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§1 SiGMA ALGEBRAS AND MEASURES

§1.1 A Review of Riemann Integration
Letf : R - R and [4,b] C R. Define a partition of [a,b] as the set

part([a,b]) :={a = xg <x; < -+ <xy :=b}.

We can then define the upper and lower Riemann integrals of f over the region [a,b] as

3 N
upper: ff(x) dx:= inf {Z sup  f(x) - (xi—xi_l)}

part([a,b]) i=1 XE€[x;_1,%;]

b N
lower: ff(x)dx:: sup {Z inf ]f(x)'(xi_xi—l)}'

part([a,b]) | (=7 ¥€lxi-1x:

We then say f Riemann integrable if these two quantities are equal, and denote this value by
b
fa f(x) dx.
Many “nice-enough” (continuous, monotonic, etc.) functions are Riemann integrable, but

many that we would like to be able to “integrate” are simply not, for instance Dirichlet’s
1xeQ\[a,b]

. Hence, we need a more general notion of integration.
0xeQc\[a,b]

function x — {

§1.2 Sigma Algebras

< Definition 1.1 (Sigma algebra): Let X be a space (a nonempty set) and F a collection of
subsets of X. F a sigma algebra or simply c-algebra of X if the following hold:

1. XeF®

2. A€ F = A € F (closed under complement)

3. {Au},en © F = U, -1 Ay € F (closed under countable unions)

—Proposition 1.1:

4. oe F

5 {Au},,enCEF=2 N1 AvEF

6. Ay, ..., A, e F=>U 1 ALN A ET
7. ABe F=>A\B,B\Ae F

® Example 1.1: The “largest” sigma algebra of a set X is the power set 2%, the smallest the
trivial {@, X}.

Given a set A C X, the set J;4 := {@, X, A, A} is a sigma algebra; given two disjoint sets
A,B C X, then ﬁA,B ={g,X,A, A, B,B°, AU B,A° N B} a sigma algebra.
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< Definition 1.2 (Generating a sigma algebra): Let X be a nonempty set, and C a collection of
subsets of X. Then, the c-algebra generated by C, denoted o (C), is such that

1. ¢(C) a sigma algebra with C C ¢(C)

2. if F' a sigma algebra with C C F’, then ¥’ D ¢(C)

Namely, o (C) is the smallest sigma algebra “containing” (as a subset) C.

—Proposition 1.2:

1. ¢(C) = N{F : F asigma algebra containing C}

2. if C itself a sigma algebra, then ¢ (C) = C

3. if (4, G, are two collections of subsets of X such that C; C C,, then o (C;) C 0(()

< Definition 1.3 (The Borel sigma-algebra): The Borel c-algebra, denoted 5, on the real line

is given by
B := o({open subsets of R}).

We call sets in B Borel sets.

= Proposition 1.3: By is also generated by the sets
{(a,b) :a<beR}

{(a,b] :a<be R}

{[a,b] :a <be R}

{[a,b) :a<be R} ®

{(=o0,c):c e R}

{(—=oo,c]:ce R}

* etc.

Proor. We prove just ®. It suffices to show that the generating sets of each c-algebra
is contained in the other c-algebra. Leta < b € R. Then,

o0

(a,b) = | la + %b) e oc({[a,b)}) = Br Co({[a,b)}).

n=1

€®

Conversely,

[a,b) = ﬁ (a— %,b) € Bg.

n=1
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—Proposition 1.4: All intervals (open, closed, half open, half closed, finite, etc) are Borel sets;
any set obtained from countable set operations of intervals are Borel; all singletons are Borel;
any finite and countable sets are Borel.

§1.3 Measures

< Definition 1.4 (Measurable Space): Let X be a space and F a o-algebra. We call the tuple
(X, ) a measurable space.

< Definition 1.5 (Measure): Let (X, J) be a measurable space. A measure is a function y :
F - [0, o] satisfying

(i) p(@) =0;

(ii) if {A,,} C F a sequence of (pairwise) disjoint sets, then

,u( G An) = i H(A,),
n=1 n=1

i.e. u is countably additive. We further call y

* finite if u(X) < oo,

* a probability measure if u(X) =1,

o o-finiteif 3{A,} C FsuchthatX = J5_; A, with y(A,) <coVn>1,

and call the triple (X, J, 1) a measure space.

