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1 Introduction

1.1 Metric Spaces

↩→ Definition 1.1: Metric Space

A set 𝑋 is a metric space with distance 𝑑 if

1. (symmetric) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) ⩾ 0

2. 𝑑(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦

3. (triangle inequality) 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ⩾ 𝑑(𝑥, 𝑧)

Remark 1.1. If 1., 3. are satisfied but not 2., 𝑑 can be called a “pseudo-distance”.

↩→ Definition 1.2: Open Metric Space

Let (𝑋, 𝑑) be a metric space. A subset 𝐴 ⊆ 𝑋 is open ⇐⇒ ∀ 𝑥 ∈ 𝐴, ∃𝑟 = 𝑟(𝑥) > 0 s.t. 𝐵(𝑥, 𝑟(𝑥)) ⊆ 𝐴.

↩→ Definition 1.3: Normed Space

Let 𝑋 be a vector space over R. The norm on 𝑋, denoted | |𝑥 | | ∈ R, is a function that satisfies

1. | |𝑥 | | ⩾ 0

2. | |𝑥 | | = 0 ⇐⇒ 𝑥 = 0

3. | |𝑐 · 𝑥 | | = |𝑐 | · | |𝑥 | |

4. | |𝑥 + 𝑦 | | ⩽ | |𝑥 | | + ||𝑦 | |

If 𝑋 is a normed vector space over R, we can define a distance 𝑑 on 𝑋 by 𝑑(𝑥, 𝑦) = | |𝑥 − 𝑦 | |.

↩→Proposition 1.1

If 𝑋 is a normed vector space over R, a distance 𝑑 on 𝑋 by 𝑑(𝑥, 𝑦) = | |𝑥 − 𝑦 | | makes (𝑋, 𝑑) a metric space.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 1. 𝑑(𝑥, 𝑦) = | |𝑥 − 𝑦 | | ⩾ 0

2. 𝑑(𝑥, 𝑦) = 0 ⇐⇒ ||𝑥 − 𝑦 | | = 0 ⇐⇒ 𝑥 − 𝑦 = 0 ⇐⇒ 𝑥 = 𝑦

3. 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) = | |𝑥 − 𝑦 | | + ||𝑦 − 𝑧 | | ⩾ | |(𝑥 − 𝑦) + (𝑦 − 𝑧)| | = | |𝑥 − 𝑧 | | := 𝑑(𝑥, 𝑧)
■
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⊛ Example 1.1: 𝐿𝑝 distance in R𝑛

Let 𝑥 ∈ R𝑛 , 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). The 𝐿𝑝 norm is defined

| |𝑥 | |𝑝 := (|𝑥1 |𝑝 + |𝑥2 |𝑝 + · · · + |𝑥𝑛 |𝑝)
1
𝑝 .

In the case 𝑝 = 2, 𝑛 = 2, we simply have the standard Euclidean distance over R2.

Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls:Unit Balls: consider when | |𝑥 | |𝑝 ⩽ 1, over R2.

• 𝑝 = 1 : |𝑥1 | + |𝑥2 | ⩽ 1; this forms a “diamond ball” in the plane.

• 𝑝 = 2 :
√
|𝑥1 |2 + |𝑥2 |2 ⩽ 1; this forms a circle of radius 1. Clearly, this surrounds a larger area

than in 𝑝 = 2.

A natural question that follows is what happens as 𝑝 → ∞? Assuming |𝑥1 | ⩾ |𝑥2 |:

| |𝑥 | |𝑝 =
(
|𝑥1 |𝑝 + |𝑥2 |𝑝

) 1
𝑝

=

[
|𝑥1 |𝑝

(
1 +

����𝑥2
𝑥1

����𝑝)] 1
𝑝

= |𝑥1 |
(
1 +

����𝑥2
𝑥1

����𝑝) 1
𝑝

If |𝑥1 | > |𝑥2 |, this goes to |𝑥1 |. If they are instead equal, then | |𝑥 | |𝑝 = |𝑥1 | · 2
1
𝑝 → |𝑥1 | · 1 as well.

Hence, lim𝑝→∞ | |𝑥 | |𝑝 = max{|𝑥1 | , |𝑥2 |}. Thus, the unit ball will approach max{|𝑥1 | , |𝑥2 |} ⩽ 1, that
is, the unit square.

↩→Proposition 1.2

Let 𝑥 ∈ R𝑛 . Then, | |𝑥 | |𝑝 → max{|𝑥1 | , . . . , |𝑥𝑛 |} as 𝑝 → ∞.

Remark 1.2. This is an extension of the previous example to arbitrary real space; the proof follows nearly identically.

↩→ Definition 1.4: Convex Set

Let 𝑋 be a normed space, and take 𝑥, 𝑦 ∈ 𝑋. The line segment from 𝑥 to 𝑦 is the set

{𝑡 · 𝑥 + (1 − 𝑡) · 𝑦 : 0 ⩽ 𝑡 ⩽ 1}.

Let 𝐴 ⊆ 𝑋. 𝐴 is convex ⇐⇒ ∀ 𝑥, 𝑦 ∈ 𝐴, we have that

(𝑡 · 𝑥 + (1 − 𝑡) · 𝑦) ∈ 𝐴∀0 ⩽ 𝑡 ⩽ 1.

1.1 Introduction: Metric Spaces 4



Figure 1: Regions of R2 where | |𝑥 | |𝑝 ⩽ 1 for various values of 𝑝.

Figure 2: Convex (left) versus not convex (right) sets.

Remark 1.3. Think of this as saying “a set is convex iff every point on a line segment connected any two points is in
the set”.

↩→ Definition 1.5: ℓ𝑝

The space ℓ𝑝 of sequences is defined as

{𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛 , . . . ) :
∞∑
𝑛=1

|𝑥𝑛 |𝑝 < +∞} ∗ .

Then, ∗ defines the ℓ 𝑝 norm on the space of sequences; that is, | |𝑥 | |𝑝 :=
(∑∞

𝑛=1 |𝑥𝑛 |
𝑝 ) 1

𝑝 .

1.1 Introduction: Metric Spaces 5



⊛ Example 1.2: ℓ𝑝 , 𝑥𝑛 = 1
𝑛

. Let 𝑥𝑛 = 1
𝑛 . For which 𝑝 is 𝑥 ∈ ℓ𝑝? We have, raising the norm to the power of 𝑝 for ease:

| |𝑥 | |𝑝𝑝 = |𝑥1 |𝑝 + |𝑥2 |𝑝 + · · · + |𝑥𝑛 |𝑝 + · · ·

= 1𝑝 +
(
1
2

)𝑝
+ · · · < ∞ ⇐⇒ 𝑝 > 1.

In the case that 𝑝 = 1, this becomes a harmonic sum, which diverges.

⊛ Example 1.3: 𝐿𝑝 space of functions

Let 𝑓 (𝑥) be a continuous function. We define the norm of 𝑓 over an interval [𝑎, 𝑏]

| | 𝑓 | |𝑝 =
[∫ 𝑏

𝑎

| 𝑓 (𝑥)|𝑝 𝑑𝑥
] 1
𝑝

.

Remark 1.4. Triangle inequality for | |𝑥 | |𝑝 or | | 𝑓 | |𝑝 is called Minkowski inequality; | |𝑥 | |𝑝 + ||𝑦 | |𝑝 ⩾ | |𝑥 + 𝑦 | |𝑝 . This
will be discussed further.

⊛ Example 1.4: Distances between sets in R2

Let 𝐴, 𝐵 be bounded, closed, “nice” sets in R2. We define

𝑑(𝐴, 𝐵) := Area(𝐴△𝐵),

where
𝐴△𝐵 : (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴) = (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵).

It can be shown that this is a “valid” distance.

Remark 1.5. △ denotes the “symmetric difference” of two sets.

⊛ Example 1.5: 𝑝-adic distance

Let 𝑝 be a prime number. Let 𝑥 = 𝑎
𝑏
∈ Q, and write 𝑥 = 𝑝𝑘 ·

(
𝑐
𝑑

)
, where 𝑐, 𝑑 are not divisible by 𝑝.

Then, the 𝑝-adic norm is defined | |𝑥 | |𝑝 := 𝑝−𝑘 . It can be shown that this is a norm.

Suppose 𝑝 = 2, 𝑥 = 28 = 4 · 7 = 22 · 7. Then, | |28| |2 = 2−2 = 1
4 ; similarly, | |1024| |2 = | |210 | |2 = 2−10.

More generally, we have that | |2𝑘 | |2 = 2−𝑘 ; coversely, | |2−𝑘 | | = 2𝑘 . That is, the closer to 0, the
larger the distance, and vice versa, contrary to our notion of Euclidean distance.

↩→Proposition 1.3

| |𝑥 | |𝑝 as defined above is a well-defined norm over Q.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise. ■

2 Point-Set Topology

2.1 Definitions

↩→ Definition 2.1: Topological space

A set 𝑋 is a topological space if we have a collection of subsets 𝜏 of 𝑋 called open sets s.t.

1. ∅ ∈ 𝜏, 𝑋 ∈ 𝜏

2. Consider {𝐴𝛼}𝛼∈𝐼 where 𝐴𝛼 an open set for any 𝛼; then,
⋃

𝛼∈𝐼 𝐴𝛼 ∈ 𝜏, that is, it is also an open set.

3. If 𝐽 is a finite set, and 𝐴𝛽 open for all 𝛽 ∈ 𝐽, then
⋂

𝛽∈𝐽 𝐴𝛽 ∈ 𝜏 is also open.

In other words, 2.: arbitrary unions of open sets are open, and 3.: finite intersections of open sets are
open.

↩→ Definition 2.2: Closed sets

Closed sets are complements of open sets; hence, axioms for closed sets follow appropriately;

1.* 𝑋,∅ closed;

2.* 𝐵𝛼 closed ∀𝛼 ∈ 𝐼 =⇒ ⋂
𝛼∈𝐼 𝐵𝛼 closed.

3.* 𝐵𝛽 closed ∀ 𝛽 ∈ 𝐽, 𝐽 finite, then
⋃

𝛽∈𝐽 𝐵𝛽 also closed.

↩→ Lecture 01; Last Updated: Tue Apr 9 14:45:17 EDT 2024
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↩→ Definition 2.3: Equivalence of Metrics

Suppose we have a metric space 𝑋 with two distances 𝑑1, 𝑑2; will these necessarily admit the same
topology?

A sufficient condition is that, if ∀ 𝑥 ≠ 𝑦 ∈ 𝑋, ∃1 < 𝐶 < +∞ s.t.

1
𝐶

<
𝑑1(𝑥, 𝑦)
𝑑2(𝑥, 𝑦)

< 𝐶.

That is, the distances are equivalent, up to multiplication by a constant.

Indeed, this condition gives that 𝑑2 < 𝐶𝑑1 and 𝑑2 > 𝑑1
𝐶 ; this gives

𝐵𝑑1(𝑥,
𝑟

𝑐
) ⊆ 𝐵𝑑2(𝑥, 𝑟) ⊆ 𝐵𝑑1(𝑥, 𝐶 · 𝑟).

Hence, 𝑑1, 𝑑2 define the same open/closed sets on 𝑋 thus admitting the same topologies. We write
𝑑1 ≍ 𝑑2.

Remark 2.1. If 𝑑1 ≍ 𝑑2 and 𝑑2 ≍ 𝑑3, then also 𝑑1 ≍ 𝑑3. Moreover, clearly, 𝑑1 ≍ 𝑑1 and 𝑑1 ≍ 𝑑2 =⇒ 𝑑2 ≍ 𝑑1, hence
this is a well-defined equivalence relation.

Hence, its enough to show that ∀1 < 𝑝 < +∞, we have | |𝑥 | |𝑝 ≍ ||𝑥 | |∞ to show that any | |𝑥 | |𝑞 norm are equivalent
for all 𝑞 on R𝑛 .

↩→ Definition 2.4: Interior, Boundary of a Topological Set

Let 𝑋 be a topological space, 𝐴 ⊆ 𝑋 and let 𝑥 ∈ 𝑋. We have the following possibilities

1. ∃𝑈-open : 𝑥 ∈ 𝑈 ⊆ 𝐴. In this case, we say 𝑥 ∈ the interior of 𝐴, denoted

𝑥 ∈ Int(𝐴).

2. ∃𝑉-open : 𝑥 ∈ 𝑉 ⊆ 𝑋 \ 𝐴 = 𝐴𝐶 . In this case, we write

𝑥 ∈ Int(𝐴𝐶).

3. ∀𝑈-open : 𝑥 ∈ 𝑈 ,𝑈 ∩ 𝐴 ≠ ∅ AND𝑈 ∩ 𝐴𝐶 ≠ ∅. In this case, we say 𝑥 is in the boundary of 𝐴, and
denote

𝑥 ∈ 𝜕𝐴.

↩→ Definition 2.5: Closure

𝑥 ∈ Int(𝐴) or 𝑥 ∈ 𝜕𝐴 (that is, 𝑥 ∈ Int(𝐴) ∪ 𝜕𝐴) ⇐⇒ every open set𝑈 that contains 𝑥 intersects 𝐴.1Such
points are called limit points of 𝐴. The set of all limits points of 𝐴 is called the closure of 𝐴, denoted 𝐴.

2.1 Point-Set Topology: Definitions 8



Remark 2.2. We have that
Int(𝐴) ⊆ 𝐴 ⊆ 𝐴 = Int(𝐴) ∪ 𝜕𝐴.

↩→Proposition 2.1: Properties of Int(𝐴)
Int(𝐴) is open, and it is the largest open set contained in 𝐴. It is the union of all 𝑈-open s.t. 𝑈 ⊆ 𝐴.
Moreover, we have that

Int(Int(𝐴)) = Int(𝐴).

↩→Proposition 2.2: Properties of 𝐴

𝐴 is closed; 𝐴 is the smallest closed set that contains 𝐴, that is, 𝐴 =
⋂
𝐵 where 𝐵 closed and 𝐴 ⊆ 𝐵. We

have too that
(𝐴) = 𝐴.

↩→Proposition 2.3

1. 𝐴 is open ⇐⇒ 𝐴 = Int(𝐴)

2. 𝐴 is closed ⇐⇒ 𝐴 = 𝐴

2.2 Basis

↩→ Definition 2.6: Basis for a Toplogy

Let 𝜏 be a topology on 𝑋. Let ℬ ⊆ 𝜏 be a collection of open sets in 𝑋 such that every open set is a union
of open sets in ℬ.

⊛ Example 2.1: Example Basis

𝑋 = R, and ℬ = {all open intervals (𝑎, 𝑏) : −∞ < 𝑎 < 𝑏 < +∞}.

↩→Proposition 2.4

Let ℬ be a collection of open sets in 𝑋. Then, ℬ is a basis ⇐⇒

1. ∀ 𝑥 ∈ 𝑋, ∃𝑈-open ∈ ℬ s.t. 𝑥 ∈ 𝑈 .

2. If𝑈1 ∈ ℬ and𝑈2 ∈ ℬ, and 𝑥 ∈ 𝑈1 ∩𝑈2, then ∃𝑈3 ∈ ℬ s.t. 𝑥 ∈ 𝑈3 ⊆ 𝑈1 ∩𝑈2.

1“Requires” proof.

2.2 Point-Set Topology: Basis 9



⊛ Example 2.2

Consider𝑋 = R. Requirement 1. follows from taking𝑈 = (𝑥−𝜀, 𝑥+𝜀) for any 𝜀 > 0. For 2., suppose
𝑥 ∈ (𝑎, 𝑏) ∩ (𝑐, 𝑑) =: 𝑈1 ∩ 𝑈2. Let 𝑈3 = (max{𝑎, 𝑐},min{𝑏, 𝑑}); then, we have that 𝑈3 ⊆ 𝑈1 ∩ 𝑈2,
while clearly 𝑥 ∈ 𝑈3.

↩→Proposition 2.5

In a metric space, a basis for a topology is a collection of open balls,

{𝐵(𝑥, 𝑟) : 𝑥 ∈ 𝑋, 𝑟 > 0} = {{𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟} : 𝑥 ∈ 𝑋, 𝑟 > 0}.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We prove via proposition 2.4. Property 1. holds clearly; 𝑥 ∈ 𝐵(𝑥, 𝜀)-open ⊆ ℬ.

For property 2., let 𝑥 ∈ 𝐵(𝑦1, 𝑟1) ∩ 𝐵(𝑦2, 𝑟2), that is, 𝑑(𝑥, 𝑦1) < 𝑟1 and 𝑑(𝑥, 𝑦2) < 𝑟2. Let

𝛿 := min{𝑟1 − 𝑑(𝑥, 𝑦1), 𝑟2 − 𝑑(𝑥, 𝑦2)}.

We claim that 𝐵(𝑥, 𝛿) ⊆ 𝑈1 ∩𝑈2.

Let 𝑧 ∈ 𝐵(𝑥, 𝛿). Then,

𝑑(𝑧, 𝑦1)
△≠
⩽ 𝑑(𝑧, 𝑥) + 𝑑(𝑥, 𝑦1) < 𝛿 + 𝑑(𝑥, 𝑦1) ⩽ 𝑟1 − 𝑑(𝑥, 𝑦1) + 𝑑(𝑥, 𝑦1) = 𝑟1,

hence, as 𝑑(𝑧, 𝑦1) < 𝑟1 =⇒ 𝑧 ∈ 𝐵(𝑦1, 𝑟1) = 𝑈1. Replacing each occurrence of 𝑦1, 𝑟1 with 𝑦2, 𝑟2 respectively
gives identically that 𝑧 ∈ 𝐵(𝑦2, 𝑟2) = 𝑈2. Hence, we have that 𝐵(𝑥, 𝛿) ⊆ 𝑈1 ∩𝑈2 and 2. holds. ■

2.3 Subspaces

↩→ Definition 2.7

Let 𝑋 be a topological space and let 𝑌 ⊆ 𝑋. We define the subspace topology on 𝑌:

1. Open sets in 𝑌 = {𝑌 ∩ open sets in 𝑋}

↩→Proposition 2.6: Consequences of Subspace Topologies

Suppose ℬ is a basis for a topology in 𝑋. Then, {𝑈 ∩ 𝑌 : 𝑈 ∈ ℬ} forms a basis for the subspace 𝑌 ⊆ 𝑋.

Suppose 𝑋 a metric space. Then, 𝑌 is also a metric space, with the same distance.

↩→Proposition 2.7

Let 𝑌 ⊆ 𝑋- a metric space. Then, the metric space topology for (𝑌, 𝑑) is the same as the subspace
topology.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Sketch) A basis for the open sets in 𝑋 can be written
⋃

𝛼∈𝐼 𝐵(𝑥𝛼 , 𝑟𝛼); hence

𝑌 ∩ (
⋃
𝛼∈𝐼

𝐵(𝑥𝛼 , 𝑟𝛼)) =
⋃
𝛼∈𝐼

(𝑌 ∩ 𝐵(𝑥𝛼 , 𝑟𝛼))

is an open set topology for 𝑌. ■

↩→ Lemma 2.1

Let 𝐴 ⊆ 𝑋-open, 𝐵 ⊆ 𝐴; 𝐵-open in subspace topology for 𝐴 ⇐⇒ 𝐵-open in 𝑋.

↩→ Lemma 2.2

Let 𝑌 ⊆ 𝑋, 𝐴 ⊆ 𝑌. Then, 𝐴 in 𝑌 = 𝑌 ∩ 𝐴 in 𝑋. We can denote this

𝐴𝑌 = 𝐴𝑋 ∩ 𝑌.

2.4 Continuous Functions

↩→ Definition 2.8: Continuous Function

Let 𝑋,𝑌 be topological spaces. Let 𝑓 : 𝑋 → 𝑌. 𝑓 is continuous ⇐⇒ ∀ open 𝑉 ∈ 𝑌, 𝑓 −1(𝑉)-open in 𝑋.

↩→Proposition 2.8

This definition is consistent with the normal 𝜀-𝛿 definition on the real line.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑓 : R→ R, continuous; that is, ∀ 𝜀 > 0, ∀ 𝑥 ∈ R∃𝛿 > 0 s.t. |𝑥1 − 𝑥 | < 𝛿, then | 𝑓 (𝑥1) − 𝑓 (𝑥)| < 𝜀.

Let 𝑉 ⊆ R open. Let 𝑦 ∈ 𝑉 . Then, ∃𝜀 : (𝑦 − 𝜀, 𝑦 + 𝜀) ⊆ 𝑉 . Let 𝑦 = 𝑓 (𝑥), hence 𝑦 ∈ 𝑓 −1(𝑉). Now, if
𝑑(𝑥, 𝑥1) < 𝛿, we have that 𝑑( 𝑓 (𝑥1), 𝑓 (𝑥)) < 𝜀 (by continuity of 𝑓 ), hence 𝑓 (𝑥1) ∈ (𝑦 − 𝜀, 𝑦 + 𝜀) ⊆ 𝑉 ; moreover,
(𝑥 − 𝛿, 𝑥 + 𝛿) ⊆ 𝑓−1(𝑉), thus 𝑓 −1(𝑉) is open as required.

The inverse of this proof follows identically. ■

↩→ Lecture 02; Last Updated: Tue Apr 9 21:38:10 EDT 2024

↩→Proposition 2.9

Suppose ℬ forms a basis of topology for 𝑌. Then, 𝑓 : 𝑋 → 𝑌 is continuous if 𝑓 −1(𝑈) open ∀𝑈 ∈ ℬ.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If 𝑈-open set in 𝑌, then ∃𝐼-index set and a collection of open sets {𝐴𝛼}𝛼∈𝐼 , 𝐴𝛼 ∈ ℬ, s.t. 𝑈 = ∪𝛼∈𝐼𝐴𝛼.
Then, we have

𝑓 −1(𝑈) = 𝑓 −1(∪𝛼∈𝐼(𝐴𝛼)) = ∪𝛼∈𝐼 𝑓
−1(𝐴𝛼)︸   ︷︷   ︸

2.4 Point-Set Topology: Continuous Functions 11



Hence, if each 𝑓 −1(𝐴𝛼) open, then ∪𝛼∈𝐼 𝑓 −1(𝐴𝛼) open; hence it suffices to check if 𝑓 −1(𝑈) ∀𝑈-open in𝑉 is open
to see if 𝑓 continuous. ■

↩→ Theorem 2.1: Continuity of Composition

If 𝑓 : 𝑋 → 𝑌 continuous and 𝑔 : 𝑌 → 𝑍 continuous, then 𝑔 ◦ 𝑓 continuous as well.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let𝑈-open in 𝑍. Then

(𝑔 ◦ 𝑓 )−1(𝑈) = 𝑓 −1(𝑔−1(𝑈)︸  ︷︷  ︸
open in 𝑌

)

︸         ︷︷         ︸
open in 𝑋

■

↩→Proposition 2.10

If 𝑓 : 𝑋 → 𝑌 continuous and 𝐴 ⊆ 𝑋, 𝐴 has subspace topology, then 𝑓 |𝐴 : 𝐴→ 𝑌 is also continuous.2

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let𝑈-open in 𝑌. Then

( 𝑓 |𝐴)−1(𝑈) = 𝑓 −1(𝑈)︸  ︷︷  ︸
open

∩ 𝐴︸︷︷︸
open

By the definition of subspace topology, this is an open set and hence 𝑓 |𝐴 is continuous. ■

2.5 Product Spaces

↩→ Definition 2.9: Finite Product Spaces

Let 𝑋1, . . . , 𝑋𝑛 be topological spaces. We define

(𝑋1 × 𝑋2 × · · · × 𝑋𝑛),

and aim to define a product topology; a basis of which consists of cylinder sets.

