geq N$. By definition, $\alpha=\lim x_{n}$.

* Example 2.5

A sequence $\left(x_{n}\right)$ is called eventually increasing if there exists some $N_{0} \in \mathbb{N}$ s.t. $\forall n \geq$ $N_{0}, x_{n+1} \geq x_{n}$. If $\left(x_{n}\right)$ is eventually increasing and bounded from above, $\lim x_{n}=\alpha$ exists.

Proof. (Sketch) If (x_{n}) eventually increasing, say $\forall n \geq N_{0}$, and bounded above, then if we consider x_{n}^{\prime} as the sequence of x_{n} where $n^{\prime}=n-N_{0}$, it must converge by Monotone Convergence Theorem. Hence, taking $N=N_{0}, x_{n}$ too must converge.
${ }^{30}$ Sketch: 1,2 are proven very similarly. For 1., take the set of all x_{n} in the given sequence. Since the sequence is bounded, then so is the set, and so we can take its supremum. Use the ε definition of sup to show that this supremum is also the limit of the sequence (basically, a bunch of inequalities, and being careful with definitions). 2. follows identically but using the infimum.

\circledast Example 2.6

Let $\left(x_{n}\right)$ be a sequence defined recursively by $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2+x_{n}}, n \geq 1$. So $x_{2}=\sqrt{2+\sqrt{2}}, x_{3}=\sqrt{2+\sqrt{2+\sqrt{2}}} \cdots, x_{n}=2 \cos \frac{\pi}{2^{n+1}}, n \geq 1$. Show that $\lim x_{n}=2$.

Proof. We will prove this using the Monotone Convergence Thm by showing that the x_{n} is bounded from above and increasing, which implies that the limit exists. We will then find the actual limit.

Recall that $n \geq 1, x_{n} \leq 2$. We will prove this by induction. Let $S \subseteq \mathbb{N}$ be the set of indices such that $x_{n} \leq 2$. Since $x_{1}=\sqrt{2}<2,1 \in S$. Now suppose some $n \in S$, ie $x_{n} \leq 2$. Then, we have that $x_{n+1}=\sqrt{2+x_{n}} \leq \sqrt{2+2}=2 \Longrightarrow x_{n+1} \leq 2$. Thus, by induction, $n \in S \Longrightarrow n+1 \in S \Longrightarrow S=\mathbb{N}$, ie $x_{n} \leq 2 \forall n \in \mathbb{N}$. Thus, our sequence is bounded from above.
We now prove that $\left(x_{n}\right)$ is increasing. Let $S \subseteq \mathbb{N}$ s.t. $n \in S \Longleftrightarrow x_{n+1} \leq x_{n}$. $x_{2}=\sqrt{2+\sqrt{2}} \geq \sqrt{2}=x_{1} \Longrightarrow x_{1} \leq x_{2} \Longrightarrow 1 \in S$. Suppose $n \in S \Longrightarrow$ $x_{n+1} \geq x_{n}$. Then, $x_{n+2}=\sqrt{2+x_{n+1}} \geq \sqrt{2+x_{n}}=x_{n+1} \Longrightarrow n+1 \in S$. Thus, $S=\mathbb{N}$, so $x_{n+1} \geq x_{n} \forall n \in \mathbb{N}$.
So the sequence $\left(x_{n}\right)$ is increasing and bounded from above, and thus $\exists \lim x_{n}=\alpha$. To find the value of α, consider $x_{n+1}=\sqrt{2+x_{n}}$, or $x_{n+1}^{2}=2+x_{n}$. We can also write that $\alpha=\lim x_{n}=\lim x_{n+1} \cdot{ }^{31}$ We then have that $\lim x_{n+1}=\alpha \Longrightarrow$ $\lim x_{n+1}^{2}=\alpha^{2}$, and thus $x_{n+1}^{2}=2+x_{n} \Longrightarrow \lim x_{n+1}^{2}=\lim \left(2+x_{n}\right) \Longrightarrow \alpha^{2}=$ $2+\alpha \Longrightarrow \alpha=2,-1$. $x_{n} \geq 0 \forall n$, by Order Limit Theorem, and so $\alpha \geq 0$ and thus $\alpha=2$.

\hookrightarrow Corollary 2.1

For $a, b>0$, then $\frac{1}{2}(a+b) \geq \sqrt{a b}$

Proof. $\left[\frac{1}{2}(a+b)\right]^{2}=\frac{1}{4}\left(a^{2}+2 a b+b^{2}\right) \geq a b \Longrightarrow \frac{1}{2}(a+b) \geq \sqrt{a b}$

* Example 2.7

Let $\left(x_{n}\right)$ be defined recursively by $x_{1}=2$ and $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)$ for $n \geq 1$. Then, $\left(x_{n}\right)$ is converging and $\lim x_{n}=\sqrt{2}$.

Proof. We^{32} will show that $\left(x_{n}\right)$ bounded from below and decreasing, implying the
limit exists. We will show that for all $n, x_{n} \geq \sqrt{2}$. For $n=1,2 \geq \sqrt{2}$. For $n>1$, we will use corollary 2.1. We then have that $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) \geq \cdots \geq \sqrt{2} \Longrightarrow$ $x_{n} \geq \sqrt{2} \forall n \geq 1$, ie, it is bounded from below.
We will now show that the sequence is decreasing.
$x_{n}-x_{n+1}=x_{n}-\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)=\frac{1}{2} x_{n}-\frac{1}{x_{n}}=\frac{1}{2 x_{n}}\left(x_{n}^{2}-2\right) \geq \frac{1}{2 x_{n}}\left(\sqrt{2}^{2}-2\right) \geq 0$,
where the second-to-last inequality holds from the lower bound we found on x_{n}. Having shown that x_{n} decreasing and is bounded from below, we conclude that it converges by Monotone Convergence Theorem. To find its limit, let $L:=\lim x_{n}$. Then,

$$
\lim x_{n}=\lim \left(\frac{1}{2} x_{n-1}+\frac{2}{x_{n-1}}\right)=\frac{1}{2} \lim x_{n-1}+\lim \frac{1}{x_{n-1}},
$$

and since the limit of x_{n} is equal to the limit of x_{n-1}, we have that

$$
L=\frac{1}{2} L+\frac{1}{L} \Longrightarrow L^{2}=2 \Longrightarrow L= \pm \sqrt{2}
$$

but we know that $x_{n} \geq \sqrt{2}$ hence we can ignore the negative root, and thus x_{n} converges to $\sqrt{2}$.

Example 2.8: \star

Let $a>0$ and let $\left(x_{n}\right)$ be a sequence defined recursively by x_{1} is arbitrary (positive), and

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right), \quad n \geq 1 .
$$

Show that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}$.

Proof. By corollary 2.1, $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) \geq \sqrt{x_{n} \cdot \frac{a}{x_{n}}}=\sqrt{a}$, hence, x_{n} is bounded from below by \sqrt{a}.
We also have that $x_{n}-x_{n+1}=x_{n}-\frac{1}{2} x_{n}-\frac{a}{2 x_{n}}=\frac{x_{n}}{2}-\frac{a}{2 x_{n}}=\frac{1}{x_{n}}\left(x_{n}^{2}-a\right)$. We have that $x_{n} \geq \sqrt{a} \Longrightarrow x_{n}^{2} \geq a \Longrightarrow x_{n}^{2}-a \geq 0$. Further, since the sequence is bounded from below by $\sqrt{a}>0(\Longleftarrow a>0)$, then $\frac{1}{x_{n}}>0$ as well. Hence, $\frac{1}{x_{n}}\left(x_{n}^{2}-a\right) \geq 0$, and thus $x_{n}-x_{n+1} \geq 0 \Longrightarrow x_{n} \geq x_{n+1}$ and thus x_{n} is decreasing. Thus, by the Monotone Convergence Theorem, x_{n} is convergent. Let $X:=\lim _{n \rightarrow \infty} x_{n}$. We have from the recursive definition, $\lim x_{n}=\lim \left(\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)\right)$. Since we know
x_{n} convergent, we can "split up" this limit using algebraic properties, hence

$$
\begin{array}{r}
\lim x_{n}=\lim \frac{1}{2} x_{n}+\lim \frac{a}{2 x_{n}}=\frac{1}{2} \lim x_{n}+\frac{a}{2} \lim \frac{1}{x_{n}} \\
\Longrightarrow X=\frac{1}{2} X+\frac{a}{2 X} \\
\Longrightarrow \frac{X}{2}=\frac{a}{2 X} \Longrightarrow X^{2}=a \Longrightarrow X=\sqrt{a}
\end{array}
$$

which completes the proof.
$*$ Example 2.9
Evaluate ${ }^{33}$ the limit of x_{n} given the recursive relation $x_{n+1}=\frac{1}{4-x_{n}}, x_{1}=3$.

Proof. We aim to show that $\left(x_{n}\right)$ is bounded from below and decreasing.
Bounded from below: we claim $x_{n}>0$; we proceed by induction. $x_{1}=3>0$ holds; say $x_{n}>0$ for some $n \geq 1$. Then, we have
$x_{n}>0 \Longrightarrow-x_{n}<0 \Longrightarrow 4-x_{n}<4 \Longrightarrow \frac{1}{4-x_{n}}>\frac{1}{4}>0 \Longrightarrow x_{n+1}=\frac{1}{4-x_{n}}>0$,
so the sequence is bounded from below by 0 .
Decreasing: $\left(x_{n}\right)$ decreasing iff $x_{n+1} \leq x_{n} \forall n$. We have $x_{2}=\frac{1}{4-3}=1 \Longrightarrow x_{1}=$ $3 \geq 1$ holds. Say $x_{n-1} \geq x_{n}$ for some $n \geq 1$. Then, we have
$x_{n-1} \geq x_{n} \Longrightarrow 4-x_{n-1} \leq 4-x_{n} \Longrightarrow \frac{1}{4-x_{n-1}} \geq \frac{1}{4-x_{n}}=x_{n+1} \Longrightarrow x_{n} \geq x_{n+1}$
and thus the sequence decreases, and by theorem 2.5 the limit exists. Let $X=$ $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \frac{1}{4-x_{n-1}} \Longrightarrow X=\frac{1}{4-X} \Longrightarrow 4 X-X^{2}=1 \Longrightarrow 0=$ $X^{2}-4 X+1 \Longrightarrow X=\cdots=2 \pm \sqrt{3}$. We must take the negative root, since X is decreasing and thus must be less than 3 .

2.3 Limit Superior, Inferior

\hookrightarrow Definition 2.7: limsup, liminf

Recall theorem 2.2, stating that a convergence sequence is bounded. Let $\left(x_{n}\right)$ be a convergent sequence bounded by m and M from below/above resp, ie

$$
m \leq x_{n} \leq M, \forall n
$$

and let $A_{n}=\left\{x_{k}: k \geq n\right\}$ (the set of elements in the sequence "after" a particular index).

Let $y_{n}=\sup A_{n}$; by definition, $y_{n} \leq M$, and $y_{n} \geq m$, since $y_{n} \geq x_{n} \geq m$. Thus, we have

$$
A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n} \supseteq A_{n+1} \supseteq \cdots,
$$

and further,

$$
y_{1} \geq y_{2} \geq \cdots \geq y_{n} \geq y_{n+1} \geq \cdots
$$

since $A_{2} \subseteq A_{1}, y_{1}$ also an upper bound for A_{2}, and thus $y_{2} \leq y_{1}$ by definition of a supremum.
So, the sequence $\left(y_{n}\right)$ is decreasing, and bounded from below; by MCT, $\lim _{n \rightarrow \infty} y_{n}=y$ exists. Note too that since $m \leq y_{n} \leq M$, we have that $m \leq y \leq M$.

This y is called the limit superior of $\left(x_{n}\right)$ denoted by

$$
\varlimsup_{\mathrm{lim}}^{\mathrm{n} \rightarrow \infty} 1 x_{n}=\limsup _{n \rightarrow \infty} x_{n} .
$$

Now, similarly, note that A_{n} is bounded below by m and thus $z_{n}=\inf A_{n}$ exists. We further have that $z_{n} \leq x_{n} \leq M$, and that $z_{n} \geq m \forall n$, and we have

$$
z_{1} \leq z_{2} \leq \cdots \leq z_{n} \leq z_{n+1} \leq \cdots,
$$

by a similar argument as before. So, as before, the sequence $\left(z_{n}\right)$ is increasing, and bounded from above by M. Again, by MCT, $\lim _{n \rightarrow \infty} z_{n}=z$ exists. We call z the limit inferior of $\left(x_{n}\right)$, and denote

$$
\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}
$$

We note that $y_{n} \geq z_{n}$, so $\varlimsup_{\mathrm{lim}}^{\mathrm{n}}{ } x_{n} \geq \lim _{\mathrm{n} \rightarrow \infty} x_{n} \quad(y \geq z)$.
Further, liminf and lim sup exist for any bounded sequence, regardless if whether or not the limit itself exists.

\circledast Example 2.10

Let $\left(x_{n}\right)=(-1)^{n}, n \in \mathbb{N}$. We showed previously that this is a divergent sequence, so the limit does not exist. However, the sequence is bounded, since $-1 \leq x_{n} \leq$ $1 \forall n$. We have $A_{n}=\left\{(-1)^{k}: k \geq n\right\}=\{-1,1\}$. So, $y_{n}=\sup A_{n}=1$, and $z_{n}=$ $\inf A_{n}=-1, \forall n$. Thus, $\lim \sup x_{n}=\lim y_{n}=1$, and $\liminf x_{n}=\lim z_{n}=-1$, despite $\lim x_{n}$ not existing.

More specifically, we have a divergent sequence, and $\lim \inf \neq \lim$ sup.
\hookrightarrow Theorem 2.6: liminf, lim sup and convergence
Let $\left(x_{n}\right)$ be a bounded sequence. The following are equivalent;

1. The sequence $\left(x_{n}\right)$ is convergent, and $\lim _{n \rightarrow \infty} x_{n}=x$.
2. $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}=\varliminf_{\mathrm{n} \rightarrow \infty} x_{n}=x$.
$\underline{\text { Proof. Let }} A_{n}, y_{n}, z_{n}$ be as in the definition of lim sup, lim inf.
$\mathbf{(1)} \Longrightarrow$ (2): Suppose $\left(x_{n}\right)$ is converging, and $\lim _{n \rightarrow \infty} x_{n}=x$. Let $\varepsilon>0$. Then, there exists some $N \in \mathbb{N}$ s.t. $\forall n \geq N$,

$$
\left|x_{n}-x\right|<\frac{\varepsilon}{2}
$$

or equivalently,

$$
x-\frac{\varepsilon}{2}<x_{n}<x+\frac{\varepsilon}{2}, \forall n \geq N .
$$

Since $A_{n}=\left\{x_{k}: k \geq n\right\}$, if $n \geq N$, then $x+\frac{\varepsilon}{2}$ is an upper bound for A_{n}, and $x-\frac{\varepsilon}{2}$ is a lower bound for A_{n}. This gives that

$$
y_{n}=\sup A_{n} \leq x+\frac{\varepsilon}{2} ; \quad z_{n}=\inf A_{n} \geq x-\frac{\varepsilon}{2} .
$$

This gives that for $n \geq N$,

$$
x-\frac{\varepsilon}{2} \leq z_{n} \leq x_{n} \leq y_{n} \leq x+\frac{\varepsilon}{2},
$$

ie $z_{n}, y_{n} \in\left[x-\frac{\varepsilon}{2}, x+\frac{\varepsilon}{2}\right]$. So, for all $n \geq N,\left|z_{n}-x\right| \leq \frac{\varepsilon}{2}<\varepsilon$, and $\left|y_{n}-x\right| \leq \frac{\varepsilon}{2}<\varepsilon$, so by definition of the limit, this gives

$$
\lim _{n \rightarrow \infty} y_{n}=x \text { and } \lim _{n \rightarrow \infty} z_{n}=x
$$

ie, $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}=\varliminf_{\mathrm{n} \rightarrow \infty} x_{n}=x$.
(2) \Longrightarrow (1): Let $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} y_{n}=x, \exists N_{1}$ s.t. $\forall n \geq N_{1},\left|y_{n}-x\right|<\varepsilon$. Similarly, since $\lim z_{n}=x, \exists N_{2}$ s.t. $\forall n \geq N_{2},\left|z_{n}-x\right|<\varepsilon$.
Take $N=\max \left\{N_{1}, N_{2}\right\}$. Then, for $n \geq N$, we have

$$
x-\varepsilon<z_{n} \leq x_{n} \leq y_{n}<x+\varepsilon
$$

So, for $n \geq N,\left|x_{n}-x\right|<\varepsilon$, thus $\lim x_{n}=x$ as desired.

Example 2.11

Let $\left(x_{n}\right)$ be a bounded sequence. Then

$$
\limsup _{n \rightarrow \infty}\left(-x_{n}\right)=-\liminf _{n \rightarrow \infty} x_{n}
$$

Proof. Recall Remark 1.2; Let $A_{n}:=\left\{x_{k}: k \geq n\right\}$ as in the definition of lim sup, lim inf. Let $y_{n}:=\sup A_{n}, z_{n}:=\inf A_{n}$. By theorem 2.6, $\lim y_{n}=\lim z_{n}$. Further, $\sup \left(-A_{n}\right)=$ $-\inf \left(A_{n}\right)$, where $-A_{n}=\left\{-x_{k}: k \geq n\right\}$; hence, $\lim \sup \left(-x_{n}\right)=-\liminf x_{n}$, as desired.

Remark 2.3. Given $\left(x_{n}\right)$ bounded and $\alpha \geq 0$, then the following holds:

$$
\overline{\lim }_{\mathrm{n} \rightarrow \infty}\left(\alpha x_{n}\right)=\alpha \varlimsup_{\mathrm{im} \rightarrow \infty}\left(x_{n}\right) \quad \text { and } \quad \underline{\lim }_{\mathrm{n} \rightarrow \infty}\left(\alpha x_{n}\right)=\alpha \underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}
$$

\hookrightarrow Proposition 2.2

Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be bounded sequences. Then,

$$
\begin{equation*}
\varlimsup_{\mathrm{lim}}^{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \varlimsup_{\mathrm{l} \rightarrow \infty} x_{n}+\overline{\lim }_{\mathrm{n} \rightarrow \infty} y_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\lim }_{\mathrm{n} \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq \underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}+\underline{\lim }_{\mathrm{n} \rightarrow \infty} y_{n} \tag{2}
\end{equation*}
$$

Proof. (1) Take $A_{n}=\left\{x_{k}+y_{k}: k \geq n\right\}, B_{n}=\left\{x_{k}: k \geq n\right\}, C_{n}=\left\{y_{k}: k \geq n\right\}$. Then, take

$$
B_{n}+C_{n}=\left\{x_{k}+y_{j}: k \geq n, j \geq n\right\} \supseteq A_{n}
$$

and so $\sup A_{n} \leq \sup \left(B_{n}+C_{n}\right)$. We have shown previously (assignment question) that $\sup \left(B_{n}+C_{n}\right)=\sup B_{n}+\sup C_{n}$. Let now

$$
t_{n}=\sup A_{n} \quad r_{n}=\sup B_{n} \quad s_{n}=\sup C_{n}
$$

so $t_{n} \leq r_{n}+s_{n}$, that is, $\lim t_{n} \leq \lim r_{n}+\lim s_{n}$, and thus $\overline{\lim }_{\mathrm{n} \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}+$ $\varlimsup_{n \rightarrow \infty} y_{n}$, proving (1).
(2) The same argument holds, replacing each instance of $\overline{\lim }_{n \rightarrow \infty}$ with $\varliminf_{n \rightarrow \infty}$ and reversing inequalities where necessary. Alternatively, it follows directly from (1) by negating the sequences where appropriate.

\hookrightarrow Proposition 2.3

Let $\left(x_{n}\right)$ be a bounded sequence. Then

1. $\varlimsup_{n \rightarrow \infty} x_{n}=\inf \left\{t:\left\{n: x_{n}>t\right\}\right.$ is either empty or finite $\}$
2. $\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}=\sup \left\{t:\left\{n: x_{n}<t\right\}\right.$ is either empty or finite $\}$

Remark 2.4. (2) follows from (1) by either repeating the argument used to prove (1) (changing notation), or using the fact that $\lim _{n \rightarrow \infty} x_{n}=-\varlimsup_{n \rightarrow \infty}\left(-x_{n}\right)$.

Remark 2.5. The set $\left\{n: x_{n}>t\right\}$ is empty or finite iff $\exists n_{t} \in \mathbb{N}$ s.t. $\forall n>n_{t}, x_{n} \leq t$. The set is empty or finite ift is an eventual upper bound for $\left(x_{n}\right)$; that is, starting with sufficiently large $n_{t}, x_{n} \leq t \forall n \geq t$.

In other words, t is an upper bound if we neglect finitely many elements. Hence, (1) states equivalently states that $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}$ is the infimum of the eventual upper bounds for $\left(x_{n}\right)$;

$$
\begin{gathered}
\left\{n: x_{n}>t\right\} \text { empty or finite } \Longleftrightarrow \\
\begin{cases}\text { empty } & x_{n} \leq t \forall n \Longleftrightarrow t \text { an upper bound of } x_{n} \\
\text { finite } \quad t \text { upper bounds } x_{n} \text { for an infinite number of } n \text { 's }\end{cases}
\end{gathered}
$$

Proof. (Of (1)) Let $A=\left\{t:\left\{n: x_{n}>t\right\}\right.$ is either empty or finite $\}$. We note that this set is non-empty and bounded from below, hence the inf is well-defined. We can see this by recalling that $\left(x_{n}\right)$ bounded, hence $\forall n \exists m, M$ s.t. $m \leq x_{n} \leq M$. Then, $\left\{n: x_{n}>M\right\}$ is empty, hence $M \in A$. Otoh, if $t<m$, then the set $\left\{n: x_{n}>t\right\}=\mathbb{N}$ since $x_{n} \geq m>t \forall n$. So, if $t<m$, then $t \notin A$ and hence m is a lower bound for A.

