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1 Point-Set Topology

Topology is about abstracting openness. It can typically suffice to consider open, closed

sets in R for intuition, but is obviously not all-general.

Definition 1 (Metric Space). A space 𝑋 equipped with a function 𝑑 : 𝑋 × 𝑋 → [0,∞) is

called a metric space and 𝑑 a metric or distance if

• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) ⩾ 0

• 𝑑(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦

• 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ⩾ 𝑑(𝑥, 𝑧)

for any 𝑥, 𝑦, 𝑧 ∈ 𝑋.
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Definition 2 (Normed Vector Space). A function | | · | | : 𝑋 → R defined on a vector space

𝑋 over R is a norm if

• | |𝑥 | | ⩾ 0

• | |𝑥 | | = 0 ⇐⇒ 𝑥 = 0

• | |𝑐 · 𝑥 | | = |𝑐 | | |𝑥 | |

• | |𝑥 + 𝑦 | | ⩽ | |𝑥 | | + ||𝑦 | |,

for any 𝑥, 𝑦 ∈ 𝑋, 𝑐 ∈ R.

Remark 1. We can naturally extend this to arbitary fields, but seeing as this is a course in

Real Analysis, we won’t.

Proposition 1. For a normed vector space (𝑋, | | · | |), 𝑑(𝑥, 𝑦) ..= | |𝑥 − 𝑦 | | is a metric on 𝑋. We

call such a metric the one "induced" by the norm.

Definition 3 (Topological Set). A set 𝑋 is a topological set if we have a collection 𝜏 of

subsets of 𝑋, called open sets, such that

• ∅ ∈ 𝜏, 𝑋 ∈ 𝜏

• For 𝐴𝛼 ∈ 𝜏 for 𝛼 in any 𝐼 (potentially infinite),
⋃

𝛼∈𝐼 𝐴𝛼 ∈ 𝜏

• For 𝐴𝛼 ∈ 𝜏 for 𝛼 ∈ 𝐽 where J finite, then
⋂

𝛼∈𝐽 𝐴𝛼 ∈ 𝜏

ie, arbitrary unions of open sets are open, and finite intersections of open sets are open.

Remark 2. Keep R in mind when initially working with these definitions; for instance, the

set 𝐴𝑛 ..= (0, 1
𝑛 ) open in R for any 𝑛 ∈ N, but

⋂
𝑛∈N 𝐴𝑛 = {0} which is closed.

Remark 3. Complemented each of these requirements gives similar definitions for closed

sets of 𝑋.
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Definition 4 (Topology on a Metric Space). A subset𝐴 ⊆ 𝑋 open iff ∀ 𝑥 ∈ 𝐴, ∃𝑟 = 𝑟(𝑥) ∈ R,
where 𝑟(𝑥) > 0, such that 𝐵(𝑥, 𝑟(𝑥)) ..= {𝑦 ∈ 𝑥 : 𝑑(𝑥, 𝑦) < 𝑟(𝑥)} ⊆ 𝐴. We call such a 𝐵 an

open ball, and 𝐵 a closed ball with the same definition replacing the strict inequality with

⩽.

Remark 4. While many of the spaces we look at our metric spaces that induce a topology as

such, not all topological spaces are metric spaces. Indeed, "metrizability" (ie, equipping

a topological space 𝑋 with a metric that respects the open sets) is not a trivial activity.

Definition 5 (Equivalence of Metrics). We say two metrics on 𝑋 are equivalent if they

admit the same topology; a sufficient condition is that, ∀ 𝑥 ≠ 𝑦 ∈ 𝑋, ∃1 < 𝐶 < ∞ such

that 1
𝐶 <

𝑑1(𝑥,𝑦)
𝑑2(𝑥,𝑦) < 𝐶, then 𝑑1, 𝑑2 equivalent, where 𝐶 independent of 𝑥, 𝑦.

Definition 6 (★ Interior, Boundary, Closure). Let 𝑋-topological space, 𝐴 ⊆ 𝑋, 𝑥 ∈ 𝑋.

• If ∃𝑈-open s.t. 𝑥 ∈ 𝑈 ⊆ 𝐴, then we write 𝑥 ∈ Int(𝐴), the interior of 𝐴.

• If ∃𝑉-open s.t. 𝑥 ∈ 𝑉 ⊆ 𝐴𝐶 , then 𝑥 ∈ Int(𝐴𝐶).

• If ∀𝑈-open s.t. 𝑥 ∈ 𝑈,𝑈 ∩𝐴 ≠ ∅ and𝑈 ∩𝐴𝐶 ≠ ∅, then 𝑥 ∈ 𝜕𝐴, the boundary of 𝐴.

We put 𝐴 ..= Int(𝐴) ∪ 𝜕𝐴, the closure of 𝐴. Equivalently, 𝑥 ∈ 𝐴 ⇐⇒ for every open set

𝑈 : 𝑥 ∈ 𝑈 ,𝑈 ∩ 𝐴 ≠ ∅. We call 𝑥 ∈ 𝐴 the limit points of 𝐴.
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Remark 5. The limit point interpretation of the closure can be more intuitive; the points

that we can get "arbitrary close to" are the closure. For instance, (𝑎, 𝑏) = [𝑎, 𝑏] ⊆ R with

the standard topology.

