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1 Sigma-Algebras and Measures

Definition 1 (𝜎-algebra) : A 𝜎-algebra of subsets of a space 𝑋 is a collection ℱ of subsets of 𝑋
satisfying

• 𝑋 ∈ ℱ;
• 𝐴 ∈ ℱ ⇒ 𝐴𝑐 ∈ ℱ;
• {𝐴𝑛}∞

𝑛=1 ⊂ ℱ ⇒ ⋃𝑛≥1 𝐴𝑛 ∈ ℱ.

Some 𝜎-algebras can be “generated” by a collection 𝒞, in which case we denote ℱ = 𝜎(𝒞), being the
smallest 𝜎-algebra containing 𝒞. In general generators are not unique

A canonical example is the Borel 𝜎-algebra,

𝔅ℝ = 𝜎({𝐴 ⊂ ℝ : 𝐴 open}).

Definition 2 (Measure) :  A measure 𝜇 : ℱ → [0, ∞] is a set function defined on a 𝜎-algebra satisfying
• 𝜇(⌀) = 0;
• for {𝐴𝑛} ⊆ ℱ disjoint, 𝜇(⋃𝑛≥1 𝐴𝑛) = ∑𝑛≥1 𝜇(𝐴𝑛).

Definition 3 (Lebesgue Outer Measure) :  For all 𝐴 ⊆ ℝ,

𝑚∗(𝐴) ≔ inf{∑
∞

𝑛=1
ℓ(𝐼𝑛) : 𝐼𝑛 open intervals s.t. ⋃

𝑛≥1
𝐼𝑛 ⊇ 𝐴}.

A set is then called Lebesgue measurable if for every 𝐵 ⊆ ℝ,

𝑚∗(𝐵) = 𝑚∗(𝐴 ∩ 𝐵) + 𝑚∗(𝐴𝑐 ∩ 𝐵).

Theorem 1 :  Let ℳ = {𝐴 ⊆ ℝ : 𝐴 Lebesgue measurable}. Then, ℳ a 𝜎-algebra, and 𝑚 ≔ 𝑚∗|ℳ is a
measure on ℳ.

Theorem 2 :  𝑚, ℳ is translation invariant, 𝑚((𝑎, 𝑏)) = 𝑏 − 𝑎, 𝔅ℝ ⊊ ℳ, outer regular (𝑚(𝐴) =
inf{𝑚(𝐺) : 𝐺 open, 𝐺 ⊇ 𝐴}), and inner regular (𝑚(𝐴) = sup{𝑚(𝐾) : 𝐾 compact, 𝐾 ⊆ 𝐴}).

Theorem 3 :  ℳ is complete, and ℳ = 𝔅ℝ.
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Theorem 4 :  𝑚 is the unique measure on 𝔅ℝ that is finite on compact sets and translation invariant,
up to rescaling.

Theorem 5 :  A collection of subsets of 𝑋, ℐ, is called a 𝜋-system if 𝐴, 𝐵 ∈ ℐ ⇒ 𝐴 ∩ 𝐵 ∈ ℐ. A
collection of subsets of 𝑋, 𝒟, is called a d-system if 𝑋 ∈ 𝒟, 𝐴 ⊆ 𝐵 ∈ 𝒟 ⇒ 𝐵 \ 𝐴 ∈ 𝒟, and 𝐴𝑛 ↑∈
𝒟 ⇒ ⋃𝑛(𝐴𝑛) ∈ 𝒟.

Let ℐ be a collection of subsets of 𝑋 and let 𝑑(ℐ) be the smallest 𝑑-system containing ℐ. Then, 
𝑑(ℐ) = 𝜎(ℐ).

Theorem 6 :  There exists
• an uncountable set of measure 0 (the Cantor set);
• a non-measurable set (the Vitali set);
• a set that is Lebesgue but not Borel measurable.

2 Integration Theory

Definition 4 :  A function 𝑓 : ℝ → ℝ is called (Lebesgue) measurable if for every 𝑎 ∈ ℝ, {𝑓 < 𝑎} ≔
𝑓−1([−∞, 𝑎)) ∈ ℳ.

If 𝑓, 𝑔 measurable, so are 𝑓 ± 𝑔, 𝑓 ⋅ 𝑔, 𝑐 ⋅ 𝑓, min{𝑓, 𝑔}, max{𝑓, 𝑔}, 𝑓+, 𝑓−. If {𝑓𝑛} a sequence of
measurable functions, lim sup𝑛 𝑓𝑛, lim inf𝑛 𝑓𝑛, etc are all measurable.