® Example 1.2: The measure on By given by

A {|A| if A finite
co else

is called the counting measure.

Fix xy € R, then the measure on By given by

AH{llfxOEA
0 else

is called the point mass at x.
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<Theorem 1.1 (Properties of Measures): Fix a measure space (X, -, it). The following
properties hold:
1. (finite additivity) For any sequence {An}fj:l C F of disjoint sets,

N N
y( ] An) = 3w,
n=1 n=1

2. (monotonicity) For any A C B € F, then u(A) < u(B).

3. (countable/finite subadditivity) For any sequence {A,,} C J (not necessarily disjoint),

#( [j An) < i #(An),
n=1 n=1

an analogous statement holding for a finite collection of sets A4, ..., Ay.
4. (continuity from below) For {A,,} C J such that A, C A,,; V1 > 1 (in which case we say

{A, } “increasing” and write A,, 1) we have

ﬂ( U An) = lim p(A;).
n=1

5. (continuity from above) For {A,,} C F,A,, D A,.,1 Vn > 1 (we write A,, |) we have that if
V(Al) < oo,

u( N An) = lim p(A,).
n=1

Remark 1.1: In 4., note that since A, increasing, that the union (J;__; A,, 2 A,, for any
arbitrarily large m; indeed, one could logically right lim,, ., A, = J,_; A,,. In this notation,
then, 4. simply states that we may interchange limit and measure. A similar argument can be

viewed for 5. (how?).

Remark 1.2: The finiteness condition in 5. may be slightly modified such as to state that
1(A,) < oo for some n; remark why this would suffice to ensure the entire rest of the

sequence has finite measure.

PROOF.

1. Extend Ay, ..., Ay to an infinite sequence by A, := @ for n > N. Then this simply
follows from countable additivity and u(@) = 0.

2. We may write B = A U (B \ A); this is a disjoint union of sets. By finite additivity,
then,

u(B) = u(A) + pn(B\ A) > u(A),

since the measure is positive.
3. We prove only for a countable union; use the technique from 1. to extend to finite.
We first “disjointify” the sequence such that we can use the countable additivity
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axiom. Let By = A{,B,, = A, \ (U A; ) for n > 2. Remark then that {B,,} C Fisa
disjoint sequence of sets, and that U 1B, =U,_; A,. By countable additivity and
subadditivity,

ﬂ( fj An) = PI(G Bn) = i #(B,) < i H(A)-
n=1 n=1 n=1 n=1

4. We again “disjointify” the sequence {A,}. Put B; = Ay, B,, = A, \ A, foralln > 2
(remark that this is equivalent to the construction from the previous proof because
the sets are increasing). Then, again, |J;_, B, = U,_, A,,, and in particular, for all
N >1,U"_, B, = Ay. Then

u( GlAn) - y( f]lAn) =Y (B,
n= n= n=1
N
= 1515201;#(3”)

N
I\l,lff;oﬂ( L:Jl Bn) = lim p(Ay).

5. We yet again disjointify, backwards (in a way) from the previous case. Put B,, =
A1\ A, foralln > 1. Then, {B,} C F, B, increasing, and | J,,_, B,, = A1 \ [, _; A,

Then, by continuity from below,

V(Al\ﬂAn) (U )-,}glgoﬂ n) = lim p(Aq \ Ay)
n=1 n=1

and also

= V(Al \An) + ]’l(ATZ)/

u(Ap) = V(Al \ ﬁ An) + Pl( ﬁ An>
n=1

and combining these two equalities yields the desired result.

§1.4 Constructing the Lebesgue Measure on R

= Definition 1.6 (Lebesgue outer measure): For all A C R, define

m*(A) —mf{Z(’, A C

called the Lebesgue outer measure of A (where £(I) is the length of interval I, i.e. the absolute

S
nC_s

I, I,, open intervals},

value of the difference of its endpoints, if finite, or oo if not).
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= Proposition 1.5: The following properties of m* hold:
1. m*(A) >0forall A C R, and m* (@) = 0.

