MATH255 - Honours Analysis 2

Summary of Results

Winter, 2024
Notes by Louis Meunier
Complete notes

1 Point-Set Topology 1
2 Metric Spaces 6
3 Differentiation 8
4 Integration 9
5 Sequences of Functions 12
6 Infinite Series 13

1 Point-Set Topology

Topology is about abstracting openness. It can typically suffice to consider open, closed sets in \mathbb{R} for intuition, but is obviously not all-general.

Definition 1 (Metric Space). A space X equipped with a function $d: X \times X \rightarrow[0, \infty)$ is called a metric space and d a metric or distance if

- $d(x, y)=d(y, x) \geqslant 0$
- $d(x, y)=0 \Longleftrightarrow x=y$
- $d(x, y)+d(y, z) \geqslant d(x, z)$
for any $x, y, z \in X$.

Definition 2 (Normed Vector Space). A function $\|\cdot\|: X \rightarrow \mathbb{R}$ defined on a vector space X over \mathbb{R} is a norm if

- $\|x\| \geqslant 0$
- $\|x\|=0 \Longleftrightarrow x=0$
- $\|c \cdot x\|=|c|\|x\|$
- $\|x+y\| \leqslant\|x\|+\|y\|$,
for any $x, y \in X, c \in \mathbb{R}$.

Remark 1. We can naturally extend this to arbitary fields, but seeing as this is a course in Real Analysis, we won't.

Proposition 1. For a normed vector space $(X,\|\cdot\|), d(x, y):=\|x-y\|$ is a metric on X. We call such a metric the one "induced" by the norm.

Definition 3 (Topological Set). A set X is a topological set if we have a collection τ of subsets of X, called open sets, such that

- $\varnothing \in \tau, X \in \tau$
- For $A_{\alpha} \in \tau$ for α in any I (potentially infinite), $\bigcup_{\alpha \in I} A_{\alpha} \in \tau$
- For $A_{\alpha} \in \tau$ for $\alpha \in J$ where J finite, then $\bigcap_{\alpha \in J} A_{\alpha} \in \tau$
ie, arbitrary unions of open sets are open, and finite intersections of open sets are open.
Remark 2. Keep \mathbb{R} in mind when initially working with these definitions; for instance, the set $A_{n}:=\left(0, \frac{1}{n}\right)$ open in \mathbb{R} for any $n \in \mathbb{N}$, but $\bigcap_{n \in \mathbb{N}} A_{n}=\{0\}$ which is closed.

Remark 3. Complemented each of these requirements gives similar definitions for closed sets of X.

Definition 4 (Topology on a Metric Space). A subset $A \subseteq X$ open iff $\forall x \in A, \exists r=r(x) \in \mathbb{R}$, where $r(x)>0$, such that $B(x, r(x)):=\{y \in x: d(x, y)<r(x)\} \subseteq A$. We call such a B an open ball, and \bar{B} a closed ball with the same definition replacing the strict inequality with \leqslant.

Remark 4. While many of the spaces we look at our metric spaces that induce a topology as such, not all topological spaces are metric spaces. Indeed, "metrizability" (ie, equipping a topological space X with a metric that respects the open sets) is not a trivial activity.

Definition 5 (Equivalence of Metrics). We say two metrics on X are equivalent if they admit the same topology; a sufficient condition is that, $\forall x \neq y \in X, \exists 1<C<\infty$ such that $\frac{1}{C}<\frac{d_{1}(x, y)}{d_{2}(x, y)}<C$, then d_{1}, d_{2} equivalent, where C independent of x, y.

Definition 6 (\star Interior, Boundary, Closure). Let X-topological space, $A \subseteq X, x \in X$.

- If $\exists U$-open s.t. $x \in U \subseteq A$, then we write $x \in \operatorname{Int}(A)$, the interior of A.
- If $\exists V$-open s.t. $x \in V \subseteq A^{C}$, then $x \in \operatorname{Int}\left(A^{C}\right)$.
- If $\forall U$-open s.t. $x \in U, U \cap A \neq \varnothing$ and $U \cap A^{C} \neq \varnothing$, then $x \in \partial A$, the boundary of A. We put $\bar{A}:=\operatorname{Int}(A) \cup \partial A$, the closure of A. Equivalently, $x \in \bar{A} \Longleftrightarrow$ for every open set $U: x \in U, U \cap A \neq \varnothing$. We call $x \in \bar{A}$ the limit points of A.