Definition 5 (Integral) :  A simple function is of the form 𝜑 = ∑𝐿
𝑘=1 𝑎𝑘𝟙{𝐴𝑘} for measurable sets 𝐴𝑘,

and 𝐿 < ∞. We define

∫
ℝ

𝜑 ≔ ∑
𝐿

𝑘=1
𝑎𝑘𝑚(𝐴𝑘).

For any 𝑓 ≥ 0, we can find a sequence of simple functions that increase to 𝑓 . Let 𝑓  be a nonnegative
measurable function. We define

∫
ℝ

𝑓 ≔ sup{∫
ℝ

𝜑 : 𝜑 ≤ 𝑓}.

Finally, for general 𝑓  measurable, we define

∫
ℝ

𝑓 ≔ ∫
ℝ

𝑓+ − ∫
ℝ

𝑓−.

We say a function 𝑓  integrable and write 𝑓 ∈ 𝐿1(ℝ) if ∫
ℝ
|𝑓| < ∞.

Definition 6 (Convergence a.e., in measure) :  Let {𝑓𝑛} be a sequence of measurable functions. We say 
𝑓𝑛 → 𝑓  almost everywhere on ℝ if 𝑓𝑛(𝑥) → 𝑓(𝑥) for almost every 𝑥 ∈ ℝ. We say 𝑓𝑛 → 𝑓  in measure if
for every 𝛿 > 0, 𝑚{|𝑓𝑛 − 𝑓| > 𝛿} → 0.

Theorem 7 :  𝑓𝑛 → 𝑓  a.e. ⇒ 𝑓𝑛 → 𝑓  in measure.

𝑓𝑛 → 𝑓  in measure ⇒ 𝑓𝑛𝑘
→ 𝑓  a.e. along some subsequence {𝑛𝑘}.
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Theorem 8 (Egorov's) :  Let 𝐴 ∈ ℳ be a finite measure set such that 𝑓𝑛 → 𝑓  a.e. on 𝐴. Then, for every 
𝜀 > 0, there is a closed set 𝐴𝜀 ⊆ 𝐴 such that 𝑚(𝐴 \ 𝐴𝜀) ≤ 𝜀 and 𝑓𝑛 → 𝑓  uniformly on 𝐴𝜀.

Theorem 9 (Lusin's) :  Let 𝐴 ∈ ℳ be a finite measure set and 𝑓  measurable. For every 𝜀 > 0, there
exists a closed set 𝐴𝜀 ⊆ 𝐴 such that 𝑚(𝐴 \ 𝐴𝜀) ≤ 𝜀 and 𝑓|𝐴𝜀

 continuous on 𝐴𝜀.

Theorem 10 (Monotone Convergence) :  𝑓𝑛 ↑ 𝑓 , nonnegative, ⇒ ∫
ℝ

𝑓 = lim𝑛 ∫
ℝ

𝑓𝑛.

Theorem 11 (Fatou) :  ∫
ℝ

lim inf𝑛 𝑓𝑛 ≤ lim inf𝑛 ∫
ℝ

𝑓𝑛.

Theorem 12 (Dominated Convergence) :  𝑓𝑛 → 𝑓  a.e. and exists 𝑔 ∈ 𝐿1(ℝ) such that |𝑓𝑛| ≤ |𝑔|, then 
∫

ℝ
|𝑓𝑛 − 𝑓| → 0.

Definition 7 (𝐿𝑝) :  Put ‖𝑓‖𝑝 ≔ (∫
ℝ
|𝑓|𝑝)

1
𝑝  and 𝐿𝑝(ℝ) = {𝑓 measurable : ‖𝑓‖𝑝 < ∞}.

Put also ‖𝑓‖∞ = inf{𝑎 ∈ ℝ : |𝑓| ≤ 𝑎 a.e.}, and 𝐿∞ = {𝑓 : ‖𝑓‖∞ < ∞}.

Theorem 13 (Holder, Minkowski) :  ‖𝑓𝑔‖1 ≤ ‖𝑓‖𝑝 ‖𝑔‖𝑞 where 1
𝑝 + 1

𝑞 = 1 and 𝑓, 𝑔 ∈ 𝐿𝑝, 𝐿𝑞 resp.

‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝.

Theorem 14 : 𝐿𝑝 a complete space with respect to the 𝐿𝑝 norm, ‖ ⋅ ‖𝑝

Theorem 15 : 𝐶𝑐(ℝ) dense in 𝐿𝑝 for 𝑝 < ∞

Theorem 16 :  A sequence of functions {𝑓𝑛} is said to be uniformly integrable on a set 𝐴 if

lim
𝑀→∞

sup
𝑛

(∫
𝐴∩{|𝑓𝑛| >𝑀}

|𝑓𝑛|) = 0.