2. (monotonicity) For A C B, m*(A) < m*(B).

3. (countable subadditivity) For {A,},A, C R, m*(J,_; A,) < Y. m*(A,).!

4. If I C R an interval, then m*(I) = £(I).

5. m* is translation invariant; forany A C R, x € R, m*(A) = m*(A + x) where A + x := {a +
x:a€e A}

6. Forall A C R, m*(A) = inf{m*(B) : A C B C R, B — open}.

7. 1fA = A1 U Az CR with d(Al,Az) > 0,2 then m*(Al) + m*(Az) = m*(A)
8. If A = J;_, Jx where J}s are “almost disjoint intervals” (i.e. share at most endpoints), then

m*(A) = Y o m* (i) = Yeq LUk

PROOF.

3. If m*(A,,) = oo, for any n, we are done, so assume wlog m*(A,,) < oo for all n. Then,
for each n and € > 0, one can choose open intervals {In,i}i>  such that A, C Uis i L
and )7, €(I,, ;) < m*(A,) + 5;- Hence

n=1 n=1,i=1
= m( U An) < ) L) =) ) M) < Z(m*(A@ - zi) =Y m(A,) +e
n=1 n,i=1 n=1i=1 n=1 n=1

and as ¢ arbitrary, the statement follows.

4. We prove first for I = [a,b]. Forany ¢ > 0,setl; = (a —¢,b + €); then C I; so
m*(I) < €(I;) = (b—1) + 2e hence m*(I) < b —a = ¥(I). Conversely, let {I,,} be any

open-interval convering of I (wlog, each of finite length; else the statement holds
N
n=1’

denoting I,, = (a,,, b,) (with relabelling, etc). Moreover, we can pick the a,,, b,,’s such
thata, <a,by > b, and generallya,, < b,_1 V2 <n < N. Then,

trivially). Since I compact, it can be covered by finitely many of the I,,’s, say {I,,}

) N N
Q(In) > Z E(In) = bl —a + Z(bn _an)
n=1 n=1 n=2

N
2by—ap + Z(bn —b,_1)
n=2

=by—ay 2b-1=1(1),
hence since the cover was arbitrary, m*(A) > €(I), and equality holds.
Now, suppose I finite, with endpoints a < b. Then for any b%a > ¢ > 0, then

[a+eb—¢c]CICla—¢b+e],

"More generally, any set function on 2R that satisfies 1., 2., and 3. is called an outer measure.
*Remark: this is a stronger requirement than disjointness!
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hence by monotonicity and the previous part of this proof
m*([a+eb—¢])=b—a—-2e<m*()<b—a+2e=m*"(la—¢b+¢]),

from which it follows that m*(I) = b —a = (I).

Finally, suppose I infinite. Then, V M > 0, 3 closed, finite interval I, with I; C I
and £(Iy;) > M. Hence, m*(I) > m*(Iy;) > M and thus as M arbitrary it must be that
m*(I) = oo = (I).

6. Denote 11(A) := inf{m*(B) : AC B C R, B — open}. For any A C B C R with B open,
monotonicity gives that m*(A) < m*(B), hence m*(A) < 1m(A). Conversely,
assuming wlog m*(A) < oo (else holds trivially), then for all ¢ > 0, there exists {I,,}
such that A C J;_, I, with )~ €(I,,) < m*(A) + . Setting B := | J;_, I,, we have
that A C B and m*(B) = m*({JI,,) < (by finite subadditivity) Y.~ m*(I,) =
220:1 0(I,,) < m*(A) + € hence m*(B) < m*(A) for all B. Thus m*(A) > 1(A) and
equality holds.