Remark 5. The limit point interpretation of the closure can be more intuitive; the points that we can get "arbitrary close to" are the closure. For instance, $\overline{(a, b)}=[a, b] \subseteq \mathbb{R}$ with the standard topology.

Proposition 2. Let $A \subseteq X$-topological space. Then, $\operatorname{Int}(A)$ is open, the largest open set contained in A, the union of all open sets contained in A, and $\operatorname{Int}(\operatorname{Int}(A))=\operatorname{Int}(A)$. Also, \bar{A} closed, the smallest closed set that contains A, \bar{A} the intersection of all closed sets that A is contained in, and $\overline{\bar{A}}=\bar{A}$.

Corollary 1. A open $\Longleftrightarrow A=\operatorname{Int}(A)$ and A closed $\Longleftrightarrow A=\bar{A}$
Remark 6. Remark that these are not exclusive, nor indeed the only possibilities.
Definition 7 (Basis). A basis for a topology X with open sets τ is a collection $B \subseteq \tau$ such that every $U \in \tau$ a union of sets in B.

Remark 7. Don't think about bases for vector spaces in this regard - there is no "minimality" requirement.

Keep in mind $\{(a, b):-\infty<a<b<\infty\}$, a basis of topology on \mathbb{R}.
Proposition 3. For a metric space $(X, d),\{B(x, r): x \in X, r>0\}$ a basis of topology.
Definition 8 (Subspace Topology). For a subset $Y \subseteq X$-topological space, we define the subspace topology on Y as $\tau_{Y}:=\{Y \cap U: U \in \tau\}$.

Definition 9 (\star Continuous). For X, Y-topological spaces, a function $f: X \rightarrow Y$ is continuous iff $\forall V$-open in $Y, f^{-1}(V)$-open in X.

Remark 8. One can verify that this is consistent with the $\varepsilon-\delta$ definition of continuity for functions on \mathbb{R}.

Theorem 1 (Continuity of Composition). If $f: X \rightarrow Y, g: Y \rightarrow Z$ continuous, $g \circ f$ continuous.

Remark 9. Note how much easier this is to prove via toplogical spaces than the $\varepsilon-\delta$ definition.

Definition 10 (Product Space). For an index set I and $X_{\alpha}, \alpha \in I$, we define $\prod_{\alpha \in I} X_{\alpha}$ as a product space; I may be finite or infinite.

Proposition 4. A basis for the product space is given by cyliders of the form $A=\prod_{\alpha \in J} A_{\alpha} \times$ $\prod \alpha \notin J X_{\alpha}$ for A_{α}-open in X_{α}, where $J \subseteq I$-finite.

Definition 11 (Compact). A set $A \subseteq X$ is compact if every cover has a finite subcover, that is

$$
A \subseteq \bigcup_{\alpha \in I} U_{\alpha} \text {-open } \Longrightarrow \exists\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq I \text { s.t. } A \subseteq \bigcup_{i=1}^{n} U_{\alpha_{i}} \text {. }
$$

Proposition 5. Closed intervals $[a, b]$ compact in \mathbb{R}.
Proposition 6. $A \subseteq \mathbb{R}^{n}$ compact \Longleftrightarrow closed and bounded.
Definition 12 (Connected). X is said to not be connected if $X=U \cup V$ for U, V open, nonempty, disjoint. If X cannot be written as such, X is said to be connected.

Theorem 2. If X connected and $f: X \rightarrow Y$, then $f(X)$ connected in Y.
Proposition 7. Intervals in \mathbb{R} are connected.
Theorem 3 (Intermediate Value Theorem). If X connected, $f: X \rightarrow \mathbb{R}$ continuous, then f takes intermediate value; if $a=f(x), b=f(y)$ for $x, y \in X$ with $a<b$, then for any $a<c<b$ $\exists z \in X$ s.t. $f(z)=c$.

