MATH255 - Honours Analysis 2

Summary of Results

Winter, 2024 Notes by Louis Meunier Complete notes

1	Point-Set Topology	1
2	Metric Spaces	6
3	Differentiation	8
4	Integration	9
5	Sequences of Functions	12
6	Infinite Series	13

1 POINT-SET TOPOLOGY

Topology is about abstracting openness. It can typically suffice to consider open, closed sets in \mathbb{R} for intuition, but is obviously not all-general.

Definition 1 (Metric Space). A space *X* equipped with a function $d : X \times X \rightarrow [0, \infty)$ is called a metric space and *d* a metric or distance if

- $d(x, y) = d(y, x) \ge 0$
- $d(x, y) = 0 \iff x = y$
- $d(x, y) + d(y, z) \ge d(x, z)$

for any $x, y, z \in X$.

Definition 2 (Normed Vector Space). A function $|| \cdot || : X \to \mathbb{R}$ defined on a vector space *X* over \mathbb{R} is a norm if

- $||x|| \ge 0$
- $||x|| = 0 \iff x = 0$
- $||c \cdot x|| = |c| ||x||$
- $||x + y|| \le ||x|| + ||y||,$

for any $x, y \in X, c \in \mathbb{R}$.

Remark 1. We can naturally extend this to arbitary fields, but seeing as this is a course in Real Analysis, we won't.

Proposition 1. For a normed vector space $(X, || \cdot ||)$, d(x, y) := ||x - y|| is a metric on X. We call such a metric the one "induced" by the norm.

Definition 3 (Topological Set). A set *X* is a topological set if we have a collection τ of subsets of *X*, called open sets, such that

- $\emptyset \in \tau, X \in \tau$
- For $A_{\alpha} \in \tau$ for α in any *I* (potentially infinite), $\bigcup_{\alpha \in I} A_{\alpha} \in \tau$
- For $A_{\alpha} \in \tau$ for $\alpha \in J$ where *J* finite, then $\bigcap_{\alpha \in J} A_{\alpha} \in \tau$

ie, arbitrary unions of open sets are open, and finite intersections of open sets are open.

Remark 2. Keep \mathbb{R} in mind when initially working with these definitions; for instance, the set $A_n := (0, \frac{1}{n})$ open in \mathbb{R} for any $n \in \mathbb{N}$, but $\bigcap_{n \in \mathbb{N}} A_n = \{0\}$ which is closed.

Remark 3. Complemented each of these requirements gives similar definitions for closed sets of *X*.

Definition 4 (Topology on a Metric Space). A subset $A \subseteq X$ open iff $\forall x \in A, \exists r = r(x) \in \mathbb{R}$, where r(x) > 0, such that $B(x, r(x)) := \{y \in x : d(x, y) < r(x)\} \subseteq A$. We call such a *B* an open ball, and \overline{B} a closed ball with the same definition replacing the strict inequality with \leq .

Remark 4. While many of the spaces we look at our metric spaces that induce a topology as such, **not all topological spaces are metric spaces**. Indeed, "metrizability" (ie, equipping a topological space *X* with a metric that respects the open sets) is not a trivial activity.

Definition 5 (Equivalence of Metrics). We say two metrics on *X* are equivalent if they admit the same topology; a sufficient condition is that, $\forall x \neq y \in X$, $\exists 1 < C < \infty$ such that $\frac{1}{C} < \frac{d_1(x,y)}{d_2(x,y)} < C$, then d_1, d_2 equivalent, where *C* independent of *x*, *y*.

Definition 6 (\star Interior, Boundary, Closure). Let *X*-topological space, $A \subseteq X, x \in X$.

- If $\exists U$ -open s.t. $x \in U \subseteq A$, then we write $x \in Int(A)$, the interior of A.
- If $\exists V$ -open s.t. $x \in V \subseteq A^C$, then $x \in Int(A^C)$.
- If $\forall U$ -open s.t. $x \in U, U \cap A \neq \emptyset$ and $U \cap A^C \neq \emptyset$, then $x \in \partial A$, the boundary of A.

We put $\overline{A} := \text{Int}(A) \cup \partial A$, the closure of A. Equivalently, $x \in \overline{A} \iff$ for every open set $U : x \in U, U \cap A \neq \emptyset$. We call $x \in \overline{A}$ the limit points of A.