Proposition 2. Let 𝐴 ⊆ 𝑋-topological space. Then, Int(𝐴) is open, the largest open set contained

in 𝐴, the union of all open sets contained in 𝐴, and Int(Int(𝐴)) = Int(𝐴). Also, 𝐴 closed, the

smallest closed set that contains 𝐴, 𝐴 the intersection of all closed sets that 𝐴 is contained in, and

𝐴 = 𝐴.

Corollary 1. 𝐴 open ⇐⇒ 𝐴 = Int(𝐴) and 𝐴 closed ⇐⇒ 𝐴 = 𝐴

Remark 6. Remark that these are not exclusive, nor indeed the only possibilities.

Definition 7 (Basis). A basis for a topology 𝑋 with open sets 𝜏 is a collection 𝐵 ⊆ 𝜏 such

that every𝑈 ∈ 𝜏 a union of sets in 𝐵.

Remark 7. Don’t think about bases for vector spaces in this regard - there is no "minimality"

requirement.

Keep in mind {(𝑎, 𝑏) : −∞ < 𝑎 < 𝑏 < ∞}, a basis of topology on R.

Proposition 3. For a metric space (𝑋, 𝑑), {𝐵(𝑥, 𝑟) : 𝑥 ∈ 𝑋, 𝑟 > 0} a basis of topology.

Definition 8 (Subspace Topology). For a subset 𝑌 ⊆ 𝑋-topological space, we define the

subspace topology on 𝑌 as 𝜏𝑌 ..= {𝑌 ∩𝑈 : 𝑈 ∈ 𝜏}.

Definition 9 (★Continuous). For 𝑋,𝑌-topological spaces, a function 𝑓 : 𝑋 → 𝑌 is contin-

uous iff ∀𝑉-open in 𝑌, 𝑓 −1(𝑉)-open in 𝑋.

Remark 8. One can verify that this is consistent with the 𝜀 − 𝛿 definition of continuity for

functions on R.

Theorem 1 (Continuity of Composition). If 𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑍 continuous, 𝑔 ◦ 𝑓

continuous.

Remark 9. Note how much easier this is to prove via toplogical spaces than the 𝜀 − 𝛿

definition.
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Definition 10 (Product Space). For an index set 𝐼 and 𝑋𝛼 , 𝛼 ∈ 𝐼, we define
∏

𝛼∈𝐼 𝑋𝛼 as a

product space; 𝐼 may be finite or infinite.

Proposition 4. A basis for the product space is given by cyliders of the form 𝐴 =
∏

𝛼∈𝐽 𝐴𝛼 ×∏
𝛼 ∉ 𝐽𝑋𝛼 for 𝐴𝛼-open in 𝑋𝛼, where 𝐽 ⊆ 𝐼-finite.

Definition 11 (Compact). A set 𝐴 ⊆ 𝑋 is compact if every cover has a finite subcover, that

is

𝐴 ⊆
⋃
𝛼∈𝐼

𝑈𝛼-open =⇒ ∃{𝛼1, . . . , 𝛼𝑛} ⊆ 𝐼 s.t. 𝐴 ⊆
𝑛⋃
𝑖=1

𝑈𝛼𝑖 .

Proposition 5. Closed intervals [𝑎, 𝑏] compact in R.

Proposition 6. 𝐴 ⊆ R𝑛 compact ⇐⇒ closed and bounded.

Definition 12 (Connected). 𝑋 is said to not be connected if 𝑋 = 𝑈 ∪ 𝑉 for 𝑈,𝑉 open,

nonempty, disjoint. If 𝑋 cannot be written as such, 𝑋 is said to be connected.

Theorem 2. If 𝑋 connected and 𝑓 : 𝑋 → 𝑌, then 𝑓 (𝑋) connected in 𝑌.

Proposition 7. Intervals in R are connected.

Theorem 3 (Intermediate Value Theorem). If 𝑋 connected, 𝑓 : 𝑋 → R continuous, then 𝑓

takes intermediate value; if 𝑎 = 𝑓 (𝑥), 𝑏 = 𝑓 (𝑦) for 𝑥, 𝑦 ∈ 𝑋 with 𝑎 < 𝑏, then for any 𝑎 < 𝑐 < 𝑏

∃𝑧 ∈ 𝑋 s.t. 𝑓 (𝑧) = 𝑐.

Theorem 4. For 𝑋 compact, 𝑓 : 𝑋 → 𝑌 continuous, 𝑓 (𝑋) compact in 𝑌.

Proposition 8. For 𝑋 compact and 𝑓 : 𝑋 → R, 𝑓 attains both max and min on 𝑋.

Definition 13 (Path Connected). A set 𝐴 ⊆ 𝑋 is path connected if for any 𝑥, 𝑦 ∈ 𝐴, ∃ 𝑓 :

[𝑎, 𝑏] → 𝑋 continuous such that 𝑓 (𝑎) = 𝑥, 𝑓 (𝑏) = 𝑦 𝑓 ([𝑎, 𝑏]) ⊆ 𝐴.