Theorem 4. For X compact, $f: X \rightarrow Y$ continuous, $f(X)$ compact in Y.
Proposition 8. For X compact and $f: X \rightarrow \mathbb{R}, f$ attains both max and min on X.
Definition 13 (Path Connected). A set $A \subseteq X$ is path connected if for any $x, y \in A, \exists f$: $[a, b] \rightarrow X$ continuous such that $f(a)=x, f(b)=y f([a, b]) \subseteq A$.

Theorem 5. Path connected \Longrightarrow connected.
For open sets in \mathbb{R}^{n}, the converse holds too.
Definition 14 (Connected Component, Path Component). For $x \in X$, the connected component of x is the largest connected subset of X containing x and the path component of x is the largest path connected subset of X containing x.

2 Metric Spaces

We discuss mostly the metric on ℓ_{p} space and notions of completeness, as well as some topological results specific to metric spaces, namely compactness.

Definition $15\left(\ell_{p}\right)$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $1 \leqslant p \leqslant+\infty$, we define

$$
\|x\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad\|x\|_{\infty}:=\max _{i=1}^{n}\left|x_{i}\right|
$$

and similarly, for sequences $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$,

$$
\|x\|_{p}:=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad\|x\|_{\infty}:=\sup _{i=1}^{\infty}\left|x_{i}\right|
$$

and define $\ell_{p}:=\left\{x:\|x\|_{p}<+\infty\right\}$. It can be shown that these are well-defined norms on their respective spaces.

Theorem 6 (Holder, Minkowski's Inequalities). For $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ and p, q such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\text { Holder's: } \quad\langle x, y\rangle=\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leqslant\|x\|_{p}\|y\|_{q}
$$

and

$$
\text { Minkowski's: } \quad\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p}
$$

The identical inequalities hold for infinite sequences.
Definition 16 (Completeness). We say a metric space is complete if every Cauchy sequence converges to a limit point in the space.

Proposition 9. For $\left\{x_{n}\right\}_{n \in \mathbb{N}}, \ell_{p}$ complete for any $1 \leqslant p \leqslant+\infty$.
Proposition 10. If $p<q, \ell_{p} \subseteq \ell_{q}$.

Definition 17 (Contraction Mapping). For a metric space (X, d), a function $f: X \rightarrow X$ is a contraction mapping if there exists $0<c<1$ such that

$$
d(f(x), f(y)) \leqslant c \cdot d(x, y)
$$

for any $x, y \in X$.

Theorem 7. Let (X, d) be a complete metric space, $f: X \rightarrow X$ a contraction. Then, there exist a unique fixed point z of f such that $f(z)=z$; ie $\lim _{n \rightarrow \infty} f^{n}(x)=\lim _{n \rightarrow \infty} f \circ f \circ \cdots \circ f(x)=z$ for any $x \in X$.

Theorem 8. ℓ_{p} complete.

Remark 10. It can be kind of funky to work with sequences in ℓ_{p}, since the elements of ℓ_{p} themselves sequences so we have "sequences of sequences".

Definition 18 (Totally bounded). A metric space X is said to be totally bounded if $\forall \varepsilon>$ $0 \exists x_{1}, \ldots, x_{n} \in X, n=n(\varepsilon)$ such that $\bigcup_{i=1}^{n} B\left(x_{i}, \varepsilon\right)=X$.

Definition 19 (Sequentially compact). A metric space X is said to be sequentially compact if every sequence has a convergent subsequence.

Theorem 9 (\star Equivalent Notions of Compactness in Metric Spaces). Let (X,d) a metric space. TFAE:

- X compact
- X complete and totally bounded
- X sequentially compact

Remark 11. This is for a metric space, not a general topological space! Hopefully this is clear because some of the requirements necessitate a distance.

3 Differentiation

Definition 20 (Differentiable). $f(x)$ differentiable at c if $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists, and if so we denote the limit $f^{\prime}(c)$.