Remark 5. The limit point interpretation of the closure can be more intuitive; the points that we can get "arbitrary close to" are the closure. For instance, $\overline{(a,b)} = [a,b] \subseteq \mathbb{R}$ with the standard topology.

Proposition 2. Let $A \subseteq X$ -topological space. Then, Int(A) is open, the largest open set contained in A, the union of all open sets contained in A, and Int(Int(A)) = Int(A). Also, \overline{A} closed, the smallest closed set that contains A, \overline{A} the intersection of all closed sets that A is contained in, and $\overline{A} = \overline{A}$.

Corollary 1. A open \iff A = Int(A) and A closed \iff A = \overline{A}

Remark 6. Remark that these are not exclusive, nor indeed the only possibilities.

Definition 7 (Basis). A basis for a topology *X* with open sets τ is a collection $B \subseteq \tau$ such that every $U \in \tau$ a union of sets in *B*.

Remark 7. Don't think about bases for vector spaces in this regard - there is no "minimality" requirement.

Keep in mind $\{(a, b) : -\infty < a < b < \infty\}$, a basis of topology on \mathbb{R} .

Proposition 3. For a metric space (X, d), $\{B(x, r) : x \in X, r > 0\}$ a basis of topology.

Definition 8 (Subspace Topology). For a subset $Y \subseteq X$ -topological space, we define the subspace topology on Y as $\tau_Y := \{Y \cap U : U \in \tau\}$.

Definition 9 (* Continuous). For *X*, *Y*-topological spaces, a function $f : X \to Y$ is continuous iff $\forall V$ -open in *Y*, $f^{-1}(V)$ -open in *X*.

Remark 8. One can verify that this is consistent with the $\varepsilon - \delta$ definition of continuity for functions on \mathbb{R} .

Theorem 1 (Continuity of Composition). If $f : X \to Y$, $g : Y \to Z$ continuous, $g \circ f$ continuous.

Remark 9. Note how much easier this is to prove via toplogical spaces than the $\varepsilon - \delta$ definition.

Definition 10 (Product Space). For an index set *I* and X_{α} , $\alpha \in I$, we define $\prod_{\alpha \in I} X_{\alpha}$ as a product space; *I* may be finite or infinite.

Proposition 4. A basis for the product space is given by cyliders of the form $A = \prod_{\alpha \in J} A_{\alpha} \times \prod \alpha \notin JX_{\alpha}$ for A_{α} -open in X_{α} , where $J \subseteq I$ -finite.

Definition 11 (Compact). A set $A \subseteq X$ is compact if every cover has a finite subcover, that is

$$A \subseteq \bigcup_{\alpha \in I} U_{\alpha} \text{-open} \implies \exists \{\alpha_1, \dots, \alpha_n\} \subseteq I \text{ s.t. } A \subseteq \bigcup_{i=1}^n U_{\alpha_i}.$$

Proposition 5. Closed intervals [a, b] compact in \mathbb{R} .

Proposition 6. $A \subseteq \mathbb{R}^n$ compact \iff closed and bounded.

Definition 12 (Connected). *X* is said to not be connected if $X = U \cup V$ for *U*, *V* open, nonempty, disjoint. If *X* cannot be written as such, *X* is said to be connected.

Theorem 2. If X connected and $f : X \to Y$, then f(X) connected in Y.

Proposition 7. *Intervals in* \mathbb{R} *are connected.*

Theorem 3 (Intermediate Value Theorem). If *X* connected, $f : X \to \mathbb{R}$ continuous, then *f* takes intermediate value; if a = f(x), b = f(y) for $x, y \in X$ with a < b, then for any a < c < b $\exists z \in X \text{ s.t. } f(z) = c$.

Theorem 4. For X compact, $f : X \to Y$ continuous, f(X) compact in Y.

Proposition 8. For X compact and $f : X \to \mathbb{R}$, f attains both max and min on X.

Definition 13 (Path Connected). A set $A \subseteq X$ is path connected if for any $x, y \in A, \exists f : [a, b] \rightarrow X$ continuous such that $f(a) = x, f(b) = yf([a, b]) \subseteq A$.

Theorem 5. *Path connected* \implies *connected.*

For open sets in \mathbb{R}^n , the converse holds too.

Definition 14 (Connected Component, Path Component). For $x \in X$, the connected component of x is the largest connected subset of X containing x and the path component of x is the largest path connected subset of X containing x.