We have now that $\varlimsup_{\mathrm{lim}}^{n}$ x_{n} is a lower bound for A, and hence $\varlimsup_{\mathrm{l} \rightarrow \infty} x_{n} \geq \inf A$. Let $t \in A$. We aim to show that $\varlimsup_{\mathrm{lim}}^{\infty} x_{n} \leq t$.

The set $\left\{n: x_{n}>t\right\}$ is finite by definition; assume $t \in A$. We can then let

$$
n_{t}=\max \left\{n: x_{n}>t\right\} .
$$

Then, if $k>n_{t}$, it must be that $x_{k} \leq t$. Consider now $n>n_{t}$, then $y_{n}=\sup \left\{x_{k}: k \geq n\right\}$ and since $x_{k} \leq t$ for $k \geq n$, and t upper bounds $\left\{x_{k}: k \geq n\right\}$, we have that $y_{n} \leq t$ for $n>n_{t}$. Hence, for sufficiently large $n, y_{n} \leq t$, thus $\lim y_{n} \leq t \Longrightarrow \varlimsup_{\mathrm{lim}}^{n \rightarrow \infty} 1 x_{n} \leq t$.

Thus, $\varlimsup_{\mathrm{n} \rightarrow \infty} x_{n} \leq \inf A$.

an eventual upper bound for x_{n}. Since $\alpha-\varepsilon \notin A$, the set $\left\{n: x_{n}>\alpha-\varepsilon\right\}$ is infinite. ${ }^{34}$. Hence, for any m we can find n such that $n \geq m$ and $x_{n}>\alpha-\varepsilon$.

Let, now,

$$
y_{m}=\sup \left\{x_{n}: n \geq m\right\} .
$$

By our last observation, we have that $y_{m}>\alpha-\varepsilon$. By Order Properties of Limits,

$$
\varlimsup_{n \rightarrow \infty} x_{n}=\lim _{m \rightarrow \infty} y_{n} \geq \alpha-\varepsilon,
$$

so for any $\varepsilon>0, \varlimsup_{\mathrm{n} \rightarrow \infty} x_{n} \geq \alpha-\varepsilon$, and thus $\varlimsup_{\mathrm{n} \rightarrow \infty} x_{n} \geq \alpha=\inf A$, and the proof is complete.

2.4 Subsequences and Bolzano-Weirestrass Theorem

\hookrightarrow Definition 2.8: Subsequence

Let $\left(x_{n}\right)$ be a sequence of real numbers, and let $n_{1}<n_{2}<n_{3}<\cdots<n_{k}<n_{k+1}<$
\cdots be a strictly increasing sequence of natural numbers. Then, the sequence

$$
\left(x_{n_{1}}, x_{n_{2}}, \cdots, x_{n_{k}}, x_{n_{k+1}}, \cdots\right)
$$

is called a subsequence of $\left(x_{n}\right)$ and is denoted $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$.

Remark 2.6. k is the index of the subsequence, $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$, not $n ; x_{n_{1}}$ is the 1 st element, \ldots, $x_{n_{k}}$ is the k-th element.

Example 2.12
Let $x_{n}=\frac{1}{n},\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$, and let $n_{k}=2 k+1, k \in \mathbb{N}$. $n_{1}=3, n_{2}=5, n_{3}=7, \ldots, n_{k}=$ $2 k+1$. Our subsequence is then

$$
\left(x_{n_{1}}, x_{n_{2}}, \ldots, x_{n_{k}}, \ldots\right)=\left(\frac{1}{3}, \frac{1}{5}, \ldots, \frac{1}{2 k+1}, \ldots\right)=\left(\frac{1}{2 k+1}\right)_{k \in \mathbb{N}}
$$

is our subsequence of $\left(x_{n}\right)$.

Remark 2.7. Note that for any $k, n_{k} \geq k$.
Let $S=\left\{k \in \mathbb{N}: n_{k} \geq k\right\}$. Then, $1 \in S$, since $n_{1} \in \mathbb{N}, n_{1} \geq 1$. If $k \in S$, then $n_{k} \geq k$, and so, since $n_{k+1}>n_{k}$ (increasing), we have that $n_{k+1}>k \Longrightarrow n_{k+1} \geq k+1$. So, $k+1 \in S, S=\mathbb{N}$.

Remark 2.8. $\lim _{k \rightarrow \infty} x_{n_{k}}=x$ if $\forall \varepsilon>0, \exists K \in \mathbb{N}$ s.t. $\forall k \geq K,\left|x_{n_{k}}-x\right|<\varepsilon$.

Let $\left(x_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=x$. Then, for any subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$, we have that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$

Proof. Let $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} x_{n}=x, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N,\left|x_{n}-x\right|<\varepsilon$. Take $K=N$ (from Remark 2.8). Then, for $k \geq K$, we have from Remark 2.7 that

$$
n_{k} \geq k \geq K=N
$$

and hence $\left|x_{n_{k}}-x\right|<\varepsilon \Longrightarrow \lim _{k \rightarrow \infty} x_{n_{k}}=x$.

\hookrightarrow Theorem 2.8: Bolzano-Weirestrass Theorem

${ }^{35}$ Any bounded sequence $\left(x_{n}\right)$ has a convergent subsequence.

\circledast Example 2.13

Take $x_{n}=(-1)^{n}, n \in \mathbb{N}$. This sequence does not converge. However, if we take a subsequence with $n_{k}=2 k, k \in \mathbb{N}$. $x_{n_{k}}=(-1)^{2 k}=1$, so $\left(x_{n_{k}}\right)$ is a constant sequence 1 and converges to 1 .
Similarly, if $n_{k}=2 k+1, k \in \mathbb{N}$, then $x_{n_{k}}=(-1)^{2 k+1}=-1$, and the subsequence converges to -1 .

\hookrightarrow Proposition 2.4

If $0<b<1$, then $\lim _{n \rightarrow \infty} b^{n}=0$.

Proof. Let $x_{n}=b^{n}$. Then $x_{n}>0$, and $x_{n+1}=b^{n+1}=b x_{n}<x_{n}$, and since $0<b<1$, $\left(x_{n}\right)$ is decreasing and bounded from below, $\left(x_{n}\right)$ converges by the Monotone Convergence Theorem. Let $x=\lim _{n \rightarrow \infty} x_{n}$. Again, $x_{n+1}=b x_{n}$, so $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} b x_{n}=$ $b \lim _{n \rightarrow \infty} x_{n}$, so $x=b x \Longrightarrow(1-b) x=0.0<b<1 \Longrightarrow x=0$.

BW Proof (1): using Nested Interval Property. ${ }^{36}$ Since $\left(x_{n}\right)$ bounded, $\exists M>0$ s.t. $\left|x_{n}\right| \leq M \forall n \in$ \mathbb{N}. Let $I_{1}=[-M, M]$ and $n_{1}=1$. We now construct I_{2}, n_{2} as follows.

Divide I_{1} into two intervals of the same size, $I_{1}^{\prime}=[-M, 0], I_{1}^{\prime \prime}=[0, M]$. Now, consider the sets

$$
A_{1}=\left\{n \in \mathbb{N}: n>n_{1}(=1), x_{n} \in I_{1}^{\prime}\right\}, \quad A_{2}=\left\{n \in \mathbb{N}: n>n_{1}, x_{n} \in I_{1}^{\prime \prime}\right\}
$$

(ie, all the indices of all the elements in $I_{1}^{\prime}, I_{1}^{\prime \prime}$ resp.).
Hence, $A_{1} \cup A_{2}=\left\{n: n>n_{1}\right\}$, an infinite set, and hence, one of A_{1}, A_{2} must be infinite (by theorem 1.9). If A_{1} infinite, set $I_{2}=I_{1}^{\prime}, n_{2}=\min A_{1}$. If A_{1} finite, then A_{2} infinite, and set $I_{2}=I_{1}^{\prime \prime}, n_{2}=\min A_{2}$.

Suppose now that I_{k}, n_{k} are chosen, and that I_{k} contains infinitely many elements of the sequence $\left(x_{n}\right)$. Divide I_{k} into two equal sub-intervals, $I_{k}^{\prime}, I_{k}^{\prime \prime}$. We now introduce

$$
A_{1}^{(k)}=\left\{n \in \mathbb{N}: n>n_{k} \text { and } x_{n} \in I_{k}^{\prime}\right\}, \quad A_{2}^{(k)}=\left\{n \in \mathbb{N}: n>n_{k} \text { and } x_{n} \in I_{k}^{\prime \prime}\right\},
$$

(similar to our construction of A_{1}, A_{2}). $A_{1}^{(k)} \cup A_{2}^{(k)}$ must be infinite, so one of the two must be infinite. If A_{1} infinite, set $I_{k+1}=I_{k}^{\prime}, n_{k+1}=\min A_{1}^{(k)}$. If A_{2} infinite, set $I_{k+1}=$ $I_{k}^{\prime \prime}, n_{k+1}=\min A_{2}^{(k)}$.

This gives now that I_{k+1} and n_{k+1}, where $I_{k+1} \subseteq I_{k}, I_{k+1}$ contains infinitely many elements of the sequence. Further, by construction, $n_{k+1}>n_{k}$. This gives us a sequence of closed intervals $I_{k}=\left[a_{k}, b_{k}\right], k \in \mathbb{N}$ such that $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{k} \supseteq I_{k+1} \supseteq \cdots$, such that $x_{n_{k}} \in I_{k}$, and that n_{k} is a strictly increasing sequence of natural numbers, defining subsequence $\left(x_{n_{k}}\right)$.

Now, by construction, the length of I_{k+1} is $\frac{1}{2}$ of the length of I_{k}. Since $I_{k}=\left[a_{k}, b_{k}\right]$, then

$$
b_{k}-a_{k}=\frac{b_{k-1}-a_{k-1}}{2}=\cdots \frac{b_{1}-a_{1}}{2^{k-1}}=\frac{2 M}{2^{k-1}}=\frac{M}{2 k^{k-2}} .
$$

Since $I_{k}, k \in \mathbb{N}$, is a nested sequence of closed intervals and by the nested interval property of the real line (AC), $\exists x \in \bigcap_{k=1}^{\infty} I_{k}$.

We claim now that our subsequence $\left(x_{n_{k}}\right)$ satisfies $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. To see this, let $\varepsilon>0$. Since $\lim _{k \rightarrow \infty} \frac{M}{2^{k-2}}=\lim _{k \rightarrow \infty} \frac{4 M}{2 k}=0$, by proposition 2.4 , with $b=\frac{1}{2}$. There exists $K \in \mathbb{N}$ such that $\forall k \geq K$, we have $\frac{M}{2^{k-2}}=b_{k}-a_{k}<\varepsilon$. So, since I_{k} is a nested sequence of intervals, $\forall k \geq K, x_{n_{k}} \in I_{K}\left(x_{n_{k}} \in I_{k} \subseteq I_{K}\right)$. We also have that $x \in I_{K}$, since $x \in \bigcap I_{k}$. So, $x, x_{n_{k}} \in\left[a_{K}, b_{K}\right] \forall k \geq K$. So, for $k \geq K,\left|x_{n_{k}}-x\right| \leq\left|b_{k}-a_{k}\right|<\varepsilon$. So for $\varepsilon>0$, $\exists K \in \mathbb{N}$ s.t. $\forall k \geq K,\left|x_{n_{k}}-x\right|<\varepsilon$, and so $\lim _{k \rightarrow \infty} x_{n_{k}}=x$, as desired.

\hookrightarrow Definition 2.9: Peak

Let $\left(x_{n}\right)$ be a sequence of real numbers. An element x_{m} is called a peak of this sequence if $x_{m} \geq x_{n} \forall n \geq m$. x_{m} is bigger or equal then to any element of the sequence that follows it.
If a sequence is decreasing, then any element of the sequence is a peak.
If a sequence is increasing, then there is no peak.
${ }^{36}$ Sketch: this proof is somewhat diagonal in nature (if one can say that); if you understand the proof of Cantor's Theorem using the Nested Interval property, this should follow naturally. In short, construct subsequences such that the subsequence has all its terms contained in a "nest" of intervals, and show that the length (sts) of these intervals converges to 0 . But these are subsets of \mathbb{R}, their intersect must contain
$B W$ Proof (2): using Peaks. Take sequence $\left(x_{n}\right)$. Then,

- Case 1: $\left(x_{n}\right)$ has infinitely many peaks; enumerate the indices of those peaks as $n_{1}<n_{2}<n_{3}<\cdots$, then $x_{n_{k}}<x_{n_{k+1}} \forall k$, since $x_{n_{k}}$ is a peak, $n_{k+1}>n_{k}$. This gives a decreasing subsequence $\left(x_{n_{k}}\right)$.
- Case 2: $\left(x_{n}\right)$ has finitely many peaks, with indices $m_{1}<m_{2}<\cdots<m_{r}$. Set $n_{1}=m_{r}+1$. Then $x_{n_{1}}$ is not a peak, and so $\exists n_{2}>n_{1}$ s.t. $x_{n_{2}}>x_{n_{1}}$. Now, $x_{n_{2}}$ is also not a peak, $\left(n_{2}>n_{1}>m_{r}\right)$, and so there exists $n_{3}>n_{2}$ such that $x_{n_{3}}>x_{n_{2}}$, and so on. In this way, we construct a subsequence $\left(x_{n_{k}}\right)$ that is strictly increasing, that is, $x_{n_{k+1}}>x_{n_{k}}$.

If in addition $\left(x_{n}\right)$ is bounded, say $\left|x_{n}\right| \leq M \forall n$, then the monotone subsequence constructed in Cases 1, 2 is also bounded; ie $\left|x_{n_{k}}\right| \leq M \forall k$. Thus, by Monotone Convergence Theorem, $\left(x_{n_{k}}\right)$ is converging.

2.5 Cauchy Sequences

\hookrightarrow Definition 2.10: Cauchy Sequence

A sequence $\left(x_{n}\right)$ is called Cauchy if for every $\varepsilon>0, \exists N \in \mathbb{N}$ s.t. $\forall n, m \geq N,\left|x_{n}-x_{m}\right|<$ ε.

\hookrightarrow Theorem 2.9: Cauchy Criterion

A sequence $\left(x_{n}\right)$ is convergent iff it is Cauchy. ${ }^{37}$

Remark 2.9. This is, again, an "equivalent" formulation of AC; at least, the direction (x_{n}) Cauchy \Longrightarrow convergent is. The other direction, convergent \Longrightarrow Cauchy, does not rely on $A C$.

Remark 2.10. $A C \Longleftrightarrow B W, A C \Longleftrightarrow$ MCT, $A C \Longleftrightarrow$ NIP; $A C \Longleftrightarrow$ Cauchy Criterion + Archimedean Property

Remark 2.11. Beyond the real line, $A C$ (in terms of sup) cannot be formulated, because of the lack of ordering. In this case, the Cauchy criterion can be used to extend AC to other spaces.

Proof. (theorem 2.9; $\left(x_{n}\right)$ Convergent \Longrightarrow Cauchy)
Suppose $\lim _{n \rightarrow \infty} x_{n}=x$. Let $\varepsilon>0, N \in \mathbb{N}$ s.t. $\forall n \geq N,\left|x_{n}-x\right|<\frac{\varepsilon}{2}$. Then, for
${ }^{37}$ Sketch: Convergent \Longrightarrow Cauchy; use definition of Cauchy, add/subtract limit of sequence, triangle inequality (and choose your ε to be $\varepsilon / 2$, optional).
Convergent \Longleftarrow Cauchy; show that any Cauchy sequence is bounded (theorem 2.11), and thus has a converging subsequence (Bolzano-Weirestrass Theorem); finally, show that any Cauchy sequence that has a converging subsequence itself converges (theorem 2.10), and you are done.

$$
\begin{array}{r}
\left|x_{n}-x_{m}\right|=\left|x_{n}-x+x-x_{m}\right| \leq\left|x_{n}-x\right|+\left|x_{m}-x\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \\
\Longrightarrow\left|x_{n}-x_{m}\right|<\varepsilon
\end{array}
$$

hence $\left(x_{n}\right)$ is Cauchy.
Remark 2.12. To prove \Longleftarrow, we first introduce the following theorem(s); see section 2.5 for the remainder.
\hookrightarrow Theorem 2.10
Let $\left(x_{n}\right)$ be a Cauchy sequence and suppose that $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$. Then $\left(x_{n}\right)$ is also convergent.

Proof. Let $x=\lim _{n \rightarrow \infty} x_{n_{k}}$. Let $\varepsilon>0$. Then, $\exists K \in \mathbb{N}$ such that $\forall k \geq K,\left|x_{n_{k}}-x\right|<\varepsilon$. We have too that $\left(x_{n}\right)$ Cauchy, ie $\exists N \in \mathbb{N}$ s.t. $\forall n, m \geq N,\left|x_{n}-x_{m}\right|<\frac{\varepsilon}{2}$.
Let now $K_{0} \geq \max \{K, N\}$. Recall that $n_{K_{0}} \geq K_{0} \geq N$. Take now $n \geq N$, and estimate

$$
\left|x_{n}-x\right|=\left|x_{n}-x_{n_{K_{0}}}+x_{n_{K_{0}}}-x\right| \leq\left|x_{n}-x_{n_{K_{0}}}\right|+\left|x_{n_{K_{0}}}-x\right|
$$

Since $K_{0} \geq K,\left|x_{n_{K_{0}}}-x\right|<\frac{\varepsilon}{2}$. Since $n_{K_{0}} \geq N$, we also have $\left|x_{n}-x_{n_{K_{0}}}\right|<\frac{\varepsilon}{2}$. Thus, we have

$$
\left|x_{n}-x\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

hence $\lim _{n \rightarrow \infty} x_{n}=x$.
Remark 2.13. This did not use AC.

\hookrightarrow Theorem 2.11

Any Cauchy sequence is bounded.

Proof. Let $\left(x_{n}\right)$ be Cauchy. We aim to show that $\exists M>0$ s.t. $\forall n \in \mathbb{N},\left|x_{n}\right| \leq M$.
Take $\varepsilon=1$ in the definition of Cauchy sequence. Let N be such that $\forall n, m \geq N$, $\left|x_{n}-x_{m}\right|<1$. We can take $m=N$, and so for all $n \geq N,\left|x_{n}-x_{N}\right|<1$, which gives that for $n \geq N$,

$$
\left|x_{n}\right|=\left|x_{n}-x_{N}+x_{N}\right| \leq\left|x_{n}-x_{N}\right|+\left|x_{N}\right|<1+\left|x_{N}\right|
$$

${ }^{38}$ While this seems like an arbitrary definition, this is a common "trick" to find a

$$
M=\left|x_{1}\right|+\left|x_{2}\right|+\ldots\left|x_{N-1}\right|+\left|x_{N}\right|+1 .
$$

Then, if $n \leq N,\left|x_{n}\right| \leq M$; if $n \geq M,\left|x_{n}\right| \leq M$, so $\forall n \geq 1,\left|x_{n}\right| \leq M$, hence $\left(x_{n}\right)$ is bounded.

Remark 2.14. This did not use $A C$.

Proof. (theorem 2.9; $\left(x_{n}\right)$ Convergent \Longleftarrow Cauchy)

If $\left(x_{n}\right)$ Cauchy, then $\left(x_{n}\right)$ is bounded by theorem 2.11, and thus by Bolzano-Weirestrass Theorem, $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$. Then, by theorem 2.10, $\left(x_{n}\right)$ must converge.

\circledast Example 2.14

Let $^{39}\left(x_{n}\right)$ be a sequence defined recursively by $x_{1}=1, x_{2}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\right.$ $\left.x_{n-1}\right), n \geq 2$. Prove that $\left(x_{n}\right)$ is a convergence sequence, and find its limit.

Remark 2.15. Before solving, we establish a number of properties about the sequence.

$$
\begin{aligned}
& \hookrightarrow \text { Proposition 2.5: Property I } \\
& 1 \leq x_{n} \leq 2 \forall n \geq 1
\end{aligned}
$$

${ }^{39}$ Sketch: show x_{n} Cauchy $\Longrightarrow x_{n}$ converges, then take a subsequence of x_{n} (spec, odd n) and find a closed form of it which is nicer to evaluate. Use then theorem 2.7 to conclude that the limit of the subsequence is equal to the limit of the sequence.

Proof. We proceed by induction. Let $S \subseteq \mathbb{N}$ be the set of all n such that $1 \leq x_{n} \leq 2$.
Base Case: $1 \in x$, since $x_{1}=1$.
Assumption: suppose $\{1,2, \ldots, n\} \in S$. We want to show that $n+1 \in S$.
If $n=1$, then $x_{2}=2$, so $x_{2} \in S$. If $n>1$, then

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+x_{n+1}\right),
$$

and by inductive assumption, $1 \leq x_{n} \leq 2$ and $1 \leq x_{n-1} \leq 2$, hence

$$
1 \leq x_{n+1} \leq 2
$$

hence $n+1 \in S$, and thus $S=\mathbb{N}$.

\hookrightarrow Proposition 2.6: Property II

For all $n \geq 1,\left|x_{n+1}-x_{n}\right|=\frac{1}{2^{n-1}}$.