Alternatively, one can view differentiation as a linear map between spaces of differentiable functions.

Theorem 10. Differentiable \Longrightarrow continuous.
Proof. Short enough to write the full proof; $\lim _{x \rightarrow c}(f(x)-f(c))=\lim _{x \rightarrow c}(x-c) \frac{f(x)-f(c)}{x-c}=$ $0 \cdot f^{\prime}(c)=0$.

Theorem 11 (Caratheodory's). For $f: I \rightarrow \mathbb{R}, c \in I, f$ differentiable at c iff $\exists \varphi: I \rightarrow \mathbb{R}: \varphi$ continuous at $c, f(x)-f(c)=\varphi(x)(x-c)$.

Sketch. Its worth recalling the definition of φ for the forward implication,

$$
\varphi(x):=\left\{\begin{array}{ll}
\frac{f(x)-f(c)}{x-c} & x \neq c \\
f^{\prime}(c) & x=c
\end{array} .\right.
$$

The converse follows by taking limits.
Remark 12. While not a particularly enlightening result, used in proofs of the chain rule, etc.

Theorem 12 (Chain Rule). Let $f: J \rightarrow \mathbb{R}, g: I \rightarrow R$ s.t. $f(J) \subseteq I$. If $f(x)$ differentiable at c and $g(y)$ at $f(c), g \circ f$ differentiable at c with $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Sketch. Apply Caratheodory's to f at c and g at $f(c)$, and compose.
Theorem 13 (Rolle's). Let $f:[a, b] \rightarrow \mathbb{R}$ continuous. If $f^{\prime}(x)$ exists on (a, b) and $f(a)=$ $f(b)=0, \exists c \in(a, b): f^{\prime}(c)=0$.

Sketch. If constant function, done. Else, assuming function positive, it obtains a maximum, and thus its derivative 0 at this point.

Theorem 14 (\star Mean Value). Let f continuous on $[a, b]$ and differentiable on (a, b). Then, $\exists c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Sketch. Let $\phi(x):=f(x)-f(a)-\frac{f(b)-f(a)}{(b-a)}(x-a)$. Then $\phi(a)=\phi(b)=0$ so applying Rolle's $\exists c \in(a, b): \varphi^{\prime}(c)=0=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$. The proof is done after rearranging.

Proposition 11 (L'Hopital's). If $f, g:[a, b] \rightarrow \mathbb{R}$ with $f(a)=g(a)=0, g(x) \neq 0$ on $a<x<b$, f, g differentiable at $x=0$ with $g^{\prime}(a) \neq 0$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists and is equal to $\frac{f^{\prime}(a)}{g^{\prime}(a)}$.

Remark 13. Other versions exist, but this is certainly one of them.
Theorem 15 (\star Taylor's). Let $f \in C^{n}([a, b])$ such that $f^{(n+1)}(x)$ exists on (a, b). Let $x_{0} \in[a, b]$, then, for any $x \in[a, b], \exists c$ between x, x_{0} such that
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$.
Corollary 2. Let $x_{0} \in[a, b]$. With the same assumptions as Taylor's (but in a neighborhood of $\left.x_{0}\right)$, with $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0$ and $f^{(n)}\left(x_{0}\right) \neq 0$, then

- n even; then f has a local minimum at x_{0} if $f^{(n)}\left(x_{0}\right)>0$ and a local max if $f^{(n)}\left(x_{0}\right)<0$.
- n odd; neither.

4 Integration

Its all just rectangles.

Definition 21 (Riemann Integration). Consider an interval (a, b). We call a subdivision $\mathcal{P}:=\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}$ a partition, and $\dot{\mathcal{P}}$ a marked partition if in addition we are given a point $t_{i} \in\left(x_{i}, x_{i+1}\right]$ for each interval in $\dot{\mathcal{P}}$.