2 METRIC SPACES

We discuss mostly the metric on l_p space and notions of completeness, as well as some topological results specific to metric spaces, namely compactness.

Definition 15 (ℓ_p) . For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $1 \le p \le +\infty$, we define

$$||x||_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}, \quad ||x||_{\infty} := \max_{i=1}^{n} |x_{i}|,$$

and similarly, for sequences $x = (x_1, \ldots, x_n, \ldots)$,

$$||x||_{p} := \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{\frac{1}{p}}, \quad ||x||_{\infty} := \sup_{i=1}^{\infty} |x_{i}|,$$

and define $\ell_p := \{x : ||x||_p < +\infty\}$. It can be shown that these are well-defined norms on their respective spaces.

Theorem 6 (Holder, Minkowski's Inequalities). For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ and p, q such that $\frac{1}{p} + \frac{1}{q} = 1$, then

Holder's:
$$\langle x, y \rangle = \left| \sum_{i=1}^{n} x_i y_i \right| \leq ||x||_p ||y||_q$$

and

Minkowski's:
$$||x + y||_p \le ||x||_p + ||y||_p$$
.

The identical inequalities hold for infinite sequences.

Definition 16 (Completeness). We say a metric space is complete if every Cauchy sequence converges to a limit point in the space.

Proposition 9. For $\{x_n\}_{n \in \mathbb{N}}$, ℓ_p complete for any $1 \leq p \leq +\infty$.

Proposition 10. *If* p < q, $\ell_p \subseteq \ell_q$.

Definition 17 (Contraction Mapping). For a metric space (X, d), a function $f : X \to X$ is a contraction mapping if there exists 0 < c < 1 such that

$$d(f(x), f(y)) \le c \cdot d(x, y)$$

for any $x, y \in X$.

Theorem 7. Let (X, d) be a complete metric space, $f : X \to X$ a contraction. Then, there exist a unique fixed point z of f such that f(z) = z; ie $\lim_{n\to\infty} f^n(x) = \lim_{n\to\infty} f \circ f \circ \cdots \circ f(x) = z$ for any $x \in X$.

Theorem 8. ℓ_p complete.

Remark 10. It can be kind of funky to work with sequences in l_p , since the elements of l_p themselves sequences so we have "sequences of sequences".

Definition 18 (Totally bounded). A metric space *X* is said to be totally bounded if $\forall \varepsilon > 0 \exists x_1, \dots, x_n \in X$, $n = n(\varepsilon)$ such that $\bigcup_{i=1}^n B(x_i, \varepsilon) = X$.

Definition 19 (Sequentially compact). A metric space *X* is said to be sequentially compact if every sequence has a convergent subsequence.

Theorem 9 (\star Equivalent Notions of Compactness in Metric Spaces). *Let* (*X*, *d*) *a metric space. TFAE:*

- X compact
- *X* complete and totally bounded
- *X* sequentially compact

Remark 11. This is for a metric space, not a general topological space! Hopefully this is clear because some of the requirements necessitate a distance.

3 Differentiation

Definition 20 (Differentiable). f(x) differentiable at c if $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, and if so we denote the limit f'(c).

Alternatively, one can view differentiation as a linear map between spaces of differentiable functions.

Theorem 10. Differentiable \implies continuous.

Proof. Short enough to write the full proof; $\lim_{x\to c} (f(x) - f(c)) = \lim_{x\to c} (x - c) \frac{f(x) - f(c)}{x - c} = 0 \cdot f'(c) = 0.$

Theorem 11 (Caratheodory's). For $f : I \to \mathbb{R}$, $c \in I$, f differentiable at c iff $\exists \varphi : I \to \mathbb{R} : \varphi$ continuous at c, $f(x) - f(c) = \varphi(x)(x - c)$.

Sketch. Its worth recalling the definition of φ for the forward implication,

$$\varphi(x) := \begin{cases} \frac{f(x) - f(c)}{x - c} & x \neq c \\ f'(c) & x = c \end{cases}$$

The converse follows by taking limits.

Remark 12. While not a particularly enlightening result, used in proofs of the chain rule, etc.

Theorem 12 (Chain Rule). Let $f : J \to \mathbb{R}$, $g : I \to R$ s.t. $f(J) \subseteq I$. If f(x) differentiable at c and g(y) at f(c), $g \circ f$ differentiable at c with $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Sketch. Apply Caratheodory's to *f* at *c* and *g* at f(c), and compose.