Proof. We proceed by induction. Let $S \subseteq \mathbb{N}$ be the set of all n such that the statement holds for x_{n}.
Base Case: $x_{2}=2, x_{1}=1$, hence $2-1=1=\frac{1}{2^{0}}=1$, holds.
Assumption: suppose $n \in S$, ie $\left|x_{n+1}-x_{n}\right|=\frac{1}{2^{n-1}}$ holds for n. Then,

$$
\begin{array}{r}
\left|x_{n+2}-x_{n+1}\right|=\left|\frac{1}{2}\left(x_{n+1}+x_{n}\right)-x_{n+1}\right| \\
=\left|\frac{1}{2} x_{n}-\frac{1}{2} x_{n+1}\right|=\frac{1}{2}\left|x_{n+1}-x_{n}\right| \\
\text { (assumption } \Longrightarrow) \quad=\frac{1}{2} \cdot \frac{1}{2^{n-1}}=\frac{1}{2^{n}},
\end{array}
$$

hence the statement holds for $n+1$, and $S=\mathbb{N}$.

\hookrightarrow Corollary 2.2

For any $r \neq 1$, and any $k \in \mathbb{N}, 1+r+r^{2}+\cdots+r^{k}=\frac{1-r^{k+1}}{1-r}$.
 $\frac{1-r^{k}}{1-r}$ holds for some $k-1 \in \mathbb{N}$. Then, we have that

$$
\begin{aligned}
1+\cdots r^{k-1}+r^{k} & =\frac{1-r^{k}}{1-r}+r^{k}=\frac{1-r^{k}+(1-r) r^{k}}{1-r} \\
& =\frac{1-r^{k}+\gamma^{k}-r^{k+1}}{1-r} \\
& =\frac{1+1-r^{k+1}}{1-r},
\end{aligned}
$$

hence, the statement for $k-1 \Longrightarrow$ the statement for k, hence it holds $\forall k \in \mathbb{N}$ and the proof is complete.
$\hookrightarrow \underline{\text { Proposition 2.7: Property III }}$
$\left(x_{n}\right)$ a Cauchy sequence.

Proof. Let $\varepsilon>0$. We need to find $N \in \mathbb{N}$ such that $\forall n, m \geq N,\left|x_{n}-x_{m}\right|<\varepsilon$. Let N be such that ${ }^{40} \frac{1}{2^{N-2}}=\frac{4}{2^{N}}<\varepsilon$. Let, now, $n, m \geq N$, and suppose $n>m$ (when $n=m$, we are done; when $n<m$, simply switch the variables wlog). We can write

$$
\begin{array}{r}
\left|x_{n}-x_{m}\right|=\left|x_{n}-x_{n-1}+x_{n+1}-x_{n-2}+x_{n-2}+\cdots-x_{m+1}+x_{m+1}-x_{m}\right| \\
\leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right|^{41}
\end{array}
$$

Using Property II we can write

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq \frac{1}{2^{m-1}}+\frac{1}{2^{m}}+\cdots \frac{1}{2^{n-2}} \\
& =\frac{1}{2^{m-1}}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-m-1}}\right)
\end{aligned}
$$

By corollary 2.2, with $r=\frac{1}{2}$ and $k=n-m-1$, we have

$$
\frac{1}{2^{m-1}}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-m-1}}\right)=\frac{1}{2^{m-1}}\left(\frac{1-\left(\frac{1}{2}\right)^{n-m}}{1-\frac{1}{2}}\right)<\frac{1}{2^{m-2}} \leq \frac{1}{2^{N-2}}
$$

We have chosen N so that $\frac{1}{2^{N-2}}<\varepsilon$, hence for $n, m \geq N,\left|x_{n}-x_{m}\right|<\varepsilon$, and thus our sequence is Cauchy, so $\lim _{n \rightarrow \infty} x_{n}=X$ exists.

Proof. (Of example 2.14)

By Property III, the limit $\lim x_{n}=X$ exists. From the recursive definition, we can write
${ }^{36} \lim \frac{1}{2^{n}}=0$, so such an N
exists.
${ }^{37}$ "Telescoping" the sequence; the inequality follows directly from the triangle inequality.

$$
\begin{array}{r}
X=\lim x_{n}=\lim \left(\frac{1}{2}\left(x_{n-1}+x_{n-2}\right)\right) \\
\Longrightarrow X=\frac{1}{2}(X+X)=X
\end{array}
$$

which, while true, is useless. Rather, consider the subsequence

$$
\left(x_{2 k+1}\right)_{k \in \mathbb{N}}
$$

of $\left(x_{n}\right)$. We claim, then, that

$$
x_{2 k+1}=1+\frac{1}{2}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{k-1}}, k \geq 1 .
$$

Note that $\forall n \geq 1, x_{2 n} \geq x_{2 n-1}$ and $x_{2 n} \geq x_{2 n+1}$. We can argue by induction. Let $S \subseteq \mathbb{N}$ for which the relation holds. Since $x_{1}=1, x_{2}=2, x_{3}=\frac{3}{2}$, we have that $x_{2} \geq x_{1}, x_{2} \geq x_{3}$, and so the relation holds, ie $1 \in S$. Suppose that $n \in S$, ie $x_{2 n} \geq x_{2 n-1}, x_{2 n} \geq x_{2 n+1}$ for some $n \geq 1$. We can write

$$
\begin{aligned}
x_{2 k+2}=\frac{1}{2}\left(x_{2 k+1}+x_{2 k}\right) & \geq \frac{1}{2}\left(x_{2 n+1}+x_{2 n+1}\right) \geq x_{2 n+1} \\
\Longrightarrow x_{2 n+3}=\frac{1}{2}\left(x_{2 n+2}+x_{2 n+1}\right) & \leq \frac{1}{2}\left(x_{2 n+2}+x_{2 n+2}\right)=x_{2 n+2}
\end{aligned}
$$

Hence $x_{2 n+2} \geq x_{2 n+1}$ and $x_{2 n+2} \geq x_{2 n+3}, n+1 \in S$, and hence $S=\mathbb{N}$, and our relation holds $\forall n \in \mathbb{N}$.

Recall now that $\forall n,\left|x_{n+1}-x_{n}\right|=\frac{1}{2^{n-1}}$. We then have the following, given the relation we proved above;

$$
\begin{aligned}
x_{2 n+1}-x_{2 n-1} & =\underbrace{x_{2 n+1}-x_{2 n}}_{\leq 0}+\underbrace{x_{2 n}-x_{2 n-1}}_{\geq 0} \\
& =-\frac{1}{2^{2 n-1}}+\frac{1}{2^{2 n-2}}=-\frac{1}{2^{2 n-1}}+\frac{2}{2^{2 n-1}}=\frac{1}{2^{2 n-1}}
\end{aligned}
$$

From here, we can prove the claim \star by induction.
Summing up the RHS of \star, and factoring out a $\frac{1}{2}$, we have

$$
x_{2 k+1}=1+\frac{1}{2}\left(1+\frac{1}{2^{2}}+\cdots+\left(\frac{1}{2^{2}}\right)^{k-1}\right)
$$

Recalling corollary 2.2, and taking $r=\frac{1}{4}$ and $\ell=k-1$, we have

$$
\begin{aligned}
x_{2 k+1} & =1+\frac{1}{2}\left(\frac{1-\left(\frac{1}{4}\right)^{k}}{1-\frac{1}{4}}\right) \\
& =1+\frac{2}{3}\left(1-\left(\frac{1}{4}\right)^{k}\right) \\
& =\frac{5}{3}-\frac{2}{3}\left(\frac{1}{4}\right)^{k}
\end{aligned}
$$

Thus, we have that $\lim _{k \rightarrow \infty} x_{2 k+1}=\frac{5}{3}$, as the term $\left(\frac{1}{4}\right)^{k}$ goes to zero.
Now, since $\lim _{n \rightarrow \infty} x_{n}=X$ and we showed x_{n} convergent, then each of its subsequences converges to the same limit. Thus, $X=\frac{5}{3}$, ie,

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{5}{3}
$$

Remark 2.16. Generally, this type of approach is quite tedious. The next example(s) will try to generalize it.

\circledast Example 2.15

Consider the recursive relation $x_{n+1}=\frac{1}{2} x_{n}+\frac{1}{2} x_{n-1} \quad \star$.

Proof. We have the following characteristic equation of the sequence:

$$
x^{2}=\frac{1}{2} x+\frac{1}{2}
$$

with solutions $a=1, b=-\frac{1}{2}$. We can now write the following sequence:

$$
x_{n}=C_{1} a^{n}+C_{2} b^{n}=C_{1}+C_{2}\left(-\frac{1}{2}\right)^{n}, \quad \star \star
$$

where C_{1}, C_{2} are arbitrary constants. We claim that this sequences satisfies our recursive relation, \star; note that

$$
\begin{aligned}
\left(-\frac{1}{2}\right)^{n+1} & =\left(-\frac{1}{2}\right)^{n-1} \cdot \frac{1}{4}=\left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right) \frac{1}{2}+\frac{1}{2}\right) \\
\Longrightarrow x_{n+1} & =C_{1}+C_{2}\left(-\frac{1}{2}\right)^{n+1} \\
& =\frac{C_{1}}{2}+\frac{C_{1}}{2}+C_{2}\left(-\frac{1}{2}\right)^{n-1}\left(\left(-\frac{1}{2}\right) \frac{1}{2}+\frac{1}{2}\right) \\
& =\frac{C_{1}}{2}+\frac{C_{1}}{2}+C_{2}\left(-\frac{1}{2}\right)^{n}+\frac{C_{2}}{2}\left(-\frac{1}{2}\right)^{n} \\
& =\frac{C_{1}}{2}+\frac{C_{2}}{2}\left(-\frac{1}{2}\right)^{n}+\frac{C_{1}}{2}+\frac{C_{2}}{2}\left(-\frac{1}{2}\right)^{n-1} \\
& =\frac{x_{n}}{2}+\frac{x_{n-1}}{2}
\end{aligned}
$$

Hence, our $\star \star$ is our so-called general solution to \star. The only factor we must find, then, are our C_{1}, C_{2}. Recall our initial $x_{1}=1, x_{2}=2$. Plugging these into $\star \star$, then, gives

$$
x_{1}=C_{1}+C_{2}\left(-\frac{1}{2}\right)=1 ; \quad x_{2}=C_{1}+C_{2}\left(-\frac{1}{2}\right)^{2}=2
$$

which is simply a system of two equations for two unknowns, C_{1}, C_{2}. Solving them ${ }^{42}$, we have

$$
C_{1}=\frac{5}{3}, \quad C_{2}=\frac{4}{3}
$$

hence we have the general formula

$$
x_{n}=\frac{5}{3}+\frac{4}{3}\left(-\frac{1}{2}\right)^{n}
$$

The RHS of this sum goes to zero, and thus our limit is

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{5}{3}
$$

Remark 2.17. From this general form, we can conclude, as in example 2.14, that $x_{2 n} \geq$ $x_{2 n-1}, x_{2 n} \geq x_{2 n+1}$, since $x_{2 n}>\frac{5}{3}, x_{2 n+1}<\frac{5}{3}, x_{2 n-1}<\frac{5}{3}$; ie, the same property that we used to prove the previous example holds here.

Remark 2.18. Any recursively defined sequence of the form $x_{n+1}=A x_{n}+B x_{n-1}, n>1$
where $A, B \in \mathbb{R}$, can be solved using the characteristic equation

$$
x^{2}=A x+B
$$

with solutions $a=\frac{A+\sqrt{A^{2}+4 B}}{2}, b=\frac{A-\sqrt{A^{2}+4 B}}{2}$. It may be that $a, b \in \mathbb{C}$; we shall not consider these cases. Indeed, we have:

$$
\begin{aligned}
x_{n+1} & =C_{1} a^{n+1}+C_{2} b^{n+1} \\
& =\cdots \\
& =C_{1} a^{n-1}(A a+B)+C_{2} b^{n-1}(A b+B) \\
& =C_{1} A a^{n}+C_{1} a^{n-1} B+C_{2} A b^{n}+C_{2} B b^{n-1} \\
& =A\left(C_{1} a^{n}+C_{2} b^{n}\right)+B\left(C_{1} a^{n-1}+C_{2} b^{n-1}\right) \\
& =A x_{n}+B x_{n-1}
\end{aligned}
$$

Given initial x_{1}, x_{2}, then we have that

$$
x_{1}=C_{1} a+C_{2} b, \quad x_{2}=C_{2} a^{2}+C_{2} b^{2} .
$$

C_{1}, C_{2} are uniquely determined by this relation, as long as the matrix of coefficients

$$
\left|\begin{array}{cc}
a & b \\
a^{2} & b^{2}
\end{array}\right|=a b^{2}-b a^{2} \neq 0
$$

In the case $a=b$, or $a=0$ or $b=0$, then the determinant is also equal to 0 , and we thus have to use a different method. As long as the determinant is nonzero, then we have a valid specific definition.

Remark 2.19. Note that nothing in this derivation assumed x_{n} convergent; this form can indeed be found even if x_{n} diverges. It will simply also diverge.

Remark 2.20. The recursive relation $x_{n+1}=A x_{n}+B x_{n-1}$ is a discrete analog of a differential equation.

2.6 Contractive Sequences

\hookrightarrow Definition 2.11: Contractive Sequences

A sequence $\left(x_{n}\right)$ of real numbers is called contractive with contractive constant K, where $0<K<1$, if $\left|x_{n+2}-x_{n+1}\right| \leq K\left|x_{n+1}-x_{n}\right| \forall n \geq 1$, ie, the distance between successive elements of the sequence are contracted at least by a factor of K.

We have, by extension, that

$$
\begin{array}{r}
\left|x_{n}-x_{n-1}\right| \leq K\left|x_{n-1}-x_{n-2}\right| \\
\leq K^{2}\left|x_{n-2}-x_{n-3}\right| \\
\leq \cdots \\
\leq K^{n-2}\left|x_{2}-x_{1}\right| .
\end{array}
$$

\hookrightarrow Theorem 2.12

Let ${ }^{43}\left(x_{n}\right)$ be a contractive sequence with contractive constant K. Then, $\left(x_{n}\right)$ is a Cauchy sequence, and in particular, $\left(x_{n}\right)$ converges.

Proof. Let $n, m \in \mathbb{N}$ such that $n>m \geq 2$. Then, we have

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+x_{n-2}-\cdots-x_{m+1}+x_{m+1}-x_{m}\right| \\
& \leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right| \\
& \leq K^{n-2}\left|x_{2}-x_{1}\right|+K^{n-3}\left|x_{2}-x_{1}\right|+\cdots+K^{m-1}\left|x_{2}-x_{1}\right| \\
& =K^{m-1}\left|x_{2}-x_{1}\right|\left(1+K+K^{2}+\cdots+K^{n-m-1}\right) \\
& =K^{m-1}\left|x_{2}-x_{1}\right| \frac{1-K^{n-m}}{1-K} \quad \text { by corollary } 2.2 \\
& <\frac{K^{m-1}\left|x_{2}-x_{1}\right|}{1-K} \\
& \Longrightarrow\left|x_{n}-x_{m}\right|<\frac{K^{m-1}\left|x_{2}-x_{1}\right|}{1-K} \forall n>m \geq 2
\end{aligned}
$$

$$
\lim \frac{K^{m-1}}{1-K}\left|x_{2}-x_{1}\right|=0 \Longrightarrow \forall \varepsilon>0, \exists N \text { s.t. } \forall m>N, \frac{K^{m-1}}{1-K}\left|x_{2}-x_{1}\right|<\varepsilon
$$

$$
\rightarrow n>m \geq N \Longrightarrow\left|x_{n}-x_{m}\right| \leq \frac{K^{m-1}}{1-K}\left|x_{2}-x_{1}\right|<\varepsilon
$$

$$
\rightarrow m>n \geq N \Longrightarrow\left|x_{n}-x_{m}\right| \leq \frac{K^{n-1}}{1-K}\left|x_{2}-x_{1}\right|<\varepsilon
$$

$$
\Longrightarrow \forall m, n \geq N,\left|x_{m}-x_{n}\right|<\varepsilon, \text { and }\left(x_{n}\right) \text { Cauchy }
$$

${ }^{43}$ Sketch: start with $\left|x_{n}-x_{m}\right|$, and add/subtract each term between x_{n} and x_{m}, use triangle inequality, "substitute" in contractive constant, collect like terms, and simplify. This creates an upper bound for $\left|x_{n}-x_{m}\right|$, which converges to 0 , then use this converges to define the epsilon to use in the Cauchy definition.

Remark 2.21. This proof also gives us a rate of convergence; we have

$$
\left|x_{n}-x_{m}\right| \leq \frac{K^{m-1}}{1-K} \cdot\left|x_{2}-x_{1}\right|
$$

together with the fact that $\lim _{n \rightarrow \infty} x_{n}=X$, whose convergence also implies by Algebraic

Properties of Limits that

$$
\lim \left|x_{n}-x_{m}\right|=\left|X-x_{m}\right|
$$

This implies, by Order Properties of Limits, that

$$
\left|X-x_{m}\right| \leq \frac{K^{m-1}}{1-K}\left|x_{2}-x_{1}\right|
$$

that is, the sequence converges exponentially fast.
Remark 2.22. We have that $\lim _{n \rightarrow \infty}\left|x_{n}-x_{m}\right|=\left|X-x_{m}\right|$ where $\left(x_{n}\right) \rightarrow X$, by the inequality

$$
\| X-x_{m}\left|-\left|x_{n}-x_{m}\right|\right| \leq\left|x-x_{n}\right|<\varepsilon
$$

following from the more general fact that

$$
||a|-|b|| \leq|a-b| \quad \forall a, b \in \mathbb{R}
$$

a direct consequence of the Triangle Inequality detailed in lemma 2.1.
Remark 2.23. The result that every contractive sequence is convergent is a simple example of the more general "Fixed Point Theorems"; this proof can be generalized to the Banach Fixed Point Theorem on arbitrary metric spaces. This is further used to establish the existence and uniqueness of solutions of differential, integral equations. ${ }^{44}$

[^1]Remark 2.24. In the case of the recursively defined

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+x_{n-1}\right),
$$

we have that

$$
\left|x_{n+2}-x_{n+1}\right|>\frac{1}{2}\left|x_{n+1}-x_{n}\right|
$$

that is, x_{n} is a contractive sequence with $K=\frac{1}{2}$. The argument used to prove that this inequality implies $\left(x_{n}\right)$ Cauchy is the same as the one we used to prove a general contractive sequence is Cauchy.

* Example 2.16

Let $\left(x_{n}\right)$ be a sequence defined recursively by $x_{1}=2, x_{n+1}=2+\frac{1}{x_{n}}$. Prove that the sequence converges and find its limit.

Proof. First, we note that $x_{n} \geq 2 \forall n$. Now, we aim to show that $\left(x_{n}\right)$ is contractive
with $K=\frac{1}{4}$:

$$
\begin{array}{r}
x_{n+2}-x_{n+1}=2+\frac{1}{x_{n+1}}-\left(2+\frac{1}{x_{n}}\right)=\frac{1}{x_{n+1}}-\frac{1}{x_{n}}=\frac{x_{n}-x_{n+1}}{x_{n+1} \cdot x_{n}} \\
\Longrightarrow\left|x_{n+2}-x_{n+1}\right|=\frac{\left|x_{n}-x_{n+1}\right|}{x_{n} \cdot x_{n+1}} \\
x_{n}, x_{n+1} \geq 2 \Longrightarrow x_{n} \cdot x_{n} \cdot x_{n+1} \geq 4 \\
\Longrightarrow \quad \forall n \geq 1,\left|x_{n+2}-x_{n+1}\right| \leq \frac{1}{4}\left|x_{n+1}-x_{n}\right|
\end{array}
$$

$\stackrel{\text { theorem }}{\Longrightarrow}{ }^{2.12}\left(x_{n}\right)$ contractive, hence convergent

We can now find the limit using the recursive definition; let $X=\lim _{n \rightarrow \infty} x_{n} . x_{n} \geq$ 2 , in particular, it is $\neq 0$ for any n. Then, we have:

$$
\begin{array}{r}
X=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(2+\frac{1}{x_{n}}\right)=2+\frac{1}{x}=X \\
\Longrightarrow X=2+\frac{1}{X} \Longrightarrow X^{2}-2 X-1=0 \\
\Longrightarrow X=1 \pm \sqrt{2}
\end{array}
$$

$1-\sqrt{2}<0$, which can't hold since $x_{n} \geq 0 \forall n$, hence it must be that $X=1+$ $\sqrt{2}$.

\circledast Example 2.17

Show that the sequence $x_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}, n \geq 1$, diverges.

Proof. Note that

$$
x_{2 n}-x_{n}=\underbrace{\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}}_{n \text { terms, each } \geq \frac{1}{2 n}} \geq n \cdot \frac{1}{2 n} \geq \frac{1}{2}, \quad *
$$

which means that the sequence cannot be Cauchy hence it cannot be convergent (see theorem 2.9).

More thoroughly, suppose $\left(x_{n}\right)$ is convergent, that is, it is Cauchy. Take $\varepsilon=\frac{1}{4}$; since $\left(x_{n}\right)$ Cauchy, there must exist some N such that $\forall n, m \geq N$,

$$
\left|x_{n}-x_{m}\right|<\varepsilon=\frac{1}{4}
$$

But if we take, then, $n=2 N$ and $m=N$, then

$$
\left|x_{2 N}-x_{N}\right|<\frac{1}{4}
$$

which is impossible, as we have shown in $*$ that $\left|x_{2 N}-x_{N}\right| \geq \frac{1}{2} \forall N$, hence we have reached a contradiction.