↩→ Definition 2.10: Cylinder Set

A cylinder set has the form
𝐴1 × 𝐴2 × · · · × 𝐴𝑛

where each 𝐴 𝑗-open in 𝑋𝑗 .

2We denote 𝑓 |𝐴 as the restriction of the domain of 𝑓 to 𝐴.
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⊛ Example 2.3

Given an open interval (𝑎1, 𝑏1), (𝑎2, 𝑏2) ⊂ R, the set (𝑎1, 𝑏1) × (𝑎2, 𝑏2) ⊂ R2 is a basis for the topology
on R2.

↩→ Definition 2.11: Projection

Let 𝑋1 × 𝑋2 × · · ·𝑋𝑛 =: 𝑋. The projection 𝜋 𝑗 : 𝑋 → 𝑋𝑗 maps (𝑥1, . . . , 𝑥𝑛) → 𝑥 𝑗 ∈ 𝑋𝑗 .

Remark 2.3. One can show 𝜋 𝑗 continuous.

↩→ Definition 2.12: Coordinate Function

Given a function 𝑓 : 𝑌 → 𝑋1 × · · ·𝑋𝑛 = (𝑥1(𝑦), 𝑥2(𝑦), . . . , 𝑥𝑛(𝑦)). The coordinate function is

𝑓𝑗 = 𝜋 𝑗 ◦ 𝑓 ; 𝑓𝑗 = 𝑥 𝑗(𝑦).

↩→Proposition 2.11

𝑓 : 𝑌 → 𝑋 = 𝑋1 × · · · × 𝑋𝑛 continuous ⇐⇒ 𝑓𝑗 : 𝑌 → 𝑋𝑗 continuous.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Its enough to show that ∀𝑈 ∈ ℬ-basis for 𝑋-product space, 𝑓 −1(𝑈)-open in 𝑌. Take 𝑈 = 𝐴1 × · · ·𝐴𝑛-
open. Then, we claim that

𝑓 −1(𝑈) = 𝑓 −1(𝐴1 × · · · × 𝐴𝑛) = 𝑓 −1
1 (𝐴1) ∩ 𝑓 −1

2 (𝐴2) ∩ · · · ∩ 𝑓 −1
𝑛 (𝐴𝑛). ★

If this holds, then as each 𝑓𝑖 continuous (being a composition of continuous functions) and each 𝐴𝑖 open in
𝑋𝑖 , then each 𝑓 −1

𝑖
(𝐴𝑖) open in 𝑌 and hence★, being the finite intersection of open sets in 𝑌, is itself open in 𝑌.

■
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⊛ Example 2.4: Fourier Transform: Motivation for Infinite Product Toplogies

Let 𝑓 ∈ 𝐶([0, 2𝜋]) is real-valued. We write the 𝑛th Fourier coefficients

𝑓 (𝑛) = 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑥)𝑒−𝑖𝑛𝑥 d𝑥

=
1

2𝜋

∫ 2𝜋

0
𝑓 (𝑥) cos(𝑛𝑥)d𝑥 − 𝑖 1

2𝜋

∫ 2𝜋

0
𝑓 (𝑥) sin(𝑛𝑥)d𝑥 .

And the Fourier transform of 𝑓 as the infinite product

𝑓 (𝑥) ↦→ (. . . , 𝑓 (−𝑛), 𝑓 (−𝑛 + 1), . . . , 𝑓 (−1), 𝑓 (0), 𝑓 (1), · · · , 𝑓 (𝑛), . . . ) ∈
∏
𝑛∈Z

(C)𝑛 .

Hence, this is an (countably, as indexed by integers) infinite product space.

Now, let 𝑓 : R→ R. Suppose 𝑓 (𝑥) → 0 “fast enough” as |𝑥 | → ∞ and 𝑓 continuous. Then, we
can define the Fourier coefficients

𝑓 (𝑡) = 1
2𝜋

∫ ∞

−∞
𝑓 (𝑥)𝑒−𝑖𝑡𝑥 d𝑥 ,

where 𝑡 ∈ R. We then have the transform

𝑓 ↦→ { 𝑓 (𝑡)}𝑡∈R.

In this case, our index set is R is (uncountably) infinite.

↩→ Definition 2.13: Product Topology/Cylinder Sets for ∞ Products

Let 𝑋 =
∏

𝛼∈𝐼 𝑋𝛼. Then, a basis for 𝑋 is given by cylinder sets of the form 𝐴 =
∏

𝛼∈𝐼 𝐴𝛼 where 𝐴𝛼-open
in 𝑋𝛼, AND 𝐴𝛼 = 𝑋𝛼 except for finitely many indices 𝛼.

That is, there exists a finite set 𝐽 = (𝛼1, . . . , 𝛼𝑘) ⊆ 𝐼, such that we can write 𝐴 =
∏

𝛼∈𝐽 𝐴𝛼 × ∏
𝛼∉𝐽 𝑋𝛼

(where 𝐴𝛼 open in 𝑋𝛼).

↩→Proposition 2.12

Given 𝑓 : 𝑌 → ∏
𝛼∈𝐼 𝑋𝛼 = 𝑋, then (taking 𝑓𝛼 = 𝜋𝛼 ◦ 𝑓 as before) we have that 𝑓 is continuous in 𝑋 ⇐⇒

𝑓𝛼 : 𝑌 → 𝑋𝛼 continuous in 𝑋𝛼 ∀𝛼 ∈ 𝐼.

Remark 2.4. Extension of proposition 2.11 to infinite product space.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Write𝑈 =
∏

𝛼∈𝐽 𝐴𝛼 ×∏
𝛼∉𝐽 𝑋𝛼. Then,

𝑓 −1(𝑈) =
⋂
𝛼∈𝐽

𝑓 −1
𝛼 (𝐴𝛼)

which is open in 𝑌, hence 𝑓 continuous. ■

Remark 2.5. The intersection of the entire spaces give no restriction.

↩→ Lecture 03; Last Updated: Fri Jan 19 11:49:27 EST 2024

2.6 Metrizability

↩→Proposition 2.13

Different metrics can define the same topology.

⊛ Example 2.5

1. Different ℓ𝑝 metrics in R𝑛 (PSET 1)

2. Let (𝑋, 𝑑) be a metric space. Then,

�̃�(𝑥, 𝑦) :=
𝑑(𝑥, 𝑦)

𝑑(𝑥, 𝑦) + 1

is also a metric (the first two axioms are trivial), and defines the same topology. Note, moreover,
that �̃�(𝑥, 𝑦) ⩽ 1∀ 𝑥, 𝑦; this distance is bounded, and can often be more convenient to work
with in particular contexts.

↩→ Question 2.1

Suppose (𝑋𝑘 , 𝑑𝑘) are metric spaces ∀ 𝑘 ⩾ 1. Then, we can define the product topology 𝜏 on

𝑋 :=
∞∏
𝑘=1

𝑋𝑘 .

Does the product topology 𝜏 come from a metric? That is, is 𝜏 metrizable?

Remark 2.6. There do indeed exist examples of non-metrizable topological spaces; this question is indeed well-founded.

Answer. Let xxxxxxxxxxxxxxxxx = (𝑥1, 𝑥2, . . . , 𝑥𝑛 , . . . ), yyyyyyyyyyyyyyyyy = (𝑦1, 𝑦2, . . . , 𝑦𝑛 , . . . ) ∈
∏∞

𝑘=1 (where 𝑥𝑖 , 𝑦𝑖 ∈ 𝑋𝑖) be infinite sequences
of elements. Then, for each metric space 𝑋𝑘 take the metric

�̃�𝑘(𝑥𝑘 , 𝑦𝑘) =
𝑑𝑘(𝑥𝑘 , 𝑦𝑘)

1 + 𝑑𝑘(𝑥𝑘 , 𝑦𝑘)
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(as in the example above). Then, we define

𝐷(xxxxxxxxxxxxxxxxx, yyyyyyyyyyyyyyyyy) =
∞∑
𝑘=1

�̃�𝑘(𝑥𝑘 , 𝑦𝑘)
2𝑘

,

noting that 𝐷(xxxxxxxxxxxxxxxxx, yyyyyyyyyyyyyyyyy) ⩽
∑∞
𝑘=1

1
2𝑘 = 1 (by our construction, “normalizing” each metric), hence this is a valid,

converging metric (which wouldn’t otherwise be guaranteed if we didn’t normalize the metrics). It remains to
show whether this metric omits the same topology as 𝜏. ■

2.7 Compactness, Connectedness

↩→ Definition 2.14: Compact

A set 𝐴 in a topological space is said to be compact if every cover has a finite subcover. That is, if

𝐴 ⊆
⋃
𝛼∈𝐼

𝑈𝛼 − open,

then ∃{𝛼1, . . . , 𝛼𝑛 ∈ 𝐼} such that 𝐴 ⊆ ⋃𝑛
𝑖=1𝑈𝛼𝑖 .

↩→Proposition 2.14

A closed interval [𝑎, 𝑏] is compact.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If3 𝑎 = 𝑏, this is clear. Suppose 𝑎 < 𝑏, and let [𝑎, 𝑏] ⊆ ⋃
𝑖∈𝐼𝑈𝑖 =: 𝒰 be an arbitrary cover. Then, we

proceed in the following steps:

1. Claim: Given 𝑥 ∈ [𝑎, 𝑏], 𝑥 ≠ 𝑏, ∃𝑦 ∈ [𝑎, 𝑏] s.t. [𝑥, 𝑦] has a finite subcover.
Let 𝑥 ∈ [𝑎, 𝑏], 𝑥 ≠ 𝑏. Then, ∃𝑈𝛼 ∈ 𝒰 : 𝑥 ∈ 𝑈𝛼. Since 𝑈𝛼 open, and 𝑥 ≠ 𝑏, we further have that
∃𝑐 ∈ [𝑎, 𝑏] s.t. [𝑥, 𝑐) ⊆ 𝑈𝛼.
Now, let 𝑦 ∈ (𝑥, 𝑐); then, the interval [𝑥, 𝑦] ⊆ [𝑥, 𝑐) ⊆ 𝑈𝛼, that is, [𝑥, 𝑦] has a finite subcover.

2. Define 𝐶 := {𝑦 ∈ [𝑎, 𝑏] : 𝑦 > 𝑎, [𝑎, 𝑦] has a finite subcover}. We note that

• 𝐶 ≠ ∅; taking 𝑥 = 𝑎 in Step 1. above, we have that ∃𝑦 ∈ [𝑎, 𝑏] such that [𝑎, 𝑦] has a finite step cover,
so this 𝑦 ∈ 𝐶.

• 𝐶 bounded; by construction, ∀ 𝑦 ∈ 𝐶, 𝑎 < 𝑦 ⩽ 𝑐.

Thus, we can validly define 𝑐 := sup𝐶, noting that 𝑎 < 𝑐 ⩽ 𝑏. Ultimately, we wish to prove that 𝑐 = 𝑏,
completing the proof that [𝑎, 𝑏] has a finite subcover.

3. Claim: 𝑐 ∈ 𝐶.
Let𝑈𝛽 ∈ 𝒰 : 𝑐 ∈ 𝑈𝛽. Then, by the openness of𝑈𝛽, ∃𝑑 ∈ [𝑎, 𝑏] s.t. (𝑑, 𝑐] ⊆ 𝑈𝛽.

3This proof is adapted from that of Theorem 27.1 in Munkre’s Topology, an identical theorem but applied to more general ordered
topologies.
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Supposing 𝑐 ∉ 𝐶, then ∃𝑧 ∈ 𝐶 such that 𝑧 ∈ (𝑑, 𝑐); if one did not exist, then this would imply that 𝑑 was
a smaller upper bound that 𝑐, a contradiction. Thus, [𝑧, 𝑐] ⊆ (𝑑, 𝑐] ⊆ 𝑈𝛽.
Moreover, we have that, given 𝑧 ∈ 𝐶, [𝑎, 𝑧] has a finite subcover; call it𝑈𝑧 ⊆ 𝒰 . This gives, then:

[𝑎, 𝑐] = [𝑎, 𝑧] ∪ [𝑧, 𝑐] ⊆ 𝑈𝑧 ∪𝑈𝛽 .

But this is a finite subcover of [𝑎, 𝑐], contradicting the fact that 𝑐 ∉ 𝐶. We conclude, then, that 𝑐 ∈ 𝐶

after all.

4. Claim: 𝑐 = 𝑏.
Suppose not; then, since we have 𝑐 ⩽ 𝑏, then assume 𝑐 < 𝑏. Then, applying Step 1. with 𝑥 = 𝑐 (which
we can do, by our assumption of 𝑐 ≠ 𝑏!), then we have that ∃𝑦 > 𝑐 s.t. [𝑐, 𝑦] has a finite subcover, call
this𝑈𝑦 ⊆ 𝒰 .
Moreover, we had 𝑐 ∈ 𝐶, hence [𝑎, 𝑐] has a finite subcover, call this𝑈𝑐 ⊆ 𝒰 .
Then, this gives us that

[𝑎, 𝑦] = [𝑎, 𝑐] ∪ [𝑐, 𝑦] ⊆ 𝑈𝑐 ∪𝑈𝑦 ,

that is, [𝑎, 𝑦] has a finite subcover, and so 𝑦 ∈ 𝐶. But recall that 𝑦 > 𝑐; hence, this a contradiction to 𝑐
being the least upper bound of 𝐶. We conclude that 𝑐 = 𝑏, and thus [𝑎, 𝑏] has a finite subcover, and is
thus compact.

■

Remark 2.7. A similar proof shows that [𝑎, 𝑏] is connected; we cannot cover it by two disjoint open sets.

↩→ Theorem 2.2: On Compactness

Let 𝐴 ⊆ R𝑛 . Then, 𝐴 compact ⇐⇒ 𝐴 closed and bounded.

↩→Proposition 2.15

If 𝑋,𝑌 are compact topological spaces, then 𝑋 × 𝑌 is compact.

Remark 2.8. By induction, if 𝑋1, . . . , 𝑋𝑛 compact, so is
∏𝑛

𝑖=1 𝑋𝑖 .

↩→Proposition 2.16

A closed subset of a compact topological space is compact in the subspace topology.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Of theorem 2.2)

( ⇐= ) If 𝐴 ⊆ R𝑛 closed and bounded, then 𝐴 ⊆ [−𝑅,+𝑅]𝑛 for some 𝑅 > 0 (it is contained in some “𝑛-cube”).
Then, we have that [−𝑅, 𝑅] is compact, by proposition 2.14, proposition 2.15, and proposition 2.16, 𝐴 itself
compact.

( =⇒ ) Suppose 𝐴 ⊆ R𝑛 is compact. Then,
⋃
𝑥∈𝐴 𝐵(𝑥, 𝜀) for some 𝜀 > 0 is an open cover of 𝐴. As 𝐴

compact, there must exist a finite subcover of this cover, 𝐴 ⊆ ⋃𝑁
𝑖=1 𝐵(𝑥𝑖 , 𝑟𝑖). Let 𝑅 := max𝑁

𝑖=1(| |𝑥𝑖 | | + 𝑟𝑖). Then,
𝐴 ⊆ 𝐵(0, 𝑅), that is, 𝐴 is bounded.
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Now, suppose 𝑥 is a limit point of 𝐴. Then, any neighborhood of 𝑥 contains a point in 𝐴, so ∀ 𝑟 >
0, 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅, and so 𝐵(𝑥, 𝑟) also contains a point of 𝐴 for any 𝑟 > 0.

Now, suppose 𝑥 ∉ 𝐴 (looking for a contradiction). Then,

𝑈 :=
⋃
𝑟>0

𝑈𝑟 :=
⋃
𝑟>0

(R𝑛 \ 𝐵(𝑥, 𝑟)) = R𝑛 \ {𝑥}

is an open cover for the set 𝐴. 𝐴 being compact implies that 𝑈 has an finite subcover such that 𝐴 ⊂
𝑈𝑟1 ∪𝑈𝑟2 ∪ · · · ∪𝑈𝑟𝑁 . Let 𝑟0 = min𝑁𝑖=1 𝑟𝑖 . Then, 𝐴 ⊆ 𝑈𝑟0 , and 𝐴∩ 𝐵(𝑥, 𝑟0) = ∅; but this is a contradiction to the
definition of a limit point, hence any limit point 𝑥 is contained in 𝐴 and 𝐴 is thus closed by definition. ■

↩→Proposition 2.17

Compact =⇒ sequentially compact; that is, every sequence in a compact set has a convergent subse-
quence.

↩→ Lecture 04; Last Updated: Tue Apr 9 14:45:17 EDT 2024

↩→ Definition 2.15: Connected

A topological space 𝑋 is not connected if 𝑋 = 𝑈 ∪𝑉 for two open, nonempty, disjoint sets𝑈,𝑉 .

If this does not hold, 𝑋 is said to be connected.

A set 𝐴 ⊆ 𝑋 is not connected if 𝐴 is not connected in the subspace topology ⇐⇒ 𝐴 =⊆ 𝑈 ∪𝑉 , for
𝑈,𝑉-open in 𝑋, (𝑈 ∩ 𝐴) ≠ ∅, (𝑉 ∩ 𝐴) ≠ ∅ and𝑈 ∩𝑉 = ∅.

↩→ Theorem 2.3

Let 𝑋 be a connected topological space. Let 𝑓 : 𝑋 → 𝑌 be a continuous function. Then, 𝑓 (𝑋) is also
connected.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose, seeking a contradiction, that 𝑋 is connected, but 𝑓 (𝑋) is not. Then, we can write 𝑓 (𝑋) ⊆ 𝑌 as
𝑓 (𝑋) ⊆ 𝑈 ∪𝑉 , such that𝑈,𝑉 open in 𝑌 and𝑈 ∩𝑉 = ∅. Then,

(𝑈 ∩ 𝑓 (𝑋)) ∩ (𝑉 ∩ 𝑓 (𝑋)) = ∅.

We also have that
𝑋 ⊆ 𝑓 −1(𝑈)︸  ︷︷  ︸

open in 𝑋,≠ ∅

∪ 𝑓 −1(𝑉)︸ ︷︷ ︸
open in 𝑋,≠ ∅

.

𝑓 −1(𝑈)∩ 𝑓 −1(𝑉) = ∅ (that is, they are disjoint) by our assumption; this is a contradiction to the connectedness
of 𝑋, as we are able to write it as a subset of two disjoint open sets. Hence, 𝑓 (𝑋) is indeed connected. ■
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↩→ Lemma 2.3

Any interval (𝑎, 𝑏), [𝑎, 𝑏], [𝑎, 𝑏), . . . , ⊆ R is connected.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ■

↩→ Theorem 2.4: “Intermediate Value Theorem”

Suppose 𝑋 is connected and 𝑓 : 𝑋 → R is a continuous function. Then, 𝑓 takes intermediate values.

More precisely, let 𝑎 = 𝑓 (𝑥), 𝑏 = 𝑓 (𝑦) for 𝑥, 𝑦 ∈ 𝑋. Assume 𝑎 < 𝑏. Then, ∀ 𝑎 < 𝑐 < 𝑏, ∃𝑧 ∈
𝑋 s.t. 𝑓 (𝑧) = 𝑐.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose, seeking a contradiction, that ∃𝑐 : 𝑎 < 𝑐 < 𝑏 s.t. 𝑐 ∉ 𝑓 (𝑋) (that is, there exists an intermediate
value that is “not reached” by the function).

Let𝑈 = (−∞, 𝑐) and 𝑉 = (𝑐,+∞); note that these are disjoint open sets. Then, we have that

𝑋 = 𝑓 −1(𝑈) ∪ 𝑓 −1(𝑉),

by our assumption of 𝑐 ∉ 𝑓 (𝑋). But this gives that 𝑋 is not connected, as the union of two open (by
continuity), disjoint, nonempty ( 𝑓 (𝑥) = 𝑎 ∈ 𝑈 =⇒ 𝑥 ∈ 𝑓 −1(𝑈), and 𝑓 (𝑦) = 𝑏 ∈ 𝑉 =⇒ 𝑦 ∈ 𝑓 −1(𝑉)) sets, a
contradiction. ■

↩→ Theorem 2.5

Suppose 𝑋 is compact, 𝑌-topological space, 𝑓 : 𝑋 → 𝑌 is a continuous function. Then, 𝑓 (𝑋) is also
compact.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let {𝑈𝛼}𝛼∈𝐼 be an open cover of 𝑓 (𝑋) ⊆ 𝑌, that is,

𝑓 (𝑋) ⊆
⋃
𝛼∈𝐼

𝑈𝛼 =⇒ 𝑋 ⊆ 𝑓 −1(
⋃
𝛼∈𝐼

𝑈𝛼) =
⋃
𝛼∈𝐼

𝑓 −1(𝑈𝛼) =:
⋃
𝛼∈𝐼

𝑉𝛼 − open.

Then, this is an open cover of𝑋; 𝑋 is compact, thus there exists a finite subcover, that is, indices {𝛼1, . . . , 𝛼𝑛} ⊆
𝐼 such that 𝑋 =

⋃𝑛
𝑖=1𝑉𝛼𝑖 . Thus,

𝑓 (𝑋) ⊆
𝑛⋃
𝑖=1

𝑈𝛼𝑖 ,

which is a finite subcover of 𝑓 (𝑋). Thus, 𝑓 (𝑋) is compact. ■

Remark 2.9. Recall the “extreme value theorem”: let 𝑓 : [𝑎, 𝑏] → R a continuous function; then, a minimum and
maximum is obtained for 𝑓 (𝑥) on this interval for values in this interval.
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↩→ Theorem 2.6

Let 𝑋 compact, and 𝑓 : 𝑋 → R a continuous function. Then,

max
𝑥∈𝑋

𝑓 (𝑥) and min
𝑥∈𝑋

𝑓 (𝑥)

are both attained.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝑓 (𝑋) ⊆ R is compact by theorem 2.5, and so by theorem 2.2, 𝑓 (𝑋) is closed and bounded. Let, then,
𝑚 = inf 𝑓 (𝑋) and 𝑀 = sup 𝑓 (𝑋); these necessarily exist, since 𝑓 (𝑋) is bounded. Both 𝑚 and 𝑀 are limit
points of 𝑓 (𝑋). But 𝑓 (𝑋) is closed, and hence contains all of its limit points, and thus𝑚 ∈ 𝑓 (𝑋) and 𝑀 ∈ 𝑓 (𝑋),
and thus ∃𝑦𝑚 : 𝑓 (𝑦𝑚) = 𝑚 and 𝑦𝑀 : 𝑓 (𝑦𝑀) = 𝑀. ■

↩→ Definition 2.16: Path Connected

A set 𝐴 ⊆ 𝑋 is called path connected if ∀ 𝑥, 𝑦 ∈ 𝐴, ∃ 𝑓 : [𝑎, 𝑏] → 𝑋, continuous, s.t. 𝑓 (𝑎) = 𝑥, 𝑓 (𝑏) = 𝑦

and 𝑓 ([𝑎, 𝑏]) ⊆ 𝐴.