Theorem 13 (Rolle's). Let $f : [a,b] \to \mathbb{R}$ continuous. If f'(x) exists on (a,b) and $f(a) = f(b) = 0, \exists c \in (a,b) : f'(c) = 0$.

Sketch. If constant function, done. Else, assuming function positive, it obtains a maximum, and thus its derivative 0 at this point.

Theorem 14 (\star Mean Value). Let f continuous on [a,b] and differentiable on (a,b). Then, $\exists c \in (a,b)$ such that f(b) - f(a) = f'(c)(b - a).

Sketch. Let $\phi(x) := f(x) - f(a) - \frac{f(b) - f(a)}{(b-a)}(x-a)$. Then $\phi(a) = \phi(b) = 0$ so applying Rolle's $\exists c \in (a, b) : \varphi'(c) = 0 = f'(x) - \frac{f(b) - f(a)}{b-a}$. The proof is done after rearranging.

Proposition 11 (L'Hopital's). *If* f, g : $[a, b] \to \mathbb{R}$ with f(a) = g(a) = 0, $g(x) \neq 0$ on a < x < b, f, g differentiable at x = 0 with $g'(a) \neq 0$, then $\lim_{x \to a^+} \frac{f(x)}{g(x)}$ exists and is equal to $\frac{f'(a)}{g'(a)}$.

Remark 13. Other versions exist, but this is certainly one of them.

Theorem 15 (\star Taylor's). Let $f \in C^n([a, b])$ such that $f^{(n+1)}(x)$ exists on (a, b). Let $x_0 \in [a, b]$, then, for any $x \in [a, b]$, $\exists c$ between x, x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

Corollary 2. Let $x_0 \in [a, b]$. With the same assumptions as Taylor's (but in a neighborhood of x_0), with $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$ and $f^{(n)}(x_0) \neq 0$, then

- *n* even; then *f* has a local minimum at x_0 if $f^{(n)}(x_0) > 0$ and a local max if $f^{(n)}(x_0) < 0$.
- *n* odd; neither.

4 INTEGRATION

Its all just rectangles.

Definition 21 (Riemann Integration). Consider an interval (a, b). We call a subdivision $\mathcal{P} := \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$ a partition, and $\dot{\mathcal{P}}$ a marked partition if in addition we are given a point $t_i \in (x_i, x_{i+1}]$ for each interval in $\dot{\mathcal{P}}$.

We put diam(\mathcal{P}) := max^{*n*}_{*i*=1} | $x_i - x_{i-1}$ |.

We define the Riemann sum $S(f, \dot{\mathcal{P}}) \coloneqq \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$, and say that f Riemann integrable on [a, b] if $S(f, \dot{\mathcal{P}}) \to L$ as diam $(\dot{\mathcal{P}}) \to 0$ for any choice of tag t_i , and write $f \in \mathcal{R}([a, b])$

More precisely, if $\forall \varepsilon > 0$, $\exists \delta > 0$: diam(\mathcal{P}) < δ , then for any $t_i \in [x_i, x_{i+1}]$, $|L - S(f, \dot{\mathcal{P}})| < \varepsilon$. We then say the (Riemann) integral of f over [a, b] is L and write $\int_a^b f(x) dx = L$.

Proposition 12. *Riemann integrals are unique, linear in* f(x)*, and respect inequalities (if* $f \leq g$ *on* [a, b]*,* $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$ *if both in* $\mathcal{R}([a, b])$ *)*

Proposition 13 (\star). $f \in \mathcal{R}[a, b] \implies f$ bounded on [a, b]

Proposition 14 (* Cauchy Criterion for Integrability). $f \in \mathcal{R}[a, b] \iff \forall \varepsilon > 0, \exists \delta > 0 : if$ \dot{P} and \dot{Q} are tagged partitions of [a, b] s.t. diam $\dot{P} < \delta$ and diam $\dot{Q} < \delta$, then $|S(f, \dot{P}) - S(f, \dot{Q})| < \varepsilon$

Remark 14. Ala Cauchy Sequence.