2.7 Euler's Number e

Remark 2.25. In the following section, we consider the sequences

$$
x_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

and

$$
y_{n}=\left(1+\frac{1}{n}\right)^{1+n}
$$

We consider the following propositions regarding the sequences.
\hookrightarrow Proposition 2.8: Step 1
x_{n} is strictly increasing. ${ }^{45}$
\hookrightarrow Proposition 2.9: Step 2
y_{n} is strictly decreasing. ${ }^{46}$
\hookrightarrow Proposition 2.10: Step 3
For any $n, k, x_{n}<y_{k} .{ }^{47}$

\hookrightarrow Proposition 2.11: Step 4

$\left(x_{n}\right)$ is bounded from above and $\left(y_{n}\right)$ is bounded from below. ${ }^{48}$
\hookrightarrow Proposition 2.12: Step 5
$\left(x_{n}\right)$ and $\left(y_{n}\right)$ are converging sequences that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n},
$$

which we denote by the number $e .^{49}$
${ }^{45}$ Proof sketch: lots of very ugly algebra, starring Bernoulli's inequality.
${ }^{46}$ Proof sketch: precisely the same idea as Step 1, with just ast much ugly algebra.
${ }^{47}$ Proof sketch: very a-lá Nested Interval Property. 3 cases.

[^2][^3]Remark 2.26. Step 3, Step 4, Step 5 are "easier"; the main parts of the proof deal with Step 1, Step 2. We will prove it using Bernoulli's Inequality.

\hookrightarrow Proposition 2.13: Bernoulli's Inequality

For all $x>-1$ and all $n \in \mathbb{N}$,

$$
(1+x)^{n} \geq 1+n x
$$

Proof. We proceed by induction; fixing $x>-1$, let $S \subseteq \mathbb{N}$ the set for which the inequality holds. $n=1 \Longrightarrow(1+x)^{1} \geq 1+x$, which clearly holds, ie $1 \in S$. Suppose $n \in S$, that is,

$$
(1+x)^{n} \geq 1+n x
$$

holds. Since $1+x>0$, we can multiply both sides by $1+x$:

$$
\begin{aligned}
(1+x)^{n} \cdot(1+x)=(1+x)^{n+1} \geq(1+n x)(1+x)=1+n x+x+\overbrace{n x^{2}}^{\geq 0} & \geq 1+(n+1) x \\
& \Longrightarrow n+1 \in S
\end{aligned}
$$

Hence, by the axiom of induction, $S=\mathbb{N}$.

Proof. (Of Step 1) We will show that $\frac{x_{n+1}}{x_{n}}>1 \forall n \in \mathbb{N}$. From our definition, we have

$$
\begin{aligned}
\frac{x_{n+1}}{x_{n}}=\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}}=\frac{\left(\frac{n+2}{n+1}\right)^{n+1}}{\left(\frac{n+1}{n}\right)^{n}} & =\frac{n+2}{n+1} \cdot \frac{(n+2)^{n} n^{n}}{\left[(n+1)^{2}\right]^{n}} \\
= & \frac{n+2}{n+1}\left[\frac{n^{2}+2 n}{n^{2}+2 n+1}\right]^{n} \\
= & \frac{n+2}{n+1}\left[\frac{n^{2}+2 n+1-1}{n^{2}+2 n+1}\right]^{n} \\
= & \frac{n+2}{n+1}\left[1-\frac{1}{n^{2}+2 n+1}\right]^{n} \\
= & \frac{n+2}{n+1}\left[1-\frac{1}{(n+1)^{2}}\right]^{n}
\end{aligned}
$$

By Bernoulli's Inequality with $x=-\frac{1}{(n+1)^{2}}>-1$, we have that

$$
\left(1-\frac{1}{(n+1)^{2}}\right)^{n} \geq 1-\frac{n}{(n+1)^{2}}
$$

which gives with our results above

$$
\begin{array}{r}
\frac{x_{n+1}}{x_{n}} \geq \frac{n+2}{n+1}\left(1-\frac{n}{(n+1)^{2}}\right)=\frac{n+2}{n+1} \cdot \frac{n^{2}+n+1}{(n+1)^{2}} \\
=\frac{n^{3}+n^{2}+n+2 n^{2}+2 n+2}{n^{3}+3 n^{2}+3 n+1} \\
=\frac{n^{3}+3 n^{2}+3 n+2}{n^{3}+3 n^{2}+3 n+1} \\
=\frac{n^{3}+3 n^{2}+3 n+1}{n^{3}+3 n^{2}+3 n+1}+\frac{1}{n^{3}+3 n^{2}+3 n+1} \\
=1+\frac{1}{n^{3}+3 n^{2}+3 n+1}>1
\end{array}
$$

hence, $\frac{x_{n+1}}{x_{n}}>1 \Longrightarrow x_{n+1}>x_{n} \forall n$, ie it is strictly increasing.

Proof. (Of Step 2) We need to show $\frac{y_{n}}{y_{n+1}}>1 \forall n>1$. We have

$$
\begin{aligned}
& \frac{y_{n}}{y_{n+1}}=\frac{\left(1+\frac{1}{n}\right)^{n+1}}{\left(1+\frac{1}{n+1}\right)^{n+2}}=\frac{\left(\frac{n+1}{n}\right)^{n+1}}{\left(\frac{n+2}{n+1}\right)^{n+2}}=\frac{n+1}{n+2} \cdot \frac{\frac{(n+1)^{n+1}}{n^{n+1}}}{\frac{(n+2)^{n+1}}{(n+1)^{n+1}}} \\
&=\frac{n+1}{n+2} \cdot \frac{\left[(n+1)^{2}\right]^{n+1}}{n^{n+1}(n+2)^{n+1}}=\frac{n+1}{n+2}\left[\frac{n^{2}+2 n+1}{n^{2}+2 n}\right]^{n+1} \\
&=\frac{n+1}{n+2} \cdot\left[1+\frac{1}{n^{2}+2 n}\right]^{n+1}
\end{aligned}
$$

Bernoulli's Inequality $x=\frac{1}{n^{2}+2 n} \Longrightarrow \frac{y_{n}}{y_{n+1}} \geq \frac{n+1}{n+2}\left[1+\frac{n+1}{n^{2}+2 n}\right]$

$$
=\frac{n+1}{n+2} \cdot \frac{n^{2}+3 n+1}{n^{2}+2 n}
$$

$$
=\frac{n^{3}+3 n^{2}+n+n^{2}+3 n+1}{n^{3}+2 n^{2}+2 n^{2}+4 n}=\frac{n^{3}+4 n^{2}+4 n+1}{n^{3}+4 n^{2}+4 n}
$$

$$
=1+\frac{1}{n^{3}+4 n^{2}+4 n}>1
$$

Hence, $\forall n, \frac{y_{n}}{y_{n+1}}>1 \Longrightarrow y_{n}>y_{n+1}$, ie, it is strictly decreasing.

Proof. (Step 3) We aim to show that for all $n, k, x_{n}<y_{k}$.

- (Case 1) $n=k$:

$$
x_{n}=\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n+1}=y_{n}
$$

- (Case 2) $n>k$:

$$
y_{k}>y_{n}>x_{n} \text { by Case } 1, \text { since }\left(y_{n}\right) \text { strictly decreasing. }
$$

$$
x_{n}<x_{k}<y_{k} \text { by Case } 1 \text {, since }\left(x_{n}\right) \text { strictly increasing. }
$$

Proof. (Of Step 4) Since $x_{n}<y_{k} \forall k, n$, we have that

$$
x_{n}<y_{1}=4 \forall n,
$$

and

$$
2=x_{1}<y_{k} \forall k,
$$

hence $\left(x_{n}\right)$ is bounded from above (by y_{1}, say) and $\left(y_{n}\right)$ is bounded from below (by x_{1}, say).

Proof. (Of Step 5) Since (x_{n}) increasing and bounded from above, it is converging by Monotone Convergence Theorem. Similarly, $\left(y_{n}\right)$ is decreasing and bounded from below, hence it too converges. We have too that

$$
y_{n}=\left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^{n}=\left(1+\frac{1}{n}\right) x_{n}
$$

Since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1$, we have, from proposition 2.1, that

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \cdot \lim _{n \rightarrow \infty} x_{n}=\lim x_{n}
$$

that is, $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge to the same limit, which we define as

$$
e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n+1}
$$

Remark 2.27. This proof naturally gives that $\forall n \in \mathbb{N}$,

$$
\left(1+\frac{1}{n}\right)^{n}<e<\left(1+\frac{1}{n}\right)^{n+1}
$$

which we can use to estimate e arbitrarily.

\circledast Example 2.18

Consider the sequence $S_{n}=\sum_{k=0}^{n} \frac{1}{k!}$. Show that the sequence $\left(S_{n}\right)$ is Cauchy and that $\lim _{n \rightarrow \infty} S_{n}=e$.

2.8 Limit Points

\hookrightarrow Definition 2.12: Limit Point

Let $\left(x_{n}\right)$ be a sequence. A number $x \in \mathbb{R}$ is called a limit point or accumulation point if \exists a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. We denote by \mathscr{L} the set of limit points.

Remark 2.28. Note that \mathscr{L} could be an empty set; however, if x_{n} bounded, then $\mathscr{L} \neq 0$ by Bolzano-Weirestrass Theorem. Further, \mathscr{L} is a bounded subset of \mathbb{R}.
\hookrightarrow Proposition 2.14
Let $\left(x_{n}\right)$ be a sequence. Then, $x \in \mathscr{L}$ iff $\forall \varepsilon>0$ the set $\left\{n:\left|x_{n}-x\right|<\varepsilon\right\}$ is infinite.

Proof. Suppose first that $x \in \mathscr{L}$ and let $\left(x_{n_{k}}\right)$ be a subsequence such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. Let $\varepsilon>0$. Then $\exists K \in \mathbb{N}$ s.t. $\forall k \geq K$, $\left|x_{n_{k}}-x\right|<\varepsilon$.

Then, the set

$$
\left\{n_{k}: k \geq K\right\} \subseteq\left\{n:\left|x_{n}-x\right|<\varepsilon\right\} .
$$

Since the LHS set is infinite, the RHS must be too.
We now show the converse. Suppose that $\forall \varepsilon>0$, the set $\left\{n:\left|x_{n}-x\right|<\varepsilon\right\}$ is infinite.
Take $\varepsilon=1$, then the set $\left\{n:\left|x_{n}-x\right|<1\right\}$ is an infinite set. Take $n_{1}=\min \left\{n:\left|x_{n}-x\right|<\right.$ $1\}$. We can now define n_{k}, where $k=2,3, \ldots$ recursively. Suppose that some n_{k} chosen. Then, take $\varepsilon=\frac{1}{k}$, and consider

$$
\left\{n: n>n_{k},\left|x_{n}-x\right|<\frac{1}{k}\right\} .
$$

This set has infinitely many elements, since $\left\{n:\left|x_{n}-x\right|<\frac{1}{k}\right\}$ is also infinite. We then set $n_{k+1}=\min \left\{n: n>n_{k},\left|x_{n}-x\right|<\frac{1}{k}\right\}$, which defines a strictly increasing sequence $\left(n_{k}\right)_{k \geq 1}$ of natural numbers such that for any $k,\left|x_{n_{k}}-x\right|<\frac{1}{k}$. So, $\lim _{k \rightarrow \infty}\left|x_{n_{k}}-x\right|=0$ which gives that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$, so $x \in \mathscr{L}$.

Let $\left(x_{n}\right)$ be a bounded sequence. Then,

1. $\varlimsup_{\mathrm{im}}^{\mathrm{n} \rightarrow \infty} x_{n}=\sup \mathscr{L}$
2. $\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}=\inf \mathscr{L}$

Remark 2.29. The following proof shows even more, that is, $\varlimsup_{n \rightarrow \infty} x_{n}=\sup \mathscr{L}$ and $\varlimsup_{\mathrm{lim}}^{n \rightarrow}$ $x_{n} \in \mathscr{L}$ (same for $\underline{\lim }_{\mathrm{n} \rightarrow \infty}$).

Remark 2.30. 1. \Longrightarrow 2. by changing the sign of x_{n}, as "always".

Proof. We^{50} will show first that $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n} \geq \sup \mathscr{L}$.
Let $x \in \mathscr{L}$ and let $\left(x_{n_{k}}\right)$ be a subsequence such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. Let $y_{n}=\sup \left\{x_{m}\right.$: $m \geq n\}$. We have, then, that $y_{n} \geq x_{n}$, and that $\overline{\lim }_{n \rightarrow \infty} x_{n}=\lim y_{n}$, hence $\forall k, y_{n_{k}} \geq x_{n_{k}}$, and that $\varlimsup_{n \rightarrow \infty} x_{n}=\lim _{k \rightarrow \infty} y_{n_{k}}\left(\left(y_{n}\right)\right.$ is a convergent sequence, so any subsequence converges to the same limit.) So, we have that

$$
\varlimsup_{\mathrm{lim}}^{n \rightarrow \infty} \text { } x_{n}=\lim _{k \rightarrow \infty} y_{n_{k}} \geq \lim _{k \rightarrow \infty} x_{n_{k}}=x,
$$

that is, for any $x \in \mathscr{L}, \overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n} \geq x \Longrightarrow \overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}$ upper bounds \mathscr{L}. Since sup least upper bound, it must be that $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n} \geq \sup \mathscr{L}$.

We now show that $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n} \leq \sup \mathscr{L}$; indeed, we will show that $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n} \in \mathscr{L}$ and thus must be $\leq \sup \mathscr{L}$. We will show this by constructing a subsequence of $\left(x_{n}\right)$ that converges to $\varlimsup_{\mathrm{lim}}^{n \rightarrow}$ x_{n}.

Set $n_{1}=1$. Suppose n_{k} defined. Then,

$$
y_{n_{k}+1}=\sup \left\{x_{n}: n \geq n_{k}+1\right\} .
$$

If we consider $y_{n_{k}+1}-\frac{1}{k+1}$, then this number is smaller than $y_{n_{k}+1}$ and is thus not an upper bound for the set $\left\{x_{n}: n \geq n_{k}+1\right\}$. Then there exists some $n_{k+1} \geq n_{k}+1>n_{k}$ such that

$$
y_{n_{k}+1}-\frac{1}{k+1} \leq x_{n_{k+1}} \leq y_{n_{k+1}}=\sup \left\{x_{n}: n \geq n_{k+1}\right\}
$$

So, we have constructed a strictly increasing sequence $\left(n_{k}\right)$ of natural numbers such that $\forall k \geq 1$,

$$
y_{n_{k}+1}-\frac{1}{k+1} \leq x_{n_{k+1}} \leq y_{n_{k+1}}
$$

${ }^{50}$ Sketch: show double inequality. First, show that $\lim \sup \geq \sup \mathscr{L}$, by using the fact that x_{n} bounded, and so y_{n} (the sequence that converges to limsup) converges and is $\geq x_{n} \forall n$, and so must be greater than any subsequence. To show limsup $\leq \sup \mathscr{L}$, show that $\lim \sup \in \mathscr{L}$, and hence must be equal to $\sup \mathscr{L}$. To do this, create to two subsequences of y_{n} (note - y_{n} NOT x_{n}) that both converge to x_{n}. Note that these exist since y_{n} converges. The real proof is in constructing the sequence of indices n_{k} such that $y_{n_{k}}$ "bounds" (so to speak) some $x_{n_{k}}$. Then, using squeeze theorem, $x_{n_{k}} \rightarrow \limsup x_{n}$, so $\limsup x_{n} \in \mathscr{L}$ and the proof is complete.

Consider the subsequences $\left(y_{n_{k}+1}\right)$ and $\left(y_{n_{k+1}}\right)$ of $\left(y_{n}\right)$, and a subsequence $\left(x_{n_{k+1}}\right)$ of $\left(x_{n}\right)$.
Since y_{n} converges, and $\lim _{n \rightarrow \infty} y_{n}=\varlimsup_{\mathrm{lim}}^{\mathrm{n} \rightarrow \infty}$ x_{n}, we have that

$$
\lim _{k \rightarrow \infty} y_{n_{k}+1}=\varlimsup_{\mathrm{n} \rightarrow \infty} x_{n} ; \text { and } \lim _{k \rightarrow \infty} y_{n_{k+1}}=\varlimsup_{\mathrm{l} \rightarrow \infty} x_{n}
$$

and so, given this and \star, by the The Squeeze Theorem, $\lim _{k \rightarrow \infty} x_{n_{k+1}}=\varlimsup_{\mathrm{lim}}^{n \rightarrow \infty}$ x_{n}, and so $\overline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n} \in \mathscr{L}$.

\hookrightarrow Corollary 2.3

Let $\left(x_{n}\right)$ be a bounded sequence and $\alpha=\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}, \beta=\varlimsup_{\mathrm{lim}}^{\mathrm{n} \rightarrow \infty}$ x_{n}. Then, $\alpha, \beta \in \mathscr{L}$ (that is, they are limit points of $\left(x_{n}\right)$), and for any $x \in \mathscr{L}, \alpha \leq x \leq \beta$ (that is, \mathscr{L} is a closed set).

2.9 Properly Divergent Sequences

\hookrightarrow Definition 2.13: Properly Divergent Sequences

Let $\left(x_{n}\right)$ be a sequence. We say that $\left(x_{n}\right)$ properly diverges to ∞ if for any $\mathbb{R} \exists N \in \mathbb{N}$ such that $\forall n \geq N, x_{n} \geq \alpha$. We write

$$
\lim _{n \rightarrow \infty} x_{n}=\infty
$$

That is,

$$
(\forall \alpha \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)\left(x_{n} \geq \alpha\right)
$$

We analogously say $\left(x_{n}\right)$ diverges to $-\infty$ if $\forall \alpha \in \mathbb{R} \exists N \in \mathbb{N}$ s.t. $\forall n \geq N, x_{n} \leq \alpha$.
\circledast Example 2.19
$x_{n}=n$ properly diverges to $\infty ; x_{n}=-n$ properly diverges to $-\infty$.
\circledast Example 2.20
Let $C>1$. Then, $\lim _{n \rightarrow \infty} C^{n}=\infty$.

Proof. Write $C=1+x$ where $x>0$. By Bernoulli's Inequality, $\forall n \geq 1$,

$$
C^{n}=(1+x)^{n} \geq 1+n x
$$

Let $\alpha \in \mathbb{R}$. If $\alpha \leq 0$, then $\forall n, C^{n}>\alpha$. If $\alpha>0$, let $N \in \mathbb{N}, N \geq \frac{\alpha}{x}$. SO, $\forall n \geq N$, $C^{n} \geq 1+n x>\alpha$ and $\lim _{n \rightarrow \infty} C^{n}=\infty$.
\hookrightarrow Proposition 2.15
Let $\left(x_{n}\right)$ be increasing. Then $\lim _{n \rightarrow \infty} x_{n}=\infty$ iff x_{n} not bounded from above.

Proof. (\Longrightarrow) Let $M \in \mathbb{R}$. Since $\left(x_{n}\right) \rightarrow \infty, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N, x_{n} \geq M$, that is, x_{n} is unbounded.
(\Longleftarrow) Suppose x_{n} not bounded from above. Let $\alpha \in \mathbb{R}$, then, $\exists N$ s.t. $x_{N}>\alpha$. $\left(x_{n}\right)$ increasing $\Longrightarrow \forall n \geq N, x_{n} \geq x_{N}>\alpha \Longrightarrow \lim _{n \rightarrow \infty} x_{n}=\infty$.
\hookrightarrow Proposition 2.16
Let $\left(x_{n}\right)$ be decreasing. Then $\lim _{n \rightarrow \infty} x_{n}=-\infty \Longleftrightarrow\left(x_{n}\right)$ not bounded from below.

Remark 2.31. Follows from proposition 2.15.
\hookrightarrow Proposition 2.17
Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences such that $x_{n} \leq y_{n} \forall n$. Then

1. $\lim _{n \rightarrow \infty} x_{n}=\infty \Longrightarrow \lim _{n \rightarrow \infty} y_{n}=\infty$
2. $\lim _{n \rightarrow \infty} y_{n}=-\infty \Longrightarrow \lim _{n \rightarrow \infty} x_{n}=-\infty$

Proof. (Of 1.) Let $\alpha \in \mathbb{R}$; since $\lim x_{n}=\infty, \exists N$ s.t. $\forall n \geq N, x_{n} \geq \alpha \Longrightarrow \forall n \geq y_{n} \geq$ $x_{n} \geq \alpha \Longrightarrow \lim y_{n}=\infty$.

\hookrightarrow Proposition 2.18

Let $\left(x_{n}\right)$ be a sequence and $c>0$. Then $\lim x_{n}=\infty \Longleftrightarrow \lim c \cdot x_{n}=\infty$. The converse follows for $c<0$ and $\rightarrow-\infty$.

Proof.
\hookrightarrow Proposition 2.19
Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be strictly positive sequences. Suppose that for some $L>0$,

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=L
$$

Then, $\lim x_{n}=\infty \Longleftrightarrow \lim y_{n}=\infty$.

Proof. Take $\varepsilon=\frac{L}{2}$. Then, $\frac{x_{n}}{y_{n}} \rightarrow L \Longrightarrow \exists N$ s.t. $\forall n \geq N, L-\varepsilon<\frac{x_{n}}{y_{n}}<L+\varepsilon \Longleftrightarrow$ $L-\frac{L}{2}<\frac{x_{n}}{y_{n}}<L+\frac{L}{2}$. So, $\forall n \geq N, \frac{L}{2}<\frac{x_{n}}{y_{n}}<\frac{3 L}{2} \Longrightarrow \frac{L}{2} y_{n}<x_{n}<\frac{3}{2} L y_{n}$. Hence, if $x_{n} \rightarrow \infty$, it must be that $y_{n} \rightarrow \infty$, by the previous inequality. The other side of the implication follows similarly.