Theorem 5. Path connected =⇒ connected.

For open sets in R𝑛 , the converse holds too.

Definition 14 (Connected Component, Path Component). For 𝑥 ∈ 𝑋, the connected com-

ponent of 𝑥 is the largest connected subset of 𝑋 containing 𝑥 and the path component of

𝑥 is the largest path connected subset of 𝑋 containing 𝑥.
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2 Metric Spaces

We discuss mostly the metric on ℓ𝑝 space and notions of completeness, as well as some

topological results specific to metric spaces, namely compactness.

Definition 15 (ℓ𝑝). For 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 and 1 ⩽ 𝑝 ⩽ +∞, we define

| |𝑥 | |𝑝 ..=

(
𝑛∑
𝑖=1

|𝑥𝑖 |𝑝
) 1
𝑝

, | |𝑥 | |∞ ..=
𝑛max
𝑖=1

|𝑥𝑖 | ,

and similarly, for sequences 𝑥 = (𝑥1, . . . , 𝑥𝑛 , . . . ),

| |𝑥 | |𝑝 ..=

( ∞∑
𝑖=1

|𝑥𝑖 |𝑝
) 1
𝑝

, | |𝑥 | |∞ ..=
∞sup
𝑖=1

|𝑥𝑖 | ,

and define ℓ𝑝 ..= {𝑥 : | |𝑥 | |𝑝 < +∞}. It can be shown that these are well-defined norms on

their respective spaces.

Theorem 6 (Holder, Minkowski’s Inequalities). For 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) and

𝑝, 𝑞 such that 1
𝑝 + 1

𝑞 = 1, then

Holder’s: ⟨𝑥, 𝑦⟩ =
����� 𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ | |𝑥 | |𝑝 | |𝑦 | |𝑞

and

Minkowski’s: | |𝑥 + 𝑦 | |𝑝 ⩽ | |𝑥 | |𝑝 + ||𝑦 | |𝑝 .

The identical inequalities hold for infinite sequences.

Definition 16 (Completeness). We say a metric space is complete if every Cauchy sequence

converges to a limit point in the space.

Proposition 9. For {𝑥𝑛}𝑛∈N, ℓ𝑝 complete for any 1 ⩽ 𝑝 ⩽ +∞.

Proposition 10. If 𝑝 < 𝑞, ℓ𝑝 ⊆ ℓ𝑞 .
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Definition 17 (Contraction Mapping). For a metric space (𝑋, 𝑑), a function 𝑓 : 𝑋 → 𝑋 is

a contraction mapping if there exists 0 < 𝑐 < 1 such that

𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) ⩽ 𝑐 · 𝑑(𝑥, 𝑦)

for any 𝑥, 𝑦 ∈ 𝑋.

Theorem 7. Let (𝑋, 𝑑) be a complete metric space, 𝑓 : 𝑋 → 𝑋 a contraction. Then, there exist a

unique fixed point 𝑧 of 𝑓 such that 𝑓 (𝑧) = 𝑧; ie lim𝑛→∞ 𝑓 𝑛(𝑥) = lim𝑛→∞ 𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓 (𝑥) = 𝑧

for any 𝑥 ∈ 𝑋.

Theorem 8. ℓ𝑝 complete.

Remark 10. It can be kind of funky to work with sequences in ℓ𝑝 , since the elements of ℓ𝑝
themselves sequences so we have "sequences of sequences".

Definition 18 (Totally bounded). A metric space 𝑋 is said to be totally bounded if ∀ 𝜀 >

0∃𝑥1, . . . , 𝑥𝑛 ∈ 𝑋, 𝑛 = 𝑛(𝜀) such that
⋃𝑛
𝑖=1 𝐵(𝑥𝑖 , 𝜀) = 𝑋.

Definition 19 (Sequentially compact). A metric space 𝑋 is said to be sequentially compact

if every sequence has a convergent subsequence.

Theorem 9 (★ Equivalent Notions of Compactness in Metric Spaces). Let (𝑋, 𝑑) a metric

space. TFAE:

• 𝑋 compact

• 𝑋 complete and totally bounded

• 𝑋 sequentially compact

Remark 11. This is for a metric space, not a general topological space! Hopefully this is

clear because some of the requirements necessitate a distance.
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3 Differentiation

Definition 20 (Differentiable). 𝑓 (𝑥) differentiable at 𝑐 if lim𝑥→𝑐
𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 exists, and if so

we denote the limit 𝑓 ′(𝑐).
Alternatively, one can view differentiation as a linear map between spaces of differen-

tiable functions.

Theorem 10. Differentiable =⇒ continuous.