Theorem 16 (Squeeze Theorem). $f \in \mathcal{R}[a, b] \iff \forall \varepsilon > 0, \exists \alpha_{\varepsilon}, \omega_{\varepsilon} \in \mathcal{R}[a, b] : \alpha_{\varepsilon} \leq f \leq \omega_{\varepsilon} \text{ and } \int_{a}^{b} (\omega_{\varepsilon} - \alpha_{\varepsilon}) < \varepsilon.$

Lemma 1. Let $J := [c, d] \subseteq [a, b]$ and $\varphi_J(x) := \begin{cases} 1 & x \in J \\ 0 & x \notin J \end{cases}$ be the indicator function of J. Then $\varphi_J \in \mathcal{R}[a, b]$ and $\int_a^b \varphi_J = d - c$.

Remark 15. Helpful for "approximations"; follows by linearity, induction that step functions (ie sums of indicator functions times constants) are integrable.

Theorem 17 (\star Continuous). *f continuous on* $[a, b] \implies f \in \mathcal{R}[a, b]$

Sketch. Continuity on a closed interval gives uniform continuity and so a "universal δ "; then, for any partition, take the *x* such that *f* attains its minimum and maximum, and define a α_{ε} , ω_{ε} as the sum of indicator functions taking the minimum, maximum of *f* respectively on each partition. Then apply the previous theorem and the squeeze theorem.

Theorem 18 (Additivity). $f \in \mathcal{R}[a, b] \iff f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$, and $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

Theorem 19 (\star Fundamental Theorem of Calculus). Let $F, f : [a, b] \to \mathbb{R}$ and $E \subseteq [a, b]$ a finite set, such that F continuous on $[a, b], F'(x) = f(x) \forall x \in [a, b] \setminus E, f \in \mathcal{R}[a, b]$. Then $\int_a^b f(x) = F(b) - F(a)$. We call F the "primitive" of f.

Theorem 20. For $f \in \mathcal{R}[a, b]$ and any $z \in [a, b]$, put $F(z) := \int_a^z f(x) dX$. Then, F continuous on [a, b].

Theorem 21 (\star Fundamental Theorem of Calculus p2). For $f \in \mathcal{R}[a, b]$ continuous at *c*, then F(z) differentiable at *c* and F'(c) = f(c).

Definition 22 (Lebesgue Measure). We say a set $A \subseteq \mathbb{R}$ has Lebesgue measure 0 iff $\forall \varepsilon > 0$, A can be covered by a union of intervals J_k such that $\sum_k |J_k| \leq \varepsilon$. We then call A a "null set".

In particular, any countable set is a null set.

Theorem 22 (\star Lebesgue Integrability Criterion). Let $f : [a, b] \to \mathbb{R}$ be bounded. Then $f \in \mathcal{R}[a, b] \iff$ the set of discontinuities of f has Lebesgue measure 0.

Remark 16. In particular, remark that continuity a stronger requirement than integrability.

Theorem 23 (Composition). *If* $f \in \mathcal{R}[a,b]$, $\varphi : [c,d] \to \mathbb{R}$ continuous and $f([a,b]) \subseteq [c,d]$, then $\varphi \circ f \in \mathcal{R}[a,b]$.

Theorem 24 (Integration by Parts). If *F*, *G* differentiable [a, b] with f := F', g := G', and $f, g \in \mathcal{R}[a, b]$, then

$$\int_a^b f(x)G(x)\,\mathrm{d}x = F(x)G(x)\Big|_a^b - \int_a^b F(x)g(x)\,\mathrm{d}x\,.$$

Sketch. Uses additivity and the fundamental theorem of calculus.

Theorem 25 (Taylor's Theorem, Remainder's Version). Suppose $f', f'', \ldots, f^{(n)}$ exist on [a, b] and $f^{(n+1)} \in \mathcal{R}[a, b]$. Then

$$f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + R_n,$$

where $R_n := \frac{1}{n!} \int_a^b f^{(n+1)}(t)(b-t)^n dt$.

5 Sequences of Functions

A good motivation to keep in mind with the "types" of function-sequence convergence is to answer the question: when can we exchange limits of derivatives of functions and derivatives of limits of functions? What about integrals? What about summations (see next section)? Ie, when does $\lim_{n\to\infty} f'_n(x) = \frac{d}{dx} \lim_{n\to\infty} f_n(x)$, etc.

Definition 23 (Pointwise, Uniform Convergence). We say $f_n \to f$ pointwise on E if $\forall x \in E$, $f_n(x) \to f(x)$ as $n \to \infty$.

We say $f_n \to f$ uniformly on *E* if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \ge N, x \in E$, $|f_n(x) - f(x)| < \varepsilon$.