We put $\operatorname{diam}(\mathcal{P}):=\max _{i=1}^{n}\left|x_{i}-x_{i-1}\right|$.
We define the Riemann sum $S(f, \dot{\mathcal{P}}):=\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)$, and say that f Riemann integrable on $[a, b]$ if $S(f, \dot{\mathcal{P}}) \rightarrow L$ as $\operatorname{diam}(\dot{\mathcal{P}}) \rightarrow 0$ for any choice of tag t_{i}, and write $f \in \mathcal{R}([a, b])$

More precisely, if $\forall \varepsilon>0, \exists \delta>0: \operatorname{diam}(\mathcal{P})<\delta$, then for any $t_{i} \in\left[x_{i}, x_{i+1}\right]$, $|L-S(f, \dot{\mathcal{P}})|<\varepsilon$. We then say the (Riemann) integral of f over $[a, b]$ is L and write $\int_{a}^{b} f(x) \mathrm{d} x=L$.

Proposition 12. Riemann integrals are unique, linear in $f(x)$, and respect inequalities (if $f \leqslant g$ on $[a, b], \int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x$ if both in $\mathcal{R}([a, b])$)

Proposition $13(\star) . f \in \mathcal{R}[a, b] \Longrightarrow f$ bounded on $[a, b]$
Proposition 14 (\star Cauchy Criterion for Integrability). $f \in \mathcal{R}[a, b] \Longleftrightarrow \forall \varepsilon>0, \exists \delta>0$:if \dot{P} and \dot{Q} are tagged partitions of $[a, b]$ s.t. $\operatorname{diam} \dot{P}<\delta$ and $\operatorname{diam} \dot{Q}<\delta$, then $|S(f, \dot{P})-S(f, \dot{Q})|<$ ε

Remark 14. Ala Cauchy Sequence.
Theorem 16 (Squeeze Theorem). $f \in \mathcal{R}[a, b] \Longleftrightarrow \forall \varepsilon>0, \exists \alpha_{\varepsilon}, \omega_{\varepsilon} \in \mathcal{R}[a, b]: \alpha_{\varepsilon} \leqslant f \leqslant$ ω_{ε} and $\int_{a}^{b}\left(\omega_{\varepsilon}-\alpha_{\varepsilon}\right)<\varepsilon$.
Lemma 1. Let $J:=[c, d] \subseteq[a, b]$ and $\varphi_{J}(x):=\left\{\begin{array}{ll}1 & x \in J \\ 0 & x \notin J\end{array}\right.$ be the indicator function of J. Then $\varphi_{J} \in \mathcal{R}[a, b]$ and $\int_{a}^{b} \varphi_{J}=d-c$.

Remark 15. Helpful for "approximations"; follows by linearity, induction that step functions (ie sums of indicator functions times constants) are integrable.

Theorem 17 (\star Continuous). f continuous on $[a, b] \Longrightarrow f \in \mathcal{R}[a, b]$
Sketch. Continuity on a closed interval gives uniform continuity and so a "universal δ "; then, for any partition, take the x such that f attains its minimum and maximum, and define a $\alpha_{\varepsilon}, \omega_{\varepsilon}$ as the sum of indicator functions taking the minimum, maximum of f respectively on each partition. Then apply the previous theorem and the squeeze theorem.

Theorem 18 (Additivity). $f \in \mathcal{R}[a, b] \Longleftrightarrow f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$, and $\int_{a}^{b} f(x) \mathrm{d} x=$ $\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x$.

Theorem 19 (\star Fundamental Theorem of Calculus). Let $F, f:[a, b] \rightarrow \mathbb{R}$ and $E \subseteq[a, b]$ a finite set, such that F continuous on $[a, b], F^{\prime}(x)=f(x) \forall x \in[a, b] \backslash E, f \in \mathcal{R}[a, b]$. Then $\int_{a}^{b} f(x)=F(b)-F(a)$. We call F the "primitive" of f.

Theorem 20. For $f \in \mathcal{R}[a, b]$ and any $z \in[a, b]$, put $F(z):=\int_{a}^{z} f(x) \mathrm{d} X$. Then, F continuous on $[a, b]$.

Theorem 21 (\star Fundamental Theorem of Calculus p2). For $f \in \mathcal{R}[a, b]$ continuous at c, then $F(z)$ differentiable at c and $F^{\prime}(c)=f(c)$.