Suppose 𝑓𝑛, 𝑓 ∈ 𝐿1(𝐴) for 𝑚(𝐴) < ∞. Then, 𝑓𝑛 → 𝑓  in 𝐿1 if and only if {𝑓𝑛} uniformly integrable
and 𝑓𝑛 → 𝑓  in measure on 𝐴.

3 Product Space

Definition 8 :  Define ℳ2 = 𝜎({𝐴 × 𝐵 : 𝐴, 𝐵 ∈ ℳ}). For 𝐸 ∈ ℳ2, define 𝐸𝑥 = {𝑦 ∈ (𝑥, 𝑦) ∈ 𝐸},
with a symmetric definition for 𝐸𝑦.

Theorem 17 :  ∫
ℝ

𝑚(𝐸𝑥) d𝑥 = ∫
ℝ

𝑚(𝐸𝑦) d𝑦. As such, define the measure of a set 𝐸 ∈ ℳ2 by

𝑚(𝐸) ≔ ∫
ℝ

𝑚(𝐸𝑥) d𝑥.
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Theorem 18 (Tonelli's) :  Let 𝑓 ≥ 0 : ℝ2 → ℝ be ℳ2-measurable. Then,

∫
ℝ2

𝑓 = ∫
ℝ
(∫

ℝ
𝑓(𝑥, 𝑦) d𝑥) d𝑦 = ∫

ℝ
(∫

ℝ
𝑓(𝑥, 𝑦) d𝑦) d𝑥.

Theorem 19 (Fubini's) :  Let 𝑓 ∈ 𝐿1(ℝ2). Then, the above statement also holds.

4 Differentiation

Theorem 20 (Lebesgue Differentiation Theorem):  Let 𝑓 ∈ 𝐿1(ℝ). For 𝑥 ∈ ℝ, let {𝐼𝑛} be a sequence of
open intervals such that 𝑥 ∈ 𝐼𝑛 for every 𝑛 ≥ 1, and 𝑚(𝐼𝑛) → 0. Then, for almost every 𝑥 ∈ ℝ,

lim
𝑛→∞

1
𝑚(𝐼𝑛)

∫
𝐼𝑛

|𝑓(𝑡) − 𝑓(𝑥)| d𝑥 = 0.

Theorem 21 : Suppose 𝐹  nondecreasing on [𝑎, 𝑏]. Then, 𝐹 ′ exists a.e., 𝐹 ′ ∈ 𝐿1([𝑎, 𝑏]), and ∫𝑏
𝑎

𝐹 ′ ≤
𝐹(𝑏) − 𝐹(𝑎).

Definition 9 (Bounded Variation) :  A function 𝑓 : [𝑎, 𝑏] → ℝ is of bounded variation if

𝑇𝐹 (𝑎, 𝑏) ≔ sup{∑
𝑁

𝑘=1
|𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)| : 𝑎 = 𝑥0 < ⋯ < 𝑥𝑁 = 𝑏} < ∞.

We write 𝐹 ∈ BV([𝑎, 𝑏]).

Theorem 22 :  𝐹 ∈ BV([𝑎, 𝑏]) ⇔ 𝐹 = 𝐻 − 𝐺 where 𝐻, 𝐺 increasing.

Definition 10 (Absolutely Continuous) :  A function 𝐹  is absolutely continuous on [𝑎, 𝑏] if for every 𝜀 >
0, there is a 𝛿 > 0 such that if {(𝑎𝑘, 𝑏𝑘)}𝑁

𝑘=1 a disjoint sequence of open intervals with ∑𝑁
𝑘=1(𝑏𝑘 −

𝑎𝑘) ≤ 𝛿, then ∑𝑁
𝑘=1|𝐹 (𝑏𝑘) − 𝐹(𝑎𝑘)| ≤ 𝜀. We write 𝐹 ∈ AC([𝑎, 𝑏]).

Theorem 23 (FTC): 𝐹 ∈ AC([𝑎, 𝑏]), then 𝐹 ′ exists almost everywhere, 𝐹 ′ ∈ 𝐿1([𝑎, 𝑏]), and

𝐹(𝑥) − 𝐹(𝑎) = ∫
𝑥

𝑎
𝐹 ′(𝑡) d𝑡 ∀ 𝑥 ∈ [𝑎, 𝑏].
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