The set { 𝑓 (𝑡) : 𝑎 ⩽ 𝑡 ⩽ 𝑏} is called a path from 𝑥 to 𝑦.

↩→ Theorem 2.7: Path connected =⇒ connected

If 𝐴 ⊆ 𝑋 is path connected, then 𝐴 is connected.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose, seeking a contradiction, that 𝐴 is path connected, but not connected. Then, we can write
𝐴 ⊆ 𝑈 ∪𝑉, for open, disjoint, nonempty subsets𝑈,𝑉 ⊆ 𝑋.

Let 𝑥 ∈ 𝑈 ∩ 𝐴 and 𝑦 ∈ 𝑉 ∩ 𝐴. Then, ∃ 𝑓 : [𝑎, 𝑏] → 𝐴 s.t. 𝑓 (𝑎) = 𝑥, 𝑓 (𝑏) = 𝑦, and 𝑓 ([𝑎, 𝑏]) ⊆ 𝐴, by the path
connectedness of 𝐴. Then,

[𝑎, 𝑏] ⊆ 𝑓 −1(𝐴) ⊆ 𝑓 −1(𝑈 ∩ 𝐴)︸        ︷︷        ︸
open

∪ 𝑓 −1(𝑉 ∩ 𝐴)︸       ︷︷       ︸
open

=: 𝑈1︸︷︷︸
𝑎∈

∪ 𝑈2︸︷︷︸
𝑏∈

,

that is, [𝑎, 𝑏] is contained in a union of open, nonempty, disjoint sets, contradicting [𝑎, 𝑏] the connectedness
of [𝑎, 𝑏] by lemma 2.3. Thus, 𝐴 is connected. ■

Remark 2.10. A counterexample to the opposite side of the implication is the Topologist’s sine curve, the set

{(𝑥, sin
(
1
𝑥

)
) : 𝑥 ∈ (0, 1]} ∪ {0} × [−1, 1].

This set is connected in R2, but is not path connected.

↩→Proposition 2.18

For open sets in R𝑛 , path connected ⇐⇒ connected.

↩→ Lecture 05; Last Updated: Sun Feb 4 22:28:52 EST 2024
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2.8 Path Components, Connected Components

Remark 2.11. Remark that if a metric space 𝑋 is not connected, then we can write 𝑋 = 𝑈 ∪𝑉 where 𝑈,𝑉 are open,
nonempty and disjoint. It follows, then, that𝑈 = 𝑉𝐶 (and vice versa) and hence𝑈,𝑉 are both open and closed.

↩→ Definition 2.17: Connected Component

A connected component of 𝑥 ∈ 𝑋 is the largest connected subset of 𝑋 that contains 𝑥.

⊛ Example 2.6

Let 𝑋 = (0, 1) ∪ (1, 2). Here, we have two connected components, (0, 1) and (1, 2)

⊛ Example 2.7: Middle Thirds Cantor Set

Let 𝐶0 := [0, 1], and given 𝐶𝑛 , define 𝐶𝑛+1 := 1
3 (𝐶𝑛 ∪ (2 + 𝐶𝑛)) for 𝑛 ⩾ 0. 𝐶∞ is totally disconnected.

↩→ Definition 2.18: Path Component

A path component 𝑃(𝑥) of 𝑥 ∈ 𝑋 is the largest path connected subset of 𝑋 that contains 𝑥.

↩→Proposition 2.19

𝑃(𝑥) = {𝑥 ∈ 𝑋 : ∃ conintuous path 𝛾 : [0, 1] → 𝑋 : 𝛾(0) = 𝑥, 𝛾(1) = 𝑦}.

Remark 2.12. Where we “start” a path does not matter. We write 𝑥 ∼ 𝑦 if ∃𝛾 from 𝑥 to 𝑦; this is an equivalence
relation on the elements of 𝑋.

Remark 2.13. The choice of [0, 1] here is arbitrary; any closed interval is homeomorphic.

↩→ Lemma 2.4

If 𝑃(𝑥) ∩ 𝑃(𝑦) ≠ ∅, then 𝑃(𝑥) = 𝑃(𝑦).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝑃(𝑥) ∩ 𝑃(𝑦) ≠ ∅ =⇒ ∃𝑧 : 𝑥 ∼ 𝑧 ∧ 𝑦 ∼ 𝑧 =⇒ 𝑥 ∼ 𝑦. ■

↩→ Lemma 2.5

If 𝐴 ⊆ 𝑋 is connected, then 𝐴 is also connected.

↩→ Lemma 2.6

Suppose 𝐴 ⊆ 𝑋 is both open and closed. Then, if 𝐶 ⊆ 𝑋 is connected and 𝐶 ∩ 𝐴 ≠ ∅, then 𝐶 ⊆ 𝐴.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If 𝐴 is both open and closed, then 𝐶 ∩ 𝐴 is both open and closed in 𝐶. If 𝐶 ∩ 𝐴𝐶 ≠ ∅, then this is also
open and closed in 𝐶. Hence, we can write 𝐶 = (𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐴𝐶), that is, a disjoint union of two nonempty
open sets, contradicting the connectedness of 𝐶. Hence, 𝐶 ∩ 𝐴𝐶 = ∅, and so 𝐶 ⊆ 𝐴. ■

↩→Proposition 2.20

Let {𝐶𝛼}𝛼∈𝐼 be a collection of nonempty connected subspaces of 𝑋 s.t. ∀𝛼, 𝛽 ∈ 𝐼 , 𝐶𝛼 ∩ 𝐶𝛽 ≠ ∅. Then,
∪𝛼∈𝐼𝐶𝛼 is connected.

↩→Proposition 2.21

Suppose each 𝑥 ∈ 𝑋 has a path-connected neighborhood. Then, the path components in 𝑋 are the same
as the connected components in 𝑋.

2.8.1 Cantor Staircase Function

↩→ Definition 2.19: An Explicit Definition

Let 𝑥 ∈ 𝐶 : 𝑥 = 0.𝑎1𝑎2𝑎3 . . . (base 3), ie 𝑎 𝑗 =


0

2
. Define

𝑓 (𝑥) =

∑ 𝑎 𝑗/2

2𝑗 𝑥 ∈ 𝐶

extend by continuity 𝑥 ∉ 𝐶.

That is, if 𝑥 ∉ 𝐶, set 𝑓 (𝑦) = sup𝑥∈𝐶,𝑥<𝑦 𝑓 (𝑥) = inf𝑥∈𝐶,𝑥>𝑦 𝑓 (𝑥).

↩→ Definition 2.20: Complement Definition

To construct the complement of the Cantor set, begin with [0, 1] and at a step 𝑛, we remove 2𝑛 open
intervals from this interval. 𝑓 (𝑥) will be constant on each of these intervals with values 𝑘

2𝑛 where 𝑘 odd
and 0 < 𝑘 < 2𝑛 . Extend by continuity to all 𝑥 ∈ 𝐶.

Remark 2.14. Wikipedia’s explanation of this is far better than whatever this definition is trying to say.

↩→ Lecture 06; Last Updated: Tue Jan 23 11:03:35 EST 2024
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3 𝐿𝑝 Spaces

3.1 Review of ℓ 𝑝 Norms

Remark 3.1. Recall that for 1 ⩽ 𝑝 ⩽ +∞, we define for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 the norm

| |𝑥 | |𝑝 = (|𝑥1 |𝑝 + · · · + |𝑥𝑛 |𝑝)
1
𝑝 , | |𝑥 | |∞ =

𝑛max
𝑖=1

|𝑥𝑖 | .

Similarly, for infinite vector spaces, we had, for 𝑥 = (𝑥1, . . . , 𝑥𝑛 , . . . ), the norm

| |𝑥 | |𝑝 =
( ∞∑
𝑖=1

|𝑥𝑖 |𝑝
) 1
𝑝

, | |𝑥 | |∞ = sup
𝑖⩾1

|𝑥𝑖 | .

Here, we define
ℓ𝑝 := {𝑥 = (𝑥1, . . . , 𝑥𝑛) : | |𝑥 | |𝑝 < +∞}.

3.2 ℓ 𝑝 Norms, Hölder-Minkowski Inequalities

↩→ Definition 3.1: Hölder Conjugates

For 1 ⩽ 𝑝, 𝑞 ⩽ +∞, we say that 𝑝, 𝑞 are said to be Hölder conjugates if

1
𝑝
+ 1
𝑞
= 1.

Remark 3.2. We refer to these simply as “conjugates” throughout as no other conception of conjugate numbers will be
discussed.

Further, we take by convention 1
∞ = 0.

↩→Proposition 3.1: Hölder’s Inequality

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ R𝑛 . Suppose 𝑝, 𝑞 : 1 ⩽ 𝑝, 𝑞 ⩽ +∞ are conjugate. Then,

⟨𝑥, 𝑦⟩R𝑛 :=

����� 𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ | |𝑥 | |𝑝 · | |𝑦 | |𝑞

⊛ Example 3.1

For the case 𝑝 = 1 or ∞ (functionally, the same case):
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↩→ Lemma 3.1

Let 𝑝, 𝑞 be conjugates, and 𝑥, 𝑦 ⩾ 0. Then,

𝑥𝑦 ⩽
𝑥𝑝

𝑝
+ 𝑦𝑞

𝑞
.

Remark 3.3. If the inequality holds, then, for some 𝑡 > 0, let �̃� = 𝑡
1
𝑝 · 𝑥, �̃� = 𝑡

1
𝑞 𝑦. Substituting 𝑥 for �̃� and 𝑦 for �̃�, we

have

LHS: �̃� �̃� = 𝑡
1
𝑝 𝑥 · 𝑡

1
𝑞 𝑦 = 𝑡

1
𝑝+ 1

𝑞 · 𝑥𝑦 = 𝑥𝑦

RHS: · · · = 𝑡(𝑥
𝑝

𝑝
+ 𝑦𝑞

𝑞
.)

That is, we have

𝑡 · 𝑥𝑦 ⩽ 𝑡
(
𝑥𝑝

𝑝
+
𝑦𝑞

𝑞

)
,

hence, the inequality is preserved under multiplication by a positive scalar; moreover, the original inequality holds iff
this “scaled” version holds. Hence, choosing 𝑡 such that �̃� = 1 (let 𝑡 =

(
1
𝑦

) 𝑞
), it suffices to prove the lemma for 𝑦 = 1.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If 𝑥 = 0 or 𝑦 = 0, then the entire LHS becomes 0 and we are done; assume 𝑥, 𝑦 > 0; by the previous
remark, assume wlog 𝑦 = 1. Then, we have

𝑥 · 𝑦 ⩽ 𝑥𝑝

𝑝
+
𝑦𝑞

𝑞
⇐⇒ 𝑥 · 1 ⩽ 𝑥𝑝

𝑝
+ 1
𝑞

⇐⇒ 𝑥𝑝

𝑝
− 𝑥 + 1

𝑞
=: 𝑓 (𝑥) ⩾ 0.

Taking the derivative, we have

𝑓 ′(𝑥) = ��𝑝𝑥
𝑝−1

��𝑝
− 1 = 𝑥𝑝−1 − 1

𝑝 > 1 =⇒ 𝑝 − 1 > 0 =⇒


𝑓 ′(𝑥) > 0 ∀ 𝑥 > 1

𝑓 ′(𝑥) = 0 𝑥 = 0

𝑓 ′(𝑥) < 0 ∀0 < 𝑥 < 1

Hence, 𝑥 = 1 is a local minimum of the function, and thus 𝑓 (𝑥) ⩾ 𝑓 (1) ∀0 < 𝑥 ⩽ 1. But 𝑓 (1) = 1𝑝
𝑝 − 1 + 1

𝑞 =

1 − 1 = 0, hence 𝑓 (𝑥) ⩾ 0∀ 𝑥 ⩾ 0, as desired, and the inequality holds. ■

3.2 𝐿𝑝 Spaces: ℓ 𝑝 Norms, Hölder-Minkowski Inequalities 24



ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Assume | |𝑥 | |𝑝 = | |𝑦 | |𝑞 = 1. Then,����� 𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ 𝑛∑
𝑖=1

|𝑥𝑖𝑦𝑖 | (by triangle inequality)

⩽
𝑛∑
𝑖=1

�����𝑥𝑝𝑖𝑝 +
𝑦
𝑞

𝑖

𝑞

����� (by lemma 3.1)

=
1
𝑝

(
𝑛∑
𝑖=1

|𝑥𝑖 |𝑝
)
+ 1
𝑞

(
𝑛∑
𝑖=1

|𝑦𝑖 |𝑞
)

=
1
𝑝
| |𝑥 | |𝑝𝑝 +

1
𝑞
| |𝑦 | |𝑞𝑞 (by staring)

=
1
𝑝
· 1𝑝 + 1

𝑞
· 11 =

1
𝑝
+ 1
𝑞
= 1 (by assumption)

= | |𝑥 | |𝑝 · | |𝑦 | |𝑞 ,

and the proposition holds, in the special case | |𝑥 | |𝑝 = | |𝑦 | |𝑞 = 1.

If | |𝑥 | |𝑝 = 0 or | |𝑦 | |𝑞 = 0, then 𝑥1 = · · · = 𝑥𝑛 = 0 or 𝑦1 = · · · = 𝑦𝑛 = 0, resp, then we’d have (| |𝑥 | |𝑝 = 0 case)

0 · 𝑦1 + · · · + 0 · 𝑦𝑛 ⩽ 0,

which clearly holds.

Assume, then, | |𝑥 | |𝑝 > 0, | |𝑦 | |𝑞 > 0. Let �̃� := 𝑥
| |𝑥 | |𝑝 , �̃� := 𝑦

| |𝑦 | |𝑞 . Then,

| |�̃� | |𝑝𝑝 =
(∑𝑛

𝑖=1 |𝑥𝑖 |
𝑝 )

| |𝑥 | |𝑝𝑝
=

| |𝑥 | |𝑝𝑝
| |𝑥 | |𝑝𝑝

= 1 =⇒ ||�̃� | |𝑝 = 1.

The same case holds for �̃�, hence | | �̃� | |𝑞 = 1; that is, we have “rescaled” both vectors. Hence, we can use the
case we proved above for when the norms were identically 1 on �̃� , �̃�. We have:����� 𝑛∑

𝑖=1
�̃�𝑖𝑦𝑖

����� ⩽ 1

But by definition of �̃� , �̃�, we have����� 𝑛∑
𝑖=1

�̃�𝑖𝑦𝑖

����� =
����� 1
| |𝑥 | |𝑝 | |𝑦 | |𝑞

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ 1 =⇒
����� 𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ | |𝑥 | |𝑝 · | |𝑦 | |𝑞 ,

and the proof is complete. ■
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↩→Proposition 3.2: Minkowski Inequality

Let 1 ⩽ 𝑝 ⩽ ∞, 𝑥, 𝑦 ∈ R𝑛 . Then,
| |𝑥 + 𝑦 | |𝑝 ⩽ | |𝑥 | |𝑝 + ||𝑦 | |𝑝 .

Remark 3.4. This is just the triangle inequality for ℓ𝑝 norms.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. The cases 𝑝 = 1,∞ are left as an exercise.

Assume 1 < 𝑝 < ∞. Then,

| |𝑥 + 𝑦 | |𝑝𝑝 =
𝑛∑
𝑗=1

��𝑥 𝑗 + 𝑦 𝑗 ��𝑝 = 𝑛∑
𝑗=1

��𝑥 𝑗 + 𝑦 𝑗 �� ��𝑥 𝑗 + 𝑦 𝑗 ��𝑝−1

⩽
∞∑
𝑗=1

(��𝑥 𝑗 �� + ��𝑦 𝑗 ��) · ��𝑥 𝑗 + 𝑦 𝑗 ��𝑝−1

=

𝑛∑
𝑗=1

��𝑥 𝑗 �� · ��𝑥 𝑗 + 𝑦 𝑗 ��𝑝−1

︸                   ︷︷                   ︸
:=𝐴

+

:=𝐵︷                   ︸︸                   ︷
𝑛∑
𝑗=1

��𝑦 𝑗 �� · ��𝑥 𝑗 + 𝑦 𝑗 ��𝑝−1
⊛

Let ®𝑢 = (|𝑥1 | , · · · , |𝑥𝑛 |) and ®𝑣 = (|𝑥1 + 𝑦1 |𝑝−1 , · · · , |𝑥𝑛 + 𝑦𝑛 |𝑝−1), then, 𝐴 = ®𝑢 · ®𝑣 = ⟨®𝑢, ®𝑣⟩R𝑛 . We have

| | ®𝑢 | |𝑝 =
(
𝑛∑
𝑖=1

(|𝑥𝑖 |𝑝)
) 1
𝑝

= | |𝑥 | |𝑝

| |®𝑣 | |𝑞 =
(
𝑛∑
𝑖=1

(
|𝑥𝑖 + 𝑦𝑖 |𝑝−1

) 𝑞) 1
𝑞

=

[
𝑛∑
𝑖=1

(
|𝑥𝑖 + 𝑦𝑖 |𝑝−1

) 𝑝

𝑝−1

] 𝑝−1
𝑝

=

[
𝑛∑
𝑖=1

|𝑥𝑖 + 𝑦𝑖 |𝑝
] 𝑝−1

𝑝

= | |𝑥 + 𝑦 | |𝑝−1
𝑝

where the second-to-last line follows from 𝑝, 𝑞 being conjugate, hence 𝑞 = 𝑝

𝑝−1 . Thus, by Hölder’s Inequality,
we have that

𝐴 = ⟨®𝑢, ®𝑣⟩ ⩽ | |𝑢 | |𝑝 · | |𝑣 | |𝑞 = | |𝑥 | |𝑝 · | |𝑥 + 𝑦 | |𝑝−1
𝑝 .

By a similar construction, we can show that

𝐵 ⩽ | |𝑦 | |𝑝 · | |𝑥 + 𝑦 | |𝑝−1
𝑝 .
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Thus, returning to our original inequality in ⊛, we have

| |𝑥 + 𝑦 | |𝑝𝑝 ⩽ 𝐴 + 𝐵

⩽ | |𝑥 | |𝑝 · | |𝑥 + 𝑦 | |𝑝−1
𝑝 + ||𝑦 | |𝑝 · | |𝑥 + 𝑦 | |𝑝−1

𝑝

=⇒ ||𝑥 + 𝑦 | |𝑝 ⩽ | |𝑥 | |𝑝 + ||𝑦 | |𝑝 ,

and the proof is complete. ■

↩→ Lecture 07; Last Updated: Tue Jan 30 12:54:59 EST 2024

3.3 Complete Metric Spaces, Completeness of ℓ𝑝

↩→ Theorem 3.1

The sequence of centers of balls with monotonically decreasing radii is a Cauchy sequence in 𝑋.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝜀 > 0 and let 𝑁 : ∀ 𝑗 > 𝑁, 𝑟𝑗 < 𝜀. Then,

𝑑(𝑥 𝑗 , 𝑥𝑘) < 𝑟min(𝑗 ,𝑘) = 𝑟 𝑗

■

↩→ Definition 3.2: Complete Metric Space

A metric space is complete if every Cauchy sequence converges to a limit in that space.

⊛ Example 3.2: Examples of Complete Metric Spaces

1. R, 𝑝-adic integers (Z𝑝)/rationals(Q𝑝).

2. ℓ𝑝 = {𝑥 = (𝑥𝑖)∞𝑖=1 :
∑∞
𝑖=1 |𝑥𝑖 |

𝑝 < +∞}, 1 ⩽ 𝑝 ⩽ +∞

3. ℓ∞ = {𝑥 = (𝑥𝑖) : sup∞
𝑖=1 |𝑥𝑖 | < +∞}.

↩→Proposition 3.3

Hölder’s Inequality and Minkowski Inequality inequalities hold for infinite sequences. that is,

1. if 𝑥 = (𝑥𝑖) ∈ ℓ𝑝 and 𝑦 = (𝑦𝑖) ∈ ℓ𝑞 with 1
𝑝 + 1

𝑞 = 1, then����� ∞∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ | |𝑥𝑖 | |ℓ𝑝 | |𝑦𝑖 | |ℓ𝑞 .

2. if 𝑥, 𝑦 ∈ ℓ𝑝 , then
| |𝑥 + 𝑦 | |𝑝 ⩽ | |𝑥 | |𝑝 + ||𝑦 | |𝑝 .
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Remark 3.5. 2. gives the triangle inequality for the | |𝑥 | |𝑝 norm on ℓ𝑝 .

Moreover,

| |𝑐 · 𝑥 | |𝑝 = | |(𝑐1𝑥1, . . . , 𝑐𝑛𝑥𝑛 , . . . )| |𝑝

=

( ∞∑
𝑖=1

|𝑐𝑥𝑖 |𝑝
) 1
𝑝

=

( ∞∑
𝑖=1

|𝑐 |𝑝 |𝑥𝑖 |𝑝
) 1
𝑝

=
(
|𝑐 |𝑝

) 1
𝑝 | |𝑥 | |𝑝 = 𝑐 · | |𝑥 | |𝑝

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (of 2.) If 𝑥, 𝑦 ∈ ℓ𝑝 , we have that
∑∞
𝑖=1 |𝑥𝑖 |

𝑝 < +∞,∑∞
𝑖=1 |𝑦𝑖 |

𝑝 < +∞, so ∃𝑁 > 0 :
∑∞
𝑖=𝑁+1 |𝑥𝑖 |

𝑝 <

𝜀,
∑∞
𝑖=𝑁+1 |𝑦𝑖 |

𝑝 < 𝜀. Let 𝑥(𝑛)
𝑖

= (𝑥1, . . . , 𝑥𝑛 , 0, 0, . . . ) be (𝑥) truncated after 𝑛 (finite) coordinates. This gives

| |(𝑥𝑖 + 𝑦𝑖)(𝑛) | |𝑝 ⩽ | |𝑥(𝑛)
𝑖

| |𝑝 + ||𝑦(𝑛)
𝑖

| |𝑝 ⩽ | |𝑥 | |𝑝 + ||𝑦 | |𝑝

by Minkowski on finite spaces. Taking 𝑛 → ∞ (ie, “detruncating”), we have (𝑥 + 𝑦) ∈ ℓ𝑝 , and thus | |𝑥 + 𝑦 | |𝑝 ⩽
| |𝑥 | |𝑝 + ||𝑦 | |𝑝 .