\hookrightarrow Proposition 2.20

Let $\left(x_{n}\right),\left(y_{n}\right)$ be two sequences such that $\left(x_{n}\right)$ is properly divergent and y_{n} bounded.
Then their sum is also diverging.

Proof.
\circledast Example 2.21
$x_{n}=n, y_{n}=\frac{-n}{2} . x_{n} \rightarrow \infty, y_{n} \rightarrow-\infty$ while $x_{n}+y_{n} \rightarrow \infty$.

\hookrightarrow Definition 2.14: Limsup (Generalized)

Let $\left(x_{n}\right)$ be a sequence bounded from above. Define, as previously, $y_{n}:=\sup \left\{x_{k}\right.$: $k \geq n\}$; recall that this sequence is decreasing, and moreover, that $\lim _{n \rightarrow \infty} y_{n}$ exists.

This limit is finite, as seen previously, if y_{n} bounded from below. If it is not, y_{n} diverges and as it is decreasing, $\lim y_{n}=-\infty$. Recall that $\lim \sup x_{n}=\lim y_{n}$, hence if x_{n} bounded from above, $\varlimsup_{\mathrm{lim}}^{\rightarrow \infty}$ x_{n} exists, and is either a real number, or $-\infty$.

In the case x_{n} not bounded above, then we define $\overline{\lim }_{n \rightarrow \infty} x_{n}=\infty$. In this way, we define $\varlimsup_{\mathrm{n} \rightarrow \infty} x_{n}$ for all sequences, regardless of convergence or boundedness.

\hookrightarrow Definition 2.15: Liminf (Generalized)

Let $\left(x_{n}\right)$ be a sequence. If $\left(x_{n}\right)$ bounded from below, let $z_{n}=\inf \left\{x_{k}: k \geq n\right\}$. This is an increasing sequence. We define $\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}:=\lim z_{n}$; $\lim z_{n}$ finite $\Longleftrightarrow x_{n}$
 bounded from above).

If x_{n} not bounded from below, then $\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}:=-\infty$.

\hookrightarrow Proposition 2.21

Practically all previously proven properties of limsup/liminf hold with these generalizations:

1. $\varliminf_{\mathrm{n} \rightarrow \infty} x_{n} \leq \varlimsup_{\mathrm{l}}^{\mathrm{n} \rightarrow \infty} \mathrm{x},-\infty<x<\infty \forall x \in \mathbb{R}$.
2. $\left(x_{n}\right)$ converging or properly diverging and $\lim x_{n}=a \Longleftrightarrow \underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}=$ $\varlimsup_{\mathrm{n} \rightarrow \infty} x_{n}=a$ (noting that $a \in \mathbb{R} \cup\{-\infty, \infty\}^{51}$)
3. $\underline{\lim }_{\mathrm{n} \rightarrow \infty}\left(-x_{n}\right)=-\underline{\lim }_{\mathrm{n} \rightarrow \infty} x_{n}{ }^{52}$
4. $\varlimsup_{\mathrm{lim}}^{\mathrm{n}}{ } x_{n}=\inf \left\{t:\left\{n: x_{n}>t\right\}\right.$ finite or empty $\}$ and $\lim _{\mathrm{n} \rightarrow \infty} x_{n}=\sup \{t$: $\left\{x_{n}<t\right\}$ finite or empty $\} .{ }^{53}$

\hookrightarrow Definition 2.16: Limit Set

The limit set of a sequence $\left(x_{n}\right)$ is the collection of all $x \in \mathbb{R} \cup\{-\infty, \infty\}$ s.t. for some subsequence $\left(x_{n_{k}}\right)$ of $x_{n}, \lim _{k \rightarrow \infty} x_{n_{k}}=x$. Then, we have, as before, $\varlimsup_{\mathrm{lim}}^{\mathrm{n} \rightarrow \infty}$ $x_{n}=$ $\sup \mathscr{L}, \lim _{\mathrm{n} \rightarrow \infty} x_{n}=\inf \mathscr{L}$.

Remark 2.32. Not all concepts defined on convergent/bounded sequences extend easily to properly divergent sequences. For instance, $\varlimsup_{\mathrm{lim}}^{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \varlimsup_{\mathrm{lim}}^{n \rightarrow \infty}$ $x_{n}+\varlimsup_{\mathrm{lim}}^{n \rightarrow \infty}$ y_{n} holds for bounded sequences x_{n}, y_{n}, but does not generally hold if $\overline{\lim }_{n \rightarrow \infty} x_{n}=\infty$, etc..

3 Functional Limits and Continuity

\hookrightarrow Definition 3.1: Cluster Point

Let ${ }^{54} A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is called a cluster or limit point of A if $\forall \varepsilon>0, \exists x \in A$, $x \neq c$, s.t. $0<|x-c|<\varepsilon$.

Remark 3.1. Note that this definition does not require $c \in A$.
\hookrightarrow Proposition 3.1
Let $A \subseteq \mathbb{R}, c \in \mathbb{R}$. Then, TFAE:

1. c is a cluster point of A
2. \exists a sequence $\left(x_{n}\right)$ s.t. $\forall x_{n} \in A, x_{n} \neq c$, and $\lim x_{n}=c$.

Proof. (1. $\Longrightarrow 2$.$) Let c$ be a cluster point of A, and take $\varepsilon=\frac{1}{n}$ in the definition of a cluster point. Then, by definition, $\exists x_{n} \in A, x_{n} \neq c$, s.t. $0<\left|x_{n}-c\right|<\frac{1}{n}$. This defines a sequence $x_{n} \in A, x_{n} \neq c \forall n$, with the property that $\forall n,\left|x_{n}-c\right|<\frac{1}{n}$. Moreover, this gives, by definition, that $\lim x_{n}=c$.
${ }^{53}$ See: Extended Real Line
${ }^{53}$ We take, here, $-(-\infty) \equiv \infty$
${ }^{53}$ We define $\inf \varnothing=\infty$ and $\sup \varnothing=-\infty$, as a convention. Moreover, if a set A is not bounded from below, then we have $\inf A=-\infty$, and if A not bounded from above, $\sup A=\infty$.
> ${ }^{54}$ Read: a point is a cluster point if there exists points (other than itself) in the set that are arbitrarily close ("epsilon close") to it.
(2. \Longrightarrow 1.) Suppose there exists a sequence $\left(x_{n}\right)$ in $A, x_{n} \neq c$, such that $\lim x_{n}=c$. Take $\varepsilon>0$, and let N be such that $\forall n \geq N,\left|x_{n}-c\right|<\varepsilon$. Take $x=x_{N}$; then, we have that $x \in A, x \neq c$, and $0<|x-c|<\varepsilon$. By definition, then, c is a cluster point, and the proof is complete.

Example 3.1

Let $A=(0,1)$. Then, 0 is a cluster point of A.

Proof. Consider the sequence $x_{n}=\frac{1}{n+1}$. Then, since $0<\left(x_{n}\right)<1, x_{n} \in A \forall n$, moreover, $x_{n} \neq 0$. Hence, $\lim x_{n}=0$, hence 0 is a cluster point of A.

Example 3.2

Let $A=(0,1) \cup\{5\}$. Is 5 a cluster point?

Proof. No; it is impossible to find arbitrarily (ε) close points to 5 in the set; $\exists x \in$ $A, x \neq 5$ such that $0<|x-5|<\varepsilon$. Then, the set of all cluster points of A is equal $[0,1]$.

* Example 3.3

Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Then, $c=0$ is the only cluster point of A.

Proof. We show first $c=0$ is indeed a cluster point. Let $x_{n}=\frac{1}{n}$; then, $x_{n} \in$ $A \forall n, x_{n} \neq 0$, and moreover, $\lim x_{n}=0$, hence $c=0$ a cluster point of A.

We now show that 0 is the only cluster point of A.

* Example 3.4

Let $A=\mathbb{Q}$. Then, the set of cluster points is precisely \mathbb{R}.

Proof. Take $x \in \mathbb{R}, \varepsilon>0$. Consider the interval $(x, x+\varepsilon)$; by density of the rationals, $\exists q \in \mathbb{Q}$ s.t. $q \in(x, x+\varepsilon)$. Hence, $\exists q \in \mathbb{Q}, q \neq x$ s.t. $0<|x-q|<\varepsilon$, hence, x a cluster point of A.

\hookrightarrow Definition 3.2: Functional Limits

Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and c a cluster point of A. Then, we say that the limit of f at c is L, denoted

$$
\lim _{x \rightarrow c} f(x)=L
$$

if $\forall \varepsilon>0, \exists \delta>0$ s.t. $\forall x \in A$ satisfying $0<|x-c|<\delta$, we have that $|f(x)-L|<$ ε.

Remark 3.2. "As x gets closer and closer to $c, f(x)$ gets closer and closer to L ".
Remark 3.3. The point c may or may not be in A (for instance, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$). However, it must be that c is a cluster point of A; this is what "allows" the arbitrary closeness to L in the definition of a limit.

Remark 3.4. This definition is often called the " $\varepsilon-\delta$ "definition of functional limits. Quantified, it states

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x \in A)(0<|x-c|<\delta \Longrightarrow|f(x)-L|<\varepsilon)
$$

\circledast Example 3.5

Let $A=(0, \infty)$, let $f(x)=\frac{1}{x}, x \in A$, and let $c \in A$. Prove that $\lim _{x \rightarrow c} f(x)=\frac{1}{c}$.

Proof. Note: c a cluster point of A since for $\varepsilon>0, x=c+\frac{\varepsilon}{2} \in A, x \neq c, 0<$ $|x-c|=\frac{\varepsilon}{2}<\varepsilon$ (hence the limit is indeed well-defined).

Fix $\varepsilon>0$; take $\delta=\min \left\{\frac{1}{2} c, \frac{1}{2} c^{2} \varepsilon\right\}$. Then,

$$
\left|\frac{1}{x}-\frac{1}{c}\right|=\left|\frac{c-x}{x c}\right|=\frac{|x-c|}{|x c|}<\frac{\delta}{|x c|},
$$

if $x \in A$ is such that $0<|x-c|<\delta$. Since $|x-c|<\delta$, we have that $x-c>$ $-\delta \Longrightarrow x>c-\delta$. We also have, by definition, $\delta \leq \frac{1}{2} c$, hence, $x>\frac{c}{2}$. This gives that $\frac{1}{|x c|}=\frac{1}{x c}<\frac{1}{\frac{c}{2} c}=\frac{2}{c^{2}}$. We thus have that, for $0<|x-c|<\delta$, that $\left|\frac{1}{x}-\frac{1}{c}\right|<\frac{2}{c^{2}} \delta$. But we also have that $\delta \leq \frac{c^{2}}{2} \varepsilon$, hence $\left|\frac{1}{x}-\frac{1}{c}\right|<\frac{2}{c^{2}} \frac{c^{2}}{2} \varepsilon \Longrightarrow\left|\frac{1}{x}-\frac{1}{c}\right|<\varepsilon$. Thus, $\lim _{x \rightarrow c} \frac{1}{x}=\frac{1}{c}$.

3.1 Sequential Characterization of Functional Limits

\hookrightarrow Theorem 3.1

Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and let c be a cluster point of A. Then, TFAE:

1. $\lim _{x \rightarrow c} f(x)=L$.
2. For any sequence $\left(x_{n}\right) \in A, x_{n} \neq c$, such that $\lim x_{n}=c$, we have that the sequence $\left(f\left(x_{n}\right)\right)$ converges to L, that is, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Proof. (1. \Longrightarrow 2.) By 1., $\forall \varepsilon>0, \exists \delta>0$ s.t. $\forall x \in A, x \neq c$ such that $0<|x-c|<\delta$, we have $|f(x)-L|<\varepsilon$. Let $\left(x_{n}\right)$ be a sequence in A s.t. $x_{n} \neq c$ and $\lim _{n \rightarrow \infty} x_{n}=c$. We wish to show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. Take $\varepsilon>0$; then, we have that $\exists \delta>0$ s.t. $\forall x \in A$ satisfying $0<|x-c|<\delta$, we have $|f(x)-L|<\varepsilon$. Fix such a δ; then, since $\lim _{n \rightarrow \infty} x_{n}=$ $c, \exists N$ s.t. $\forall n \geq N,\left|x_{n}-c\right|<\delta$. Then, it follows from the definition of δ that for $n \geq N$, $\left|f\left(x_{n}\right)-L\right|<\varepsilon$, hence $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, and 2 . holds.
(2. \Longrightarrow 1.) Suppose not. Then, $\forall \varepsilon>0$, we can find $\delta>0$ such that $\forall x \in A$ s.t. $0<$ $|x-c|<\delta$ we have $|f(x)-L|<\varepsilon$. But then, this means that $\exists \varepsilon_{0}>0$ s.t. $\forall \delta>0, \exists x \in$ $A, x \neq C$ s.t. $0<|x-c|<\delta$ and $|f(x)-L| \geq \varepsilon_{0}$. So, for this $\varepsilon_{0}>0$, we can take $\delta=\frac{1}{n}$, which gives $x_{n} \in A, x_{n} \neq c$, such that $0<\left|x_{n}-c\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon_{0}$. This gives us a sequence $\left(x_{n}\right) \in A, x_{n} \neq c$, such that $\lim _{n \rightarrow \infty}\left|x_{n}-c\right|=0 \Longrightarrow \lim _{n \rightarrow \infty} x_{n}=c$, and $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon_{0} \forall n$. But this means that we have a sequence x_{n} s.t. $\lim x_{n}=c$, and the sequence $\left(f\left(x_{n}\right)\right)$ does not converge to L. But this contradicts 2.; hence, we have come to a contradiction, and 1 . holds.

\hookrightarrow Proposition 3.2

A functional limit is unique. That is, if $f: A \rightarrow \mathbb{R}$ and c a cluster point of A, if $\lim _{x \rightarrow c} f=L$ an $\lim _{x \rightarrow c} f=M, L=M$.

Proof. (Sequential) Let x_{n} be a sequence in A such that $x_{n} \neq c$ and $\lim _{n \rightarrow \infty} x_{n}=c$. Then by the sequential characterization, $\lim _{x \rightarrow c} f(x)=L \Longrightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, and $\lim _{x \rightarrow c} f(x)=M \Longrightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right)=M$. That is, the sequence $f\left(x_{n}\right)$ converges to both L and M, but the limit of a sequence is unique (if it exists), hence $L=M$.
$(\varepsilon-\delta)^{55}$ Take $\varepsilon=\frac{|L-M|}{2}$, and suppose $L \neq M$, hence $\varepsilon>0$. Since $\lim _{x \rightarrow c} f(x)=L, \exists \delta_{1}>$ 0 s.t. $\forall x \in A 0<|x-c|<\delta_{1}$, we have $|f(x)-L|<\varepsilon$. Similarly, since $\lim _{x \rightarrow c} f(x)=$ $M, \exists \delta_{2}>0$ s.t. $\forall x \in A, 0<|x-c|<\delta_{2}$, we have that $|f(x)-M|<\varepsilon$. Take $\delta=$ $\min \left\{\delta_{1}, \delta_{2}\right\}$ and let $x \in A$ s.t. $0<|x-c|<\delta$. Then,

$$
\begin{aligned}
|L-M|=|L-f(x)+f(x)-M| \leq & |L-f(x)|+|f(x)-M| \\
& <\varepsilon+\varepsilon=2 \varepsilon=|L-M|
\end{aligned}
$$

which implies $|L-M|<|L-M|$, a contradiction. Hence, $L=M$.

\hookrightarrow Theorem 3.2: Algebraic Properties of Functional Limits

Let $A \subseteq \mathbb{R}, f, g: A \rightarrow \mathbb{R}$, and let c be a cluster point of A. Suppose $\lim _{x \rightarrow c} f(x)=L$
${ }^{55}$ Note the similarity of this proof and that which we used to prove limits of sequences are unique (theorem 2.1).
and $\lim _{x \rightarrow c} g(x)=M$. Then,

1. For any constant $k \in \mathbb{R}, \lim _{x \rightarrow c}(k \cdot f(x))=k \cdot \lim _{x \rightarrow c} f(x)=k \cdot L$.
2. $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$
3. $\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M$
4. If $g(x) \neq 0 \forall x \in A$, and $M \neq 0, \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}$.

Proof. (Of 3.; Sequential) Let x_{n} be sequence in $A, x_{n} \neq c$, and $\lim _{n \rightarrow \infty} x_{n}=c$. Then, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ and $\lim _{n \rightarrow \infty} g(x)=M$. But then, by product rule of converging sequences (proposition 2.1), $\lim _{n \rightarrow \infty}\left(f\left(x_{n}\right) g\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \lim _{n \rightarrow \infty} g\left(x_{n}\right)=L \cdot M$. Moreover, by sequential characterization of functional limits, we have that $\lim _{x \rightarrow c}(f(x) g(x))=$ $L \cdot M$.
$(\varepsilon-\delta)$ Since $\lim _{x \rightarrow c} f(x)=L$, if we take $\varepsilon=1$, we can find $\delta_{1}>0$ s.t. $\forall x \in A, x \neq$ $c, 0<|x-c|<\delta_{1}$, we have that $|f(x)-L|<1$. For such an x, we have that $|f(x)|=$ $|f(x)-L+L| \leq|f(x)-L|+|L|<1+L$. Take now $\varepsilon>0$. Since $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, we can find $\delta_{2}>0$ s.t. $\forall 0<|x-c|<\delta_{2}$, we have that $|f(x)-L|<$ $\frac{\varepsilon}{2(|M|+1)},|g(x)-M|<\frac{\varepsilon}{2(|L|+1)}$. Take now $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, and let x be s.t. $0<|x-c|<\delta$. Then,

$$
\begin{array}{r}
|(f(x) \cdot g(x))-(L \cdot M)|=|f(x) g(x)-f(x) M+f(x) M-L M| \\
\leq|f(x) g(x)-f(x) M|+|f(x) M-L M| \\
\quad=|f(x)||g(x)-M|+|M||f(x)-L| \\
<(1+|L|)|g(x)-M|+|M||f(x)-L| \\
<(1+|L|) \frac{\varepsilon}{2(|L|+1)}+|M| \frac{\varepsilon}{2(|M|+1)} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{array}
$$

where the fourth line follows directly from $\delta \leq \delta_{1}$ as defined previously.

\hookrightarrow Theorem 3.3: Functional Squeeze Theorem

Let $A \subseteq \mathbb{R}, f, g, h: A \rightarrow \mathbb{R}$, and let c be a cluster point of A. Suppose that for all $x \in A$, we have that $f(x) \leq g(x) \leq h(x)$, and that $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} g(x)=L$.

Proof. (Sequential) Let x_{n} be a sequence in $A, x_{n} \neq c$ such that $\lim _{n \rightarrow \infty} x_{n}=c$. Then, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{x \rightarrow c} f(x)=L$ and similarly $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=\lim _{x \rightarrow c} h(x)=L$.

Now, we have that $\forall n, f\left(x_{n}\right) \leq g\left(x_{n}\right) \leq h\left(x_{n}\right)$. By the squeeze theorem for sequences, $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=L$
$(\varepsilon-\delta)$ Let $\varepsilon>0$. Since $\lim _{x \rightarrow c} f(x)=L, \exists \delta_{1}>0$ s.t. $\forall x \in A$ s.t. $0<|x-c|<\delta_{1}$ we have $|f(x)-L|<\varepsilon$. Since $\lim _{x \rightarrow c} h(x)=L$, we have that $\exists \delta_{2}>0$ s.t. $\forall x \in A$ s.t. $0<$ $|x-c|<\delta_{2}$ we have $|h(x)-L|<\varepsilon$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and let x be such that $x \in A, 0<$ $|x-c|<\delta$. Then,

$$
-\varepsilon<f(x)-L \leq g(x)-L \leq h(x)-L<\varepsilon
$$

thus, $|g(x)-L|<\varepsilon$ whenever $0<|x-c|<\delta$, hence $\lim _{x \rightarrow c} g(x)=L$.
Remark 3.5. Note the similarity between the $\varepsilon-\delta$ proofs above and the proofs of corresponding properties for sequences.

\hookrightarrow Definition 3.3: Divergence Criterion of a Function

Let $f: A \rightarrow \mathbb{R}$ and let c be a cluster point of A. The following criterion state that the limit of f at c does not exist:

1. Suppose there exists a sequence $x_{n} \in A, x_{n} \neq c$, s.t. $\lim _{n \rightarrow \infty} x_{n}=c$, s.t. $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ does not exist. Then, $\lim _{x \rightarrow c} f(x)$ also does not exist.
2. Suppose there exist two sequences $x_{n}, y_{n} \in A, x_{n}, y_{n} \neq c$, s.t. $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=c$, and the limits $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right)$ exist, but these two limits are different, then $\lim _{x \rightarrow c} f(x)$ does not exist.
\circledast Example 3.6: $f(x)=\sin \frac{1}{x}$
Let $A=(0, \infty), f(x)=\sin \frac{1}{x}$ and $c=0$. Then, $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.

Proof. (Using divergence criterion 1.) Take $x_{n}=\frac{1}{(2 n+1) \frac{\pi}{2}}$. Then, $x_{n}>0$, and $\lim _{n \rightarrow \infty} x_{n}=0=c$. Moreover, $f\left(x_{n}\right)=\sin \left(\frac{1}{x_{n}}\right)=\sin \left((2 n+1)\left(\frac{\pi}{2}\right)\right)=(-1)^{n}$. This sequence does not converge, and so $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
(Using divergence criterion 2.) Take $x_{n}=\frac{1}{2 n \pi}, y_{n}=\frac{1}{2 n \pi+\frac{\pi}{2}}$, noting that $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=0$. Then, $f\left(x_{n}\right)=\sin \frac{1}{x_{n}}=\sin (2 n \pi)=\forall n$, while $f\left(y_{n}\right)=\sin \frac{1}{y_{n}}=$ $\sin \left(2 n \pi+\frac{\pi}{2}\right)=1 \forall n$, hence, $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)$, and thus $\lim _{x \rightarrow c} f(x)$ does not exist.