7. Put 6 :=d(Aq,A,) > 0. Clearly m*(A) < m*(A;) + m*(A,) by finite subadditivity.
wlog, m*(A) < oo (and hence m*(A;) < oo,i = 1,2) (else holds trivially). Then
Ve>0,3{I,}:ACUIL,and > (I,) < m*(A) + €. Then, for all n, we consider a
“refinement” of I,,; namely, let {I”/i}izl such that I, C {J;I,,; and ¢(I,, ;) < 6 and
Y UL,;) <U(I,) + 5 Relabel {I,, ; : n,i > 1} » {J,,, : m > 1} (both are countable).
Then, {J,,,} defines an open-interval cover of A, and since {(J,,) < J for each m, J,,,

intersects at most one A;. For eachm and p = 1,2, put
M, :={m:],,NA, 3},
noting that M; N M, = @. Then { Jw :m€E Mp} is an open covereing of A, and so

m*(Ay) +m*(A)) < Y W)+ Y W)

meM, meM,
<3 W)=Y €,
m=1 n,i=1
<Y (W) +57)

and hence equality follows.

8. If {(J;) = oo for some k, then since [, C A, subadditivity gives us that m*(J;) <
m*(A) and so m*(A) = co = Y~ U(Ji) (since if any J; infinite, the sum of the
lengths of all of them will also be infinite).

Suppose then {(J;) < co for all k. Fix € > 0. Then for all k > 1, choose I C J; such that

L) < U(Iy) + % For any N > 1, we can choose a subset {Iy, ..., Iy} of intervals such
that all are disjoint, with strictly positive distance between them, and so
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= m*(A) 2 ) i),
k=1

the second inequality following from finite subadditivity. The converse of the final
inequality holds trivially. |

§1.5 Lebesgue-Measurable Sets

—Definition 1.7: A C R is m*-measurable if VB C R,
m*(B) = m*(BNA) + m*(B N A°).

Remark 1.3: By subadditivity, < always holds in the definition above.

—Theorem 1.2 (Carathéodary's Theorem): Let
M:={ACR:A m* — measurable}.
Then, M is a o-algebra of subsets of R.

Define m : M — [0, 0], m(A) = m*(A). Then, m is a measure on M, called the Lebesgue
measure on R. We call sets in M Lebesque-measurable or simply measurable (if clear from context)

accordingly. We call (R, M, m) the Lebesque measure space.

Proor. The first two c-algebra axioms are easy. We have for any B C R that
m*(BNR) + m*(BNR®) =m*(B) + m*(BN @) = m*(B)

so R € M. Further, A € M = A° € M by the symmetry of the requirement for sets to
be in M.

The final axiom takes more work. We show first M closed under finite unions; by
induction it suffices to show for 2 sets. Let A;, A, € M. Then, for all BC R,

m*(B) = m*(BN A1) + m* (BN Af)
=m*(BNAy) +m*(BNAJNAy) +m*(BNA]NAS)

=m*(BNA;) +m*(BNA]NAy) +m* (BN (A; UA,)°)
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Note that (BN Ay) U (BN A{ N AS) = BN (A; UA,), hence by subadditivity,

m*(B) > m*(BN (A; UAy)) +m* (BN (A; UAy)°),
and since the other direction of the inequality comes for free, we conclude A; U A, €
M.

Let now {A,} C M. We “disjointify” {A,}; put By := Ay, B, := A, \ U] YA, n>2,
noting | J,, A, = U,, B,,, and each B,, € M, as each is but a finite number of set
operations applied to the A,,’s, and thus in M as demonstrated above. Put E,, :=
U?:l B, noting again E,, € M. Then, for all B C R,

m*(B) =m*| BNE, |+m* BN Ey,

chop up B, E,CUB,=E¢D(UB,,)"

0o c
>m*| BNE,NB, |+m*| BNE,NB; +m*(Bm(UBH))
=B, =E, 1

o C
m*(BNB,) +m*| BNE,_; +m*(Bm(UBn))

chop up B,, 1
>m*(BNB,)+m*(BNE,_1NB,_1)

00 Cc
+m*(BNE,_; NB°_;) + m*(B N ( g Bn) )

n=1

Notice that the last line is essentially the second applied to B,,_4; hence, we have a
repeating (essentially, “descending”) pattern in this manner, which we repeat until
n — 1. We have, thus, that

m*(B) > zn: *(BNB;) *(Bm([j&) )
i=1

so taking n — oo,

m*(B) > i[m*(B NB;)] + m*(B n ( G Bn) )
i=1 n=1

o0 (0n) e (eo(02))

As usual, the inverse inequality comes for free, and thus we can conclude | J_, B, also

m*-measurable, and thus so is | J;_, A,,. This proves M a -algebra.