1. left as an exercise. ■

↩→Proposition 3.4

Let 1 ⩽ 𝑝 ⩽ +∞, and | |𝑥 | |∞ = sup∞
𝑖=1 |𝑥𝑖 | = 𝐴 < +∞, | |𝑦 | |∞ = sup∞

𝑖=1 |𝑦𝑖 | = 𝐵 < +∞. Then, the triangle
inequality | |𝑥 + 𝑦 | |∞ ⩽ | |𝑥 | |∞ + ||𝑦 | |∞ holds.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We have

∞sup
𝑖=1

|𝑥𝑖 + 𝑦𝑖 | ⩽
∞sup
𝑖=1

(|𝑥𝑖 | + |𝑦𝑖 |) ⩽
∞sup
𝑖=1

|𝑥𝑖 | +
∞sup
𝑖=1

|𝑦𝑖 | = | |𝑥 | |∞ + ||𝑦 | |∞.

■

↩→Proposition 3.5

| |𝑥 | |∞ := sup∞
𝑖=1 |𝑥𝑖 | is a well-defined norm on ℓ∞.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. The triangle inequality is prove in proposition 3.4. The remainder of the requirements are left as an
exercise. ■

↩→Proposition 3.6

ℓ𝑝 ⊆ ℓ𝑞 if 𝑝 < 𝑞.
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ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑥 ∈ ℓ𝑝 . If
∑∞
𝑖=1 |𝑥𝑖 |

𝑝 < +∞, then ∃𝑁 : ∀ 𝑖 ⩾ 𝑁, |𝑥𝑖 | ⩽ 1. Then,∑
𝑖⩾𝑁

|𝑥𝑖 |𝑞 ⩽
∑
𝑖⩾𝑁

|𝑥𝑖 |𝑝 < ∞

=⇒
∞∑
𝑖=1

|𝑥𝑖 |𝑞 < +∞ =⇒ 𝑥 ∈ ℓ𝑞

=⇒ ℓ𝑝 ⊆ ℓ𝑞

■

↩→ Lecture 08; Last Updated: Thu Mar 28 09:13:10 EDT 2024

3.4 Contraction Mapping Theorem

↩→ Definition 3.3: Contraction Mapping

Let (𝑋, 𝑑) be a metric space. A contraction mapping on 𝑋 is a function 𝑓 : 𝑋 → 𝑋 for which ∃ a constant
0 < 𝑐 < 1 such that

𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) ⩽ 𝑐 · 𝑑(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝑋.

↩→ Theorem 3.2: Contraction Mapping Theorem

Let (𝑋, 𝑑) be a complete metric space, and let 𝑓 : 𝑋 → 𝑋 be a contraction. Then, there exists a unique
fixed point 𝑧 of 𝑓 such that 𝑓 (𝑧) = 𝑧.

Moreover, 𝑓 [𝑛](𝑥) := 𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓 (𝑥) → 𝑧 as 𝑛 → ∞ for any 𝑥 ∈ 𝑋.

Remark 3.6. The “functional construction” of the Cantor set is an example of a contraction mapping, with 𝑓1(𝑥) =
𝑥
3 , 𝑓2(𝑥) = 𝑥+2

3 . The first has a fixed point of 0, and the second a fixed point of 1.

Remark 3.7. This is a generalization of this proof done in Analysis I, an equivalent claim over the reals.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix 𝑥 ∈ 𝑋. Consider the sequence {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛 , . . . } := {𝑥, 𝑓 (𝑥), 𝑓 ◦ 𝑓 (𝑥), · · · , 𝑓 [𝑛](𝑥), . . . } (we call
𝑓 [𝑛] the orbit of 𝑥 under iterations of 𝑓 ). We claim that this is a Cauchy sequence. Let 𝑛 ∈ N arbitrary, then
we have, by the property of the contraction mapping,

𝑑( 𝑓 [𝑛+1](𝑥) − 𝑓 [𝑛](𝑥)) ⩽ 𝑐 · 𝑑( 𝑓 [𝑛](𝑥) − 𝑓 [𝑛−1](𝑥)) ⩽ 𝑐2𝑑( 𝑓 [𝑛−1](𝑥) − 𝑓 [𝑛−2](𝑥)).

Arguing inductively, it follows that

𝑑( 𝑓 [𝑛+1](𝑥) − 𝑓 [𝑛](𝑥)) ⩽ 𝑐𝑛𝑑( 𝑓 (𝑥), 𝑥). ★
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Let now 𝑚, 𝑘 ∈ N, 𝑚, 𝑘 > 0. It follows that

𝑑( 𝑓 [𝑚], 𝑓 [𝑚+𝑘](𝑥) ⩽ 𝑑( 𝑓 [𝑚])(𝑥), 𝑓 [𝑚+1](𝑥)) + 𝑑( 𝑓 [𝑚+1](𝑥), 𝑓 [𝑚](𝑥)) + · · · + 𝑑( 𝑓 [𝑚+𝑘−1](𝑥), 𝑓 𝑚+𝑘(𝑥))
★
⩽ 𝑑(𝑥, 𝑓 (𝑥))[𝑐𝑚 + 𝑐𝑚+1 + · · · + 𝑐𝑚+𝑘−1]

⩽ 𝑐𝑚𝑑(𝑥, 𝑓 (𝑥))[1 + 𝑐 + · · · + 𝑐𝑘 + 𝑐𝑘+1 + · · · ] =
𝑐𝑚𝑑(𝑥, 𝑓 (𝑥))

1 − 𝑐

Now, given 𝜀 > 0, choose 𝑁 such that 𝑐𝑁 𝑑(𝑥, 𝑓 (𝑥))
1−𝑐 < 𝜀. It follows, then, that { 𝑓 [𝑛](𝑥)}𝑛∈N a Cauchy sequence,

and thus converges, 𝑓 [𝑛](𝑥) → 𝑧 as 𝑛 → ∞ for some 𝑧.

We further have to show that 𝑓 (𝑧) = 𝑧. It is easy to show that 𝑓 continuous due to the contraction mapping
(it is clearly Lipschitz with constant 𝑐), and it thus follows that

lim
𝑛→∞

𝑓 ( 𝑓 [𝑛](𝑥)) = lim
𝑛→∞

𝑓 [𝑛](𝑥) =⇒ 𝑓 (𝑧) = 𝑧,

by sequential characterization of continuous functions.

Finally, we need to show that this limit is unique. Suppose ∃𝑦1 ≠ 𝑦2, ie two fixed points with 𝑓 (𝑦1) = 𝑦1
and 𝑓 (𝑦2) = 𝑦2. Then, by the property of the contraction mapping,

𝑑( 𝑓 (𝑦1), 𝑓 (𝑦2)) ⩽ 𝑐 · 𝑑(𝑦1, 𝑦2),

but by assumption of being fixed points,

𝑑( 𝑓 (𝑦1), 𝑓 (𝑦2)) = 𝑑(𝑦1, 𝑦2),

implying 𝑑(𝑦1, 𝑦2) ⩽ 𝑐 · 𝑑(𝑦1, 𝑦2). This is only possible if 𝑑(𝑦1, 𝑦2) = 0, and thus 𝑦1 = 𝑦2 and the fixed point is
indeed unique. ■

↩→ Theorem 3.3: ℓ𝑝 complete

The space ℓ𝑝 is complete for all 1 ⩽ 𝑝 ⩽ +∞.

Equivalently, if (𝑥1), (𝑥2), . . . , (𝑥𝑛) is a Cauchy sequence in ℓ 𝑝 , ∃𝑦 ∈ ℓ 𝑝 s.t. 𝑥𝑛 → 𝑦 as 𝑛 → ∞.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Sketch) We suppose first 𝑝 < +∞. Consider an arbitrary number of Cauchy sequences in ℓ𝑝 :

𝑥(1) = (𝑥(1)1 , . . . , 𝑥
(1)
𝑛 , . . . )

𝑥(2) = (𝑥(2)1 , . . . , 𝑥
(2)
𝑛 , . . . )

...
...

...

𝑥(𝑘) = (𝑥(𝑘)1 , . . . , 𝑥
(𝑘)
𝑛 , . . . ) ∈ ℓ𝑝

We claim that, for any 𝑘 ∈ N, the (𝑥(𝑛)
𝑘
)𝑛∈N is a Cauchy sequence; note that in this definition we are taking a

fixed-index (namely, the 𝑘th) element from different sequences (namely, the 𝑛th sequence).
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Since 𝑥(1), 𝑥(2), . . . , 𝑥(𝑛), . . . are Cauchy sequences in ℓ 𝑝 , we have for a fixed 𝜀 > 0, ∃𝑁 ∈ N : ∀𝑚, 𝑛 > 𝑁 ,
𝑑𝑝(𝑥(𝑚), 𝑥(𝑛)) < 𝜀:

𝑑𝑝(𝑥(𝑚), 𝑥(𝑛))𝑝 = | |𝑥(𝑚) − 𝑥(𝑛) | |𝑝𝑝 =
∞∑
𝑖=1

���𝑥(𝑚)
𝑖

− 𝑥(𝑛)
𝑖

���𝑝 < 𝜀𝑝���𝑥(𝑚)
𝑘

− 𝑥𝑛
𝑘

���𝑝 ⩽ ∞∑
𝑖=1

���𝑥(𝑚)
𝑖

− 𝑥(𝑛)
𝑖

���𝑝 =⇒
���𝑥(𝑚)
𝑘

− 𝑥𝑛
𝑘

���𝑝 < 𝜀𝑝

=⇒
���𝑥(𝑚)
𝑘

− 𝑥(𝑛)
𝑘

��� < 𝜀,

since we are taking “less of the summands in the second line”. It follows, then, that for each 𝑘, ∃𝑧𝑘 : 𝑥(𝑛)
𝑘

→ 𝑧𝑘

as 𝑛 → ∞. Let 𝑧 = (𝑧1, . . . , 𝑧𝑛 , . . . ). We claim that 𝑥(𝑛) → 𝑧 ∈ ℓ𝑝 as 𝑛 → ∞.

First, we show that 𝑑𝑝(𝑥(𝑛), 𝑧) → 0 as 𝑛 → 0 (that is, 𝑥(𝑛) → 𝑧 as 𝑛 → ∞). Fix 𝜀 > 0, and choose 𝑁 ∈ N for
which 𝑑𝑝(𝑥(𝑚), 𝑥(𝑛)) < 𝜀 ∀𝑚, 𝑛 ⩾ 𝑁 (by Cauchy). Fix 𝐾 ∈ N, 𝐾 > 0.

𝑑
𝑝
𝑝(𝑥(𝑛), 𝑧) = | |𝑥(𝑛) − 𝑧 | |𝑝𝑝 =

∞∑
𝑖=1

���𝑥(𝑛)𝑖
− 𝑧𝑖

���𝑝
| |𝑥(𝑚) − 𝑥(𝑛) | |𝑝𝑝 < 𝜀𝑝 =⇒

𝐾∑
𝑖=1

���𝑥(𝑚)
𝑖

− 𝑥(𝑛)
𝑖

���𝑝 ⩽ 𝜀𝑝

Let 𝑚 → ∞; then 𝑥(𝑚)
𝑖

→ 𝑧𝑖 (note that 𝑖 fixed!), and we have

𝐾∑
𝑖=1

���𝑧𝑖 − 𝑥(𝑛)𝑖

���𝑝 ⩽ 𝜀𝑝 .

Let 𝐾 → ∞; then,

∞∑
𝑖=1

���𝑧𝑖 − 𝑥(𝑛)𝑖

���𝑝 ⩽ 𝜀𝑝 =⇒ ||𝑧 − 𝑥 | |𝑝 ⩽ 𝜀 =⇒ 𝑑𝑝(𝑧, 𝑥𝑛) ⩽ 𝜀,

and thus 𝑥𝑛 → 𝑧 as 𝑛 → ∞.

It remains to show that 𝑧 ∈ ℓ𝑝 , ie | |𝑧 | |𝑝 < +∞. We have:

| |𝑧 | |𝑝 ⩽ | |𝑧 − 𝑥(𝑛) | |𝑝︸       ︷︷       ︸
→0

+||𝑥(𝑛) | |𝑝 .

For sufficiently large 𝑛, | |𝑧 − 𝑥(𝑛) | | ⩽ 1 (for instance); 𝑥(𝑛) ∈ ℓ𝑝 , hence | |𝑥(𝑛) | |𝑝 < +∞ (say, | |𝑥(𝑛) | |𝑝 ⩽ 𝑀). Thus:

| |𝑧 | |𝑝 ⩽ 1 +𝑀 < +∞ =⇒ 𝑧 ∈ ℓ𝑝 ,

and the proof is complete. ■
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3.5 Equivalent Notions of Compactness in Metric Spaces

↩→ Definition 3.4: Totally Bounded

Let (𝑋, 𝑑) be a metric space. If for every 𝜀 > 0, ∃𝑥1, . . . , 𝑥𝑛 ∈ 𝑋, 𝑛 = 𝑛(𝜀) :
⋃𝑛
𝑖=1 𝐵(𝑥𝑖 , 𝜀) = 𝑋, we say 𝑋 is

totally bounded.

↩→ Lecture 09; Last Updated: Tue Apr 9 22:27:24 EDT 2024

↩→ Theorem 3.4

Let (𝑋, 𝑑) be a metric space. TFAE:

1. 𝑋 is complete and totally bounded;

2. 𝑋 is compact;

3. 𝑋 is sequentially compact (every sequence has a convergent subsequence).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (1. =⇒ 2.) Suppose 𝑋 complete and totally bounded. Assume towards a contradiction that 𝑋 not
compact, ie there exists an open cover {𝑈𝛼}𝛼∈𝐼 of 𝑋 with no finite subcover.

𝑋 being totally bounded gives that it can be covered by finitely many open balls of radius 1
2 . It must be

that at least one of these open balls cannot be finitely covered, otherwise we would have a finite subcover.
Let 𝐹1 be the closure of this ball. 𝐹1 closed, with diameter diam(𝐹1) ⩽ 1. 𝑋.

We also have that 𝑋 can be covered by finitely many balls of radius 1
4 ; again, there must be at least one

ball 𝐵1 such that 𝐵1 ∩ 𝐹1 cannot be covered by finitely many open sets from the cover. Let 𝐹2 = 𝐵1 ∩ 𝐹1-closed,
with diam(𝐹2) ⩽ 1

4 + 1
4 = 1

2 .4

Arguing inductively, at some step 𝑛, 𝑋 can can be covered by finitely many balls of radius 1
2𝑛 ; at least one

of these balls 𝐵 cannot be covered by a finite subcover hence 𝐵∩𝐹𝑛−1 cannot be covered by finitely many𝑈𝛼’s.
Let 𝐹𝑛 = 𝐵 ∩ 𝐹𝑛−1 -closed, with diam(𝐹𝑛) ⩽ 1

2𝑛−1 .

As such, we have a nested sequence 𝐹1 ⊇ 𝐹2 ⊇ · · · ⊇ 𝐹𝑛 ⊇ · · · of closed sets, where diam(𝐹𝑘) ⩽ 1
2𝑘−1 → 0

as 𝑘 → ∞.

↩→ Lemma 3.1 (Cantor Intersection Theorem).
⋂∞
𝑘=1 𝐹𝑘 ≠ ∅.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Of Lemma) Let 𝑥𝑘 ∈ 𝐹𝑘 . Then, {𝑥𝑘}𝑘∈N is a Cauchy sequence, since

𝑑(𝑥𝑛 , 𝑥𝑛+𝑘) ⩽ diam(𝐹𝑛) + · · · + diam(𝐹𝑛+𝑘) ⩽
1

2𝑛−1 ,

by the nested property, which can be made arbitrarily small for sufficiently large 𝑛, 𝑘. Hence, 𝑥𝑛 → 𝑦 ∈ 𝑋
for some 𝑦, as 𝑋 complete. The tail of 𝑥𝑛 lies in 𝐹𝑛 for all sufficiently large 𝑛, and as each 𝐹𝑛 closed, the limit
must lie in 𝐹𝑛 for all sufficiently large 𝑛. We conclude the intersection nonempty. ■

4𝐵1 has radius 1
4 and hence diameter 1

2 . The intersection of 𝐵1 with a set with a larger diameter must have diameter leq 1
2
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This 𝑦 from the lemma is covered by some 𝑈𝛼0-open for some 𝛼0 ∈ 𝐼. Being open, ∃𝜀 > 0 : 𝐵(𝑦, 𝜀) ⊆ 𝑈𝛼0 .
Let 𝑛 : 1

2𝑛−1 < 𝜀. Then, 𝑦 ∈ 𝐹𝑛 , and as diam(𝐹𝑛) ⩽ 1
2𝑛−1 , we have that 𝐹𝑛 ⊆ 𝐵(𝑦, 1

2𝑛−1 ) ⊆ 𝐵(𝑦, 𝜀) ⊆ 𝑈𝛼0 . But
then, we have that 𝐹𝑛 covered by a single open set 𝑈𝛼0 , a contradiction to our inductive construction of 𝐹𝑛 .
We conclude 𝑋 compact.

(2. =⇒ 3.) Suppose 𝑋 compact. Let {𝑥𝑛}𝑛∈N ∈ 𝑋. Let 𝐹𝑛 =
⋃
𝑘⩾𝑛{𝑥𝑘}-closed; we have too that

𝐹1 ⊇ 𝐹2 ⊇ · · · ⊇ 𝐹𝑛 ⊇ · · · .

↩→ Definition 3.5: Finite Intersection Property

ℱ has finite intersection property provided any finite subcollection of sets in ℱ has a non-empty
intersection.

↩→ Lemma 3.2 (Finite Interesection Formulation of Compactness). 𝑋-compact ⇐⇒ every collection ℱ
of closed subsets of 𝑋 with finite intersection property has non-empty intersection.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ■

This lemma directly gives that
⋂∞
𝑛=1 𝐹𝑛 ≠ ∅, {𝐹𝑛}𝑛∈N being a collection of closed subsets with any subset

having nonempty intersection (by the nestedness). Let 𝑦 ∈ ∩∞
𝑛=1𝐹𝑛 . Take 𝐵(𝑦, 1

𝑘
), which thus has nonempty

intersection with {𝑥𝑘}𝑘⩾𝑛 ∀𝑛, ie ∃𝑛1 : 𝑑(𝑦, 𝑥𝑛1) < 1 and ∃𝑛2 > 𝑛1 : 𝑑(𝑦, 𝑥𝑛2) < 1
2 . Arguing inductively,

∃𝑛 𝑗 > 𝑛 𝑗−1 : 𝑑(𝑦, 𝑥𝑛 𝑗 ) < 1
𝑗 for any given 𝑛 𝑗−1. It follows that lim𝑗→∞ 𝑥𝑛 𝑗 = 𝑦, and thus {𝑥𝑛 𝑗 } is a convergent

subsequence of {𝑥𝑛} that converges within 𝑋, and thus 𝑋 is sequentially compact.

(3. =⇒ 1.) Suppose 𝑋 sequentially compact. Let {𝑥𝑛} ∈ 𝑋 be a Cauchy sequence in 𝑋, which thus have a
convergent subsequence {𝑥𝑛𝑘 } → 𝑦.

↩→ Lemma 3.3. Let {𝑥𝑛} be a Cauchy sequence in 𝑋 where 𝑋 sequentially compact. Then, if {𝑥𝑛𝑘 } → 𝑦, so
does {𝑥𝑛} → 𝑦

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. ■

Then, {𝑥𝑛}𝑛 → 𝑦 and so 𝑋 complete.

Suppose 𝑋 not totally bounded, ie ∃𝜀 > 0 : 𝑋 cannot be covered by a finite union of balls of 𝐵(𝑥 𝑗 , 𝜀).
Let 𝑥1 ∈ 𝑋 s.t. 𝐵(𝑥1, 𝜀) ⊉ 𝑋; ∃𝑥2 ∈ 𝑋 \ 𝐵(𝑥1, 𝜀), and so 𝑋 ⊈ 𝐵(𝑥1, 𝜀) ∪ 𝐵(𝑥2, 𝜀) by assumption. Then,
choose 𝑥3 ∈ 𝑋 \ (𝐵(𝑥1, 𝜀) ∪ 𝐵(𝑥2, 𝜀)). Arguing inductively, we have that ∃𝑥𝑛 ∈ 𝑋 \ (⋃𝑛

𝑖=1 𝐵(𝑥𝑖 , 𝜀)), noting that
𝑑(𝑥𝑛 , 𝑥 𝑗) ⩾ 𝜀∀1 ⩽ 𝑗 ⩽ 𝑛.

Consider the sequence {𝑥 𝑗} 𝑗∈N:

↩→ Lemma 3.4. {𝑥 𝑗} cannot have a convergent subsequence.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Follows by 𝑑(𝑥𝑚 , 𝑥𝑛) ⩾ 𝜀∀𝑚, 𝑛. ■

This contradicts our assumption that𝑋 sequentially compact, and we conclude𝑋 must be totally bounded. ■

↩→ Lecture 10; Last Updated: Tue Feb 6 09:50:59 EST 2024
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⊛ Example 3.3: Complete Metric Space Example: 𝐿𝑝 norm

Let 𝑓 ∈ 𝐶([𝑎, 𝑏]). We define the norm

| | 𝑓 | |𝑝 :=
(∫ 𝑏

𝑎

| 𝑓 (𝑥)|𝑝 d𝑥
) 1
𝑝

.

As desired, | | 𝑓 | |𝑝 ⩾ 0; | | 𝑓 | |𝑝 = 0 ⇐⇒ 𝑓 ≡ 0; | |𝑐 · 𝑓 | |𝑝 = 𝑐 · | | 𝑓 | |𝑝 .

Hölder’s and Minkowski’s inequalities for functions also hold; for 1
𝑝 + 1

𝑞 = 1, 1 ⩽ 𝑝, 𝑞 ⩽ ∞,∫
| 𝑓 𝑔 | ⩽ | | 𝑓 | |𝑝 · | |𝑔 | |𝑞 ; | | 𝑓 + 𝑔 | |𝑝 ⩽ | | 𝑓 | |𝑝 + ||𝑔 | |𝑞 ,

respectively.

We similarly have the 𝐿∞ norm, namely, for a function 𝑓 : [𝑎, 𝑏] → R,

| | 𝑓 | |∞ = sup
𝑥∈[𝑎,𝑏]

| 𝑓 (𝑥)| ,

which obeys all the necessary properties as well.

Let 𝑓𝑛 → 𝑓 in 𝐶([𝑎, 𝑏]), wrt | | · · · | |∞, where { 𝑓𝑛}𝑛∈N a sequence of functions. Namely, we say that

∀ 𝜀 > 0, ∃𝑁 ∈ N : ∀𝑛 ⩾ 𝑁, sup
𝑥∈[𝑎,𝑏]

| 𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜀.

If this holds, we say that 𝑓𝑛 uniformly converges.