Proof. Short enough to write the full proof; lim𝑥→𝑐( 𝑓 (𝑥) − 𝑓 (𝑐)) = lim𝑥→𝑐(𝑥 − 𝑐) 𝑓 (𝑥)− 𝑓 (𝑐)𝑥−𝑐 =

0 · 𝑓 ′(𝑐) = 0. □

Theorem 11 (Caratheodory’s). For 𝑓 : 𝐼 → R, 𝑐 ∈ 𝐼, 𝑓 differentiable at 𝑐 iff ∃𝜑 : 𝐼 → R : 𝜑

continuous at 𝑐, 𝑓 (𝑥) − 𝑓 (𝑐) = 𝜑(𝑥)(𝑥 − 𝑐).

Sketch. Its worth recalling the definition of 𝜑 for the forward implication,

𝜑(𝑥) ..=


𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 𝑥 ≠ 𝑐

𝑓 ′(𝑐) 𝑥 = 𝑐

.

The converse follows by taking limits. □

Remark 12. While not a particularly enlightening result, used in proofs of the chain rule,

etc.

Theorem 12 (Chain Rule). Let 𝑓 : 𝐽 → R, 𝑔 : 𝐼 → 𝑅 s.t. 𝑓 (𝐽) ⊆ 𝐼. If 𝑓 (𝑥) differentiable at 𝑐

and 𝑔(𝑦) at 𝑓 (𝑐), 𝑔 ◦ 𝑓 differentiable at 𝑐 with (𝑔 ◦ 𝑓 )′(𝑐) = 𝑔′( 𝑓 (𝑐)) · 𝑓 ′(𝑐).

Sketch. Apply Caratheodory’s to 𝑓 at 𝑐 and 𝑔 at 𝑓 (𝑐), and compose. □

Theorem 13 (Rolle’s). Let 𝑓 : [𝑎, 𝑏] → R continuous. If 𝑓 ′(𝑥) exists on (𝑎, 𝑏) and 𝑓 (𝑎) =

𝑓 (𝑏) = 0, ∃𝑐 ∈ (𝑎, 𝑏) : 𝑓 ′(𝑐) = 0.

Sketch. If constant function, done. Else, assuming function positive, it obtains a maximum,

and thus its derivative 0 at this point. □
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Theorem 14 (★ Mean Value). Let 𝑓 continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Then,

∃𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑏) − 𝑓 (𝑎) = 𝑓 ′(𝑐)(𝑏 − 𝑎).

Sketch. Let 𝜙(𝑥) ..= 𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 (𝑏)− 𝑓 (𝑎)
(𝑏−𝑎) (𝑥 − 𝑎). Then 𝜙(𝑎) = 𝜙(𝑏) = 0 so applying Rolle’s

∃𝑐 ∈ (𝑎, 𝑏) : 𝜑′(𝑐) = 0 = 𝑓 ′(𝑥) − 𝑓 (𝑏)− 𝑓 (𝑎)
𝑏−𝑎 . The proof is done after rearranging. □

Proposition 11 (L’Hopital’s). If 𝑓 , 𝑔 : [𝑎, 𝑏] → Rwith 𝑓 (𝑎) = 𝑔(𝑎) = 0, 𝑔(𝑥) ≠ 0 on 𝑎 < 𝑥 < 𝑏,

𝑓 , 𝑔 differentiable at 𝑥 = 0 with 𝑔′(𝑎) ≠ 0, then lim𝑥→𝑎+
𝑓 (𝑥)
𝑔(𝑥) exists and is equal to 𝑓 ′(𝑎)

𝑔′(𝑎) .

Remark 13. Other versions exist, but this is certainly one of them.

Theorem 15 (★Taylor’s). Let 𝑓 ∈ 𝐶𝑛([𝑎, 𝑏]) such that 𝑓 (𝑛+1)(𝑥) exists on (𝑎, 𝑏). Let 𝑥0 ∈ [𝑎, 𝑏],
then, for any 𝑥 ∈ [𝑎, 𝑏], ∃𝑐 between 𝑥, 𝑥0 such that

𝑓 (𝑥) = 𝑓 (𝑥0)+ 𝑓 ′(𝑥0)(𝑥− 𝑥0)+
𝑓 ′′(𝑥0)

2! (𝑥− 𝑥0)2+· · ·+
𝑓 (𝑛)(𝑥0)
𝑛! (𝑥− 𝑥0)𝑛 +

𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)! (𝑥− 𝑥0)𝑛+1.

Corollary 2. Let 𝑥0 ∈ [𝑎, 𝑏]. With the same assumptions as Taylor’s (but in a neighborhood of

𝑥0), with 𝑓 ′(𝑥0) = 𝑓 ′′(𝑥0) = · · · = 𝑓 (𝑛−1)(𝑥0) = 0 and 𝑓 (𝑛)(𝑥0) ≠ 0, then

• 𝑛 even; then 𝑓 has a local minimum at 𝑥0 if 𝑓 (𝑛)(𝑥0) > 0 and a local max if 𝑓 (𝑛)(𝑥0) < 0.

• 𝑛 odd; neither.

4 Integration

Its all just rectangles.

Definition 21 (Riemann Integration). Consider an interval (𝑎, 𝑏). We call a subdivision

𝒫 ..= {𝑎 = 𝑥0, 𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛 = 𝑏} a partition, and ¤𝒫 a marked partition if in addition we

are given a point 𝑡𝑖 ∈ (𝑥𝑖 , 𝑥𝑖+1] for each interval in ¤𝒫.