We show now m a measure. By previous propositions, we have that m > 0 and

m(@) = 0 (since m = m* |);), so it remains to prove countable subadditivity.

Let {A,} C M-disjoint. Following precisely the same argument as above, used to

prove that M closed under countable unions, shows that for any n > 1

1.5 Lebesgue-Measurable Sets
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m(QAi) = im(Ai)r

that is, finite additivity holds, and thus by subadditivity

o n n
i=1 i=1 i=1
and so taking the limit of n — oo, we have
m( U Ai) > Z m(A;),
i=1 i=1

with the converse inequality coming for free. Thus, m indeed a measure on M. [

<Proposition 1.6: M, m translation invariant; forallA e M, x e R,x+A={x+a:a €
A}y e M and m(A) = m(A + x).

Remark 1.4: We would like this to hold, heuristically, since if we shift sets on the real line, we

should expect their length to remain constant.

Proor. Forall B C R, we have (since m* translation invariant)

m"(B):m*(B—x):m*((B—x)nA)+m* (B—x) N A
=BN(A+x) =BN(A+x)=BN(A+x)°

=m* (BN (A+x)) +m* (BN (A+x)°),

thus A + x € M, and since m* translation invariant, it follows that m is. [ ]

—Theorem 1.3: Va,b € Rwitha <b, (a,b) € M,and m((a,b)) =b—a.

Remark 1.5: Again, we’d like this to hold, heuristically, since we would like the measure of an
interval to simply be its length; we’d moreover like to be able to measure intervals, i.e. have

intervals be contained in M.

<Corollary 1.1: B C M

PRrROOF. By is generated by open intervals of the form (a,b). All such intervals are in

M by the previous theorem, and hence the proof. [

§1.6 Properties of the Lebesgue Measure
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< Proposition 1.7 (Regularity Properties of m): For all A € M, the following hold.

e Foralle > 0,3Gopensuchthat A C Gand m(G\ A) < e.

e Foralle >0, 3F-closed suchthat F C Aand m(A \ F) <e.

e m(A) = inf{m(G) : G open, G D A}.

e m(A) = sup{m(K) : K compact, K C A}.

o Ifm(A) < oo, then for all e > 0, 3K C A compact, such that m(A \ K) < e.

o If m(A) < oo, then for all € > 0, 3 finite collection of open intervals I;, ..., Iy such that

m(AA(U,Ij:l In)> <e.

< Proposition 1.8 (Completeness of m): (R, M, m) is complete, in the sense that for all A C R,
if 3B € M such that A C Band m(B) =0, then A € M and m(A) = 0.

Equivalently, any subset of a null set is again a null set.
Remark 1.6: In general, A € ,BC A=B € F.

= Proposition 1.9: Up to rescaling, m is the unique, nontrivial measure on (R, B ) that is
finite on compact sets and is translation invariant, i.e. if 4 another such measure on (R, B )

with y = c-mforc > 0, then y = m.

Remark 1.7: Such a c is simply ¢ = u((0,1)).
To prove this proposition, we first introduce some helpful tooling:

—Theorem 1.4 (Dynkin’s 77-d): Given a space X, let C be a collection of subsets of X. C is
called a 7t-system if A,B € C = AN B € C (that is, it is closed under finite intersections).

Let J = ¢(C), and suppose y1, ji, are two finite measures on (X, J) such that y1(X) =
> (X) and p1; = p, when restricted to C. Then, p; = p, on all of F.

< Proposition 1.10: {@} U {(a,b) : a < b € R} a r-system.

—Proposition 1.11: If 4 a measure on (R, B ) such that for all intervals I, u(I) = ¢(I), then

yo=m.
Proor. Consider foralln > 1 yl%[_n . Clearly, u([—n,n]) = m([—n,n]) = 2n, and for

alla,b e R, u((a,b) N [—n,n]) = ((a,b) N [-n,n]) = m((a,b) N [—n,n]). Thus, by the
previous theorem, y must match m on all of B_,, ;.