We say that 𝑓𝑛(𝑥) → 𝑓 (𝑥) pointwise on [𝑎, 𝑏] if ∀ 𝑥 ∈ [𝑎, 𝑏], 𝑓𝑛(𝑥) → 𝑓 (𝑥). Note that uniform
convergence implies pointwise convergence, but not the converse.

↩→ Theorem 3.5

Suppose 𝑓𝑛(𝑥) continuous, and 𝑓𝑛(𝑥) → 𝑓 (𝑥) uniformly on [𝑎, 𝑏]. Then, 𝑓 (𝑥) also continuous on [𝑎, 𝑏].

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix 𝜀 > 0, 𝑥0 ∈ [𝑎, 𝑏]. We have that ∃𝑁 : 𝑛 ⩾ 𝑁, | 𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜀
3 , ∀ 𝑥 ∈ [𝑎, 𝑏].

Let 𝑛 ⩾ 𝑁 . 𝑓𝑛(𝑥) continuous at 𝑥0, hence ∃𝛿(𝑥0) > 0 : |𝑦 − 𝑥0 | =⇒ | 𝑓𝑛(𝑦) − 𝑓𝑛(𝑥0)| < 𝜀
3 . We have

| 𝑓 (𝑥0) − 𝑓 (𝑦)| ⩽ | 𝑓 (𝑥0) − 𝑓𝑛(𝑥0)| + | 𝑓𝑛(𝑥0) − 𝑓𝑛(𝑦)| + | 𝑓𝑛(𝑦) − 𝑓 (𝑦)|

⩽
𝜀
3 + 𝜀

3 + 𝜀
3 = 𝜀,

completing the proof. ■

Remark 3.8. This does not hold with pointwise convergence.
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Remark 3.9. We will prove later that 𝐶([𝑎, 𝑏]) is complete for | | 𝑓 | |∞, but not for arbitrary | | 𝑓 | |𝑝 , 1 ⩽ 𝑝 < +∞. To
“complete” 𝐶([𝑎, 𝑏]) for 𝑝 ≠ ∞, we will need to consider measurable functions and redefine our notion of integration.

↩→ Lecture 11; Last Updated: Thu Feb 8 09:51:13 EST 2024

4 Derivatives

4.1 Introduction

↩→ Definition 4.1: Differentiable

We say 𝑓 (𝑥) differentiable at 𝑐 if ∃ lim𝑥→𝑐
𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 . If so, we denote the limit 𝑓 ′(𝑐).

Remark 4.1. For 𝑥 close to 𝑐, then 𝑓 (𝑥) ≈ 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑥 − 𝑐); this is a linear approximation of 𝑓 at 𝑐.

⊛ Example 4.1: Weierstrass

𝑓 (𝑥) = ∑∞
𝑛=1

cos(3𝑛)𝑥
2𝑛 is continuous in R, but nowhere differentiable.

↩→ Definition 4.2

The derivative, d𝑥, is a linear map 𝐶1([𝑎, 𝑏]) → 𝐶0([𝑎, 𝑏]).

4.2 Chain Rule

Remark 4.2. See Analysis I notes as well.

↩→ Theorem 4.1: Caratheodory’s Theorem

Let 𝑓 : 𝐼 → R, 𝑐 ∈ 𝐼. 𝑓 is differentiable at 𝑥 = 𝑐 iff ∃𝜑(𝑥) : 𝐼 → R s.t. 𝜑 continuous at 𝑐 and
𝑓 (𝑥) − 𝑓 (𝑐) = 𝜑(𝑥)(𝑥 − 𝑐).5

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If 𝑓 ′(𝑐) exists, let

𝜑(𝑥) =

𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 𝑥 ≠ 𝑐

𝑓 ′(𝑐) 𝑥 = 𝑐.
,

which is well defined. Moreover, for 𝑥 ≠ 𝑐, 𝜑(𝑥)(𝑥 − 𝑐) = 𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 (𝑥 − 𝑐) = 𝑓 (𝑥) − 𝑓 (𝑐) as desired; the case for

𝑥 = 𝑐 is clear. Continuity at 𝑐:

lim
𝑥→𝑐

𝜑(𝑥) = lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 = 𝑓 ′(𝑐) = 𝜑(𝑐).

5If not stated otherwise, sets named 𝐼 or 𝐽 are intervals.
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Conversely, suppose such a 𝜑 exists. Then, by continuity,

∃𝜑(𝑐) = lim
𝑥→𝑐

𝜑(𝑥) = lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

which gives directly that 𝑓 differentiable at 𝑐. ■

↩→ Theorem 4.2: Chain Rule

Let 𝑓 : 𝐽 → R, 𝑔 : 𝐼 → R, 𝑓 (𝐽) ⊆ 𝐼. If 𝑓 (𝑥) differentiable at 𝑐 and 𝑔(𝑦) is differentiable at 𝑦 = 𝑓 (𝑐), then
𝑔 ◦ 𝑓 (𝑥) is also differentiable at 𝑐, and

(𝑔 ◦ 𝑓 )′(𝑐) = 𝑔′( 𝑓 (𝑐)) 𝑓 ′(𝑐).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Using Caratheodory’s Theorem, ∃𝜑 : 𝑓 (𝑥) − 𝑓 (𝑐) = 𝜑(𝑥)(𝑥 − 𝑐) with 𝜑(𝑐) = 𝑓 ′(𝑐). Let 𝑑 = 𝑓 (𝑐), then
similarly ∃𝜓 : 𝑔(𝑦) − 𝑔(𝑑) = 𝜓(𝑦)(𝑦 − 𝑑) with 𝜓(𝑑) = 𝑔′(𝑑), with 𝜑,𝜓 continuous at 𝑐, 𝑑 resp. Then,

𝑔( 𝑓 (𝑥)) − 𝑔( 𝑓 (𝑐)) = 𝜓( 𝑓 (𝑥))( 𝑓 (𝑥) − 𝑓 (𝑐)) = (𝜓 ◦ 𝑓 )(𝑥) · (𝜙(𝑥)(𝑥 − 𝑐))

𝜓 ◦ 𝑓 is continuous at 𝑐, as a composition of continuous functions (𝜓, 𝜙 continuous by construction, 𝑓
differentiable and thus continuous). It follows, then, that

lim
𝑥→𝑐

𝑔( 𝑓 (𝑥)) − 𝑔( 𝑓 (𝑐))
𝑥 − 𝑐 = lim

𝑥→𝑐
(𝜓 ◦ 𝑓 )(𝑥) · 𝜑(𝑥) = 𝜓( 𝑓 (𝑐))𝜑(𝑐) = 𝑔′( 𝑓 (𝑐)) · 𝑓 ′(𝑐),

by construction. ■

4.3 Critical Points

↩→ Definition 4.3

𝑓 : 𝐼 → R has a max/min 𝑐 if ∃𝐽 ⊆ 𝐼 : 𝑥 ∈ 𝐽 s.t. max𝑥∈𝐽 𝑓 (𝑥)/min𝑥∈𝐽 𝑓 (𝑥) = 𝑓 (𝑐).

↩→ Theorem 4.3: Rolle’s

Let 𝑓 : [𝑎, 𝑏] → R continuous. Suppose 𝑓 ′(𝑥) exists for all 𝑥 ∈ (𝑎, 𝑏) and 𝑓 (𝑎) = 𝑓 (𝑏) = 0. Then,
∃𝑐 ∈ (𝑎, 𝑏) : 𝑓 ′(𝑐) = 0.

Remark 4.3. A “complex-version” of Rolle’s:

↩→ Theorem 4.4: Gauss-Lucas

Let 𝑃(𝑧) be a complex-valued polynomial. Then, the roots of 𝑃′(𝑧) lie inside the convex hull of roots of
𝑃(𝑧), where a convex hull is the smallest polygon with vertices at the roots of 𝑃(𝑧).

4.3 Derivatives: Critical Points 36



↩→ Definition 4.4

Consider 𝑃(𝑧) = 𝑧𝑛 − 1 for some 𝑛 ∈ N. If 𝑧 a root, we can show that (|𝑧 |)𝑛 = 1, hence all roots lie on
the unit circle in the complex plane at multiples of the same angle. This gives us a regular 𝑛-gon in the
complex plane. We then have that 𝑃′(𝑧) = 𝑛𝑧𝑛−1, with has root 𝑧 = 0, which clearly lies within the 𝑛-gon
hull.

↩→ Theorem 4.5: Mean Value

Let 𝑓 be continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Then, ∃𝑐 ∈ (𝑎, 𝑏) s.t. 𝑓 (𝑏) − 𝑓 (𝑎) = 𝑓 ′(𝑐)(𝑏 − 𝑎).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝜑(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) =
𝑓 (𝑏)− 𝑓 (𝑎)
(𝑏−𝑎) (𝑥 − 𝑎), where 𝜑(𝑎) = 0 = 𝜑(𝑏). By Rolle’s theorem, ∃𝑐 ∈ (𝑎, 𝑏) :

𝜑′(𝑐) = 0 = 𝑓 ′(𝑐) − 𝑓 (𝑏)− 𝑓 (𝑎)
(𝑏−𝑎) , as desired. ■

↩→ Lecture 12; Last Updated: Tue Apr 9 22:31:27 EDT 2024

4.4 Aside: Continued Fractions

We have that, for any 𝑥 ∈ R, 𝑥 = ⌊𝑥⌋ + {𝑥}, with {𝑥} ∈ (0, 1); ⌊𝑥⌋ and {𝑥} are the integral and fractional parts
of 𝑥 respectively.

Fix 𝑥 ∈ R, assuming 𝑥 ≠ 0.

Let 𝑥1 := 1
{𝑥} . We can write

𝑥 = ⌊𝑥⌋ + 1
𝑥1
.

If {𝑥1} ≠ 0, let 𝑥2 := 1
{𝑥1} and write

𝑥 = ⌊𝑥⌋ + 1
⌊𝑥1⌋ + 1

𝑥2

.

Continuing in this manner, this process stops if {𝑥𝑖} = 0 for some 𝑖; if 𝑥 ∈ Q, this process will stop, else, it
will continue infinitely. For instance, the Golden Ratio 𝑥 =

√
5±1
2 has continued fraction expansion

𝑥 =
1

1 + 1
1+ 1

1+···

.

More succinctly, we can denote 𝑎0 := ⌊𝑥⌋ and 𝑎𝑖 = ⌊𝑥𝑖⌋ , 𝑖 ⩾ 1, and write

𝑥 = 𝑎0 +
1

𝑎1 + 1
𝑎2+ 1

𝑎3+
. . .

.

We notate, accordingly, 𝑥 := (𝑎1, 𝑎2, 𝑎3, . . . ); in this case, the Golden Ratio can be notated (1, 1, 1, . . . ).
We denote 𝑝𝑛

𝑞𝑛
as the 𝑛th continued fraction of a given 𝑥. It turns out that this is the best possible rational

approximation for 𝑥 ∉ Q.
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4.5 Back To Derivatives

↩→ Theorem 4.6

𝑓 : 𝐼 → R, differentiable. 𝑓 is increasing (resp decreasing) iff 𝑓 ′(𝑥) ⩾ 0∀ 𝑥 ∈ 𝐼 (resp 𝑓 ′(𝑥) ⩽ 0∀ 𝑥 ∈ 𝐼).

↩→Proposition 4.1

Let 𝑓 continuous on 𝐼 = [𝑎, 𝑏]. Let 𝑎 < 𝑐 < 𝑏 and suppose 𝑓 differentiable on (𝑎, 𝑐) and (𝑐, 𝑏). Suppose
𝑓 ′(𝑥) ⩾ 0 on (𝑐 − 𝛿, 𝑐) and 𝑓 ′(𝑥) ⩽ 0 on (𝑐, 𝑐 + 𝛿) for some 𝛿 > 0. Then, 𝑓 has local max at 𝑥 = 𝑐.

↩→ Lemma 4.1

Let 𝐼 ⊆ R, and assume 𝑓 : 𝐼 → R is differentiable at 𝑥 = 𝑐 ∈ 𝐼.

1. If 𝑓 ′(𝑐) > 0, then ∃𝛿 > 0 : 𝑓 (𝑥) > 𝑓 (𝑐) ∀ 𝑥 ∈ 𝐼 , 𝑥 ∈ (𝑐, 𝑐 + 𝛿).

2. (Reverse statement for 𝑓 ′(𝑐) < 0)

↩→ Theorem 4.7: Darboux

Suppose 𝑓 differentiable on 𝐼 := [𝑎, 𝑏] and 𝑓 ′(𝑎) < 𝑘 < 𝑓 ′(𝑏). Then, ∃𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 𝑘.

↩→ Lecture 13; Last Updated: Thu Feb 15 09:49:55 EST 2024

4.6 L’Hopital’s Rules

↩→Proposition 4.2

Suppose 𝑓 (𝑥), 𝑔(𝑥) : [𝑎, 𝑏] → R with 𝑓 (𝑎) = 𝑔(𝑎) = 0, and 𝑔(𝑥) ≠ 0∀ 𝑎 < 𝑥 < 𝑏. Suppose 𝑓 , 𝑔 are
differentiable at 𝑥 = 𝑎 and 𝑔′(𝑎) ≠ 0. Then, lim𝑥→𝑎+

𝑓 (𝑥)
𝑔(𝑥) exists, and moreover, it is equal to 𝑓 ′(𝑎)𝑔′(𝑥).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof.

lim
𝑥→𝑎+

(
𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 )/(

𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎 ) = lim

𝑥→𝑎+

𝑓 (𝑥)
𝑥 − 𝑎

𝑥 − 𝑎
𝑔(𝑥) = lim

𝑥→𝑎+

𝑓 (𝑥)
𝑔(𝑥) ,

but the original line is simply 𝑓 ′(𝑎)
𝑔′(𝑎) . ■

⊛ Example 4.2

lim𝑥→0
sin 𝑥
𝑥 =

cos(0)
1 = 1.
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↩→ Theorem 4.8: Cauchy Mean Value

Let 𝑓 (𝑥), 𝑔(𝑥) : [𝑎, 𝑏] → R where 𝑓 , 𝑔 continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Assuming
𝑔′(𝑥) ≠ 0, ∀ 𝑥 ∈ (𝑎, 𝑏), then ∃𝑐 ∈ (𝑎, 𝑏) such that

𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) =

𝑓 ′(𝑐)
𝑔′(𝑐) .

↩→Proposition 4.3: More General L’Hopital

let −∞ ⩽ 𝑎 < 𝑏 ⩽ +∞ and 𝑓 , 𝑔 differentiable on (𝑎, 𝑏). Suppose lim𝑥→𝑎+ 𝑓 (𝑥) = 0 = lim𝑥→𝑎+ 𝑔(𝑥).

1. If ∃𝐿 := lim𝑥→𝑎+
𝑓 ′(𝑥)
𝑔′(𝑥) where 𝐿 some real number, then lim𝑥→𝑎+

𝑓 (𝑥)
𝑔(𝑥) = 𝐿 as well.

2. If ∃𝐿 := lim𝑥→𝑎+
𝑓 ′(𝑥)
𝑔′(𝑥) where 𝐿 = +∞ or −∞, then lim𝑥→𝑎+

𝑓 (𝑥)
𝑔(𝑥) = 𝐿 as well.

↩→Proposition 4.4

Let−∞ ⩽ 𝑎 < 𝑏 ⩽ +∞, 𝑓 , 𝑔 differentiable on (𝑎, 𝑏) and 𝑔′(𝑥) ≠ 0∀ 𝑥 ∈ (𝑎, 𝑏). Suppose lim𝑥→𝑎+ 𝑔(𝑥) = ±∞.

1. If lim𝑥→𝑎+
𝑓 ′(𝑥)
𝑔′(𝑥) =: 𝐿 exists and is some finite real number, then lim𝑥→𝑎+

𝑓 (𝑥)
𝑔(𝑥) = 𝐿 as well.

2. If lim𝑥→𝑎+
𝑓 ′(𝑥)
𝑔′(𝑥) =: 𝐿 exists and is ±∞, then lim𝑥→𝑎+

𝑓 (𝑥)
𝑔(𝑥) = 𝐿 as well.

4.7 Taylor’s Theorem

↩→ Theorem 4.9: Taylor’s Theorem

Let 𝐼 = [𝑎, 𝑏] ⊆ R, 𝑓 : 𝐼 → R, 𝑓 ∈ 𝐶𝑛(𝐼) and suppose 𝑓 (𝑛+1)(𝑥) exists on (𝑎, 𝑏). Let 𝑥0 ∈ [𝑎, 𝑏]. Then, for
any 𝑥 ∈ [𝑎, 𝑏], ∃𝑐 between 𝑥, 𝑥0 such that

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓 ′′(𝑥0)

2 (𝑥 − 𝑥0)2 + · · · + 𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 +

𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)! (𝑥 − 𝑥0)𝑛+1

↩→ Lecture 14; Last Updated: Thu Mar 28 09:07:11 EDT 2024
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↩→ Theorem 4.10: Relative Extrema

6Let 𝐼 ⊆ R be an open interval, 𝑥0 ∈ 𝐼, and 𝑛 ⩾ 2. Suppose 𝑓 ′, 𝑓 ′′, . . . , 𝑓 (𝑛) are continuous in a
neighborhood of 𝑥0, and 𝑓 ′(𝑥0) = 𝑓 ′′(𝑥0) = · · · = 𝑓 (𝑛−1)(𝑥0) = 0 and 𝑓 (𝑛)(𝑥0) ≠ 0. Then:

1. if 𝑛 is even and 𝑓 (𝑛)(𝑥0) > 0, then 𝑓 has a local minimum at 𝑥0;

2. if 𝑛 is even and 𝑓 (𝑛)(𝑥0) < 0, then 𝑓 has a local maximum at 𝑥0;

3. if 𝑛 is odd, then 𝑓 has neither a local minimum nor maximum at 𝑥0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If 𝑛 := 2𝑚-even and 𝑓 (2𝑚)(𝑥0) > 0, then 𝑓 (𝑛)(𝑐) > 0 so 𝑓 (𝑥) − 𝑓 (𝑥0) = 𝑓 (2𝑚)(𝑐)(𝑥 − 𝑥0) > 0. ■

4.8 Convex Sets

↩→ Definition 4.5: Convex Set

𝐴 ⊆ 𝑉-vector space over R is convex if for any 𝑥, 𝑦 ∈ 𝐴 and any 0 ⩽ 𝑡 ⩽ 1, 𝑡 · 𝑥 + (1 − 𝑡) · 𝑦 ∈ 𝐴.

↩→ Definition 4.6: Convex Function

Let 𝑓 : 𝐼 → R. 𝑓 is convex if ∀ 𝑥1, 𝑥2 ∈ 𝐼 and 0 ⩽ 𝑡 ⩽ 1,

𝑓 ((1 − 𝑡)𝑥1 + 𝑡𝑥2) ⩽ (1 − 𝑡) 𝑓 (𝑥1) + 𝑡 𝑓 (𝑥2).

↩→ Lecture 15; Last Updated: Thu Feb 22 21:53:23 EST 2024

5 Riemann Integral

5.1 Introduction

↩→ Definition 5.1: Partitions

A partition is a division of an interval (𝑎, 𝑏), denoted

𝒫 = {𝑎 = 𝑥0, 𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛 = 𝑏}.

We define diam(𝒫) := max𝑛 |𝑥𝑖 − 𝑥𝑖−1 |.

A marked partition, denoted ¤𝒫, is one in which, for each interval we choose some 𝑡𝑖 ∈ (𝑥𝑖 , 𝑥𝑖+1].

6Bartle-Sherbert, Theorem 6.4.4
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↩→ Definition 5.2: Riemann Sum

We denote

𝑆( 𝑓 , ¤𝒫) =
𝑛∑
𝑖=1

𝑓 (𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1).

↩→ Definition 5.3: Riemann Integrable

A function 𝑓 is Riemann Integrable if [𝑎, 𝑏] if 𝑆( 𝑓 , ¤𝒫) → 𝐿 as diam( ¤𝒫) → 0 for any choice of 𝑡𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1].

That is, ∀ 𝜀 > 0, ∃𝛿 : if diam(𝒫) < 𝛿, then for any choice of 𝑡𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1] we have
��𝐿 − 𝑆( 𝑓 , ¤𝒫)

�� < 𝜀.

↩→Proposition 5.1

1. If 𝐿 exists, it is unique.

2. The integral is linear in 𝑓 (𝑥); if
∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥 and

∫ 𝑏

𝑎
𝑔(𝑥)d𝑥 exist, then

∫ 𝑏

𝑎
(𝑐1 𝑓 +𝑐2𝑔)d𝑥 = 𝑐1

∫ 𝑏

𝑎
𝑓 d𝑥+

𝑐2
∫ 𝑏

𝑎
𝑔 d𝑥.

3. If 𝑓 ⩽ 𝑔 are Riemann integrable on [𝑎, 𝑏], then
∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥 ⩽

∫ 𝑏

𝑎
𝑔(𝑥)d𝑥.

↩→Proposition 5.2

If 𝑓 (𝑥) integrable on [𝑎, 𝑏], the 𝑓 (𝑥) is bounded on [𝑎, 𝑏].

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suppose
∫ 𝑏

𝑎
𝑓 exists. Let 𝜀 > 0, and 𝛿 such that if diam( ¤𝒫) < 𝛿 then

��𝐿 − 𝑆( 𝑓 , ¤𝒫)
��. Let 𝜀 = 1. Then,

𝑆( 𝑓 , ¤𝒫) ⩽ |𝐿| + 1.

Let 𝑄 = {𝑎 = 𝑥0, . . . , 𝑥𝑛 = 𝑏} be a partition of [𝑎, 𝑏] such that diam(𝑄) < 𝛿. Suppose towards a
contradiction that 𝑓 is not bounded on [𝑎, 𝑏]. Then, 𝑓 is unbounded on at least one interval [𝑥𝑖 , 𝑥𝑖+1],
say, on [𝑥𝑘 , 𝑥𝑘+1]. Let 𝑡𝑖 = 𝑥𝑖 for 𝑖 ≠ 𝑘 and choose 𝑡𝑘 ∈ [𝑥𝑘 , 𝑥𝑘+1] such that | 𝑓 (𝑡𝑘)| (𝑥𝑘+1 − 𝑥𝑘) > |𝐿| + 1 +��∑

𝑖≠𝑘 𝑓 (𝑡𝑖)(𝑥𝑖+1 − 𝑥𝑖)
�� (which we can do by assumption of 𝑓 being unbounded).