Definition 22 (Lebesgue Measure). We say a set $A \subseteq \mathbb{R}$ has Lebesgue measure 0 iff $\forall \varepsilon>0$, A can be covered by a union of intervals J_{k} such that $\sum_{k}\left|J_{k}\right| \leqslant \varepsilon$. We then call A a "null set".

In particular, any countable set is a null set.
Theorem 22 (\star Lebesgue Integrability Criterion). Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then $f \in \mathcal{R}[a, b] \Longleftrightarrow$ the set of discontinuities of f has Lebesgue measure 0 .

Remark 16. In particular, remark that continuity a stronger requirement than integrability.
Theorem 23 (Composition). If $f \in \mathcal{R}[a, b], \varphi:[c, d] \rightarrow \mathbb{R}$ continuous and $f([a, b]) \subseteq[c, d]$, then $\varphi \circ f \in \mathcal{R}[a, b]$.

Theorem 24 (Integration by Parts). If F, G differentiable $[a, b]$ with $f:=F^{\prime}, g:=G^{\prime}$, and $f, g \in \mathcal{R}[a, b]$, then

$$
\int_{a}^{b} f(x) G(x) \mathrm{d} x=\left.F(x) G(x)\right|_{a} ^{b}-\int_{a}^{b} F(x) g(x) \mathrm{d} x
$$

Sketch. Uses additivity and the fundamental theorem of calculus.
Theorem 25 (Taylor's Theorem, Remainder's Version). Suppose $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ exist on $[a, b]$ and $f^{(n+1)} \in \mathcal{R}[a, b]$. Then

$$
f(b)=f(a)+\frac{f^{\prime}(a)}{1!}(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}+R_{n}
$$

where $R_{n}:=\frac{1}{n!} \int_{a}^{b} f^{(n+1)}(t)(b-t)^{n} \mathrm{~d} t$.

5 Sequences of Functions

A good motivation to keep in mind with the "types" of function-sequence convergence is to answer the question: when can we exchange limits of derivatives of functions and derivatives of limits of functions? What about integrals? What about summations (see next section)? Ie, when does $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} \lim _{n \rightarrow \infty} f_{n}(x)$, etc.

Definition 23 (Pointwise, Uniform Convergence). We say $f_{n} \rightarrow f$ pointwise on E if $\forall x \in E$, $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$.

We say $f_{n} \rightarrow f$ uniformly on E if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall n \geqslant N, x \in E$, $\left|f_{n}(x)-f(x)\right|<\varepsilon$.

Remark 17. Pointwise doesn't care about the "rate of convergence"; as long as each point converges eventually, we're good. Uniform convergence needs all points to converge "at the same rate" (so to speak).

A good example to keep in mind is $f_{n}:=\left\{\begin{array}{ll}2 n x & 0 \leqslant x \leqslant \frac{1}{2 n} \\ 0 & x>\frac{1}{2 n}\end{array}\right.$ on [0,1], which converges pointwise to 0 but not uniformly.

A good trick for disproving uniform convergence of $f_{n} \rightarrow f$ is by showing $f_{n}\left(x_{0}\right)$ constant and $\neq f\left(x_{0}\right)$ for all n. For instance, $f_{n}(x):=\sin \left(\frac{x}{n}\right) \rightarrow 0$ pointwise, but $f_{n}\left(\frac{n \pi}{2}\right)=$ $1 \forall n$ so the convergence os not uniform.

Proposition 15. Uniform \Longrightarrow pointwise convergence.

Theorem 26. The metric space of continuousfunctions $C([a, b])$ complete with respect to $d_{\infty}(f, g):=$ $\sup _{x \in[a, b]}|f(x)-g(x)|$.

Theorem 27 (\star Interchange of Limits). Let $J \subseteq \mathbb{R}$ be a bounded interval such that $\exists x_{0} \in J$: $f_{n}\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$. Suppose $f_{n}^{\prime}(x) \rightarrow g(x)$ uniformly on J. Then, $\exists f: f_{n}(x) \rightarrow f(x)$ uniformly on $J, f(x)$ differentiable on J, and moreover $f_{n}^{\prime}(x)=g(x) \forall x \in J$.