Let $x_{n}=\frac{2}{\pi n}, y_{n}=\frac{1}{(2+n) \pi}$. Then, we have that both $\left(x_{n}\right) \rightarrow 0$ and $\left(y_{n}\right) \rightarrow 0$, but

$$
f\left(x_{n}\right)=\cos \left(\frac{\pi n}{2}\right)=0 \forall n ; \quad f\left(y_{n}\right)=\cos ((2+n) \pi)=1 \forall n,
$$

hence, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=1 \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)=0$, so the limit does not exist.
Consider now $\lim _{x \rightarrow 0} x \cos \frac{1}{x}$. Fix $\varepsilon>0$, and take $\delta=\varepsilon$, then, we have that $\forall x$ s.t. $0<|x-0|<\delta$. Then, we have by properties of cos,

$$
\left|x \cos \frac{1}{x}\right| \leq|x|<\delta=\varepsilon,
$$

hence the function converges to 0 .

\circledast Example 3.8: Abbott, 4.2E14

Let $f: A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}, c \in \mathbb{R}$ be a cluster point of A, and $f(x) \geq 0 \forall x \in A$.
Prove that $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow c} f(x)}$.

Proof. (Seq'n) Define $L:=\lim _{x \rightarrow c} f(x)$. Then, we have that $\forall x_{n} \in A \backslash\{c\}$ s.t. $\left(x_{n}\right) \rightarrow$ $c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. We can write, then,

$$
L=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sqrt{f\left(x_{n}\right)} \sqrt{f\left(x_{n}\right)}=\left(\lim _{n \rightarrow \infty} \sqrt{f\left(x_{n}\right)}\right)^{2}
$$

and taking the square root of both sides, we have the desired result. Note that this used the assumption that $\exists \lim _{n \rightarrow \infty} x_{n} \Longrightarrow \exists \lim _{n \rightarrow \infty} \sqrt{x_{n}}$.

3.2 Left/Right Limits

\hookrightarrow Definition 3.4: Left/Right Limits

1. Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and suppose that c is a cluster point of the set

$$
A \cap(c, \infty)=\{x \in A: x>c\}
$$

Then we say that a real number L is the right limit of f at c, denoted

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

if $\forall \varepsilon>0, \exists \delta>0$ s.t. $\forall x \in A$ s.t. $0<x-c<\delta \Longrightarrow|f(x)-L|<\varepsilon$.
2. Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and suppose that c is a cluster point of

$$
A \cap(-\infty, c)=\{x \in A: x<c\}
$$

Then we say that a real number L is the left limit of f at c, denoted

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

if $\forall \varepsilon>0, \exists \delta>0$ s.t. $\forall x \in A$ s.t. $-\delta<x-c<0 \Longrightarrow|f(x)-L|<\varepsilon$.
Remark 3.6. Sometimes, but not always, the right/left endpoints are equivalent to the "usual" limit.

\circledast Example 3.9: The Heaviside Function

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined $f(x)=\left\{\begin{array}{ll}1 & x \geq 0 \\ 0 & x<0\end{array}\right.$. We have

$$
\lim _{x \rightarrow 0^{+}} f(x)=1 ; \quad \lim _{x \rightarrow 0^{-}} f(x)=0
$$

Let $\varepsilon>0$. Take $\delta>0$. Then, $\forall x$ s.t. $0<x<\delta,|f(x)-1|=|1-1|=0<\varepsilon$, hence $\lim _{x \rightarrow 0^{+}} f(x)=0$.

\hookrightarrow Proposition 3.3

Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and let c be a cluster point of the sets $A \cap(c, \infty)$ and $A \cap(-\infty, c)$. TFAE:

1. $\lim _{x \rightarrow c} f(x)=L$
2. $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=L$

Proof. (1. $\Longrightarrow 2$.$) Let \varepsilon>0$ and δ s.t. $\forall x \in A$ s.t. $0<|x-c|<\delta \Longrightarrow|f(x)-L|<\varepsilon$. Then, we have that $|f(x)-L|<\varepsilon \Longleftarrow 0<x-c<\delta$, and moreover, $|f(x)-L|<$ $\varepsilon \Longleftarrow-\delta<x-c<0$, that is, $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=L$, hence 2. holds.
(2. \Longrightarrow 1.) Let $\varepsilon>0$. Since $\lim _{x \rightarrow c^{+}} f(x)=L, \exists \delta_{1}>-$ s.t. $0<x-c<\delta_{1} \Longrightarrow$ $|f(x)-L|<\varepsilon$. Since $\lim _{x \rightarrow c^{-}} f(x)=L, \exists \delta_{2}>0$ s.t. $\forall x \in A$ s.t. $-\delta_{2}<x-c<0 \Longrightarrow$ $|f(x)-L|<\varepsilon$. Take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then, if $0<|x-c|<\delta$, then we have that either $0<x-c<\delta \leq \delta_{1}$, or $-\delta_{2} \leq-\delta<x-c<0$. In either case, $|f(x)-L|<\varepsilon$, so $\lim _{x \rightarrow c} f(x)=L$ and 1. holds.

\hookrightarrow Theorem 3.4

Let ${ }^{56} A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and let c be a cluster point of the set $A \cap(c, \infty)$.Then, TFAE:

1. $\lim _{x \rightarrow c^{+}} f(x)=L$
2. For any sequence $\left(x_{n}\right) \in A$ s.t. $x_{n}>c \forall n$, and $\lim _{n \rightarrow \infty} x_{n}=c$, we have that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Proof. (\Longrightarrow)
(\Longleftarrow)

$$
{ }^{56} \mathrm{Abbott}, 4.3 \mathrm{E} 1 \text { (Theorem 4.3.2) }
$$

3.3 Limits and Infinity

3.3.1 Infinite Limits

\hookrightarrow Definition 3.5: Infinite Limits

Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}, c$ a cluster point of A.

1. $\lim _{x \rightarrow c} f(x)=\infty$ if $\forall M \in \mathbb{R}, \exists \delta>0$ s.t. $\forall x \in A$ s.t. $0<|x-c|<\delta, f(x) \geq$ M.
2. $\lim _{x \rightarrow c} f(x)=-\infty$ if $\forall M \in \mathbb{R}, \exists \delta>0$ s.t. $\forall x \in A$ s.t. $0<|x-c|<$ $\delta, f(x) \leq M$.

Example 3.10

Let $A=(-\infty, 0) \cup(0, \infty)$ and let $f(x)=\frac{1}{x^{2}}$. Show that $\lim _{x \rightarrow 0} f(x)=\infty$.

Proof. Let $M \in \mathbb{R}$, and take $\delta=\frac{1}{\sqrt{|M|+1}}$. Then, $\forall x \in A$ s.t. $0<|x|<\delta$, we have that

$$
f(x)=\frac{1}{x^{2}}>\frac{1}{\delta^{2}}=|M|+1>M
$$

hence the limit holds.

\circledast Example 3.11

1. Give a sequential characterization of $\lim _{x \rightarrow c} f(x)=\infty$ and $-\infty$.
2. Give the definition of right/left hand limits going to infinity, $\lim _{x \rightarrow c^{+}} f(x)=$ ∞ and $-\infty, \lim _{x \rightarrow c^{-}} f(x)=\infty$ and $-\infty$.
3. Let $A=(-\infty, 0) \cup(0, \infty), f(x)=\frac{1}{x}$. Show that

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty, \lim _{x \rightarrow 0^{+}} f(x)=\infty
$$

\hookrightarrow Proposition 3.4: Order Properties of Infinite Limits

Let $A \subseteq \mathbb{R}, f, g: A \rightarrow \mathbb{R}$, and suppose $f(x) \leq g(x) \forall x \in A$. Let c be a cluster point of A. Then,

1. $\lim _{x \rightarrow c} f(x)=\infty \Longrightarrow \lim _{x \rightarrow c} g(x)=\infty$
2. $\lim _{x \rightarrow c} g(x)=-\infty \Longrightarrow \lim _{x \rightarrow c} f(x)=-\infty$

Proof. (1.) Let $M \in \mathbb{R}$. Since $\lim _{x \rightarrow c} f(x)=\infty, \exists \delta>0$ s.t. $\forall x \in A$ s.t. $0<|x-c|<$ $\delta, f(x) \geq M$. But then $g(x) \geq f(x) \forall x$, hence $g(x) \geq M \Longrightarrow \lim _{x \rightarrow c} g(x)=\infty$.

3.3.2 Limits at Infinity

\hookrightarrow Definition 3.6: Limit at \pm Infinity

- Let $A \subseteq \mathbb{R}$. Suppose that for some $a \in \mathbb{R},(a, \infty) \subseteq A$. Let $f: A \rightarrow \mathbb{R}$. We say that a real number L is the limit of f at ∞ if $\forall \varepsilon>0 \exists K>a$ s.t. $\forall x \geq K$, we have $|f(x)-L|<\varepsilon$.
- Let $A \subseteq \mathbb{R}$ and suppose that for some $a \in \mathbb{R},(-\infty, a) \subseteq A$. Let $f: A \rightarrow \mathbb{R}$. We say that a real number L is the limit of f at $-\infty$ if $\forall \varepsilon>0, \exists K<a$ s.t. $\forall x \leq$ $K,|f(x)-L|<\varepsilon$.
\circledast Example 3.12: $\frac{\sin x}{x}$ at infinity
Let $A=(0, \infty)$ and $f(x)=\frac{\sin x}{x}$. Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
 ε.
\circledast Example 3.13
"Sequentialize" limits at infinity.

Example 3.14: Abbott, 4.4E9

Prove that if $f:(a, \infty) \rightarrow \mathbb{R}$ is such that $\lim _{x \rightarrow \infty} x f(x)=L \in \mathbb{R}$ exists,

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x f(x)=L & \Longrightarrow \forall \varepsilon>0, \exists M \text { s.t. } \forall x \geq M>0,|x f(x)-L|<\varepsilon \\
& \Longrightarrow L-\varepsilon<x f(x)<L+\varepsilon \\
& \Longrightarrow \underbrace{\frac{L-\varepsilon}{x}}_{\rightarrow 0}<f(x)<\underbrace{\frac{L+\varepsilon}{x}}_{\rightarrow 0} \\
& \xlongequal{\text { squeeze theorem }} \lim _{x \rightarrow \infty} f(x)=0
\end{aligned}
$$

Noting that we take $M>0$ wlog.

3.3.3 Infinite Limits at Infinity

\hookrightarrow Definition 3.7: Infinite Limits at Infinity

3.4 Continuity

\hookrightarrow Definition 3.8: Continuity

Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and $c \in A$. We say f is continuous at c if $\forall \varepsilon>0, \exists \delta>$ 0 s.t. $\forall x \in A$ s.t. $|x-c|<\delta$, we have that $|f(x)-f(c)|<\varepsilon$. Quantified: f continuous at c if

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x \in A)(|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon)
$$

If f not continuous at some c, we say f discontinuous at c.
If $c \in A$ a cluster point of A, f is continuous at c iff $\lim _{x \rightarrow c} f(x)=f(c)$. If c not
a cluster point, continuity at c still defined, while $\lim _{x \rightarrow c} f(x)$ not.
\hookrightarrow Theorem 3.5: Sequential Characterization of Continuity
Let $f: A \rightarrow \mathbb{R}, c \in A$. TFAE:

1. f continuous at c
2. for any sequence $\left(x_{n}\right) \in A$ s.t. $\lim _{n \rightarrow \infty} x_{n}=c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$

Remark 3.7.

Remark 3.8. This theorem can be directly deduced from sequential characterization of functional limits.
\hookrightarrow Proposition 3.5: Algebraic Operations
Let $f, g: A \rightarrow \mathbb{R}, c \in A$. Suppose f, g continuous at c. Then:

1. $\forall k \in \mathbb{R}, k f$ continuous at c
2. $h=f+g$ continuous at c
3. $h=f \cdot g$ continuous at c
4. If $g(x) \neq 0 \forall x \in A, h=\frac{f}{g}$ continuous at c.

Proof. (Of 3.) Let $\left(x_{n}\right) \in A$ s.t. $\lim _{n \rightarrow \infty} x_{n}=c$. Since f, g continuous at c, we have that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$ and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(c)$. By algebraic properties of limits, then, $\lim _{n \rightarrow \infty} f\left(x_{n}\right) g\left(x_{n}\right)=f(c) g(c)$ and so $\forall\left(x_{n}\right) \in A$ s.t. $\lim _{n \rightarrow \infty} x_{n}=c$, we have that $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(c)$ where $h=f \cdot g$ and thus h continuous at c.
\hookrightarrow Theorem 3.6: Composition of Functions and Continuity
Let $f: A \rightarrow \mathbb{R}, g: B \rightarrow \mathbb{R}$ be two functions such that

$$
f(A)=\{f(x): x \in A\} \subseteq B
$$

so that the composite function $h(x)=g \circ f(x)=g(f(x))$ is well defined on A. Suppose $c \in A$ such that f continuous at c and g continuous at $f(c)$. Then, h also continuous at c.

Proof. (Using sequential characterization) Let $\left(x_{n}\right) \in A$ s.t. $\lim _{n \rightarrow \infty} x_{n}=c . f$ continuous at c, so $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$. Let $\left(f\left(x_{n}\right)\right)_{n \geq 1}$ is a sequence in B such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(c)$ and so g is continuous at $f(c)$. Then, $\lim _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=g(f(c))$ so $\forall\left(x_{n}\right) \in$ A s.t. $\lim _{n \rightarrow \infty} x_{n}=c$. We thus have that $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(c)$ where $h=g \circ f$, hence h is continuous at c.
$(\varepsilon-\delta)$ Fix $\varepsilon>0$. Since g is continuous at $f(c), \exists \delta^{\prime}>0$ s.t. $\forall y \in B$ s.t. $|y-f(c)|<\delta$, $|g(y)-g(f(c))|<\varepsilon$.

Since f continuous at $c, \exists \delta^{\prime}>0$ s.t. $\forall x \in A$ s.t. $|x-c|<\delta^{\prime},|f(x)-f(c)|<\delta^{\prime}$. Then, for such $x,|g(f(x))-g(f(c))|<\varepsilon$ and the proof is complete, taking $h=g \circ f$.
\circledast Example 3.15
$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x$.

Proof.

Example 3.16: $f(x)=\sin x$
Show that $f(x)=\sin x$ continuous on any $c \in \mathbb{R}$.

Proof. Fix $\varepsilon>0$. Take $\delta=\varepsilon$, and take x s.t. $|x-c|<\delta$. Then,

$$
\begin{aligned}
|\sin x-\sin c| & =\left|2 \sin \left(\frac{x-c}{2}\right) \cos \left(\frac{x+c}{2}\right)\right| \\
& =2\left|\sin \left(\frac{x-c}{2}\right)\right|\left|\cos \left(\frac{x+c}{2}\right)\right| \\
& \leq 2\left|\frac{x-c}{2}\right|=|x-c|<\delta=\varepsilon
\end{aligned}
$$

\circledast Example 3.17: Dirichlet Function

Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$. Show f discontinuous $\forall c \in \mathbb{R}$.
Proof. Fix $c \in \mathbb{R}$ and let $n \in \mathbb{N}$. Consider the interval $\left(c-\frac{1}{n}, c+\frac{1}{n}\right)$. By density of the rationals, there must exist some $x_{n} \in \mathbb{Q}$ s.t. $x_{n} \in\left(c-\frac{1}{n}, c+\frac{1}{n}\right)$, and similarly, by density of the irrationals, there must exists some $y_{n} \in \mathbb{J}, y_{n} \in\left(c-\frac{1}{n}, c+\frac{1}{n}\right)$.

We have, then,

$$
\left|x_{n}-c\right|<\frac{1}{n} \text { and }\left|y_{n}-c\right|<\frac{1}{n},
$$

and moreover, $f\left(x_{n}\right)=1$ and $f\left(y_{n}\right)=0 \forall n$. We also have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=$ c, and so f cannot be continuous.
\circledast Example 3.18: Thomae's Function
Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}, x \mapsto\left\{\begin{array}{ll}0 & x \in \mathbb{J} \\ \frac{1}{n} & x=\frac{m}{n} \in \mathbb{Q}, \operatorname{gcd}(m, n)=1\end{array}\right.$.
Show f discontinuous for any $a \in \mathbb{Q}$ and continuous for any $a \in \mathbb{J}$.

Proof. Let $a>0$ be rational. Then, $f(a)>0$, by construction of the function. Let $\left(x_{n}\right) \in \mathbb{J}$ s.t. $\left(x_{n}\right) \rightarrow a$. Then, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$, despite $f(a)>0$, hence f is not continuous at a.

3.4.1 Extensions By Continuity

\hookrightarrow Definition 3.9: Extension by Continuity

Let $f: A \rightarrow \mathbb{R}, c$ a cluster point of A s.t. $c \notin A$. Since $c \notin A$, we cannot say whether f continuous or not at a, but we can extend f to $A \cup\{c\}$ by setting

$$
F(x):=\left\{\begin{array}{ll}
f(x) & x \in A \\
L & x=c
\end{array} .\right.
$$

Remark 3.9. Since c a cluster point of $A \cup\{c\}$, we have that F continuous atc iff $\lim _{x \rightarrow c} F(x)=$ $L \Longleftrightarrow \lim _{x \rightarrow c} f(x)=L$. Hence, if $f: A \rightarrow \mathbb{R}, c$ a cluster point of $A, c \notin A$, and $\lim _{x \rightarrow c}=L, F$ is continuous at c. If $\lim _{x \rightarrow c} f(x)$ DNE, f cannot be extended.

\circledast Example 3.19

$f(x)=x \sin \frac{1}{x}$, defined on $A=(-\infty, 0) \cup(0, \infty) .0$ a cluster point of A. Note that $\lim _{x \rightarrow 0} f(x)=0$, since $|f(x)| \leq|x|$, so if we extend f to 0 by setting $f(0)=0$, then the extended function is continuous at 0 .

3.5 Continuity on Bounded \& Closed Interval

Let A be a set. A function $f: A \rightarrow \mathbb{R}$ is called bounded if $\exists M>0$ s.t. $|f(x)| \leq$ $M \forall x \in A$.

\hookrightarrow Theorem 3.7: Closed Domain \& Continuous Implies Bounded

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then, f is bounded.
$\underline{\text { Proof. We proceed by contradiction. Suppose there exists a continuous function } f:[a, b] \rightarrow}$ \mathbb{R} that is not bound. Then, for any $n \in \mathbb{N}$, it is not true that $|f(x)| \leq n \forall x \in[a, b]$ (otherwise, this n would be a bound).

So, for any $n, \exists x_{n} \in[a, b]$ s.t. $\left|f\left(x_{n}\right)\right|>n$. Then, $\left(x_{n}\right)$ is a sequence in $[a, b]$ and by the Bolzano-Weirestrass Theorem, this sequence has a subsequence $\left(x_{n_{k}}\right)$ that converges to some $x \in[a, b]$, that is,

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=x
$$

So, by the sequential characterization of continuity, we have then that

$$
\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(x)
$$

Hence, $\left(f\left(x_{n_{k}}\right)\right)$ is a converging sequence of real numbers. But by the construction of x_{n}, we have

$$
\left|f\left(x_{n_{k}}\right)\right|>n_{k} \geq k
$$

so $\left(f\left(x_{n_{k}}\right)\right)$ is a converging sequence of real numbers that is not bounded, which contradicts the fact that any converging sequence is bounded.

\circledast Example 3.20: "Not Closed" Domain

Consider the function $f:(0,1] \rightarrow \mathbb{R}, x \mapsto \frac{1}{x}$. This function is continuous, and the interval $(0,1]$ is bounded but not closed. Hence, the function is not bounded on this interval; for any $M>0$, if we take $x \in(0,1]$ such that $0<x<\frac{1}{M+1}$, we have that $f(x)=\frac{1}{x}>M+1>M$.

\hookrightarrow Definition 3.11: Absolute Max/Min

Let $f: A \rightarrow \mathbb{R}$. We say that f has absolute maximum at $\bar{x} \in A$ if $f(\bar{x}) \geq f(x) \forall x \in A$. f has absolute minimum at $\underline{x} \in A$ if $f(\underline{x}) \leq f(x) \forall x \in A$.
\hookrightarrow Theorem 3.8
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then, f has an absolute maximum and absolute minimum on $[a, b]$.

Proof. (of absolute maximum) Consider the set
${ }^{56}$ Absolute minimum case follows by taking $-f$.

$$
f([a, b])=\{f(x): x \in[a, b]\} .
$$

By theorem 3.7, f is bounded on $[a, b]$, so there exists some $M>0$ such that

$$
f([a, b]) \subseteq[-M, M] .
$$

So, the set $f([a, b])$ is bounded, and by Axiom Of Completeness, $s=\sup (f([a, b]))$ exists.
Hence, $s \geq f(x) \forall x \in[a, b]$. We aim to show then that $\exists \bar{x} \in[a, b]$ s.t. $s=f(\bar{x})$.
Let $n \in \mathbb{N}$. Since $s-\frac{1}{n}$ is not an upper bound of $f([a, b])$,

$$
\exists x_{n} \in[a, b] \text { s.t. } s-\frac{1}{n}<f\left(x_{n}\right) \leq s
$$

By Bolzano-Weirestrass Theorem, $\left(x_{n}\right)$ has a converging subsequence $\left(x_{n_{k}}\right)$. Let $\bar{x}=\lim _{k \rightarrow \infty} x_{n_{k}}$.
By the sequential characterization of continuity, then, we have that $f(\bar{x})=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)$.
By \circledast, we have

$$
s-\frac{1}{n_{k}}<f\left(x_{n_{k}}\right) \leq s
$$

Moreover, we have that $n_{k} \geq k \Longrightarrow \frac{1}{n_{k}} \leq \frac{1}{k} \Longrightarrow-\frac{1}{n_{k}} \geq-\frac{1}{k}$. Hence,

$$
s-\frac{1}{k}<f\left(x_{n_{k}}\right) \leq s
$$

and so by the squeeze theorem, $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=s=f(\bar{x})$, and the proof is complete.