By assumption,
��𝑆( 𝑓 , ¤𝑄)

�� ⩽ |𝐿| + 1, but we have that

𝑆( 𝑓 , ¤𝑄) =
∑
𝑖≠𝑘

𝑓 (𝑡𝑖)(𝑥𝑖+1 − 𝑥𝑖)︸                 ︷︷                 ︸
:=𝑁

+ | 𝑓 (𝑡𝑘)| (𝑥𝑘+1 − 𝑥𝑘) > 2𝑁 + |𝐿| + 1,

contradiction. ■

5.2 Cauchy Criterion
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↩→Proposition 5.3: Cauchy Criterion for Integrability

𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ ∀ 𝜀 > 0, ∃𝛿 > 0 : if ¤𝑃 and ¤𝑄 are tagged partitions of [𝑎, 𝑏] s.t. diam ¤𝑃 < 𝛿 and
diam ¤𝑄 < 𝛿, then

��𝑆( 𝑓 , ¤𝑃) − 𝑆( 𝑓 , ¤𝑄)
�� < 𝜀.7

5.3 Squeeze Theorem

↩→ Theorem 5.1

Let 𝑓 : [𝑎, 𝑏] → R. Then
∫ 𝑏

𝑎
𝑓 exists ⇐⇒ ∀ 𝜀 > 0, ∃𝛼𝜀(𝑥), 𝜔𝜀(𝑥) ∈ ℛ[𝑎, 𝑏], 𝛼𝜀 ⩽ 𝑓 ⩽ 𝜔𝜀, and∫ 𝑏

𝑎

(𝜔𝜀 − 𝛼𝜀) < 𝜀

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. If 𝑓 ∈ ℛ[𝑎, 𝑏] then take 𝛼𝜀 = 𝑓 = 𝜔𝜀.

Conversely, let 𝜀 > 0. Since 𝛼𝜀 , 𝜔𝜀 ∈ ℛ[𝑎, 𝑏], then, ∃𝛿 > 0 such that for any tagged partition with
dim ¤𝑃 < 𝛿, then

���𝑆(𝛼𝜀 , ¤𝑃) −
∫ 𝑏

𝑎
𝛼𝜀

��� < 𝜀 and
���𝑆(𝜔𝜀 , ¤𝑃) −

∫ 𝑏

𝑎
𝜔𝜀

��� < 𝜀, thus

∫ 𝑏

𝑎

𝛼𝜀 − 𝜀 < 𝑆(𝛼𝜀 , ¤𝑃) ⩽ 𝑆( 𝑓 , ¤𝑃) ⩽ 𝑆(𝜔𝜀 , ¤𝑃) <
∫ 𝑏

𝑎

𝜔𝜀 + 𝜀.

Let ¤𝑄 be any other tagged partition with diam ¤𝑄 < 𝛿; then, the same inequality holds ie
∫ 𝑏

𝑎
𝛼𝜀− 𝜀 < 𝑆( 𝑓 , ¤𝑄) <∫ 𝑏

𝑎
𝜔𝜀 + 𝜀. Subtracting one from the other, we see that

��𝑆( 𝑓 , ¤𝑃) − 𝑆( 𝑓 , ¤𝑄)
�� < ∫ 𝑏

𝑎

𝜔𝜀 −
∫ 𝑏

𝑎

𝛼𝜀 + 2𝜀 < 3𝜀,

and thus 𝑓 ∈ ℛ[𝑎, 𝑏] by Cauchy Criterion. ■

↩→ Lecture 16; Last Updated: Tue Feb 27 13:18:19 EST 2024

↩→ Lemma 5.1: BS-7.2.4

Let 𝐽 ⊆ [𝑎, 𝑏] an interval with endpoints 𝑐 < 𝑑. If

𝜑𝐽(𝑥) :=


1 𝑥 ∈ 𝐽

0 𝑥 ∉ 𝐽
.

Then, 𝜑𝐽 ∈ ℛ[𝑎, 𝑏] and
∫ 𝑏

𝑎
𝜑𝐽 = 𝑑 − 𝑐.

7Note that ℛ[𝑎, 𝑏] is the set of all real-valued functions integrable on the interval [𝑎, 𝑏].
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↩→ Theorem 5.2

Let 𝜑 : [𝑎, 𝑏] → R, 𝜑 ∈ ℛ[𝑎, 𝑏]; that is, step functions are integrable.

↩→ Theorem 5.3

𝑓 continuous on [𝑎, 𝑏] implies 𝑓 ∈ ℛ[𝑎, 𝑏].

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Sketch) 𝑓 uniform continuous; use this to construct step functions that “bound” 𝑓 from above and
below. Apply the squeeze theorem. ■

↩→ Lecture 17; Last Updated: Thu Mar 28 14:33:47 EDT 2024

↩→ Theorem 5.4: BS-7.2.7

Monotone functions on [𝑎, 𝑏] are integrable.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. We show only for increasing. Let 𝑓 : [𝑎, 𝑏] → R be monotone increasing. If 𝑓 constant, then it is a step
function and we are done.

Otherwise, 𝑓 (𝑏) − 𝑓 (𝑎) > 0. Let 𝜀 > 0 and 𝑞 ∈ N such that ℎ ..=
𝑓 (𝑏)− 𝑓 (𝑎)

𝑞 < 𝜀
𝑏−𝑎 , effectively subdividing the

𝑦-axis into 𝑞 equal-sized parts. Then, let

𝑦𝑖
..= 𝑓 (𝑎) + 𝑖ℎ, 0 ⩽ 𝑖 ⩽ 𝑞,

and take

𝐴𝑘
..= 𝑓 −1([𝑦𝑘+1, 𝑦𝑘)) =


∅

{𝑥}

𝐼𝑖

.

We disregard each 𝐴𝑘 : 𝐴𝑘 = ∅, and adjoin the isolated points {𝑥} to the 𝐼𝑖’s, and hence have a partition
∪𝑘𝐴𝑘 = [𝑎, 𝑏]. Letting 𝛼(𝑥) = 𝑦𝑘−1 and 𝜔(𝑥) = 𝑦𝑘 for 𝑥 ∈ 𝐴𝑘 , then 𝛼(𝑥) ⩽ 𝑓 (𝑥) ⩽ 𝜔(𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏] (effectively,
we are created a “series of squeezes”). Then,∫ 𝑏

𝑎

𝜔(𝑥) − 𝛼(𝑥)d𝑥 =

𝑞∑
𝑘=1

(𝑦𝑘 − 𝑦𝑘−1)(𝑥𝑘 − 𝑥𝑘−1) = ℎ(𝑏 − 𝑎) < 𝜀,

and the proof is completed by applying the squeeze theorem. ■

↩→ Theorem 5.5: Additivity; BS-7.2.8

Let 𝑓 : [𝑎, 𝑏] → R and 𝑎 < 𝑐 < 𝑏. Then, 𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ 𝑓 ∈ ℛ[𝑎, 𝑐] and 𝑓 ∈ ℛ[𝑐, 𝑏]. Moreover,∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥 =

∫ 𝑐

𝑎
𝑓 (𝑥)d𝑥 +

∫ 𝑏

𝑐
𝑓 (𝑥)d𝑥.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. See book. Remark that this holds for finite summations of integrals as such by induction. ■
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5.4 Fundamental Theorem of Calculus

↩→ Definition 5.4

Call 𝐹(𝑥) a primitive of 𝑓 (𝑥) if 𝐹 differential and 𝐹′(𝑥) = 𝑓 (𝑥).

↩→ Theorem 5.6: Fundamental Theorem of Calculus

Let 𝐹, 𝑓 : [𝑎, 𝑏] → R and 𝐸 ⊆ [𝑎, 𝑏] a finite set s.t.

1. 𝐹 continuous on [𝑎, 𝑏]

2. 𝐹′(𝑥) = 𝑓 (𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏] \ 𝐸; ie they agree for all but finitely many points

3. 𝑓 ∈ ℛ[𝑎, 𝑏]

Then,
∫ 𝑏

𝑎
𝑓 (𝑥) = 𝐹(𝑏) − 𝐹(𝑎).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Sketch) Remark first that it suffices to prove for 𝐸 ..= {𝑎, 𝑏}; using additivity, we can subdivide any
other such 𝐸 into such subsets of 1 or 2 elements.

Fix 𝜀 > 0 and take 𝛿 > 0 such that for any ¤𝑃 of [𝑎, 𝑏] s.t. diam ¤𝑃 < 𝛿,
���𝑆( 𝑓 , ¤𝑃) − ∫ 𝑏

𝑎
𝑓 (𝑥)

��� < 𝜀. Applying the
mean value theorem to 𝐹 on each [𝑥𝑖−1, 𝑥𝑖] of ¤𝑃:

𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1) = 𝐹′(𝑢𝑖)(𝑥𝑖 − 𝑥𝑖−1), 𝑢𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]

= 𝑓 (𝑢𝑖)(𝑥𝑖 − 𝑥𝑖−1)

Hence, summing over each of these,

𝐹(𝑥1) −����*
𝐹(𝑎)

𝐹(𝑥0) + 𝐹(𝑥2) − 𝐹(𝑥1) + · · · +�
���*

𝐹(𝑏)
𝐹(𝑥𝑛) − 𝐹(𝑥𝑛−1) = 𝑓 (𝑢1)(𝑥1 − 𝑎) + · · · + 𝑓 (𝑢𝑛)(𝑥𝑛 − 𝑥𝑛−1)

=⇒ 𝐹(𝑏) − 𝐹(𝑎) =
𝑛∑
𝑖=1

𝑓 (𝑢𝑖)(𝑥𝑖 − 𝑥𝑖+1) =: 𝑆( 𝑓 , ¤𝑃1)

by construction, diam( ¤𝑃1) < 𝛿 since the only change we have made from ¤𝑃 is the tags, hence
���𝑆( 𝑓 , ¤𝑃1) −

∫ 𝑏

𝑎
𝑓 (𝑥)

��� <
𝜀. Thus, �����𝑆( 𝑓 , ¤𝑃1) −

∫ 𝑏

𝑎

𝑓 (𝑥)
����� =

�����𝐹(𝑏) − 𝐹(𝑎) − ∫ 𝑏

𝑎

𝑓 (𝑥)
����� < 𝜀

=⇒ 𝐹(𝑏) − 𝐹(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑥) as 𝜀 → 0.

■

↩→ Lecture 18; Last Updated: Thu Mar 28 09:07:47 EDT 2024
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5.5 Upper and Lower Riemann Sums

↩→ Definition 5.5: Upper/Lower Riemann Sums

For a partition 𝑃,

• 𝑆( 𝑓 , 𝑃) ..=
∑𝑛
𝑖=1(sup𝑡∈[𝑥𝑖−1 ,𝑥𝑖] 𝑓 (𝑡)) · (𝑥𝑖 − 𝑥𝑖−1)

• SSSSSSSSSSSSSSSSS( 𝑓 , 𝑃) ..=
∑𝑛
𝑖=1(inf𝑡∈[𝑥𝑖−1 ,𝑥𝑖] 𝑓 (𝑡)) · (𝑥𝑖 − 𝑥𝑖−1)

↩→Proposition 5.4

For any tagged partition ¤𝑃,
SSSSSSSSSSSSSSSSS( 𝑓 , 𝑃) ⩽ 𝑆( 𝑓 , ¤𝑃) ⩽ 𝑆( 𝑓 , 𝑃).

Moreover, 𝑓 ∈ ℛ[𝑎, 𝑏] if ∀ 𝜀 > 0, ∃𝛿 > 0 s.t. diam(𝑃) < 𝛿 =⇒
���𝑆( 𝑓 , 𝑃) − SSSSSSSSSSSSSSSSS( 𝑓 , 𝑃)

��� < 𝜀.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Sketch) Remark that this is a similar idea to saying that inf = sup =⇒ limit exists. ■

↩→Proposition 5.5

Let 𝑃1, 𝑃2 be partitions of [𝑎, 𝑏], and let 𝑃3 be the common refinement of 𝑃1, 𝑃2. Then

SSSSSSSSSSSSSSSSS( 𝑓 , 𝑃𝑖) ⩽ SSSSSSSSSSSSSSSSS( 𝑓 , 𝑃3) ⩽ 𝑆( 𝑓 , 𝑃3) ⩽ 𝑆( 𝑓 , 𝑃𝑖), 𝑖 = 1, 2,

that is, the finer refinement always gives a better approximation.

5.6 Indefinite Integral

↩→ Definition 5.6

For 𝑓 ∈ ℛ[𝑎, 𝑏] and any 𝑧 ∈ [𝑎, 𝑏], define

𝐹(𝑧) ..=

∫ 𝑧

𝑎

𝑓 (𝑥)d𝑥 .

↩→ Theorem 5.7

𝐹(𝑧) continuous on [𝑎, 𝑏].

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝑓 ∈ ℛ[𝑎, 𝑏] =⇒ 𝑓 bounded =⇒ ∃𝑀 s.t. | 𝑓 (𝑥)| ⩽ 𝑀 ∀ 𝑥 ∈ [𝑎, 𝑏], so (assuming 𝑧 < 𝑤),

|𝐹(𝑧) − 𝐹(𝑤)| =
����∫ 𝑧

𝑎

𝑓 (𝑥)d𝑥 −
∫ 𝑤

𝑎

𝑓 (𝑥)d𝑥
���� = ����∫ 𝑤

𝑧

𝑓 (𝑥)d𝑥
���� ⩽ 𝑀 · |𝑧 − 𝑤 | ,
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so taking 𝑤 → 𝑧, |𝐹(𝑧) − 𝐹(𝑤)| → 0. ■

↩→ Theorem 5.8: Another Fundamental Theorem of Calculus

Let 𝑓 ∈ ℛ[𝑎, 𝑏], 𝑓 -continuous at 𝑐 ∈ [𝑎, 𝑏]. Then 𝐹(𝑧) differentiable at 𝑐 and 𝐹′(𝑐) = 𝑓 (𝑐).

↩→ Corollary 5.1

If 𝑓 (𝑥) continuous on [𝑎, 𝑏] 𝐹′(𝑥) = 𝑓 (𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏].

↩→ Theorem 5.9: Substitution/Change of Variables

Let 𝐽 ..= [𝛼, 𝛽], 𝜑 : 𝐽 → R, 𝜑 ∈ 𝐶1([𝑎, 𝑏]). Suppose 𝜑(𝐽) ⊆ 𝐼 ⊆ R, and let 𝑓 : 𝐼 → R be continuous on 𝐼.
Then, ∫ 𝜑(𝛽)

𝜑(𝛼)
𝑓 (𝑥)d𝑥 =

∫ 𝛽

𝛼
𝑓 (𝜑(𝑡)) · 𝜑′(𝑡)d𝑡 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Left as a (homework) exercise; make use of the chain rule! ■

⊛ Example 5.1

Compute
∫ 4

1
sin(√𝑡)√

𝑡
d𝑡 using the previous theorem.

5.7 Lebesgue Integrability Criterion

↩→ Definition 5.7: Lebesgue Measure 0

𝐴 ⊆ R has Lebesgue measure 0 iff ∀ 𝜀 > 0, 𝐴 can be covered by a countable union of intervals 𝐽𝑘 ..= [𝑎𝑘 , 𝑏𝑘]
such that

∑∞
𝑘=1 |𝐽𝑘 | ⩽ 𝜀. We also call such an 𝐴 a null set.

For some set 𝑆 ⊆ R and statement 𝑃, we say “𝑃 holds for almost every 𝑥 ∈ 𝑆” if {𝑥 ∈ 𝑆 : 𝑃 false } has
Lebesgue measure 0.

⊛ Example 5.2

1. Any countable set is a null set.

2. The Cantor set is a null set.
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↩→ Theorem 5.10: Lebesgue Integrability Criterion

Let 𝑓 : [𝑎, 𝑏] → R be a bounded function. Then

𝑓 ∈ ℛ[𝑎, 𝑏] ⇐⇒ 𝑓 − continuous for almost every 𝑥 ∈ [𝑎, 𝑏]
⇐⇒ {𝑧 ∈ [𝑎, 𝑏] : 𝑓 discontinuous} has Lebesgue measure 0.

Remark 5.1. The proof is rather involved, but is in the appendix of Bartle. Its important to remark that this is a necessary
and sufficient condition.

⊛ Example 5.3

1. Let 𝑓 : [0, 1] → R, 𝑓 (𝑥) ..=


1 𝑥 ∈ Q

0 𝑥 ∉ Q
. 𝑓 discontinuous everywhere, so 𝑓 ∉ ℛ[𝑎, 𝑏].

2. Let 𝑓 (𝑥) ..=


1
𝑏

𝑥 = 𝑎
𝑏
∈ Q s.t. (𝑎, 𝑏) = 1

0 𝑥 ∉ Q
. One can show that 𝑓 continuous on 𝑥 ∈ R \ Q and

only discontinuous on Q. But this is a countable set so certainly has Lebesgue measure 0 and
so 𝑓 ∈ ℛ[0, 1].

↩→ Lecture 19; Last Updated: Tue Apr 9 14:45:17 EDT 2024

↩→ Theorem 5.11: Composition

𝑓 ∈ ℛ[𝑎, 𝑏], 𝑓 ([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], 𝜑 : [𝑐, 𝑑] → R continuous, then 𝜑 ◦ 𝑓 ∈ ℛ[𝑎, 𝑏].

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof.
{𝑥 s.t. 𝜑 ◦ 𝑓 discontinuous at 𝑥} ⊆ {𝑥 : 𝑓 discontinuous at 𝑥}

since 𝜑 continuous. The RHS has Lebesgue measure 0, and thus so does the LHS, hence the proof. ■

↩→ Theorem 5.12: Product Theorem

𝑓 , 𝑔 ∈ ℛ[𝑎, 𝑏] =⇒ 𝑓 · 𝑔 ∈ ℛ[𝑎, 𝑏].

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. 𝑓 · 𝑔 = 1
4
[
( 𝑓 + 𝑔)2 − ( 𝑓 − 𝑔)2

]
. 𝑓 ± 𝑔 ∈ ℛ[𝑎, 𝑏] and so so is ( 𝑓 ± 𝑔)2 by taking 𝜑(𝑥) ..= 𝑥2 as in the

previous theorem. It follows that 𝑓 · 𝑔 ∈ ℛ[𝑎, 𝑏]. ■

5.8 Integration by Parts
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↩→ Theorem 5.13

Let 𝐹, 𝐺 be differentiable on [𝑎, 𝑏], with 𝑓 ..= 𝐹′, 𝑔 ..= 𝐺′. Suppose 𝑓 , 𝑔 ∈ ℛ[𝑎, 𝑏], then∫ 𝑏

𝑎

𝑓 (𝑥)𝐺(𝑥)d𝑥 = 𝐹(𝑥)𝐺(𝑥)|𝑏𝑎 −
∫ 𝑏

𝑎

𝐹(𝑥)𝑔(𝑥)d𝑥 .

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Remark that (𝐹𝐺)′ = 𝐹′𝐺 + 𝐹𝐺′ = 𝑓 𝐺 + 𝐹𝑔, so on the one hand∫ 𝑏

𝑎

(𝐹𝐺)′ d𝑥 =

∫ 𝑏

𝑎

( 𝑓 𝐺 + 𝐹𝑔)d𝑥 =

∫ 𝑏

𝑎

𝑓 𝐺 d𝑥 +
∫ 𝑏

𝑎

𝐹𝑔 d𝑥 ,

but on the other hand, by the fundamental theorem of calculus,∫ 𝑏

𝑎

(𝐹𝐺)′ d𝑥 = [𝐹 · 𝐺](𝑎) − [𝐹 · 𝐺](𝑏) = 𝐹(𝑥)𝐺(𝑥)|𝑏𝑎 ,

and so

𝐹(𝑥)𝐺(𝑥)|𝑏𝑎 =
∫ 𝑏

𝑎

𝑓 𝐺 d𝑥 +
∫ 𝑏

𝑎

𝐹𝑔 d𝑥

=⇒
∫ 𝑏

𝑎

𝑓 (𝑥)𝐺(𝑥)d𝑥 = 𝐹(𝑥)𝐺(𝑥)|𝑏𝑎 −
∫ 𝑏

𝑎

𝐹(𝑥)𝑔(𝑥)d𝑥 ,

and hence the result. ■

↩→ Theorem 5.14: Taylor’s Theorem, Remainder’s Version

Suppose 𝑓 ′, 𝑓 ′′, . . . , 𝐹(𝑛) exist on [𝑎, 𝑏] and 𝑓 (𝑛+1) ∈ ℛ[𝑎, 𝑏].8Then,

𝑓 (𝑏) = 𝑓 (𝑎) + 𝑓 ′(𝑎)
1! (𝑏 − 𝑎) + 𝑓 ′′(𝑎)

2! + · · · + 𝑓 (𝑛)(𝑎)
𝑛! (𝑏 − 𝑎)𝑛 + 𝑅𝑛 ,

with 𝑅𝑛 ..= 1
𝑛!

∫ 𝑏

𝑎
𝑓 (𝑛+1)(𝑡)(𝑏 − 𝑡)𝑛 d𝑡.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. See Bartle; makes use of integration by parts. ■

6 Function Sequences, Series

6.1 Pointwise and Uniform Convergence

8Remark that this is a weaker condition than continuity as was used in our previous statement of Taylor’s theorem.
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↩→ Definition 6.1: Pointwise vs Uniform Convergence

We say a sequence of functions 𝑓𝑛 → 𝑓 pointwise on a set 𝐸 if ∀ 𝑥 ∈ 𝐸, 𝑓𝑛(𝑥) → 𝑓 (𝑥) as 𝑛 → ∞.

On the other hand, 𝑓𝑛 → 𝑓 uniformly of 𝐸 if ∀ 𝜀 > 0, ∃𝑁 ∈ N such that ∀𝑛 ⩾ 𝑁 and 𝑥 ∈ 𝐸,
| 𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜀.

Remark 6.1. Notice that uniformly implies pointwise convergence.

⊛ Example 6.1

Let 𝑓𝑛 ..=


2𝑛𝑥 0 ⩽ 𝑥 ⩽ 1

2𝑛

0 𝑥 > 1
2𝑛

. Show that 𝑓𝑛 → 0 pointwise but not uniformly (hint: 𝑓𝑛( 1
2𝑛 ) = 1∀𝑛).

↩→ Theorem 6.1

Suppose lim𝑛→∞ 𝑓𝑛 continuous on [𝑎, 𝑏] where each 𝑓𝑛 also continuous on [𝑎, 𝑏]. Then, the space of
function 𝐶([𝑎, 𝑏]) equipped with the sup norm is complete.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Proven in tutorials. ■

↩→ Theorem 6.2: Interchange of Limits

Let 𝐽 ⊆ R be a bounded interval such that ∃𝑥0 ∈ 𝐽 : 𝑓𝑛(𝑥0) → 𝑓 (𝑥0). Suppose 𝑓 ′𝑛(𝑥) → 𝑔(𝑥) uniformly
∀ 𝑥 ∈ 𝐽. Then, ∃ 𝑓 : 𝑓𝑛(𝑥) → 𝑓 (𝑥) uniformly on 𝐽, 𝑓 (𝑥) differentiable on 𝐽, and 𝑓 ′(𝑥) = 𝑔(𝑥) ∀ 𝑥 ∈ 𝐽.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. This is a rather painful proof; one needs to make use of the “multiple epsilons” from each given
continuity/convergence/differentiability statement. ■

↩→ Lecture 20; Last Updated: Thu Mar 28 11:59:48 EDT 2024

↩→ Theorem 6.3

Let 𝑓𝑛 ∈ ℛ[𝑎, 𝑏], 𝑓𝑛 → 𝑓 uniformly on [𝑎, 𝑏]. Then, 𝑓 ∈ ℛ[𝑎, 𝑏] and
∫ 𝑏

𝑎
𝑓𝑛(𝑥)d𝑥 →

∫ 𝑏

𝑎
𝑓 (𝑥)d𝑥.