Theorem 28 (\star Interchange of Integrals). Let $f_{n} \in \mathcal{R}[a, b], f_{n} \rightarrow f$ uniformly on $[a, b]$. Then $f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} f_{n}(x) \mathrm{d} x \rightarrow \int_{a}^{b} f(x) \mathrm{d} x$

Theorem 29 (Bounded Convergence). Let $f_{n} \in \mathcal{R}[a, b], f_{n} \rightarrow f \in \mathcal{R}[a, b]$ (not necessarily uniform). Suppose $\exists B>0$ s.t. $\left|f_{n}(x)\right| \leqslant B \forall x \in[a, b]$ and $\forall n \in \mathbb{N}$, then $\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f$ as $n \rightarrow \infty$.

Remark 18. This provides a weaker condition, but equivalent result as the previous theorem, although remark now that we need the limit function itself to be in $\mathcal{R}[a, b]$, which was a result, not a necessity, of the previous theorem. In general, uniform continuity very strong, but leads to helpful results.

Theorem 30 (Dimi's). If $f_{n} \in C([a, b]), f_{n}(x)$ monotone (as a sequence), and $f_{n} \rightarrow f \in C([a, b])$, then $f_{n} \rightarrow f$ uniformly.

6 Infinite Series

Definition 24 (Covergence of Series). Let $\left\{x_{j}\right\} \in X$-normed vector space over \mathbb{R}. We say $\sum_{j=1}^{\infty} x_{j}$ converges absolutely iff $\sum_{j=1}^{\infty}\left\|x_{j}\right\|<+\infty$. In particular, if $X=\mathbb{R}$, then $\|\cdot\|=|\cdot|$.

We say $\sum_{j=1}^{\infty} x_{j}$ converges conditionally if $\sum_{j=1}^{\infty} x_{j}<+\infty$, but $\sum_{j=1}^{\infty}\left\|x_{j}\right\|=+\infty$.
Proposition 16. Any rearrangement of an absolutely convergent series gives the same sum. Conversely, the order of summation of a conditionally convergent summation can be rearranged such as to equal any real number.

Proposition 17 (Absolute Convergence Tests). - Comparison Test: let x_{n}, y_{n} be nonzero real sequences and $r:=\lim \left|\frac{x_{n}}{y_{n}}\right|$. If such a limit exists, then if
(a) $r \neq 0, \sum_{n} x_{n}$ absolutely convergent $\Longleftrightarrow \sum_{n} y_{n}$ absolutely convergent.
(b) $r=0, \sum_{n} y_{n}$ absoltuely convergent $\Longrightarrow \sum_{n} x_{n}$ absolteuly convergent.

- Root Test: if $\exists r<1$ s.t. $\left|x_{n}\right|^{1 / n} \leqslant r \forall n \geqslant K$-sufficiently large, then $\sum_{n=K}^{\infty}\left|x_{n}\right|$ converges. Conversely, if $\left|x_{n}\right|^{1 / n} \geqslant 1$ for $n \geqslant K$-sufficiently large, $\sum_{n} x_{n}$ diverges.
- Ratio Test: if $x_{n} \neq 0$ and $\exists 0<r<1$ s.t. $\left|\frac{x_{n+1}}{x_{n}}\right| \leqslant r$ for $n \geqslant K$ sufficiently large, $\sum_{n} x_{n}$ absolutely convergent. Conversely, if $\left|\frac{x_{n+1}}{x_{n}}\right| \geqslant 1$ for $n \geqslant K$ sufficiently large, then $\sum_{n} x_{n}$ diverges.
- Integral Test: if $f(x) \geqslant 0$ non-increasing/non-decreasing function of $x \geqslant 1, \sum_{k=1}^{\infty} f(k)$ converges iff $\lim _{k \rightarrow \infty} \int_{1}^{k} f(x) \mathrm{d} x$ finite.
* Raube's Test: let $x_{n} \neq 0$.
(a) If $\exists a>1$ s.t. $\left|\frac{x_{n+1}}{x_{n}}\right| \leqslant 1-\frac{1}{n} \forall n \geqslant K$-sufficiently large, then $\sum_{n} x_{n}$ converges absolutely.
(b) If $\exists a \leqslant 1$ s.t. $\left|\frac{x_{n+1}}{x_{n}}\right| \geqslant 1-\frac{1}{n} \forall n \geqslant K$-sufficiently large, $\sum_{n} x_{n}$ does not converge absolutely.