\hookrightarrow Theorem 3.9: Location of the Roots

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that

$$
f(a)<0<f(b)
$$

Then, $\exists c$ s.t. $a<c<b$ and $f(c)=0$.

Proof. Let $S=\{x \in[a, b]: f(x) \leq 0\} . S \neq \varnothing$ since $a \in S . S$ also bounded (it is a subset of a bounded interval). Let $c=\sup S$ (exists by AC). We claim this c is the point as defined
in the theorem; we aim to show that $f(c)=0$.
Let $\varepsilon=\min \left\{\frac{|f(a)|}{2}, \frac{f(b)}{2}\right\}>0$. Since f continuous at $a, \exists \delta^{\prime}>0$ s.t. $\forall x \in[a, b]$ s.t. $|x-a|<$ δ^{\prime}, we have $|f(x)-f(a)|<\varepsilon$. Since f is continuous at b, $\exists \delta^{\prime \prime}>0$ s.t. $\forall x \in[a, b]$ s.t. $|x-b|<$ $\delta^{\prime \prime}$, we have $|f(x)-f(b)|<\varepsilon$. Let $\delta=\min \left\{\delta^{\prime}, \delta^{\prime \prime}, \frac{b-a}{2}\right\}$. Then, $\forall x \in[a, a+\delta)$, we have that

$$
f(x)-f(a)<\varepsilon \leq \frac{|f(a)|}{2} \Longrightarrow f(x)<\frac{|f(a)|}{2}+f(a)=\frac{f(a)}{2}<0
$$

So, $\forall x \in[a, a+\delta), f(x)<0$ and thus $[a, a+\delta) \subseteq S$. Hence, c, being the supremum of S, must have that $c \geq a+\delta>0$.

Since $\delta \leq \delta^{\prime \prime}$, we have that $\forall x \in(b-\delta, b]$,

$$
f(x)-f(b)>-\varepsilon \geq-\frac{f(b)}{2} \Longrightarrow f(x)>f(b)-\frac{f(b)}{2}=\frac{f(b)}{2}>0
$$

So, $\forall x \in(b-\delta, b]$, we have that $f(x)>0$. So, if we take $\left[b-\frac{\delta}{2}, b\right]$, then for every $x \in$ this interval $f(x)>0$ and so $S \subseteq\left[a, b-\frac{\delta}{2}\right)$, and thus $c=\sup S \leq b-\frac{\delta}{2}$. Hence, $\exists \delta$ such that $a+\delta \leq c \leq b-\frac{\delta}{2}$. So, c satisfies $a<c<b$.

We now show that $f(c) \leq 0$ and $f(c) \geq 0$ and so $f(c)=0$.
$(f(c) \leq 0)$ Let $n \in \mathbb{N}$ and consider $c-\frac{1}{n}$; this is not an upper bound of S, so $\exists\left(x_{n}\right) \in$ S s.t. $c-\frac{1}{n}<x_{n} \leq c$. This gives us a sequence such that $\lim _{n \rightarrow \infty}\left(x_{n}\right)=c$. Since f is continuous, by the sequential characterization of continuity, we have that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(c)$. Moreover, $x_{n} \in S$ and thus $f\left(x_{n}\right) \leq 0$ (by construction of S), hence $f(c) \leq 0$.
$(f(c) \geq 0)$ Since $c<b$, we can find $\left(x_{n}\right) \in[a, b]$ s.t. $x_{n}>c, \lim _{n \rightarrow \infty} x_{n}=c\left(x_{n}=c+\frac{1}{n}\right.$, for instance). We must have that $f\left(x_{n}\right)>0$; otherwise, $f\left(x_{n}\right) \leq 0 \Longrightarrow x_{n} \in S$, and since we have $x_{n}>c$ (by construction), this would contradict the fact that c an upper bound for S. So, we have that $\lim _{n \rightarrow \infty} x_{n}=c \Longrightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c) \geq 0$, that is, $f(c) \geq 0$.

Thus, having show both $f(c) \leq 0$ and $f(c) \geq 0$, we conclude that $\exists c \in[a, b]$ s.t. $a<$ $c<b$, where $f(c)=0$, and the proof is complete.

3.6 Intervals in \mathbb{R}

\hookrightarrow Definition 3.12: Types of Intervals in \mathbb{R}
(Bounded Intervals)

- $[a, b]=\{x: a \leq x \leq b\} \subseteq \mathbb{R}$
- $(a, b)=\{x: a<x<b\} \subseteq \mathbb{R}$
- $[a, b)=\{x: a \leq x<b\} \subseteq \mathbb{R}$
- $(a, b]=\{x: a<x \leq b\} \subseteq \mathbb{R}$
(Unbounded Intervals)
- $[a, \infty)=\{x: x \geq a\}$
- $(a, \infty)=\{x: x>a\}$
- $(-\infty, a]=\{x: x \leq a\}$
- $(-\infty, a)=\{x: x<a\}$
- $\mathbb{R}=(-\infty, \infty)$

Remark 3.10. If you take any interval and any two points $x<y$ in the interval, then $[x, y]$ is completely contained within the given interval.

\hookrightarrow Theorem 3.10

Let $S \subseteq \mathbb{R}$ that contains more than two points. Suppose S has the property that $\forall x, y \in S$ s.t. $x<y,[x, y] \subseteq S$. Then, S is an interval.

Proof. Suppose S bounded. Then, $a=\inf S, b=\sup S$ exist. Then, for any $x \in S, a \leq$ $x \leq b$, so $S \subseteq[a, b]$. Let now $a<z<b . z<b \Longrightarrow z$ not an upper bound of S so $\exists y \in S$ s.t. $z<y . z>a \Longrightarrow z$ not a lower bound of S so $\exists x \in S$ s.t. $x<z$. Then, $x<z<y, x, y \in S$, so $[x, y] \subseteq S \Longrightarrow z \in S$. So, $(a, b) \subseteq S \subseteq[a, b]$ and thus S must be a bounded interval (one of those types defined above).

\hookrightarrow Theorem 3.11: Bolzano's Intermediate Value Theorem

Let I be an interval and $f: I \rightarrow \mathbb{R}$ a continuous function. Let $a, b \in I$ and suppose $f(a)<f(b)$. Then, for any k s.t. $f(a)<k<f(b), \exists c$ between a and b s.t. $f(c)=k$.

Proof. - (Case 1: $a<b$) Consider $h(x)=f(x)-k$ on the closed and bounded interval $[a, b]$. Note that $h(a)=f(a)-k<0$, and $h(b)=f(b)-k>0$. By Location of the Roots, there exists a $a<c<b$ s.t. $h(c)=0=f(c)-k \Longrightarrow f(c)=k$, as desired.

- (Case 2: $a>b$) Consider $h(x)=k-f(x)$ on the closed and bounded interval $[b, a]$.

The remainder of the proof follows identically to (Case 1).
\hookrightarrow Theorem 3.12
Let $I=[a, b]$ and $f: I \rightarrow \mathbb{R}$ a continuous function. Let k be s.t. inf $f(I) \leq k \leq$ $\sup f(I)$. Then, $\exists c \in I$ s.t. $f(c)=k$.

Proof. Recall that $m=\inf f(I)$ is the absolute minimum of f on I and $M=\sup f(I)$ is the absolute maximum of f on I. Moreover, $\exists \bar{x}, \underline{x} \in I$ s.t. $f(\bar{x})=M, f(\underline{x})=m$. Hence, we have that our k satisfies

$$
f(\underline{x}) \leq k \leq f(\bar{x}) .
$$

If $k=f(\underline{x})$, take $c=\underline{x}$. If $k=f(\bar{x})$, take $c=\bar{x}$. Otherwise, the inequality is strict, and we have $f(\underline{x})<k<f(\bar{x})$. By Bolzano's Intermediate Value Theorem, we have that $\exists c$ between \underline{x} and \bar{x} s.t. $f(c)=k$. Moreover, $c \in[a, b]$.

\hookrightarrow Theorem 3.13

Let $I=[a, b]$ and $f: I \rightarrow \mathbb{R}$ a continuous function. Then, $f(I)$ is also a bounded and closed interval.

Proof. Let $m=\inf f(I), M=\sup f(I)$. Then, for any $x \in[a, b], m \leq f(x) \leq M$, hence, $f(I) \subseteq[m, M]$. OTOH, by theorem 3.12 , for any $m \leq k \leq M, \exists c \in[a, b]$ s.t. $f(c)=k$, hence, $[m, M] \subseteq f(I)$, and thus $f(I)=[m, M]$ and the proof is complete. Moreover, $f(I)$ is precisely $[\inf f(I), \sup f(I)]$.
\hookrightarrow Theorem 3.14
Let I be an interval in \mathbb{R}. Let $f: I \rightarrow \mathbb{R}$ be a continuous function. Then, $f(I)$ is also an interval.
 β, then $[\alpha, \beta] \subseteq f(I)$, that is, $f(I)$ an interval.

Let $a, b \in I$ be such that $f(a)=\alpha, f(b)=\beta$. We have that $f(a)<f(b)$, so for any k s.t. $\alpha \leq k \leq \beta$, by Bolzano's Intermediate Value Theorem, $\exists c \in I$ s.t. $f(c)=k$. Hence, $[\alpha, \beta] \subseteq f(I)$, and the proof is complete.

Remark 3.11. This argument does not specify the actual "shape" of the intervals $f(I)$ look like.

- If $I=\mathbb{R}$, can $f(I)$ be bounded and closed? Yes; take $f(x)=\sin x$; then, $f(\mathbb{R})=[-1,1]$
- If $I=(a, b)$, can $f(I)=\mathbb{R}$? Yes; take $I=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), f(x)=\tan x$.

3.7 Uniform Continuity

Remark 3.12. Recall that in the definition of continuity, the "choice" of δ depended both on c (the point in the domain) and ε. Uniform continuity defines a manner in which δ can be chosen without relying on c; if this is the case for a function $f: A \rightarrow \mathbb{R}$, we say that f is uniformly continuous on A.

\hookrightarrow Definition 3.13: Uniform Continuity

Let $f: A \rightarrow \mathbb{R}$. We say f is uniformly continuous on A if

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall c \in A)(\forall x \in A)(|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon)
$$

Remark 3.13. The difference, quantifiers-wise, is the position of the $(\forall c \in A)$; since here the "choice" of c comes after the choice of δ, δ is independent, in contrast with "local" continuity.

Example 3.21

Let $f(x)=x$. Then, f is uniformly continuous on \mathbb{R}.

Proof. Let $\varepsilon>0, \delta=\varepsilon$. Then, $\forall c \in \mathbb{R}$, if x s.t. $|x-c|<\delta$, then we have $|f(x)-f(c)|=|x-c|<\varepsilon$.

\circledast Example 3.22

Let $f(x)=x^{2}$. Then, f is not uniformly continuous on \mathbb{R}.

Proof. We proceed by contradiction. Suppose f uniformly continuous. Take $\varepsilon=1$, then, $\exists \delta>0$ s.t. $\forall x, c \in A$ s.t. $|x-c|<\delta,|f(x)-f(c)|=\left|x^{2}-c^{2}\right|<1$. Take $x=\frac{1}{\delta}+\delta, c=\frac{1}{\delta}+\frac{\delta}{2}$. Then, we have

$$
|x-c|=\frac{\delta}{2}<\delta,
$$

but

$$
\begin{aligned}
\left|x^{2}-c^{2}\right|= & \left|\left(\frac{1}{\delta}+\delta\right)^{2}-\left(\frac{1}{\delta}+\frac{\delta}{2}\right)^{2}\right| \\
& =\cdots=\left|1+\frac{3 \delta^{2}}{4}\right|>1
\end{aligned}
$$

\circledast Example 3.23

Let $f(x)=\sqrt{x}$. Then, f is uniformly continuous on $[0, \infty)$.

Proof. Let $\varepsilon>0$. Take $\delta=\frac{\varepsilon^{2}}{2}$. Let $x, c \geq 0$, and suppose $|x-c|<\delta$. We consider two cases:

- (Case 1) $x, c \in\left[0, \frac{\varepsilon^{2}}{4}\right)$. Then,

$$
\begin{aligned}
&|\sqrt{x}-\sqrt{c}| \leq \sqrt{x}+\sqrt{c} \\
&<\sqrt{\frac{\varepsilon^{2}}{4}}+\sqrt{\frac{\varepsilon^{2}}{4}}=2 \cdot \frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

- (Case 2) Either x or $c \geq \frac{\varepsilon^{2}}{4}$. then

$$
\begin{aligned}
&|\sqrt{x}-\sqrt{c}|=\left|(\sqrt{x}-\sqrt{c}) \frac{\sqrt{x}+\sqrt{c}}{\sqrt{x}+\sqrt{c}}\right|=\frac{|x-c|}{\sqrt{x}+\sqrt{c}} \\
&<\frac{\delta}{\frac{\varepsilon}{2}}=\frac{\frac{\varepsilon^{2}}{2}}{\frac{\varepsilon}{2}}=\varepsilon
\end{aligned}
$$

Example 3.24

Let $f(x)=\sin \left(\frac{1}{x}\right)$ is not uniformly continuous on $(0,1]$.

Proof. Suppose that f is indeed uniformly continuous. Take $\varepsilon=\frac{1}{2}$. Then, $\exists \delta>$ 0 s.t. $\forall x, c \in(0,1]$ s.t. $|x-c|<\delta,|f(x)-f(c)|=|\sin x-\sin c|<\frac{1}{2}$. Take $n \in$ \mathbb{N} s.t. $\frac{1}{n}<\delta$. Take $x=\frac{1}{n \pi}, c=\frac{1}{(2 n+1) \frac{\pi}{2}}=\frac{1}{n \pi+\frac{\pi}{2}}$. Then,

$$
|x-c|=\left|\frac{1}{n \pi}-\frac{1}{n \pi+\frac{\pi}{2}}\right|=\frac{\frac{\pi}{2}}{n \pi\left(n \pi+\frac{\pi}{2}\right)}<\delta
$$

Then, we have

$$
\begin{array}{r}
f(x)-f(c)=\left|\sin \frac{1}{\frac{1}{n \pi}}-\sin \frac{1}{\frac{1}{(2 n+1) \frac{\pi}{2}}}\right| \\
=\left|(-1)^{n}\right|=1>\frac{1}{2}
\end{array}
$$

a contradiction.

3.8 Sequential Characterization of Non-Uniform Continuity

\hookrightarrow Theorem 3.15

Let $f: A \rightarrow \mathbb{R}$ be a continuous function. TFAE:

1. f is not uniformly continuous on A;
2. $\exists \varepsilon_{0}>0$ and two sequences $\left(x_{n}\right),\left(y_{n}\right) \in A$ s.t. $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0} \forall n$.

Proof. (1. \Longrightarrow 2.) For f to be not uniformly continuous, then it is not true that $\forall \varepsilon>$ $0 \exists \delta>0$ s.t. $\forall x, y \in A$, if $|x-y|<\delta,|f(x)-f(y)|<\varepsilon$. That is, $\exists \varepsilon_{0}>0$ s.t. $\forall \delta>0$, one can find $x, y \in A$ s.t. $|x-y|<\delta$ and $|f(x)-f(y)| \geq \varepsilon_{0}$.

Take this ε_{0} and let $\delta=\frac{1}{n}$. Then, $\exists x_{n}, y_{n} \in A$ s.t. $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq$ ε_{0}. This defines sequences $\left(x_{n}\right),\left(y_{n}\right) \in A$ s.t. $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq$ $\varepsilon_{0} \forall n$, hence 2 . holds.
(2. \Longrightarrow 1.) We argue by contradiction. Suppose there $\exists f$ continuous, $f:[a, b] \rightarrow \mathbb{R}$ s.t.
2. holds but 1 . does not; that is, f uniformly continuous and $\exists \varepsilon_{0}>0$ and $\left(x_{n}\right),\left(y_{n}\right) \in$ A s.t. $\lim \left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0} \forall n$.

Take this ε_{0} in the definition of uniform continuity; then, if f uniformly continuous, $\exists \delta>0$ s.t. $\forall x, y \in A$ s.t. $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon_{0}$. Consider our $\left(x_{n}\right),\left(y_{n}\right)$. Since $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0, \exists N$ s.t. $\forall n \geq N,\left|x_{n}-y_{n}\right|<\delta$. But then, this implies that $\forall n \geq N$, we have that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\varepsilon_{0}$. But this contradicts our original assumption in 2 ., and hence 1 . must hold and the proof is complete.

Example 3.25: $f(x)=x^{2}$
Show that $f(x)=x^{2}$ not uniformly continuous on \mathbb{R}.

Proof. Take $x_{n}=n+\frac{1}{n}, y_{n}=n$. Then, $x_{n}-y_{n}=\frac{1}{n}$ hence $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$. OTOH,

$$
f\left(x_{n}\right)-f\left(y_{n}\right)=n^{2}+2+\frac{1}{n^{2}}-n^{2}=2+\frac{1}{n^{2}} \geq 2
$$

hence, by the sequential characterization, taking $\varepsilon_{0}=2, f$ is not uniformly continuous on \mathbb{R}.
\circledast Example 3.26: $f(x)=\sin \frac{1}{x}$
Show that $f(x)=\sin \frac{1}{x}$ not uniformly continuous on $(0,1]$

Proof. Let $x_{n}=\frac{1}{n \pi+\frac{\pi}{2}}, y_{n}=\frac{1}{n \pi}$. Both of these converge to 0 , hence their differences do as well. OTOH, $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=|-1-0|=1 \geq 1$, hence, f is not uniformly continuous with $\varepsilon_{0}=1 . s$

\hookrightarrow Theorem 3.16

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then, f is uniformly continuous on $[a, b]$.

Proof. We proceed by contradiction. Suppose $\exists f:[a, b] \rightarrow \mathbb{R}$ that is continuous but not uniformly continuous on $[a, b]$. Then, by the sequential characterization, $\exists \varepsilon_{0}>0$ and $x_{n}, y_{n} \in[a, b]$ s.t. $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0} \forall n$.

Since $[a, b]$ bounded, by Bolzano-Weirestrass Theorem, the sequence $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ that converges to $z \in[a, b]$ (since $[a, b]$ closed). We can write

$$
\begin{aligned}
\mid y_{n_{k}}- & z\left|=\left|y_{n_{k}}-x_{n_{k}}+x_{n_{k}}+z\right|\right. \\
\leq & \underbrace{\left|y_{n_{k}}-x_{n_{k}}\right|}_{\rightarrow 0}+\underbrace{\left|x_{n_{k}}-z\right|}_{\rightarrow 0} .
\end{aligned}
$$

Hence, by the The Squeeze Theorem, $\left|y_{n_{k}}-z\right|$ converges to 0 so $\left(y_{n_{k}}\right)$ also converges to z, that is

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=\lim _{k \rightarrow \infty} y_{n_{k}}=z
$$

Since f continuous on $[a, b]$, we have that $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(z)$ and $\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)=$ $f(z)$, and so

$$
\lim _{k \rightarrow \infty}\left(f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right)=z-z=0
$$

By definition, then, $\exists K$ s.t. $\forall k \geq K,\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right|<\varepsilon_{0}$. This is a contradiction, hence, f uniformly continuous and the proof is complete.

\hookrightarrow Theorem 3.17: Preservation of Cauchy Criterion by Uniformly Continuous

Functions

Let $f: A \rightarrow \mathbb{R}$ be a uniformly continuous function. Let $\left(x_{n}\right) \in A$, and assume x_{n} Cauchy. Then, $\left(f\left(x_{n}\right)\right)$ is also a Cauchy sequence.

Proof. Let $\varepsilon>0$. Since f uniformly continuous on A, there is $\delta>0$ s.t. $\forall x, y \in A,|x-y|<$
$\delta \Longrightarrow|f(x)-f(y)|<\varepsilon$. Since $\left(x_{n}\right)$ Cauchy, $\exists N$ s.t. $\forall n, m \geq N,\left|x_{n}-x_{m}\right|<\delta$. But then, $\forall n, m \geq N$, we have $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\varepsilon$, and hence $\left(f\left(x_{n}\right)\right)$ is Cauchy.

\hookrightarrow Theorem 3.18: Continuous Extension Theorem

Let (a, b) be an bounded, open interval and $f:(a, b) \rightarrow \mathbb{R}$ a continuous function. TFAE:

1. f is uniformly continuous on (a, b);
2. f can be at the end points a, b such that it is continuous on the closed interval $[a, b]$.

Proof. (2. \Longrightarrow 1.) If f can be extended to a, b so that it is continuous on $[a, b]$, then it is also uniformly continuous by theorem 3.16. Then, f is also uniformly continuous on any subset $[a, b]$, in particular, on $(a, b) \subseteq[a, b]$.
(1. \Longrightarrow 2.) Let $\left(x_{n}\right) \in(a, b)$ that converges to a. $\left(x_{n}\right)$ Cauchy, and by theorem 3.17, $\left(f\left(x_{n}\right)\right)$ also Cauchy, hence $L=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists; define ("extend") $f(a)=L$. It remains to show that f continuous with this extension.