We put diam(𝒫) ..= max𝑛
𝑖=1 |𝑥𝑖 − 𝑥𝑖−1 |.

We define the Riemann sum 𝑆( 𝑓 , ¤𝒫) ..=
∑𝑛
𝑖=1 𝑓 (𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1), and say that 𝑓 Riemann

integrable on [𝑎, 𝑏] if 𝑆( 𝑓 , ¤𝒫) → 𝐿 as diam( ¤𝒫) → 0 for any choice of tag 𝑡𝑖 , and write

𝑓 ∈ ℛ([𝑎, 𝑏])
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More precisely, if ∀ 𝜀 > 0, ∃𝛿 > 0 : diam(𝒫) < 𝛿, then for any 𝑡𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1],��𝐿 − 𝑆( 𝑓 , ¤𝒫)
�� < 𝜀. We then say the (Riemann) integral of 𝑓 over [𝑎, 𝑏] is 𝐿 and write∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥 = 𝐿.

Proposition 12. Riemann integrals are unique, linear in 𝑓 (𝑥), and respect inequalities (if 𝑓 ⩽ 𝑔

on [𝑎, 𝑏],
∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥 ⩽

∫ 𝑏

𝑎
𝑔(𝑥)d𝑥 if both in ℛ([𝑎, 𝑏]))

Proposition 13 (★). 𝑓 ∈ ℛ[𝑎, 𝑏] =⇒ 𝑓 bounded on [𝑎, 𝑏]

Proposition 14 (★Cauchy Criterion for Integrability). 𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ ∀ 𝜀 > 0, ∃𝛿 > 0 : if
¤𝑃 and ¤𝑄 are tagged partitions of [𝑎, 𝑏] s.t. diam ¤𝑃 < 𝛿 and diam ¤𝑄 < 𝛿, then

��𝑆( 𝑓 , ¤𝑃) − 𝑆( 𝑓 , ¤𝑄)
�� <

𝜀

Remark 14. Ala Cauchy Sequence.

Theorem 16 (Squeeze Theorem). 𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ ∀ 𝜀 > 0, ∃𝛼𝜀 , 𝜔𝜀 ∈ ℛ[𝑎, 𝑏] : 𝛼𝜀 ⩽ 𝑓 ⩽

𝜔𝜀 and
∫ 𝑏

𝑎
(𝜔𝜀 − 𝛼𝜀) < 𝜀.

Lemma 1. Let 𝐽 ..= [𝑐, 𝑑] ⊆ [𝑎, 𝑏] and 𝜑𝐽(𝑥) ..=


1 𝑥 ∈ 𝐽

0 𝑥 ∉ 𝐽

be the indicator function of 𝐽. Then

𝜑𝐽 ∈ ℛ[𝑎, 𝑏] and
∫ 𝑏

𝑎
𝜑𝐽 = 𝑑 − 𝑐.

Remark 15. Helpful for "approximations"; follows by linearity, induction that step functions

(ie sums of indicator functions times constants) are integrable.

Theorem 17 (★ Continuous). 𝑓 continuous on [𝑎, 𝑏] =⇒ 𝑓 ∈ ℛ[𝑎, 𝑏]

Sketch. Continuity on a closed interval gives uniform continuity and so a "universal 𝛿";

then, for any partition, take the 𝑥 such that 𝑓 attains its minimum and maximum, and

define a 𝛼𝜀, 𝜔𝜀 as the sum of indicator functions taking the minimum, maximum of

𝑓 respectively on each partition. Then apply the previous theorem and the squeeze

theorem. □

Theorem 18 (Additivity). 𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ 𝑓 ∈ ℛ[𝑎, 𝑐] and 𝑓 ∈ ℛ[𝑐, 𝑏], and
∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥 =∫ 𝑐

𝑎
𝑓 (𝑥)d𝑥 +

∫ 𝑏

𝑐
𝑓 (𝑥)d𝑥.
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Theorem 19 (★ Fundamental Theorem of Calculus). Let 𝐹, 𝑓 : [𝑎, 𝑏] → R and 𝐸 ⊆ [𝑎, 𝑏]
a finite set, such that 𝐹 continuous on [𝑎, 𝑏], 𝐹′(𝑥) = 𝑓 (𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏] \ 𝐸, 𝑓 ∈ ℛ[𝑎, 𝑏]. Then∫ 𝑏

𝑎
𝑓 (𝑥) = 𝐹(𝑏) − 𝐹(𝑎). We call 𝐹 the "primitive" of 𝑓 .

Theorem 20. For 𝑓 ∈ ℛ[𝑎, 𝑏] and any 𝑧 ∈ [𝑎, 𝑏], put 𝐹(𝑧) ..=
∫ 𝑧

𝑎
𝑓 (𝑥)d𝑋. Then, 𝐹 continuous

on [𝑎, 𝑏].