↩→ Theorem 6.4: Bounded Convergence Theorem

𝑓𝑛 ∈ ℛ[𝑎, 𝑏], 𝑓𝑛 → 𝑓 ∈ ℛ[𝑎, 𝑏], not necessarily uniformly. Suppose ∃𝐵 > 0 s.t. | 𝑓𝑛(𝑥)| ⩽ 𝐵∀ 𝑥 ∈ [𝑎, 𝑏].
Then,

∫ 𝑏

𝑎
𝑓𝑛 →

∫ 𝑏

𝑎
𝑓 as 𝑛 → ∞.

↩→ Theorem 6.5: Dimi’s Theorem/Monotone Convergence

𝑓𝑛 ∈ 𝐶([𝑎, 𝑏]), 𝑓𝑛(𝑥) monotone (as a sequence). Suppose 𝑓𝑛 → 𝑓 ∈ 𝐶([𝑎, 𝑏]). Then, 𝑓𝑛 → 𝑓 uniformly on
[𝑎, 𝑏].

↩→ Lecture 21; Last Updated: Thu Mar 28 11:58:26 EDT 2024
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6.2 Series

↩→ Definition 6.2: Absolute Convergence

Let {𝑥 𝑗} ∈ 𝑋 where 𝑋 a normed vector space (say, R). We say

∞∑
𝑗=1

𝑥 𝑗 converges absolutely ⇐⇒
∞∑
𝑗=1

| |𝑥 𝑗 | | < +∞.

↩→ Theorem 6.6

Any rearrangement of absolutely convergent series given the same sum.

↩→ Definition 6.3: Conditional Convergence∑∞
𝑗=1 ®𝑥(𝑗) conditionally convergent if

∑∞
𝑗=1 𝑥

(𝑗) converges (ie each component converges) but
∑∞
𝑗=1 | | ®𝑥(𝑗) | | =

∞.

↩→ Theorem 6.7

If
∑∞
𝑖=1 𝑎𝑖 ∈ R conditionally convergent, you can change the order of summation such that ∀ 𝑥 ∈ R,

∃𝜎-permutation such that
∑∞
𝑖=1 𝑎𝜋(𝑖) = 𝑥.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (Sketch) Separate 𝑎𝑖 into positive, negative parts. Since conditionally convergent,
∑
𝑎 𝑗>0 𝑎 𝑗 = +∞ and∑

𝑎 𝑗<0 𝑎 𝑗 = −∞. Add positive 𝑎𝑖’s until the partial sum ⩾ 𝑥, then add negative 𝑎𝑖’s until the partial sum ⩽ 𝑥,
and repeat. The final rearrangement will converge as desired. ■

↩→ Lecture 22; Last Updated: Thu Mar 28 12:14:46 EDT 2024

↩→ Theorem 6.8

Suppose
∑∞
𝑖=1 ®𝑣𝑖 , ®𝑣𝑖 ∈ R𝑛 , converges, but

∑∞
𝑖=1 | |®𝑣𝑖 | | = +∞. Then, the set of rearranged sums

∑∞
𝑖=1 ®𝑣𝜎(𝑖) for

each 𝜎 : N↔ N permutation form an affine subspace of R𝑛 .

6.3 Tests for Absolute Convergence

↩→Proposition 6.1

Let 𝑥𝑛 , 𝑦𝑛 be sequences and 𝑟 ..= lim𝑛→∞
��� 𝑥𝑛𝑦𝑛 ���.

1. If 𝑟 ≠ 0,
∑∞
𝑛=1 𝑥𝑛 converges absolutely iff

∑∞
𝑛=1 𝑦𝑛 converges absolutely. In addition, if 0 < 𝑟1 ..=

lim inf
��� 𝑥𝑛𝑦𝑛 ��� ⩽ lim sup

��� 𝑥𝑛𝑦𝑛 ��� =: 𝑟2 < +∞, this still holds.

2. If 𝑟 = 0, and if
∑
𝑦𝑛 converges absolutely, so does

∑
𝑥𝑛 .
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↩→Proposition 6.2: Root Test

If there ∃𝑟 < 1 such that |𝑥𝑛 |1/𝑛 ⩽ 𝑟 for sufficiently large 𝑛 ⩾ 𝐾, then
∑∞
𝑛=𝐾 |𝑥𝑛 | ⩽

∑∞
𝑛=𝐾 𝑟

−𝑛 converges.

If |𝑥𝑛 |1/𝑛 ⩾ 𝑛 for 𝑛 ⩾ 𝐾,
∑
𝑥𝑛 does not converge absolutely.

↩→Proposition 6.3: Ratio Test

Let 𝑥𝑛 ≠ 0. If ∃0 < 𝑟 < 1,
��� 𝑥𝑛+1
𝑥𝑛

��� ⩽ 𝑟 for sufficiently large 𝑛,
∑
𝑥𝑛 absolutely convergent.

If
��� 𝑥𝑛+1
𝑥𝑛

��� ⩾ 1 for 𝑛 ⩾ 𝐾,
∑
𝑥𝑛 diverges.

↩→Proposition 6.4: Integral Test

Let 𝑓 (𝑥) ⩾ 0 be non-increasing/non-decreasing function of 𝑥 ⩾ 1. Then
∑∞
𝑘=1 𝑓 (𝑘) converges ⇐⇒

lim𝑘→∞
∫ 𝑘

1 𝑓 (𝑥)d𝑥 finite.

↩→Proposition 6.5: Raube’s Test

Let 𝑥𝑛 ≠ 0.

1. Suppose ∃𝑎 > 1 s.t.
��� 𝑥𝑛+1
𝑥𝑛

��� ⩽ 1 − 1
𝑛 , 𝑛 ⩾ 𝐾. Then

∑
𝑥𝑛 converges absolutely.

2. If ∃𝑎 ⩽ 1 s.t.
��� 𝑥𝑛+1
𝑥𝑛

��� ⩾ 1 − 1
𝑛 , 𝑛 ⩾ 𝐾. Then

∑
𝑥𝑛 does not converge absolutely.

↩→ Corollary 6.1

Let 𝑎 ..= lim 𝑛(1 −
��� 𝑥𝑛+1
𝑥𝑛

���), if such a limit exists. Then, if 𝑎 > 1,
∑
𝑥𝑛 converges absolutely, and if 𝑎 < 1,∑

𝑥𝑛 does not.

6.4 Tests for Non-Absolute Convergence

↩→Proposition 6.6: Alternating Series

If 𝑥𝑛 > 0, 𝑥𝑛+1 ⩽ 𝑥𝑛 , lim𝑛→∞ 𝑥𝑛 = 0 =⇒ ∑(−1)𝑛𝑥𝑛 converges.

↩→ Lemma 6.1: Abel’s Lemma

Let 𝑥𝑛 , 𝑦𝑛 ∈ R. Let 𝑠0 ..= 0, 𝑠𝑛 ..=
∑𝑛
𝑘=1 𝑦𝑘 . Then, for 𝑚 > 𝑛,

𝑚∑
𝑘=𝑛+1

𝑥𝑘𝑦𝑘 = 𝑥𝑚𝑠𝑚 − 𝑥𝑛+1𝑠𝑛+1 +
𝑚∑

𝑘=𝑛+1
(𝑥𝑘 − 𝑥𝑘+1)𝑠𝑘
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↩→ Lecture 23; Last Updated: Thu Mar 28 12:36:05 EDT 2024

↩→ Lemma 6.2: Abel’s

Let 𝑥𝑛 , 𝑦𝑛 , 𝑠0 = 0, 𝑠𝑘 = 𝑦1 + · · · + 𝑦𝑘 . Then, for 𝑚 ⩾ 𝑘 + 1,

𝑚∑
𝑘=𝑛+1

𝑥𝑘𝑦𝑘 = (𝑥𝑚𝑠𝑚 − 𝑥𝑛+1𝑠𝑛) +
𝑚−1∑
𝑘=𝑛+1

(𝑥𝑘 − 𝑥𝑘+1)𝑠𝑘

↩→ Theorem 6.9: Dirichlet’s Test

Suppose 𝑥𝑛 decreasing and lim𝑛→∞ 𝑥𝑛 = 0. If 𝑠𝑛 ..= 𝑦1 + · · · + 𝑦𝑛 bounded, then
∑∞
𝑛=1 𝑥𝑛𝑦𝑛 converges.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix 𝐵 > 0 such that |𝑠𝑛 | ⩽ 𝐵. 𝑥𝑛 decreasing so 𝑥𝑘 − 𝑥𝑘+1 ⩾ 0. By Abel’s lemma,����� 𝑚∑
𝑘=𝑛+1

𝑥𝑘𝑦𝑘

����� ⩽ |𝑥𝑚𝑠𝑚 − 𝑥𝑛+1𝑠𝑛 | +
����� 𝑚−1∑
𝑘=𝑛+1

𝑠𝑘(𝑥𝑘 − 𝑥𝑘+1)
�����

⩽ 𝑥𝑚𝐵 + 𝑥𝑛+1𝐵 +
𝑚−1∑
𝑘=𝑛+1

(𝑥𝑘 − 𝑥𝑘+1)𝐵︸                ︷︷                ︸
telescopes

= 2𝑥𝑛+1𝐵 →
𝑛→∞

0.

■

Remark 6.2. What is red and commutes? An abelian grape!

⊛ Example 6.2: Improving Convergence

𝑦 𝑗 = (−1)𝑗+1 does not converge, but |𝑠𝑛 | ⩽ 1, so taking 𝑥𝑛 = 1
𝑛 gives

∑
𝑛 𝑥𝑛𝑦𝑛 finite.

This is an example of “improving convergence”, ie making a nearly-convergent series conver-
gence. Another example is by taking successive arithmetic means of a given sequence; ie let
𝑎1 = 𝑦1, 𝑎2 =

𝑦1+𝑦2
2 , . . . , 𝑎𝑛 =

∑𝑛
𝑖=1 𝑦𝑖
𝑛 . Then, in this case again 𝑦𝑛 = (−1)𝑛+1, which does not converge,

has 𝑎𝑛 → 0.

Moreover, if 𝑦𝑛 → 𝐴, then 𝑎𝑛 → 𝐴 as well (converse does not hold in general, as above).

↩→ Theorem 6.10: Abel’s Test

Let 𝑥𝑛-convergent and monotone, and suppose
∑
𝑛 𝑦𝑛 converges. Then

∑
𝑛 𝑥𝑛𝑦𝑛 also converges.
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6.5 Series of Functions

↩→ Definition 6.4: Convergence

We say a series of functions
∑
𝑛 𝑓𝑛(𝑥) absolutely convergent on 𝐸 if for 𝑥 ∈ 𝐸,

∑
𝑛 | 𝑓𝑛(𝑥)| converges for all

𝑥 ∈ 𝐸.

We say the convergence
∑
𝑛 𝑓𝑛(𝑥) → 𝑔(𝑥) is uniform if the convergence is uniform for any 𝑥 ∈ 𝐸; that

is, ∀ 𝜀 > 0, ∃𝑁 ∈ N such that ∀𝑛 ⩾ 𝑁 and 𝑥 ∈ 𝐸, |𝑔(𝑥) −∑
𝑛 𝑓𝑛(𝑥)| < 𝜀.

↩→Proposition 6.7

Suppose for 𝑓𝑛 : 𝐸 ..= [𝑎, 𝑏] → R,
∑
𝑛 𝑓𝑛(𝑥) → 𝑔(𝑥) uniform for 𝑥 ∈ 𝐸, and 𝑓𝑛 ∈ ℛ[𝑎, 𝑏]. Then∫ 𝑏

𝑎

𝑔(𝑥)d𝑥 =

∞∑
𝑛=1

∫ 𝑏

𝑎

𝑓𝑛(𝑥)d𝑥 .

That is, the integral of the limit is equal to the limit of the integral.

↩→Proposition 6.8

Let 𝑓𝑛 : [𝑎, 𝑏] → R where 𝑓 ′𝑛∃ on [𝑎, 𝑏]. Suppose
∑
𝑛 𝑓𝑛(𝑥) converges for some 𝑥 ∈ [𝑎, 𝑏] and

∑
𝑛 𝑓

′
𝑛(𝑥)

converges uniformly on [𝑎, 𝑏]. Then there exists some 𝑔 : [𝑎, 𝑏] → R such that
∑
𝑛 𝑓𝑛 → 𝑔 uniformly on

[𝑎, 𝑏], 𝑔 differentiable on [𝑎, 𝑏], and 𝑔′(𝑥) = ∑
𝑛 𝑓

′
𝑛(𝑥). That is, the derivative of the limit equals the limit

of the derivatives.

↩→ Lecture 24; Last Updated: Tue Apr 9 15:00:45 EDT 2024

↩→ Theorem 6.11: Cauchy Criterion

𝑓𝑛(𝑥) : 𝐷 ⊆ R→ R converges uniformly on 𝐷 iff ∀ 𝜀 > 0∃𝑁 s.t. ∀𝑚, 𝑛 ⩾ 𝑁 ,
∑𝑚
𝑖=𝑛+1 𝑓𝑖(𝑥) < 𝜀∀ 𝑥 ∈ 𝐷.

↩→Proposition 6.9: Weierstrass M-Test

If | 𝑓𝑛(𝑥)| ⩽ 𝑀𝑛 ∀ 𝑥 ∈ 𝐷 ⊆ R and
∑
𝑛 𝑀𝑛 < +∞, then

∑
𝑛 𝑓𝑛(𝑥) converges uniformly on 𝐷.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Suffices to look at the tail:
∑𝑚
𝑗=𝑛+1 | 𝑓𝑛(𝑥)| ⩽

∑𝑚
𝑗=𝑛+1 𝑀 𝑗 . ■

6.6 Power Series
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↩→ Definition 6.5: Power Series

A function, series of the form

𝑓 (𝑥) =
∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑐)𝑛 ⊛

is said to be a power series centered at 𝑐 ∈ R.

↩→ Definition 6.6: Radius of Convergence

For 𝑎𝑛 as in ⊛, let 𝜌 ..= lim sup𝑛→∞
𝑛
√
|𝑎𝑛 |. Then, 𝑅 ..= 1

𝜌 the radius of convergence of 𝑓 (taking 𝑅 = 0 if
𝜌 = ∞, 𝑅 = ∞ if 𝜌 = 0).

↩→ Theorem 6.12: Cauchy-Hadamard

Let 𝑅 be the radius of convergence of ⊛. Then,
∑
𝑛 𝑎𝑛(𝑥 − 𝑐)𝑛 converges if |𝑥 − 𝑐 | < 𝑅, and diverges if

|𝑥 − 𝑐 | > 𝑅. If precisely equal, either case could happen (and needs to be treated individually).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Directly apply the root test; assume 𝑐 = 0. Then |𝑎𝑛𝑥𝑛 |1/𝑛 = |𝑎𝑛 |1/𝑛 |𝑥 |. If |𝑥 | < 𝜌, then lim sup |𝑎𝑛 |1/𝑛 |𝑥 | <
𝜌 1
𝜌 = 1 so ∀ 𝜀 > 0, ∃𝑁 s.t. ∀𝑛 ⩾ 𝑁 , |𝑎𝑛 |1/𝑛 |𝑥 | < 1 − 𝜀 =⇒ |𝑎𝑛 | |𝑥 |𝑛 < (1 − 𝜀)𝑛 . It follows that∑
𝑗⩾𝑁 |𝑎𝑛𝑥𝑛 | <

∑
𝑗⩾𝑁 (1 − 𝜀)𝑗 . But this RHS is a geometric series with 𝑟 < 1 so thus converges. The con-

verse follows similarly (well, backwards). ■

⊛ Example 6.3

1. 1 + 𝑥 + 𝑥2 + · · · converges absolutely for |𝑥 | < 1.

2. 1 + 𝑥 + 𝑥2

2 + 𝑥3

3 + · · · converges for −1 ⩽ 𝑥 < 1.

3.
∑
𝑛
𝑥𝑛

𝑛𝑘
with 𝑘 ⩾ 2 converges for −1 ⩽ 𝑥 ⩽ 1 (check the 𝑥 = 1 case by comparison test, then the

𝑥 = −1 test follows by alternating series test.)

↩→ Theorem 6.13

Let 𝐽 be a closed and bounded interval strictly contained in the interval of convergence of ⊛. Then 𝑓 (𝑥)
converges uniformly in 𝐽.

↩→ Lecture 25; Last Updated: Tue Apr 9 15:14:47 EDT 2024

Remark 6.3. In-class review. Good luck!

↩→ Lecture 26; Last Updated: Tue Apr 9 15:16:14 EDT 2024

∼
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7 Appendix

7.1 Notes from Tutorials

↩→ Theorem 7.1

Let (𝑋, 𝑑) be a compact metric space.9Let 𝐶(𝑋) := { 𝑓 : 𝑋 → R : 𝑓 continuous} be a vector space. Take
the uniform norm | | 𝑓 | | := sup𝑥∈𝑋 | 𝑓 (𝑥)| on 𝐶(𝑥). Then, (𝐶(𝑥), | | • | |) is complete.10

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Denote the “canonical norm” 𝜌( 𝑓 , 𝑔) := | | 𝑓 − 𝑔 | |.
Let ( 𝑓𝑛) ∈ 𝐶(𝑋) be a Cauchy sequence. Then, ∀ 𝜀 > 0, ∃𝑁 ∈ N : ∀𝑚, 𝑛 ⩾ 𝑁, 𝜌( 𝑓𝑛 , 𝑓𝑚) < 𝜀.

Fix 𝑥 ∈ 𝑋, noting that

| 𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ⩽ sup
𝑦∈𝑋

| 𝑓𝑛(𝑦) − 𝑓𝑚(𝑦)| = 𝜌( 𝑓𝑛 , 𝑓𝑚) < 𝜀. ∗1

Define, for this fixed 𝑥, a sequence in R { 𝑓𝑛(𝑥)}𝑛∈N. By ∗1, we have that this sequence is Cauchy in R, but as R
complete, 𝑓𝑛(𝑥) hence converges, to some limit we call 𝑓 (𝑥) := lim𝑛→∞ 𝑓𝑛(𝑥). Note that 𝑥 is still fixed at this
point; these are but real numbers we are working with here.

Now, as 𝑥 was completely arbitrary, we can repeat this process for all of𝑋, and define a function 𝑓 : 𝑋 → R
where 𝑓 (𝑥) := lim𝑛→∞ 𝑓𝑛(𝑥).

For a fixed 𝑥, we have that 𝑓𝑚(𝑥) → 𝑓 (𝑥) as 𝑚 → ∞. This implies:

0 ⩽ lim
𝑚→∞

| 𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ⩽ lim
𝑚→∞

𝜀 = 𝜀

=⇒ | 𝑓𝑛(𝑥) − 𝑓 (𝑥)| ⩽ 𝜀∀𝑛 ⩾ 𝑁

=⇒ 𝜌( 𝑓𝑛 , 𝑓 ) = sup
𝑥∈𝑋

| 𝑓𝑛(𝑥) − 𝑓 (𝑥)| ⩽ 𝜀 =⇒ 𝑓𝑛 → 𝑓

It remains to show that 𝑓 ∈ 𝐶(𝑋). Let 𝑐 ∈ 𝑋 and 𝜀 > 0, and the corresponding 𝑁 ∈ N : 𝜌( 𝑓𝑛 , 𝑓 ) < 𝜀
3 ∀𝑛 ⩾ 𝑁 .

By construction, 𝑓𝑁 ∈ 𝐶(𝑋), and is thus continuous at 𝑐. This gives that ∃𝛿 > 0 : | 𝑓𝑁 (𝑥) − 𝑓𝑁 (𝑐)| < 𝜀
3 whenever

𝑑(𝑥, 𝑐) < 𝛿. 11

Hence, if 𝑑(𝑥, 𝑐) < 𝛿, we have

| 𝑓 (𝑥) − 𝑓 (𝑐)| ⩽ | 𝑓 (𝑥) − 𝑓𝑁 (𝑥)| + | 𝑓𝑁 (𝑥) − 𝑓𝑁 (𝑐)| + | 𝑓𝑁 (𝑐) − 𝑓 (𝑐)|

⩽ 𝜌( 𝑓 , 𝑓𝑁 ) +
𝜀
3 + 𝜀

3
<

𝜀
3 + 𝜀

3 + 𝜀
3 = 𝜀,

hence 𝑓 continuous at 𝑐, which was completely arbitrary, and thus 𝑓 ∈ 𝐶(𝑋). ■

10In this proof, the compactness is necessary for the norm to be well-defined.
10In this way, this becomes a Banach Space: a complete, normed vector space.
11Be careful here, there are three different metrics going on; 𝜌 from the vector space, 𝑑 from the underlying metric space, and |· · · |

from R.
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↩→ Theorem 7.2

Let (𝑋, 𝑑)-complete. Let {𝐹𝑛} be a decreasing family of non-empty closed sets with lim𝑛→∞ diam(𝐹𝑛) = 0.
Then, ∃𝑧 :

⋂
𝑛∈N 𝐹𝑛 = {𝑧}.

↩→ Theorem 7.3

Let (𝑋, 𝑑)-complete, and 𝑓 : 𝑋 → 𝑋 an “expanding map”, such that 𝑑(𝑥, 𝑦) ⩽ 𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) ∀ 𝑥, 𝑦 ∈ 𝑋.
Then, 𝑓 is a surjective isometry, ie, 𝑓 (𝑋) = 𝑋 and 𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝑑(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝑋.