Remark 17. Pointwise doesn't care about the "rate of convergence"; as long as each point converges eventually, we're good. Uniform convergence needs all points to converge "at the same rate" (so to speak).

A good example to keep in mind is $f_n := \begin{cases} 2nx & 0 \le x \le \frac{1}{2n} \\ 0 & x > \frac{1}{2n} \end{cases}$ on [0, 1], which converges pointwise to 0 but not uniformly.

A good trick for disproving uniform convergence of $f_n \to f$ is by showing $f_n(x_0)$ constant and $\neq f(x_0)$ for all n. For instance, $f_n(x) \coloneqq \sin(\frac{x}{n}) \to 0$ pointwise, but $f_n(\frac{n\pi}{2}) = 1 \forall n$ so the convergence os not uniform.

Proposition 15. *Uniform* \implies *pointwise convergence.*

Theorem 26. The metric space of continuous functions C([a, b]) complete with respect to $d_{\infty}(f, g) := \sup_{x \in [a,b]} |f(x) - g(x)|.$

Theorem 27 (\star Interchange of Limits). Let $J \subseteq \mathbb{R}$ be a bounded interval such that $\exists x_0 \in J$: $f_n(x_0) \to f(x_0)$. Suppose $f'_n(x) \to g(x)$ uniformly on J. Then, $\exists f : f_n(x) \to f(x)$ uniformly on J, f(x) differentiable on J, and moreover $f'_n(x) = g(x) \forall x \in J$. **Theorem 28** (\star Interchange of Integrals). Let $f_n \in \mathcal{R}[a, b], f_n \to f$ uniformly on [a, b]. Then $f \in \mathcal{R}[a, b]$ and $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$

Theorem 29 (Bounded Convergence). Let $f_n \in \mathcal{R}[a, b], f_n \to f \in \mathcal{R}[a, b]$ (not necessarily uniform). Suppose $\exists B > 0$ s.t. $|f_n(x)| \leq B \forall x \in [a, b]$ and $\forall n \in \mathbb{N}$, then $\int_a^b f_n \to \int_a^b f$ as $n \to \infty$.

Remark 18. This provides a weaker condition, but equivalent result as the previous theorem, although remark now that we need the limit function itself to be in $\mathcal{R}[a, b]$, which was a result, not a necessity, of the previous theorem. In general, uniform continuity very strong, but leads to helpful results.

Theorem 30 (Dimi's). If $f_n \in C([a, b])$, $f_n(x)$ monotone (as a sequence), and $f_n \to f \in C([a, b])$, then $f_n \to f$ uniformly.

6 INFINITE SERIES

Definition 24 (Covergence of Series). Let $\{x_j\} \in X$ -normed vector space over \mathbb{R} . We say $\sum_{j=1}^{\infty} x_j$ converges absolutely iff $\sum_{j=1}^{\infty} ||x_j|| < +\infty$. In particular, if $X = \mathbb{R}$, then $|| \cdot || = |\cdot|$. We say $\sum_{j=1}^{\infty} x_j$ converges conditionally if $\sum_{j=1}^{\infty} x_j < +\infty$, but $\sum_{j=1}^{\infty} ||x_j|| = +\infty$.

Proposition 16. Any rearrangement of an absolutely convergent series gives the same sum. Conversely, the order of summation of a conditionally convergent summation can be rearranged such as to equal any real number.

- **Proposition 17** (Absolute Convergence Tests). *Comparison Test:* let x_n , y_n be nonzero real sequences and $r := \lim \left| \frac{x_n}{y_n} \right|$. If such a limit exists, then if
 - (a) $r \neq 0$, $\sum_n x_n$ absolutely convergent $\iff \sum_n y_n$ absolutely convergent.

(b) r = 0, $\sum_n y_n$ absolutely convergent $\implies \sum_n x_n$ absolutely convergent.

• *Root Test:* if $\exists r < 1$ s.t. $|x_n|^{1/n} \leq r \forall n \geq K$ -sufficiently large, then $\sum_{n=K}^{\infty} |x_n|$ converges. Conversely, if $|x_n|^{1/n} \geq 1$ for $n \geq K$ -sufficiently large, $\sum_n x_n$ diverges.