Theorem 21 (★Fundamental Theorem of Calculus p2). For 𝑓 ∈ ℛ[𝑎, 𝑏] continuous at 𝑐, then

𝐹(𝑧) differentiable at 𝑐 and 𝐹′(𝑐) = 𝑓 (𝑐).

Definition 22 (Lebesgue Measure). We say a set𝐴 ⊆ R has Lebesgue measure 0 iff ∀ 𝜀 > 0,

𝐴 can be covered by a union of intervals 𝐽𝑘 such that
∑
𝑘 |𝐽𝑘 | ⩽ 𝜀. We then call 𝐴 a "null

set".

In particular, any countable set is a null set.

Theorem 22 (★ Lebesgue Integrability Criterion). Let 𝑓 : [𝑎, 𝑏] → R be bounded. Then

𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ the set of discontinuities of 𝑓 has Lebesgue measure 0.

Remark 16. In particular, remark that continuity a stronger requirement than integrability.

Theorem 23 (Composition). If 𝑓 ∈ ℛ[𝑎, 𝑏], 𝜑 : [𝑐, 𝑑] → R continuous and 𝑓 ([𝑎, 𝑏]) ⊆ [𝑐, 𝑑],
then 𝜑 ◦ 𝑓 ∈ ℛ[𝑎, 𝑏].

Theorem 24 (Integration by Parts). If 𝐹, 𝐺 differentiable [𝑎, 𝑏] with 𝑓 ..= 𝐹′, 𝑔 ..= 𝐺′, and

𝑓 , 𝑔 ∈ ℛ[𝑎, 𝑏], then ∫ 𝑏

𝑎

𝑓 (𝑥)𝐺(𝑥)d𝑥 = 𝐹(𝑥)𝐺(𝑥)
����𝑏
𝑎

−
∫ 𝑏

𝑎

𝐹(𝑥)𝑔(𝑥)d𝑥 .

Sketch. Uses additivity and the fundamental theorem of calculus. □

Theorem 25 (Taylor’s Theorem, Remainder’s Version). Suppose 𝑓 ′, 𝑓 ′′, . . . , 𝑓 (𝑛) exist on

[𝑎, 𝑏] and 𝑓 (𝑛+1) ∈ ℛ[𝑎, 𝑏]. Then

𝑓 (𝑏) = 𝑓 (𝑎) +
𝑓 ′(𝑎)
1! (𝑏 − 𝑎) +

𝑓 ′′(𝑎)
2! (𝑏 − 𝑎)2 + · · · +

𝑓 (𝑛)(𝑎)
𝑛! (𝑏 − 𝑎)𝑛 + 𝑅𝑛 ,
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where 𝑅𝑛 ..= 1
𝑛!

∫ 𝑏

𝑎
𝑓 (𝑛+1)(𝑡)(𝑏 − 𝑡)𝑛 d𝑡.

5 Sequences of Functions

A good motivation to keep in mind with the "types" of function-sequence convergence

is to answer the question: when can we exchange limits of derivatives of functions and

derivatives of limits of functions? What about integrals? What about summations (see

next section)? Ie, when does lim𝑛→∞ 𝑓 ′𝑛(𝑥) = d
d𝑥 lim𝑛→∞ 𝑓𝑛(𝑥), etc.

Definition 23 (Pointwise, Uniform Convergence). We say 𝑓𝑛 → 𝑓 pointwise on𝐸 if ∀ 𝑥 ∈ 𝐸,

𝑓𝑛(𝑥) → 𝑓 (𝑥) as 𝑛 → ∞.

We say 𝑓𝑛 → 𝑓 uniformly on 𝐸 if ∀ 𝜀 > 0, ∃𝑁 ∈ N such that ∀𝑛 ⩾ 𝑁, 𝑥 ∈ 𝐸,

| 𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜀.

Remark 17. Pointwise doesn’t care about the "rate of convergence"; as long as each point

converges eventually, we’re good. Uniform convergence needs all points to converge "at

the same rate" (so to speak).

A good example to keep in mind is 𝑓𝑛 ..=


2𝑛𝑥 0 ⩽ 𝑥 ⩽ 1

2𝑛

0 𝑥 > 1
2𝑛

on [0, 1], which converges

pointwise to 0 but not uniformly.

A good trick for disproving uniform convergence of 𝑓𝑛 → 𝑓 is by showing 𝑓𝑛(𝑥0)
constant and ≠ 𝑓 (𝑥0) for all 𝑛. For instance, 𝑓𝑛(𝑥) ..= sin

(
𝑥
𝑛

)
→ 0 pointwise, but 𝑓𝑛(𝑛𝜋2 ) =

1∀𝑛 so the convergence os not uniform.

Proposition 15. Uniform =⇒ pointwise convergence.

Theorem 26. The metric space of continuous functions𝐶([𝑎, 𝑏]) complete with respect to 𝑑∞( 𝑓 , 𝑔) ..=

sup𝑥∈[𝑎,𝑏] | 𝑓 (𝑥) − 𝑔(𝑥)|.