1.6 Properties of the Lebesgue Measure
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Letnow A € Bp. Let A, := AN [-n,n] € B_, ,;. By continuity of m from below,
= 7}1_1:]5}0 m(Ay)

= m(A),

hence y = m. [ |

= Proposition 1.12: If 4 a measure on (R, B ) assigning finite values to compact sets and is

translation invariant, then y = cm for some ¢ > 0.

Remark 1.8: This proposition is also tacitly stating that B translation invariant; this needs to

be shown.

—Lemma 1.1: By translation invariant; forany A € B, x € R,A +x € By.

Proor. We employ the “good set strategy”; fix some x € R and let
YX:={BEBr:B+x€Br}

We have by construction 2 C B . One can check too that . a c-algebra. But in
addition, its easy to see that {(a,b) : a < b € R} C %, since a translated interval is just

another interval, and since these sets generate B, it must be further that By C %,
completing the proof. [
ProoE. (of the proposition) Let ¢ = £((0,1]), noting that ¢ > 0 (why? Consider what
would happen if ¢ = 0).

This implies that Vn > 1, u ( < 0, l]) = % (obtained by “chopping up” (0,1] into n

n
disjoint intervals); from here we can draw many further conclusions:

m m
Vm= 1,...,n—1,y<(0,—]) = —c¢
n n

=V g€ Qn(0,11,1((0,q]) = qc

=Vge Qt, u((0,9]) =g-c (translate)

=>VaeR,u((g,a+q])=q-c

= Vintervals I, u(I) = c - ¢(I) (continuity)
=>Vn>1abeR,u((ab)n[-nmn])=c-((ab)N[-nn])=c-m((a,b)N[-nn]),
but then, y = c-mon By, ,, and by appealing again the Dynkin’s, s = ¢ - m on all
of Bp. [ |

1.6 Properties of the Lebesgue Measure
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< Proposition 1.13 (Scaling): m has the scaling property that VA e M,c e R,c-A={cx:x €
Ay e M,and m(c-A) = |c| m(A).

ProOOF. Assume ¢ # 0. Given A C R, remark that {I,,} an open interval cover of A iff
{cI,,} and open interval cover of cA, and {(cl,,) = Ic| £(],,), and thus m*(cA) = |c| m*(A).

Now, suppose A € M. Then, we have for any B C R,
1 1 1
m*(B) = |c| m* EB = |c| m* EB NA |+ |c| m* EB N A€
=m*(BNcA) +m*(BN (cA)°),
socA € M. [ |
§1.7 Relationship between B and M
< Definition 1.8: Given (X, J, ), consider the following collection of subsets of X,

N:={BCX:JA€ F st.u(A) =0,BC A}

Put T := o(F U N); this is called the completion of J with respect to y.

< Proposition 1.14: F = {FCX:3E,Ge Fst.IECFC Gand m(G\E) =0}.

Proor. Put g the set on the right; one can check g a o-algebra. Since F C g and N C
g, we have F C g
Conversely, for any F € g, we have E,G € F such that EC F C G withm(G \ E) = 0.

We can rewrite

eF CG\E
=u(F\E)=0
=>G\EeN
hence F € J* U N and thus in F, and equality holds. n

< Definition 1.9: Given (X, F, ), it can be extended to F by, for each F € FwithECFCG
st. u(G\E) =0, put

u(F) = u(E) = u(G).

We call then (X, F, i) a complete measure space.

Remark 1.9: It isn’t obvious that this is well defined a priori; in particular, the E, G sets are
certainly not guaranteed to be unique in general, so one must check that this definition is

valid regardless of choice of “sandwich sets”.
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<Theorem 1.5: (R, M, m) is the completion of (R, B, m).