Let $\left(u_{n}\right)$ be an arbitrary sequence in (a, b) such that $\lim _{n \rightarrow \infty} u_{n}=a$. Let $\varepsilon>0$. Since f is uniformly continuous on (a, b), then $\exists \delta>0$ s.t. $\forall x, y \in(a, b),|x-y|<\delta \Longrightarrow$ $|f(x)-f(y)|<\frac{\varepsilon}{2}$. Now, we have that $\lim _{n \rightarrow \infty} u_{n}=a, \lim _{n \rightarrow \infty} x_{n}=a$, so $\lim _{n \rightarrow \infty}\left(u_{n}-\right.$ $\left.x_{n}\right)=0$. Hence, $\exists N_{1}$ s.t. $\forall n \geq N_{1},\left|u_{n}-x_{n}\right|<\delta$. This implies, then, that $\forall n \geq N_{1}$, we have $\left|f\left(u_{n}\right)-f\left(x_{n}\right)\right|<\frac{\varepsilon}{2}$.

We have, by our extension, that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, hence, $\exists N_{2}$ s.t. $\forall n \geq N_{2},\left|f\left(x_{n}\right)-L\right|<$ $\frac{\varepsilon}{2}$. Let, now, $N=\max \left\{N_{1}, N_{2}\right\}$. Then, $\forall n \geq N$,

$$
\begin{aligned}
&\left|f\left(u_{n}\right)-L\right|=\mid f\left(u_{n}\right)-f\left(x_{n}\right)+f\left(x_{n}\right)-L \mid \\
& \leq\left|f\left(u_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-L\right| \\
&<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

that is, $\forall n \geq N,\left|f\left(u_{n}\right)-L\right|<\varepsilon$. Hence, for any arbitrary $\left(u_{n}\right) \in(a, b)$ such that $\left(u_{n}\right) \rightarrow$ $a, \lim n \rightarrow \infty u_{n}=L$, hence, as we have set $f(a)=L$, by sequential characterization of continuity, f is continuous at a.

The proof for b, the RHS endpoint, follows identically.

3.9 Monotone and Inverse Functions

\hookrightarrow Definition 3.14: Increasing/Decreasing Function

Let $f: A \rightarrow \mathbb{R}$. We say f is:

- increasing on A if $\forall x, y \in A, x \leq y \Longrightarrow f(x) \leq f(y)$;
- strictly increasing on A if $\forall x, y \in A, x<y \Longrightarrow f(x)<f(y)$;
- decreasing on A if $\forall x, y \in A, x \leq y \Longrightarrow f(x) \geq f(x)$;
- strictly decreasing on A if $\forall x, y \in A, x<y \Longrightarrow f(x)>f(y)$.

A function that is either increasing or decreasing is called monotone. If this increasing or decreasing is strict, the function is called strictly monotone.
\hookrightarrow Proposition 3.6
$f: A \rightarrow \mathbb{R}$ increasing on $A \Longleftrightarrow g=-f$ decreasing on A.

Remark 3.14. Analogous statements hold for decreasing/strictly increasing/decreasing etc. The remaining theorems/propositions will be discussed with respect to increasing functions; the same concepts apply (with reversed inequalities, etc) to decreasing functions.

\hookrightarrow Theorem 3.19

Let $I \subseteq \mathbb{R}, f: I \rightarrow \mathbb{R}$ be increasing. Let $c \in I$, where c not an endpoint of I. Then:

1. $\lim _{c \rightarrow c^{-}} f(x)=\sup \{f(x): x \in I, x<c\}$
2. $\lim _{c \rightarrow c^{+}} f(x)=\inf \{f(x): x \in I, x>c\}$

Proof. We prove for 2.; 1. follows identically. Let $A:=\{f(x): x \in I, x>c\}$. Note that $A \neq \varnothing$, since c not an endpoint of I by construction and hence $\exists x \in I$ s.t. $x>c$.

Since f increasing, we have that $x>c \Longrightarrow f(x) \geq f(c)$ hence A bounded below by $f(c)$, and thus $L:=\inf A$ exists. Let $\varepsilon>0$; since $L+\varepsilon$ not a lower bound for A, there exists some $x_{\varepsilon} \in I$ s.t. $L+\varepsilon>f\left(x_{\varepsilon}\right) \geq L$. Take $\delta=x_{\varepsilon}-c$. Since f increasing, we have that

$$
c<x<c+\delta=x_{\varepsilon} \Longrightarrow|f(x)-L|=f(x)-L \leq f(x \varepsilon)-L<\varepsilon .
$$

But this is just the definition of the right hand limit, hence

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

\hookrightarrow Corollary 3.1

Let $I \subseteq \mathbb{R}$ and $f: I \rightarrow \mathbb{R}$ be increasing on I. Take $c \in I$ such that c not an endpoint of I. TFAE:

1. f continuous at c
2. $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
3. $\sup \{f(x): x \in I, x<c\}=f(c)=\inf \{f(x): x \in I, x>c\}$.

Proof. Note first that $1 . \Longleftrightarrow 2$. does not relate to f increasing; rather, it follows from the left-hand limit equals right-hand limit iff limit holds; this holds if f continuous at c.
2. \Longleftrightarrow 3. follows from theorem 3.19.

\hookrightarrow Definition 3.15: Jump

Let $f: I \rightarrow \mathbb{R}$ be increasing on I. If $c \in I$ not an endpoint of I, the jump of f at c is defined

$$
j_{f}(c)=\lim _{x \rightarrow c^{+}} f(x)-\lim _{x \rightarrow c^{-}} f(x) .
$$

If c the left endpoint of I, then we define

$$
j_{f}(c)=\lim _{x \rightarrow c^{+}} f(x)-f(c),
$$

and if c the right endpoint of I,

$$
j_{f}(c)=f(c)-\lim _{x \rightarrow c^{-}} f(x)
$$

Remark 3.15. It follows naturally that f continuous at $c \in I \Longleftrightarrow j_{f}(c)=0$.
\hookrightarrow Theorem 3.20
Let $I \subseteq \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ be increasing. Then the set $D \subseteq I$ of points at which f is discontinuous is either finite or countable.

Proof. We will prove this result in the case that $I=[a, b]$, and deduce the remaining cases.
Note first that $j_{f}(c) \geq 0 \forall c \in I$. Consider some n points in I,

$$
a \leq x_{1}<x_{2}<\cdots x_{n} \leq b .
$$

We claim that the following inequality holds:

$$
j_{f}\left(x_{1}\right)+j_{f}\left(x_{2}\right)+\cdots j_{f}\left(x_{n}\right) \leq f(b)-f(a) .
$$

Indeed, we have that

$$
\begin{array}{r}
j_{f}\left(x_{1}\right)+\cdots+j_{f}\left(x_{n}\right)=\lim _{x \rightarrow x_{1}^{+}} f(x)-\lim _{x \rightarrow x_{1}^{-}} f(x)+\cdots \lim _{x \rightarrow x_{n}^{+}} f(x)-\lim _{x \rightarrow x_{n}^{-}} f(x) \\
=\lim _{x \rightarrow x_{n}^{+}} f(x)-\lim _{x \rightarrow x_{1}^{-}} f(x)+\sum_{k=1}^{n-1} \underbrace{\left(\lim _{x \rightarrow x_{k}^{+}} f(x)-\lim _{x \rightarrow x_{k+1}^{-}} f(x)\right)}_{\leq 0} \\
\leq \lim _{x \rightarrow x_{k}^{+}} f(x)-\lim _{x \rightarrow x_{1}^{-}} f(x) \\
\leq f(b)-f(a) \circledast
\end{array}
$$

From this, we have that for any $k \in \mathbb{N}$, there are at most k points in I such that $j_{f}(x) \geq$ $\frac{f(b)-f(a)}{k}$; suppose there were $k+1$ points; then,

$$
f(b)-f(a) \geq j_{f}\left(x_{1}\right)+\cdots+j_{f}\left(x_{k+1}\right) \geq \frac{k+1}{k}(f(b-f(a)))>f(b)-f(a) \perp
$$

Let $D:=\{x \in I: f$ discontinuous at $x\}=\left\{x \in I: j_{f}(x)>0\right\}=\bigcup_{k=1}^{\infty}\left\{x \in I: j_{f}(x) \geq\right.$ $\left.\frac{f(b)-f(a)}{k}\right\}$. This is a countable union of finite sets, hence D itself is finite or countable given $I=[a, b]$.

We now prove for general I. Any interval I can be written as

$$
I=\bigcup_{k=1}^{\infty}\left[a_{k}, b_{k}\right]
$$

for some sequences a_{n}, b_{n}, that is, as a countable union of bounded and closed intervals Θ. Hence, we can write our set D_{I} defined above as

$$
D_{I}=D_{\bigcup\left[a_{n}, b_{n}\right]}=\bigcup D_{\left[a_{n}, b_{n}\right]},
$$

which is again a union of finite/countable sets, and the proof is complete.

Remark 3.16. To be more explicit about the statement Θ :

- $\mathbb{R}=\bigcup_{k=1}^{\infty}[-k, k]$
- $(a, b)=\bigcup_{k=1}^{\infty}\left[a+\frac{b-a}{3 k}, b-\frac{b-a}{3 k}\right]$
- $(-\infty, b]=\bigcup_{k=1}^{\infty}[-k-|b|, b]$
- $(-\infty, b)=\bigcup_{k=1}^{\infty}\left[-k-|b|, b-\frac{1}{2 k}\right]$
- ...

3.10 Continuous Inverse Theorem

\hookrightarrow Theorem 3.21
Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be a continuous function. Let $S:=$ $f(I)$. Suppose f strictly increasing. Then, for any $y \in S$, there is precisely one $x \in I$ s.t. $f(x)=y$.

Proof. Suppose x_{1}, x_{2} s.t. $f\left(x_{1}\right)=f\left(x_{2}\right)=y . f$ strictly increasing, hence both $x_{1}>x_{2}$ and $x_{1}<x_{2}$ are impossible, hence $x_{1}=x_{2}$.

\hookrightarrow Definition 3.16: Inverse

et $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be a continuous function. Let $S:=f(I)$.
$\forall y \in S$, we set $g(y)=x \in I$ s.t. $f(x)=y$. This defines a function $g: S \rightarrow$
I s.t. $g(S)=I$. This gives

$$
(f \circ g)(y)=y \forall y \in S ; \quad(g \circ f)(x)=x \forall x \in I
$$

g is call the inverse of f; we often denote $g=f^{-1}$.
\hookrightarrow Proposition 3.7
If f strictly increasing, so is f^{-1}.

\hookrightarrow Theorem 3.22: Continuous Inverse Theorem

Let $I \subseteq \mathbb{R}$ be an interval, and let $f: I \rightarrow \mathbb{R}$ be strictly increasing and continuous.
Then, $g=f^{-1}$ is also strictly increasing and continuous, on $S=f(I)$.

Proof. We show only continuous. Suppose g not continuous at some point $c \in S$; assume c not an endpoint, for now. Since g not continuous at c, we have that

$$
j_{g}(c)=\lim _{y \rightarrow c^{+}} g(y)-\lim _{y \rightarrow c^{-}} g(y)>0 .
$$

Let $x \in I$ s.t. $x \neq g(c)$ and s.t.

$$
\lim _{y \rightarrow c^{-}} g(y)<x<\lim _{y \rightarrow c^{+}} g(y) .
$$

Then, there is no $y \in S$ s.t. $g(y)=x$, by our construction. But this contradicts the fact that $g(S)=I$, and hence g must be continuous on S,

4 Differentiation

4.1 Introduction

\hookrightarrow Definition 4.1: Differentiability

Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$ and $c \in I$. We say that f is differentiable at c if the limit

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

exists. If this limit exists, we denote it $f^{\prime}(c)$ and call it the derivative of f at c.

\hookrightarrow Theorem 4.1

If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$, then f is continuous at c.

Proof. We have for $x \in I \backslash\{c\}$,

$$
f(x)-f(c)=\frac{f(x)-f(c)}{x-c}(x-c)
$$

f being differentiable at c gives that

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c),
$$

so be algebraic properties of limits,

$$
\lim _{x \rightarrow c}(f(x)-f(c))=\left(\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \lim _{x \rightarrow c}(x-c)\right)=f^{\prime}(c) \cdot 0=0
$$

hence, $\lim _{x \rightarrow c} f(x)=f(c)$, and thus f continuous at c.
Remark 4.1. The converse of this theorem does not hold.
\circledast Example 4.1: Continuous \nRightarrow differentiable
Consider $f(x)=|x|$. This function is continuous on \mathbb{R} but not differentiable at $c=0 ;$

$$
\begin{array}{r}
\frac{f(x)-f(c)}{x-c}=\frac{|x|}{x}= \begin{cases}1 & x>0 \\
-1 & x<0\end{cases} \\
\Longrightarrow \lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}=1, \lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=-1 \\
\Longrightarrow \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \text { DNE } \Longrightarrow f \text { not differentiable at } c=0 .
\end{array}
$$

\hookrightarrow Theorem 4.2: Algebraic Properties of the Derivative
Let $I \subseteq \mathbb{R}$ be an interval and $c \in I$. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be differentiable at c. Then

1. For any $k \in \mathbb{R}, k f$ differentiable at c, and moreover,

$$
(k f)^{\prime}(c)=k \cdot f^{\prime}(c)
$$

2. $f+g$ is differentiable at c;

$$
(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)
$$

3. (Product Rule) $f \cdot g$ is differentiable at c and

$$
(f g)^{\prime}(c)=f^{\prime}(c) \cdot g(c)+f(c) \cdot g^{\prime}(c)
$$

4. (Quotient Rule) If $g(x) \neq 0 \forall x \in I$, then the quotient function $\frac{f}{g}$ is differentiable at c;

$$
\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}}
$$

Proof. 1.
2.
3.
4. Let $h(x)=\frac{f(x)}{g(x)}$. Then,

$$
\begin{array}{r}
\frac{h(x)-h(c)}{x-c}=\frac{\frac{f(x)}{g(x)}-\frac{f(c)}{g(c)}}{x-c} \\
=\frac{f(x) g(c)-f(c) g(x)}{(x-c)(g(x) g(c))} \\
=\frac{\overbrace{f(x) g(c)-f(c) g(c)}^{(x-c) g(x) g(c)}+\overbrace{f(c) g(c)-f(c) g(x)}}{(x-c) g(x) g(c)}-\frac{(g(x)-g(c)) f(c)}{(x-c) g(x) g(c)} \\
= \\
\lim _{x \rightarrow c} \circledast=\lim _{x \rightarrow c} \frac{f^{\prime}(c) g(c)}{g(x) g(c)}-\frac{g^{\prime}(c) f(c)}{g(x) g(c)} \\
=\frac{f^{\prime}(c) g(c)-g^{\prime}(c) f(c)}{[g(c)]^{2}}
\end{array}
$$

\hookrightarrow Definition 4.2
If f^{\prime} exists on every point $c \in I$, then we say that f is differentiable on I. This gives a function

$$
f^{\prime}: I \rightarrow \mathbb{R}
$$

\hookrightarrow Proposition 4.1: Power Rule

Let $f: I \rightarrow \mathbb{R}, f(x)=x^{n}, n \in \mathbb{N}$. We have that $f^{\prime}(x)=n x^{n-1}$.

Proof. If $n=1$, then $f=x$, and so $\frac{f(x)-f(c)}{x-c}=\frac{x-c}{x-c}=1$. Suppose the rule holds up to some $n \in \mathbb{N}$. Consider $f=x^{n+1}$. Then,

$$
\begin{array}{r}
f(x)=x^{n+1}=x^{n} x \\
\stackrel{\text { power rule }}{\Longrightarrow} f^{\prime}(x)=\underbrace{n x^{n-1}}_{\text {assumption }} \cdot x+x^{n} \\
=(n+1) x^{n}
\end{array}
$$

Example 4.2

Prove that $\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x$ and $\frac{\mathrm{d}}{\mathrm{d} x} \cos x=-\sin x$.

4.2 The Chain Rule

\hookrightarrow Theorem 4.3: Caratheodory Theorem

Let I be an interval, $f: I \rightarrow \mathbb{R}$, and $c \in I$. TFAE:

1. f is differentiable at c;
2. \exists a function $\varphi: I \rightarrow \mathbb{R}$, continuous at c, such that

$$
f(x)=f(c)+\varphi(x)(x-c), \forall x \in I
$$

Remark 4.2. From 2. \Longrightarrow 1., we have, moreover, that $f^{\prime}(c)=\varphi(c)$.

Proof. (1. \Longrightarrow 2.) Let

$$
\varphi: I \rightarrow \mathbb{R}, x \mapsto\left\{\begin{array}{ll}
\frac{f(x)-f(c)}{x-c} & x \neq c \\
f^{\prime}(c) & x=c
\end{array} .\right.
$$

We have, then,

$$
\lim _{x \rightarrow c} \varphi(x)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)=\varphi(c),
$$

hence, φ is continuous at c. For $x \neq c$, the desired relation $f(x)=f(c)+\varphi(x)(x-c)$ holds by definition.
(1. $\Longleftarrow 2$.$) If x \neq c$, we have that $\frac{f(x)-f(c)}{x-c}=\varphi(x)$. Moreover, φ continuous at c, hence $\lim _{x \rightarrow c} \varphi(x)=\varphi(c)$, and thus $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists, and moreover, is equal to $\varphi(c)$. Thus, f differentiable at c and $f^{\prime}(c)=\varphi(c)$.

\hookrightarrow Theorem 4.4: Chain Rule

Let I, J be intervals in \mathbb{R}, and let $g: I \rightarrow \mathbb{R}, f: J \rightarrow \mathbb{R}$ be s.t. $f(J) \subseteq I$. Let $c \in J$; then, if f differentiable at c and g differentiable at $f(c)$, then the composite function

$$
h=g \circ f, \quad h: J \rightarrow \mathbb{R},
$$

is differentiable at c, and moreover,

$$
h^{\prime}(c)=(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)
$$

Proof. Given $f^{\prime}(c)$ exists, the Caratheodory theorem gives that there exists a function φ :
$J \rightarrow \mathbb{R}$ which is continuous at c such that

$$
f(x)-f(c)=\varphi(x)(x-c) \forall x \in J
$$

Similarly, since g is differentiable at $f(c) \in I$, there exists a function $\Psi: I \rightarrow \mathbb{R}$ continuous at $f(c)$, such that

$$
g(y)-g(f(c))=\Psi(y)(y-c)
$$

Letting $y=f(x)$, this yields

$$
\begin{aligned}
g(f(x))-g(f(c)) & =\Psi(f(x))(f(x)-c) \\
= & \Psi(f(x)) \varphi(x)(x-c) .
\end{aligned}
$$

Letting $h=g \circ f$ and $r(x)=\Psi(f(x)) \varphi(x)$ gives us

$$
h(x)-h(c)=r(x)(x-c) \forall x \in J
$$

By compositions, r is continuous at c, and moreover, $r(c)=\Psi(f(c)) \varphi(c)=g^{\prime}(f(c)) f^{\prime}(c)$, and hence,

$$
h^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)
$$

4.3 Derivative of the Inverse Function

\hookrightarrow Theorem 4.5

Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a strictly increasing continuous function. Let $J=f(I)$ and $g: J \rightarrow \mathbb{R}$ be the inverse of f. Suppose f differentiable at $c, f^{\prime}(c) \neq 0$. Then, g is differentiable at $f(c)$, and $g^{\prime}(f(c))=\frac{1}{f^{\prime}(c)}$.

Proof. By the Caratheodory theorem, we have some $\varphi: I \rightarrow \mathbb{R}$ continuous at c s.t. $f(x)-$ $f(c)=\varphi(x)(x-c)$, where $\varphi(c)=f^{\prime}(c)$. Since $f^{\prime}(c) \neq 0$ and φ continuous at c, we have that there exists $\delta>0$ s.t. $\varphi(x) \neq 0 \forall x \in(c-\delta, c+\delta) \cap I$.

5 Appendix

5.1 Interesting Results

A summary of theorems or results that stemmed from assignments, tutorials, etc..
\hookrightarrow Theorem 5.1: Cesàro Summation
Consider a convergent sequence $\left(x_{n}\right)$. Then, the sequence defined

$$
y_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k}
$$

is also convergent, and we have that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} .
$$

\hookrightarrow Theorem 5.2: Stolz-Cesàro
Let $\left(y_{n}\right)$ be a strictly monotone sequence of positive numbers. Consider some other sequence $\left(x_{n}\right)$. We have, then, if

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}=L
$$

exists, then the limit

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=L
$$

as well.
\hookrightarrow Lemma 5.1: Fekete's Subadditive Lemma
A sequence $\left(x_{n}\right)$ is called subadditive if $\forall n, m \in \mathbb{N}$,

$$
x_{n+m} \leq x_{n}+x_{m}
$$

holds. For any subadditive sequence $\left(x_{n}\right)$, its limit exists, and moreover,

$$
\lim _{n \rightarrow \infty} x_{n}=\inf \left\{\frac{x_{n}}{n}: n \in \mathbb{N}\right\} .
$$

\hookrightarrow Definition 5.1: Lacunary Sequence
A sequence x_{n} is called lacunary if there exists some real number q such that $\forall n \in \mathbb{N}$,

$$
\frac{x_{n+1}}{x_{n}} \geq q>1
$$

[^0]: ${ }^{18}$ See these independent notes for more.

[^1]: ${ }^{44}$ See the Picard-Lindelöf Theorem

[^2]: ${ }^{48}$ Proof sketch: follows directly from Step 3; any element of y_{n}, namely y_{1}, upper bounds x_{n}, and any element of x_{n}, namely x_{1}, lower bounds y_{n}.

[^3]: ${ }^{49}$ Proof sketch: the sequences converge by MCT (following