↩→ Lemma 7.1

Differentiable =⇒ Continuous.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑓 : 𝐼 → R, and 𝑐 ∈ 𝐼 arbitrary. Notice that ∀ 𝑥 ≠ 𝑐 ∈ 𝐼, 𝑓 (𝑥) − 𝑓 (𝑐) = (𝑥 − 𝑐) 𝑓 (𝑥)− 𝑓 (𝑐)𝑥−𝑐 . Hence,

lim
𝑥→𝑐

( 𝑓 (𝑥) − 𝑓 (𝑐)) = lim
𝑥→𝑐

(𝑥 − 𝑐)
𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

= lim
𝑥→𝑐

(𝑥 − 𝑐) · lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

= 0 · 𝑓 ′(𝑥) = 0

=⇒ lim
𝑥→𝑐

𝑓 (𝑥) = 𝑓 (𝑐),

hence 𝑓 continuous, noting that the splitting of the limits is valid as both are defined. ■
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⊛ Example 7.1

Let 𝑓 : R→ R, 𝑓 (𝑥) :=

𝑥2 𝑥 ∈ Q

0 𝑥 ∉ Q

Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim: 𝑓 discontinuous at all 𝑥 ≠ 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑥 ≠ 0 ∈ R. By density ofQ ⊆ R, there exist sequences (𝑟𝑛) ∈ Q s.t. 𝑟𝑛 → 𝑥 and (𝑧𝑛) ∈ R\Q
s.t. 𝑧𝑛 → 𝑥. Then:

lim
𝑛→∞

𝑓 (𝑟𝑛) = lim 𝑟2
𝑛 = 𝑥2

lim
𝑛→∞

𝑓 (𝑧𝑛) = lim 0,

hence 𝑓 discontinuous by the sequential criterion at 𝑥 ≠ 0. ■

Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim:Claim: 𝑓 ′(0) = 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝜀 > 0 and 𝛿 = 𝜀. Notice that 𝑓 (𝑥) ⩽ 𝑥2 ∀ 𝑥. Then, we have that ∀ |𝑥 | < 𝛿,���� 𝑓 (𝑥) − 𝑓 (0)
𝑥 − 0 − 0

���� = ���� 𝑓 (𝑥)𝑥 ����
⩽

����𝑥2

𝑥

���� = |𝑥 | < 𝛿 = 𝜀

■

↩→ Definition 7.1

Let 𝑓 : 𝐼 → R. A point 𝑐 ∈ 𝐼 is a local max (resp min) if ∃𝛿 > 0 s.t. 𝑓 (𝑥) ⩽ 𝑓 (𝑐) (resp 𝑓 (𝑥) ⩾ 𝑓 (𝑐))
∀ 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) ∩ 𝐼.

↩→ Lemma 7.2

Let 𝑓 : 𝐼 → R be differentiable at 𝑐 ∈ 𝐼◦. If 𝑐 a local extrema of 𝑓 , then 𝑓 ′(𝑐) = 0.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Assume wlog that 𝑐 a local max; if a local min, take 𝑓 := − 𝑓 and continue.

Since 𝐼◦ open, ∃𝛿1 > 0 : (𝑐 − 𝛿1, 𝑐 + 𝛿1) ⊆ 𝐼◦ ⊆ 𝐼. We also have that ∃𝛿2 > 0 : 𝑓 (𝑥) ⩽ 𝑓 (𝑐) ∀ 𝑥 ∈
(𝑐 − 𝛿2, 𝑐 + 𝛿2) ∩ 𝐼, by 𝑐 an extrema.

Let 𝛿 := min{𝛿1, 𝛿2}. Then, we have both (𝑐 − 𝛿, 𝑐 + 𝛿) ⊆ 𝐼 and 𝑓 (𝑥) ⩽ 𝑓 (𝑐) ∀ 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿).

Since 𝑓 ′(𝑐) exists, lim𝑥→𝑐+
𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 = lim𝑥→𝑐−

𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 . But we have from the property of being a maximum
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that

lim
𝑥→𝑐+

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ⩾ 0, lim

𝑥→𝑐−

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ⩽ 0,

hence, as these two limits must agree, they must equal 0 and thus 𝑓 ′(𝑐) = 0. ■

7.2 Miscellaneous

⊛ Example 7.2: Rudin, Chapter 7: Differentiability

1. Let 𝑓 be defined ∀ 𝑥 ∈ R, and suppose that | 𝑓 (𝑥) − 𝑓 (𝑦)| ⩽ (𝑥 − 𝑦)2, ∀ 𝑥, 𝑦 ∈ R. Prove that 𝑓 is
constant.12

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝑥 > 𝑦 ∈ R. Then, as |𝑥 − 𝑦 | = 𝑥 − 𝑦, we have

| 𝑓 (𝑥) − 𝑓 (𝑦)| ⩽ (𝑥 − 𝑦)2 =⇒
���� 𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦

���� ⩽ 𝑥 − 𝑦 = |𝑥 − 𝑦 | → 0 as 𝑦 → 𝑥

=⇒
���� 𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦

���� → 0

This implies, then, that 𝑓 ′(𝑥) is defined ∀ 𝑥 ∈ R, and moreover, that 𝑓 ′(𝑥) = 0∀ 𝑥 ∈ R. We
conclude, then, that 𝑓 (𝑥) constant ∀ 𝑥 ∈ R. ■

2. Suppose 𝑓 ′(𝑥) > 0 in (𝑎, 𝑏). Prove that 𝑓 is strictly increasing in (𝑎, 𝑏), and let 𝑔 be its inverse
function. Prove that 𝑔 is differentiable, and that

𝑔′( 𝑓 (𝑥)) = 1
𝑓 ′(𝑥) (𝑎 < 𝑥 < 𝑏).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Fix 𝑥 > 𝑦 ∈ (𝑎, 𝑏). Then, by the mean value theorem, ∃𝑧 ∈ (𝑥, 𝑦) : 𝑓 ′(𝑧) =
𝑓 (𝑥)− 𝑓 (𝑦)
𝑥−𝑦 .

Since 𝑓 ′(𝑧) > 0, it follows that

𝑓 (𝑥) − 𝑓 (𝑦)
𝑥 − 𝑦 > 0 =⇒ 𝑓 (𝑥) − 𝑓 (𝑦) > 𝑥 − 𝑦 > 0 =⇒ 𝑓 (𝑥) > 𝑓 (𝑦),

hence, 𝑓 increasing, as 𝑥 > 𝑦 arbitrary.

Let now 𝑔 := 𝑓 −1. ■

12Note that this means that 𝑓 Hölder continuous with constant 𝛼 = 2. Indeed, Hölder continuous functions with 𝛼 > 1 are always
constant by a similar proof. For 0 < 𝛼 ⩽ 1, we have the inclusion continuously differentiable =⇒ Lipschitz =⇒ 𝛼−Hölder =⇒
uniformly continuous =⇒ continuous.
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7.3 Class Midterm Solutions

↩→ Question 7.1

Let 𝑋 be a topological space, and let 𝑓 , 𝑔 : 𝑋 → R be two continuous functions. Show that the set
{𝑥 ∈ 𝑋 : 𝑓 (𝑥) > 𝑔(𝑥)} is an open subset of 𝑋.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. Let 𝐴 ..= {𝑥 ∈ 𝑋 : 𝑓 (𝑥) > 𝑔(𝑥)}. Letting 𝜑(𝑥) ..= 𝑓 (𝑥) − 𝑔(𝑥) = ( 𝑓 − 𝑔)(𝑥), then remark that
𝐴 ≡ {𝑥 ∈ 𝑋 : 𝜑(𝑥) > 0}, and since differences of continuous functions are continuous, 𝜑 continuous.
Letting 𝐵 ..= (0,∞) ⊆ R, then, we have that 𝐴 = 𝜑−1(𝐵). But 𝐵 an open set, and the inverse images of
open sets by continuous functions are open, hence 𝐴 open. ■

↩→ Question 7.2

(a) List three equivalent properties (definitions) of compact sets in metric spaces; you don’t need to
prove anything.

(b) Is the unit ball13in the space ℓ2 of infinite sequences compact? Prove or disprove. You may use any
of the properties from (a).

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) Every open cover admits a finite subcover ⇐⇒ sequentially compact ⇐⇒ complete and
totally bounded.

(b) Denote the closed unit ball centered at (0, 0, . . . ) in ℓ 2, 𝐵 ..= {𝑥 ∈ ℓ 2 : 𝑑2
2(0, 𝑥) =

∑∞
𝑖=1 |𝑥𝑖 | ⩽ 1}.

Consider the sequence of “unit sequences”

{𝑒𝑛}𝑛∈N ∈ 𝐵, 𝑒𝑛𝑖
..= 𝛿𝑖𝑛 .

Then, for any 𝑖 ≠ 𝑗, 𝑑2(𝑒𝑛 , 𝑒𝑚) =
√

2 > 1. It follows that, although 𝑒𝑛 ∈ 𝐵 for any 𝑛, there cannot exist
a subsequence of 𝑥𝑛 that converges within 𝐵 (verify why this is!). Thus, 𝐵 cannot be sequentially
compact and thus not compact.

■

13Jakobson said in class this is supposed to be a closed ball.
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↩→ Question 7.3

(a) Define a complete metric space.

(b) State (without proof) the contraction mapping theorem.

(c) Let 𝑓 : (0, 1) → (0, 1) be defined by 𝑓 (𝑥) = 𝑥/2. Is 𝑓 a contraction?

(d) Does 𝑓 have a fixed point in the open interval 𝐼 = (0, 1)? Does that contradict the contraction
mapping theorem?

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) A complete metric space is a metric space in which every Cauchy sequence converges within
that space.

(b) Let (𝑋, 𝑑) be a complete metric space, and let 𝑓 : 𝑋 → 𝑋 be a contraction mapping, ie for any
𝑥, 𝑦 ∈ 𝑋, 𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) ⩽ 𝑐 · 𝑑(𝑥, 𝑦) for some 𝑐 ∈ (0, 1). Then, the contraction mapping states that 𝑓
has a unique fixed point 𝑧 ∈ 𝑋, ie 𝑓 (𝑧) = 𝑧 and lim𝑛→∞ 𝑓 (𝑛)(𝑥) = 𝑧 for any 𝑥.

(c) For any 𝑥, 𝑦 ∈ (0, 1), we have

𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) = | 𝑓 (𝑥) − 𝑓 (𝑦)| =
���𝑥 − 𝑦2

��� = 1
2 |𝑥 − 𝑦 | = 𝑐 · 𝑑(𝑥, 𝑦),

so 𝑓 indeed a contraction mapping with 𝑐 ..= 1
2 .

(d) We have that for any 𝑥 ∈ 𝐼, 𝑓 (𝑛)(𝑥) = 𝑥
2𝑛 so 𝑥 a fixed point iff 𝑥

2𝑛 = 𝑥
2𝑛−1 for some 𝑛, which is only

possible if 𝑥 = 0, but 0 ∉ 𝐼, so indeed 𝑓 has no fixed point in 𝐼. This is not a contradiction to the
contraction mapping theorem since 𝐼 ..= (0, 1) not complete (indeed, 1

𝑛 ∈ 𝐼 ∀𝑛 but 1
𝑛 → 0 ∉ 𝐼).

■

7.3 Appendix: Class Midterm Solutions 60



↩→ Question 7.4

Let 𝑥 = (𝑥1, 𝑥2, . . . ) and 𝑦 = (𝑦1, 𝑦2, . . . ) be infinite real sequences satisfying | |𝑥 | |2 ⩽ 2 and | |𝑦 | |2 ⩽ 3,
where | | · · · | |2 the ℓ 2 norm.

(a) State Holder’s inequality and Minkowski inequality for sequences.

(b) Give an upper bound for 𝑥 · 𝑦 =
∑
𝑖 𝑥𝑖𝑦𝑖 , and for | |𝑥 + 𝑦 | |.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) Holder’s inequality: for 𝑝, 𝑞 Holder conjugates and 𝑥 ∈ ℓ 𝑝 , 𝑦 ∈ ℓ 𝑞 we have�����∑
𝑖=1

𝑥𝑖𝑦𝑖

����� ⩽ | |𝑥 | |𝑝 | |𝑦 | |𝑞 .

Minkowski inequality: for 𝑥, 𝑦 ∈ ℓ 𝑝 ,

| |𝑥 + 𝑦 | |𝑝 ⩽ | |𝑥 | |𝑝 + ||𝑦 | |𝑝 .

(b) For 𝑥, 𝑦 as given; by Holders, 𝑥 · 𝑦 ⩽ | |𝑥 | |𝑝 | |𝑦 | |𝑞 = 2 · 3 = 6, and by Minkowski’s, | |𝑥 + 𝑦 | | ⩽
| |𝑥 | | + ||𝑦 | | = 2 + 3 = 5, so 6, 5 are upper bounds for 𝑥 · 𝑦, | |𝑥 + 𝑦 | | respectively.

■
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↩→ Question 7.5

(a) State (without proof) Taylor’s theorem.

(b) Let 𝑓 ∈ 𝐶4([0, 2]), and let 𝑓 ′(1) = 𝑓 ′′(1) = 𝑓 ′′′(1) = 0 while 𝑓 (4)(1) = 2. Use (a) to show that 𝑓 (𝑥) has
a local extremum at 𝑥 = 1, and determine its type.

ProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProofProof. (a) Let 𝐼 ..= [𝑎, 𝑏] ⊆ R and let 𝑓 : 𝐼 → R such that 𝑓 ∈ 𝐶𝑛(𝐼), and 𝑓 (𝑛+1)(𝑥) exists on (𝑎, 𝑏). Then,
for 𝑥0 ∈ [𝑎, 𝑏], there exists some 𝑐 ∈ (min(𝑥, 𝑥0),max(𝑥, 𝑥0)) such that

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) + · · · +
𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 +

𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)! (𝑥 − 𝑥0)𝑛+1.

(b) By Taylor’s, for any 𝑥 ∈ [0, 2], there exists some 𝑐 between 𝑥 and 1 such that

𝑓 (𝑥) = 𝑓 (1) + 𝑓 ′(1)(· · · ) + 𝑓 ′′(1)(· · · ) + 𝑓 ′′′(1)(· · · )︸                                         ︷︷                                         ︸
=0

+
𝑓 (4)(𝑐)

4! (𝑥 − 1)4

= 𝑓 (1) + 𝑓 (4)(𝑐)
4! (𝑥 − 1)4

=⇒ 𝑓 (𝑥) − 𝑓 (1) ⩾
𝑓 (4)(𝑐)

4! (𝑥 − 1)4 ∀ 𝑥 ∈ [0, 2]

By continuity of 𝑓 (4), there exists some neighborhood 𝑉 of 𝑥0 = 1 such that 𝑓 (4)(𝑐) has the same
sign of 𝑓 (4)(1). So, for any 𝑥 ∈ 𝑉 , 𝑓 (4)(𝑐)

4! ⩾ 0, since 𝑓 (4)(1)

4! = 2
4! ⩾ 0. Thus, since (𝑥 − 1)4 ⩾ 0, we have

that for such 𝑥 in 𝑉 ,
𝑓 (𝑥) − 𝑓 (1) ⩾ 0 =⇒ 𝑓 (𝑥) ⩾ 𝑓 (1).

Hence, we have a neighborhood of 1 such that for all 𝑥 in the neighborhood 𝑓 (𝑥) ⩾ 𝑓 (1). It follows
that 1 a local minimum of 𝑓 .

■

7.3 Appendix: Class Midterm Solutions 62



8 List of Theorems

↩→ Definition 1.1 (Metric Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
↩→ Definition 1.2 (Open Metric Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
↩→ Definition 1.3 (Normed Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
↩→Proposition 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
↩→Proposition 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
↩→ Definition 1.4 (Convex Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
↩→ Definition 1.5 (ℓ𝑝) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
↩→Proposition 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
↩→ Definition 2.1 (Topological space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
↩→ Definition 2.2 (Closed sets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
↩→ Definition 2.3 (Equivalence of Metrics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
↩→ Definition 2.4 (Interior, Boundary of a Topological Set) . . . . . . . . . . . . . . . . . . . . . . . . . 8
↩→ Definition 2.5 (Closure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
↩→Proposition 2.1 (Properties of Int(𝐴)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
↩→Proposition 2.2 (Properties of 𝐴) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
↩→Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
↩→ Definition 2.6 (Basis for a Toplogy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
↩→Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
↩→Proposition 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
↩→ Definition 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
↩→Proposition 2.6 (Consequences of Subspace Topologies) . . . . . . . . . . . . . . . . . . . . . . . . 10
↩→Proposition 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
↩→ Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
↩→ Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
↩→ Definition 2.8 (Continuous Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
↩→Proposition 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
↩→Proposition 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
↩→ Theorem 2.1 (Continuity of Composition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
↩→Proposition 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
↩→ Definition 2.9 (Finite Product Spaces) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
↩→ Definition 2.10 (Cylinder Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
↩→ Definition 2.11 (Projection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
↩→ Definition 2.12 (Coordinate Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
↩→Proposition 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
↩→ Definition 2.13 (Product Topology/Cylinder Sets for ∞ Products) . . . . . . . . . . . . . . . . . . 14
↩→Proposition 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
↩→Proposition 2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
↩→ Question 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
↩→ Definition 2.14 (Compact) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
↩→Proposition 2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
↩→ Theorem 2.2 (On Compactness) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
↩→Proposition 2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
↩→Proposition 2.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
↩→Proposition 2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
↩→ Definition 2.15 (Connected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
↩→ Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

63



↩→ Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
↩→ Theorem 2.4 (“Intermediate Value Theorem”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
↩→ Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
↩→ Theorem 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
↩→ Definition 2.16 (Path Connected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
↩→ Theorem 2.7 (Path connected =⇒ connected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
↩→Proposition 2.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
↩→ Definition 2.17 (Connected Component) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
↩→ Definition 2.18 (Path Component) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
↩→Proposition 2.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
↩→ Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
↩→ Lemma 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
↩→ Lemma 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
↩→Proposition 2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
↩→Proposition 2.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
↩→ Definition 2.19 (An Explicit Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
↩→ Definition 2.20 (Complement Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
↩→ Definition 3.1 (Hölder Conjugates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
↩→Proposition 3.1 (Hölder’s Inequality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
↩→ Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
↩→Proposition 3.2 (Minkowski Inequality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
↩→ Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
↩→ Definition 3.2 (Complete Metric Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
↩→Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
↩→Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
↩→Proposition 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
↩→Proposition 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
↩→ Definition 3.3 (Contraction Mapping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
↩→ Theorem 3.2 (Contraction Mapping Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
↩→ Theorem 3.3 (ℓ𝑝 complete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
↩→ Definition 3.4 (Totally Bounded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
↩→ Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
↩→ Lemma 3.1 (Cantor Intersection Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
↩→ Definition 3.5 (Finite Intersection Property) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
↩→ Lemma 3.2 (Finite Interesection Formulation of Compactness) . . . . . . . . . . . . . . . . . . . . 33
↩→ Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
↩→ Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
↩→ Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
↩→ Definition 4.1 (Differentiable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
↩→ Definition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
↩→ Theorem 4.1 (Caratheodory’s Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
↩→ Theorem 4.2 (Chain Rule) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
↩→ Definition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
↩→ Theorem 4.3 (Rolle’s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
↩→ Theorem 4.4 (Gauss-Lucas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
↩→ Definition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
↩→ Theorem 4.5 (Mean Value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
↩→ Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
↩→Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
↩→ Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

64



↩→ Theorem 4.7 (Darboux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
↩→Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
↩→ Theorem 4.8 (Cauchy Mean Value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
↩→Proposition 4.3 (More General L’Hopital) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
↩→Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
↩→ Theorem 4.9 (Taylor’s Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
↩→ Theorem 4.10 (Relative Extrema) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
↩→ Definition 4.5 (Convex Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
↩→ Definition 4.6 (Convex Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
↩→ Definition 5.1 (Partitions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
↩→ Definition 5.2 (Riemann Sum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
↩→ Definition 5.3 (Riemann Integrable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
↩→Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
↩→Proposition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
↩→Proposition 5.3 (Cauchy Criterion for Integrability) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
↩→ Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
↩→ Lemma 5.1 (BS-7.2.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
↩→ Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
↩→ Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
↩→ Theorem 5.4 (BS-7.2.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
↩→ Theorem 5.5 (Additivity; BS-7.2.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
↩→ Definition 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
↩→ Theorem 5.6 (Fundamental Theorem of Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
↩→ Definition 5.5 (Upper/Lower Riemann Sums) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
↩→Proposition 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
↩→Proposition 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
↩→ Definition 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
↩→ Theorem 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
↩→ Theorem 5.8 (Another Fundamental Theorem of Calculus) . . . . . . . . . . . . . . . . . . . . . . 46
↩→ Corollary 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
↩→ Theorem 5.9 (Substitution/Change of Variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
↩→ Definition 5.7 (Lebesgue Measure 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
↩→ Theorem 5.10 (Lebesgue Integrability Criterion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
↩→ Theorem 5.11 (Composition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
↩→ Theorem 5.12 (Product Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
↩→ Theorem 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
↩→ Theorem 5.14 (Taylor’s Theorem, Remainder’s Version) . . . . . . . . . . . . . . . . . . . . . . . . 48
↩→ Definition 6.1 (Pointwise vs Uniform Convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
↩→ Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
↩→ Theorem 6.2 (Interchange of Limits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
↩→ Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
↩→ Theorem 6.4 (Bounded Convergence Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
↩→ Theorem 6.5 (Dimi’s Theorem/Monotone Convergence) . . . . . . . . . . . . . . . . . . . . . . . . 49
↩→ Definition 6.2 (Absolute Convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
↩→ Theorem 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
↩→ Definition 6.3 (Conditional Convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
↩→ Theorem 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
↩→ Theorem 6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
↩→Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
↩→Proposition 6.2 (Root Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

65



↩→Proposition 6.3 (Ratio Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
↩→Proposition 6.4 (Integral Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
↩→Proposition 6.5 (Raube’s Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
↩→ Corollary 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
↩→Proposition 6.6 (Alternating Series) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
↩→ Lemma 6.1 (Abel’s Lemma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
↩→ Lemma 6.2 (Abel’s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
↩→ Theorem 6.9 (Dirichlet’s Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
↩→ Theorem 6.10 (Abel’s Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
↩→ Definition 6.4 (Convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
↩→Proposition 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
↩→Proposition 6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
↩→ Theorem 6.11 (Cauchy Criterion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
↩→Proposition 6.9 (Weierstrass M-Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
↩→ Definition 6.5 (Power Series) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
↩→ Definition 6.6 (Radius of Convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
↩→ Theorem 6.12 (Cauchy-Hadamard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
↩→ Theorem 6.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
↩→ Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
↩→ Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
↩→ Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
↩→ Lemma 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
↩→ Definition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
↩→ Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
↩→ Question 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
↩→ Question 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
↩→ Question 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
↩→ Question 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
↩→ Question 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

66


	Introduction
	Metric Spaces

	Point-Set Topology
	Definitions
	Basis
	Subspaces
	Continuous Functions
	Product Spaces
	Metrizability
	Compactness, Connectedness
	Path Components, Connected Components
	Cantor Staircase Function


	Lp Spaces
	Review of lp Norms
	lp Norms, Hölder-Minkowski Inequalities
	Complete Metric Spaces, Completeness of little lp
	Contraction Mapping Theorem
	Equivalent Notions of Compactness in Metric Spaces

	Derivatives
	Introduction
	Chain Rule
	Critical Points
	Aside: Continued Fractions
	Back To Derivatives
	L'Hopital's Rules
	Taylor's Theorem
	Convex Sets

	Riemann Integral
	Introduction
	Cauchy Criterion
	Squeeze Theorem
	Fundamental Theorem of Calculus
	Upper and Lower Riemann Sums
	Indefinite Integral
	Lebesgue Integrability Criterion
	Integration by Parts

	Function Sequences, Series
	Pointwise and Uniform Convergence
	Series
	Tests for Absolute Convergence
	Tests for Non-Absolute Convergence
	Series of Functions
	Power Series

	Appendix
	Notes from Tutorials
	Miscellaneous
	Class Midterm Solutions