Remark 19. Proofs of these tests aren't really important (Dima-speaking), but knowing the conditions in which they apply is.

Proposition 18 (Tests for Non-Absolute Convergence). - Alternating Series: if $x>$ $0, x_{n+1} \leqslant x_{n}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$, then $\sum_{n}(-1)^{n} x_{n}$ converges.

- Dirichlet's Test: if x_{n} decreasing with limit 0 , and the partial sum $s_{n}:=y_{1}+\cdots+y_{n}$ is bounded, then $\sum_{n} x_{n} y_{n}$ converges.
- Abel's Test: let x_{n} convergent and monotone, and suppose $\sum_{n} y_{n}$ converges. Then $\sum_{n} x_{n} y_{n}$ also converges.

Definition 25 (Convergence of Series of Functions). We say a series $\sum_{n} f_{n}(x)$ converges absolutely to some $g(x)$ on E if $\sum_{n}\left|f_{n}(x)\right|$ converges for all $x \in E$.

We say that the convergence is uniform if it is uniform for any $x \in E$, ie $\forall \varepsilon>0 \exists N \in$ \mathbb{N} s.t. $\forall n \geqslant N, x \in E,\left|g(x)-\sum_{n} f_{n}(x)\right|<\varepsilon$.

Proposition 19 (Interchanging Integrals and Summations). Suppose for $f_{n}:[a, b] \rightarrow \mathbb{R}$, $\sum_{n} f_{n}(x) \rightarrow g(x)$ uniformly and $f_{n} \in \mathcal{R}[a, b]$. Then $\int_{a}^{b} g(x)=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) \mathrm{d} x$.

Proposition 20 (Interchanging Derivatives and Summations). Let $f_{n}:[a, b] \rightarrow \mathbb{R}, f_{n}^{\prime} \exists$, $\sum_{n} f(x)$ converges for some $[a, b]$ and $\sum_{n} f_{n}^{\prime}(x)$ converges uniformly. Then, there exists some $g:[a, b] \rightarrow \mathbb{R}$ such that $\sum_{n} f_{n} \rightarrow g$ uniformly, g differentiable, and $g^{\prime}(x)=\sum_{n} f_{n}^{\prime}(x)$, all on [$a, b]$.

Theorem 31 (\star Cauchy Criterion of Series). $f_{n}(x): D \rightarrow \mathbb{R}$ converges uniformly on D iff $\forall \varepsilon>0, \exists N$ s.t. $\forall m, n \geqslant N, \sum_{i=n+1}^{m} f_{i}(x)<\varepsilon \forall x \in D$.

Proposition 21 (Weierstrass M-Test). If $\left|f_{n}(x)\right| \leqslant M_{n} \forall x \in D \subseteq \mathbb{R}$ and $\sum_{n} M_{n}<+\infty$, then $\sum_{n} f_{n}(x)$ converges uniformly on D.

Definition 26 (Power Series). A function of the form $f(x):=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is said to be a power series centered at c.

Put $\rho:=\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$, and put

$$
R:= \begin{cases}\frac{1}{\rho} & 0<\rho<+\infty \\ 0 & \rho=+\infty \\ \infty & \rho=0\end{cases}
$$

We call R the radius of convergence of f.

Theorem 32 (\star Cauchy-Hadamard). Let R be the radius of converges of f. Then, $f(x)$ converges if $|x-c|<R$, and diverges if $|x-c|>R$.

Sketch. Apply the root test to the definition of R.
Remark 20. If $|x-c|=R$, the theorem is inconclusive, and we need to manually check.

