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1 Sigma-Algebras and Measures

Definition 1 (0-algebra): A o-algebra of subsets of a space X is a collection F of subsets of X
satisfying

« X e d,

c AeTF = A° e F;

- {A, cF=U A €T

Some o-algebras can be “generated” by a collection €, in which case we denote & = ¢(C), being the
smallest o-algebra containing €. In general generators are not unique

A canonical example is the Borel o-algebra,

Br =0({A CR: Aopen}).

Definition 2 (Measure): A measure p : F — [0, 00] is a set function defined on a o-algebra satisfying
* for {A,} C F disjoint, ,u(Un>1 An) =2 . MA,).

Definition 3 (Lebesgue Outer Measure): For all A C R,

m*(A) = inf{Zﬁ(In) : I,, open intervals s.t. U I, D A}.
n=1

n>1

A set is then called Lebesgue measurable if for every B C R,
m*(B) = m*(AN B) + m*(A°N B).

Theorem 1: Let M = {A C R : A Lebesgue measurable}. Then, M a o-algebra, and m := m*|,, is a
measure on M.

Theorem 2: m, M is translation invariant, m((a,b)) = b — a, Br C M, outer regular (m(A4) =
inf{m(G) : G open, G D A}), and inner regular (m(A) = sup{m(K) : K compact, K C A}).

Theorem 3: M is complete, and M = %_R.



Theorem 4: m is the unique measure on By, that is finite on compact sets and translation invariant,
up to rescaling.

Theorem 5: A collection of subsets of X, 7, is called a w-systemif A, BeJ = ANBecJ. A

collection of subsets of X, D, is called a d-systemif X € DJAC Be D= B\ A€ D,and A,, T€
D= (A4, €D

Let J be a collection of subsets of X and let d(J) be the smallest d-system containing J. Then,
d(J) =o(J).

Theorem 6: There exists
« an uncountable set of measure 0 (the Cantor set);
« a non-measurable set (the Vitali set);
« a set that is Lebesgue but not Borel measurable.

2 Integration Theory

Definition 4: A function f : R — R is called (Lebesgue) measurable if for every a € R, {f < a} :=
fH([~o0,a)) € M.

If f, g measurable, so are f + g, f - g,c - f,min{f, g}, max{f, g}, [/, f~. If{f,,} a sequence of
measurable functions, lim sup,, f,,,lim inf_ f, , etc are all measurable.

Definition 5 (Integral): A simple function is of the form ¢ = Zi: L AxLia,y for measurable sets Ay,
and L < oo. We define

/RSD = kzi;akm(Ak)'

For any f > 0, we can find a sequence of simple functions that increase to f. Let f be a nonnegative

measurable function. We define
/f==sup{/90:soﬁf}~
R R

Finally, for general f measurable, we define

fredrfr

We say a function f integrable and write f € L (R) if fR|f| < o0.

Definition 6 (Convergence a.e., in measure): Let { f,,} be a sequence of measurable functions. We say

f., = [ almost everywhere on R if f, (x) — f(x) for almost every x € R. We say f,, — f in measure if
for every 6 > 0, m{|f,, — f| > d} — 0.

Theorem 7: f, — fae. = f, — f in measure.

fn, — finmeasure = f, — f a.e. along some subsequence {n;}.



Theorem 8 (Egorov's): Let A € M be a finite measure set such that f,, — f a.e. on A. Then, for every
€ > 0, there is a closed set A, C A such that m(A\ A,) < e and f,, — f uniformly on A..

Theorem 9 (Lusin's): Let A € M be a finite measure set and f measurable. For every € > 0, there
exists a closed set A_ C A such that m(A\ A.) < e and f|, continuouson A_.

Theorem 10 (Monotone Convergence): f,, T f, nonnegative, = fR f=Ilim, fR fn-
Theorem 11 (Fatou): fR lim inf, f,, <liminf, fR fn-

Theorem 12 (Dominated Convergence): f,, — f a.e. and exists g € L*(R) such that | f,,| < |g|, then

fR|fn_f| — 0.

Definition 7 (L?): Put | f||,, := (fR|f]1")5 and LP(R) = {f measurable : | f|, < oo}.

Putalso | f|, = inf{a € R: |f| <aae},and L% = {f : | f], < oo}.

Theorem 13 (Holder, Minkowski): || fgll; < |[f], lg], where % + % =1land f,g € LP, L9 resp.

If +gl, < 171, + gl

Theorem 14: L” a complete space with respect to the L? norm, | - |,

Theorem 15: C.(R) dense in L? for p < oo

Theorem 16: A sequence of functions { f,,} is said to be uniformly integrable on a set A if

lim sup (/ |fn|> =0.
Mmoo n \Janqs, >

Suppose f,,, f € L'(A) for m(A) < oo. Then, f,, — fin L if and only if {f,,} uniformly integrable
and f,, — f in measure on A.

3 Product Space

Definition 8: Define M2 =o({A x B: A,B € M}).For E € M?, define E, = {y € (z,y) € E},
with a symmetric definition for EY.

Theorem 17: fR m(E,)dz = fR m(EY) dy. As such, define the measure of a set E € M? by

m(E) = /R m(E,)dz.



Theorem 18 (Tonelli's): Let f > 0 : R? — R be M2-measurable. Then,
/f=/</ﬂ%ww>®=/(/ﬂ%w®>m-
R2 R \/R R \VR

Theorem 19 (Fubini's): Let f € L' (R?). Then, the above statement also holds.

4 Differentiation
Theorem 20 (Lebesgue Differentiation Theorem): Let f € L!(R). For z € R, let {I,,} be a sequence of

open intervals such that « € I, for every n > 1, and m(I,)) — 0. Then, for almost every z € R,

)
noe m(T,)

[ 150~ s@az =0,

I

n

Theorem 21: Suppose F nondecreasing on [a, b]. Then, F” exists a.e., F’ € L*([a, b]), and f; F' <
F(b) — F(a).

Definition 9 (Bounded Variation): A function f : [a,b] — R is of bounded variation if
N
Tp(a,b) = SUP{Z’f(xk) —fl@p)|ia=2p < <ay= b} < 0.
k=1
We write F' € BV([a, b]).
Theorem 22: F' € BV([a,b]) & F = H — G where H, G increasing.

Definition 10 (Absolutely Continuous): A function F' is absolutely continuous on |a, b] if for every ¢ >

0, there is a 6 > 0 such that if {(ay, bk)}ivzl a disjoint sequence of open intervals with chv:l (b, —

a) < 6,then 3\ |F(b,) — F(ay)| < &. We write F' € AC([a, b]).

Theorem 23 (FTC): F' € AC(]a, b)), then F” exists almost everywhere, F’ € L!(]a, b]), and

F(z) — Fla) = /x Fr$)dtvaz € [ab]

a



	Sigma-Algebras and Measures
	Integration Theory
	Product Space
	Differentiation