Theorem 27 (★ Interchange of Limits). Let 𝐽 ⊆ R be a bounded interval such that ∃𝑥0 ∈ 𝐽 :

𝑓𝑛(𝑥0) → 𝑓 (𝑥0). Suppose 𝑓 ′𝑛(𝑥) → 𝑔(𝑥) uniformly on 𝐽. Then, ∃ 𝑓 : 𝑓𝑛(𝑥) → 𝑓 (𝑥) uniformly on

𝐽, 𝑓 (𝑥) differentiable on 𝐽, and moreover 𝑓 ′𝑛(𝑥) = 𝑔(𝑥) ∀ 𝑥 ∈ 𝐽.
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Theorem 28 (★ Interchange of Integrals). Let 𝑓𝑛 ∈ ℛ[𝑎, 𝑏], 𝑓𝑛 → 𝑓 uniformly on [𝑎, 𝑏]. Then

𝑓 ∈ ℛ[𝑎, 𝑏] and
∫ 𝑏

𝑎
𝑓𝑛(𝑥)d𝑥 →

∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥

Theorem 29 (Bounded Convergence). Let 𝑓𝑛 ∈ ℛ[𝑎, 𝑏], 𝑓𝑛 → 𝑓 ∈ ℛ[𝑎, 𝑏] (not necessarily

uniform). Suppose ∃𝐵 > 0 s.t. | 𝑓𝑛(𝑥)| ⩽ 𝐵∀ 𝑥 ∈ [𝑎, 𝑏] and ∀𝑛 ∈ N, then
∫ 𝑏

𝑎
𝑓𝑛 →

∫ 𝑏

𝑎
𝑓 as

𝑛 → ∞.

Remark 18. This provides a weaker condition, but equivalent result as the previous theo-

rem, although remark now that we need the limit function itself to be in ℛ[𝑎, 𝑏], which

was a result, not a necessity, of the previous theorem. In general, uniform continuity very

strong, but leads to helpful results.

Theorem 30 (Dimi’s). If 𝑓𝑛 ∈ 𝐶([𝑎, 𝑏]), 𝑓𝑛(𝑥)monotone (as a sequence), and 𝑓𝑛 → 𝑓 ∈ 𝐶([𝑎, 𝑏]),
then 𝑓𝑛 → 𝑓 uniformly.

6 Infinite Series

Definition 24 (Covergence of Series). Let {𝑥 𝑗} ∈ 𝑋-normed vector space over R. We say∑∞
𝑗=1 𝑥 𝑗 converges absolutely iff

∑∞
𝑗=1 | |𝑥 𝑗 | | < +∞. In particular, if 𝑋 = R, then | | · | | = |·|.

We say
∑∞
𝑗=1 𝑥 𝑗 converges conditionally if

∑∞
𝑗=1 𝑥 𝑗 < +∞, but

∑∞
𝑗=1 | |𝑥 𝑗 | | = +∞.

Proposition 16. Any rearrangement of an absolutely convergent series gives the same sum.

Conversely, the order of summation of a conditionally convergent summation can be rearranged

such as to equal any real number.

Proposition 17 (Absolute Convergence Tests). • Comparison Test: let 𝑥𝑛 , 𝑦𝑛 be nonzero

real sequences and 𝑟 ..= lim
��� 𝑥𝑛𝑦𝑛 ���. If such a limit exists, then if

(a) 𝑟 ≠ 0,
∑
𝑛 𝑥𝑛 absolutely convergent ⇐⇒ ∑

𝑛 𝑦𝑛 absolutely convergent.

(b) 𝑟 = 0,
∑
𝑛 𝑦𝑛 absoltuely convergent =⇒ ∑

𝑛 𝑥𝑛 absolteuly convergent.

• Root Test: if ∃𝑟 < 1 s.t. |𝑥𝑛 |1/𝑛 ⩽ 𝑟 ∀𝑛 ⩾ 𝐾-sufficiently large, then
∑∞
𝑛=𝐾 |𝑥𝑛 | converges.

Conversely, if|𝑥𝑛 |1/𝑛 ⩾ 1 for 𝑛 ⩾ 𝐾-sufficiently large,
∑
𝑛 𝑥𝑛 diverges.
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• Ratio Test: if 𝑥𝑛 ≠ 0 and ∃0 < 𝑟 < 1 s.t.
��� 𝑥𝑛+1
𝑥𝑛

��� ⩽ 𝑟 for 𝑛 ⩾ 𝐾 sufficiently large,
∑
𝑛 𝑥𝑛

absolutely convergent. Conversely, if
��� 𝑥𝑛+1
𝑥𝑛

��� ⩾ 1 for 𝑛 ⩾ 𝐾 sufficiently large, then
∑
𝑛 𝑥𝑛

diverges.

• Integral Test: if 𝑓 (𝑥) ⩾ 0 non-increasing/non-decreasing function of 𝑥 ⩾ 1,
∑∞
𝑘=1 𝑓 (𝑘)

converges iff lim𝑘→∞
∫ 𝑘

1 𝑓 (𝑥)d𝑥 finite.

∗ Raube’s Test: let 𝑥𝑛 ≠ 0.