- **Ratio Test:** if $x_n \neq 0$ and $\exists 0 < r < 1$ s.t. $\left|\frac{x_{n+1}}{x_n}\right| \leq r$ for $n \geq K$ sufficiently large, $\sum_n x_n$ absolutely convergent. Conversely, if $\left|\frac{x_{n+1}}{x_n}\right| \geq 1$ for $n \geq K$ sufficiently large, then $\sum_n x_n$ diverges.
- Integral Test: if $f(x) \ge 0$ non-increasing/non-decreasing function of $x \ge 1$, $\sum_{k=1}^{\infty} f(k)$ converges iff $\lim_{k\to\infty} \int_{1}^{k} f(x) dx$ finite.
- * *Raube's Test:* let $x_n \neq 0$.
 - (a) If $\exists a > 1 \text{ s.t. } \left| \frac{x_{n+1}}{x_n} \right| \le 1 \frac{1}{n} \forall n \ge K$ -sufficiently large, then $\sum_n x_n$ converges absolutely.
 - (b) If $\exists a \leq 1 \text{ s.t. } \left| \frac{x_{n+1}}{x_n} \right| \ge 1 \frac{1}{n} \forall n \ge K$ -sufficiently large, $\sum_n x_n$ does not converge *absolutely*.

Remark 19. Proofs of these tests aren't really important (Dima-speaking), but knowing the conditions in which they apply is.

- **Proposition 18** (Tests for Non-Absolute Convergence). Alternating Series: if x > 0, $x_{n+1} \le x_n$ such that $\lim_{n\to\infty} x_n = 0$, then $\sum_n (-1)^n x_n$ converges.
 - Dirichlet's Test: if x_n decreasing with limit 0, and the partial sum $s_n := y_1 + \cdots + y_n$ is bounded, then $\sum_n x_n y_n$ converges.
 - *Abel's Test:* let x_n convergent and monotone, and suppose $\sum_n y_n$ converges. Then $\sum_n x_n y_n$ also converges.

Definition 25 (Convergence of Series of Functions). We say a series $\sum_n f_n(x)$ converges absolutely to some g(x) on E if $\sum_n |f_n(x)|$ converges for all $x \in E$.

We say that the convergence is uniform if it is uniform for any $x \in E$, ie $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t. $\forall n \ge N, x \in E, |g(x) - \sum_n f_n(x)| < \varepsilon$.

Proposition 19 (Interchanging Integrals and Summations). Suppose for $f_n : [a, b] \to \mathbb{R}$, $\sum_n f_n(x) \to g(x)$ uniformly and $f_n \in \mathcal{R}[a, b]$. Then $\int_a^b g(x) = \sum_{n=1}^{\infty} \int_a^b f_n(x) dx$. **Proposition 20** (Interchanging Derivatives and Summations). Let $f_n : [a, b] \to \mathbb{R}, f'_n \exists$, $\sum_n f(x)$ converges for some [a, b] and $\sum_n f'_n(x)$ converges uniformly. Then, there exists some $g : [a, b] \to \mathbb{R}$ such that $\sum_n f_n \to g$ uniformly, g differentiable, and $g'(x) = \sum_n f'_n(x)$, all on [a, b].

Theorem 31 (* Cauchy Criterion of Series). $f_n(x) : D \to \mathbb{R}$ converges uniformly on D iff $\forall \varepsilon > 0, \exists N \ s.t. \ \forall m, n \ge N, \sum_{i=n+1}^m f_i(x) < \varepsilon \ \forall x \in D.$

Proposition 21 (Weierstrass M-Test). If $|f_n(x)| \leq M_n \forall x \in D \subseteq \mathbb{R}$ and $\sum_n M_n < +\infty$, then $\sum_n f_n(x)$ converges uniformly on D.

Definition 26 (Power Series). A function of the form $f(x) := \sum_{n=0}^{\infty} a_n (x - c)^n$ is said to be a power series centered at *c*.

Put $\rho := \limsup_{n \to \infty} \sqrt[n]{|a_n|}$, and put

$$R := \begin{cases} \frac{1}{\rho} & 0 < \rho < +\infty \\ 0 & \rho = +\infty \\ \infty & \rho = 0 \end{cases}$$

We call R the radius of convergence of f.

Theorem 32 (\star Cauchy-Hadamard). Let *R* be the radius of converges of *f*. Then, *f*(*x*) converges if |x - c| < R, and diverges if |x - c| > R.

Sketch. Apply the root test to the definition of *R*.

Remark 20. If |x - c| = R, the theorem is inconclusive, and we need to manually check.