(a) If ∃𝑎 > 1 s.t.
��� 𝑥𝑛+1
𝑥𝑛

��� ⩽ 1 − 1
𝑛 ∀𝑛 ⩾ 𝐾-sufficiently large, then

∑
𝑛 𝑥𝑛 converges abso-

lutely.

(b) If ∃𝑎 ⩽ 1 s.t.
��� 𝑥𝑛+1
𝑥𝑛

��� ⩾ 1 − 1
𝑛 ∀𝑛 ⩾ 𝐾-sufficiently large,

∑
𝑛 𝑥𝑛 does not converge

absolutely.

Remark 19. Proofs of these tests aren’t really important (Dima-speaking), but knowing the

conditions in which they apply is.

Proposition 18 (Tests for Non-Absolute Convergence). • Alternating Series: if 𝑥 >

0, 𝑥𝑛+1 ⩽ 𝑥𝑛 such that lim𝑛→∞ 𝑥𝑛 = 0, then
∑
𝑛(−1)𝑛𝑥𝑛 converges.

• Dirichlet’s Test: if 𝑥𝑛 decreasing with limit 0, and the partial sum 𝑠𝑛
..= 𝑦1 + · · · + 𝑦𝑛 is

bounded, then
∑
𝑛 𝑥𝑛𝑦𝑛 converges.

• Abel’s Test: let 𝑥𝑛 convergent and monotone, and suppose
∑
𝑛 𝑦𝑛 converges. Then

∑
𝑛 𝑥𝑛𝑦𝑛

also converges.

Definition 25 (Convergence of Series of Functions). We say a series
∑
𝑛 𝑓𝑛(𝑥) converges

absolutely to some 𝑔(𝑥) on 𝐸 if
∑
𝑛 | 𝑓𝑛(𝑥)| converges for all 𝑥 ∈ 𝐸.

We say that the convergence is uniform if it is uniform for any 𝑥 ∈ 𝐸, ie ∀ 𝜀 > 0∃𝑁 ∈
N s.t. ∀𝑛 ⩾ 𝑁, 𝑥 ∈ 𝐸, |𝑔(𝑥) −∑

𝑛 𝑓𝑛(𝑥)| < 𝜀.

Proposition 19 (Interchanging Integrals and Summations). Suppose for 𝑓𝑛 : [𝑎, 𝑏] → R,∑
𝑛 𝑓𝑛(𝑥) → 𝑔(𝑥) uniformly and 𝑓𝑛 ∈ ℛ[𝑎, 𝑏]. Then

∫ 𝑏

𝑎
𝑔(𝑥) = ∑∞

𝑛=1
∫ 𝑏

𝑎
𝑓𝑛(𝑥)d𝑥.
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Proposition 20 (Interchanging Derivatives and Summations). Let 𝑓𝑛 : [𝑎, 𝑏] → R, 𝑓 ′𝑛∃,∑
𝑛 𝑓 (𝑥) converges for some [𝑎, 𝑏] and

∑
𝑛 𝑓

′
𝑛(𝑥) converges uniformly. Then, there exists some

𝑔 : [𝑎, 𝑏] → R such that
∑
𝑛 𝑓𝑛 → 𝑔 uniformly, 𝑔 differentiable, and 𝑔′(𝑥) = ∑

𝑛 𝑓
′
𝑛(𝑥), all on

[𝑎, 𝑏].

Theorem 31 (★ Cauchy Criterion of Series). 𝑓𝑛(𝑥) : 𝐷 → R converges uniformly on 𝐷 iff

∀ 𝜀 > 0, ∃𝑁 s.t. ∀𝑚, 𝑛 ⩾ 𝑁,∑𝑚
𝑖=𝑛+1 𝑓𝑖(𝑥) < 𝜀∀ 𝑥 ∈ 𝐷.

Proposition 21 (Weierstrass M-Test). If | 𝑓𝑛(𝑥)| ⩽ 𝑀𝑛 ∀ 𝑥 ∈ 𝐷 ⊆ R and
∑
𝑛 𝑀𝑛 < +∞, then∑

𝑛 𝑓𝑛(𝑥) converges uniformly on 𝐷.

Definition 26 (Power Series). A function of the form 𝑓 (𝑥) ..=
∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑐)𝑛 is said to be

a power series centered at 𝑐.

Put 𝜌 ..= lim sup𝑛→∞
𝑛
√
|𝑎𝑛 |, and put

𝑅 ..=


1
𝜌 0 < 𝜌 < +∞

0 𝜌 = +∞

∞ 𝜌 = 0

.

We call 𝑅 the radius of convergence of 𝑓 .

Theorem 32 (★Cauchy-Hadamard). Let 𝑅 be the radius of converges of 𝑓 . Then, 𝑓 (𝑥) converges

if |𝑥 − 𝑐 | < 𝑅, and diverges if |𝑥 − 𝑐 | > 𝑅.

Sketch. Apply the root test to the definition of 𝑅. □

Remark 20. If |𝑥 − 𝑐 | = 𝑅, the theorem is inconclusive, and we need to manually check.
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