Proor. Given A € M, then Vn > 1,3G,-open with A C G,, s.t. m*(G,, \ A) < % and
3F,-closed with F,, C As.t. m*(A\F,) < %

PutC:=(_, G,, B:=(,_, F, remarking that C,B € Br, BC A C C, and

moreover

1 1
m(C\A) < —,mA\B) < -
n n

SN

= m(C\B) =m(C\A) +m(A\B) <

but n can be arbitrarily large, hence m(C \ B) = 0; in short, given a measurable set, we
can “sandwich it” arbitrarily closely with Borel sets. Thus, A € B = M C Bp. But
recall that M complete, so Bg € M = B C M = M, and thus B = M indeed.

Heuristically, this means that any measurable set is “different” from a Borel set by at

most a null set. [ ]

§1.8 Some Special Sets

1.8.1 Uncountable Null Set?
Remark that for any countable set A € M, m(A) = 0; indeed, one may write A = | J;_,{a,} for
singleton sets {a,,}, and so

m(A) = Z m(a,) = 0.
n=1
One naturally asks the opposite question, does there exist a measurable, uncountable set with

measure 0? We construct a particular one here, the Cantor set, C.

This requires an “inductive” construction. Define Cy = [0, 1], and define C. to be C;_; after

removing the middle third from each of its disjoint components. For instance C; = [0, %] U

[3,1], then C, = |0,5] U|3, 5] U[3, 5] U[5 1], and so on. This may be clearest graphically:
Co
G
— — — — g

Remark that the C,, |. Put finally
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= Proposition 1.15: The following hold for the Cantor set C:

1. Cis closed (and thus C € BR);
2. m(C) =0;
3. Cis uncountable.

PROOF.

1. For each n, C,, is the countable (indeed, finite) union of 2"-many disjoint, closed
intervals, hence each C,, closed. C is thus a countable intersection of closed sets, and

is thus itself closed.

1

37 hence

2. For each n, each of the 2" disjoint closed intervals in C,, has length

wep=2=(2)

Since {C,,} |, by continuity of m we have
2 n
m(C) = lim m(C,) = lim (5) =0.

3. This part is a little trickier. Notice that for any x € [0,1], we can define a sequence
(a,) where each a,, € {0, 1,2}, and such that

in particular, this is just the base-3 representation of x, which we denote (x); =
(ayay-).
I claim now that

C={xe€[0,1]: (x)3 hasno 1's}.

Indeed, at each stage n of the construction of the Cantor set, we get rid of the segment
of the real line that would correspond to the 4,, = 1. One should note that (x); not

necessarily unique; for instance (%)3 =(1,0,0,...) = (0,2,2,...), but if we specifically

consider all x such that there exists a base three representation with no 1's, i.e. like %,

then C indeed captures all the desired numbers.
Thus, we have that
card(C) = card({{a,} : a,, = 0,2}).

Define now the function
= a, 1
f :C-[0,1], x+~ Z:l 7 . z—n,where (x)3 = (an)
n=

i.e.,, we “squish” the base-3 representation into a base-2 representation of a number.

This is surjective; for any y € [0,1], (b,) := (y), contains only 0’s and 1s, hence (2b,,)
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contains only 0’s and 1’s, so let x be the number such that (x); = (2b,,). This

necessarily exists, indeed, we simply take our definitions backwards:

which maps to y under f and is contained in C. Hence, card(C) > card ([0, 1]); but
[0,1] uncountable, and thus so is C. [ ]

We can naturally extend the function f used here to map the entire interval [0,1] — [0,1] as

follows

Yo 2 aifx € C (x5 = (ay)

(x) := .
/ fa)ifx & C then x € (a,b) s.t. (a,b) removed from [0, 1]

This function is often called the Devil’s Staircase or Cantor-Lebesgue function.

—Proposition 1.16:

1. f(0) =0,f(1) =1,f = 2 on (% %)f =1 on (%%)
2. f:10,1] - [0,1] a surjection

3. f is nondecreasing

4. f is continuous

Proor. 1., 2., clear from construction.

For 3., let x; < x, € C, and suppose (x1), = (4,), (x2)5 = (b,). Then, since x; < x,,
it must be that a,,, b,, can only be equal up to some finite N; then the next 0 = ap;q <
bns1 = 2. Hence, it follows that the “modified binary expansion” that arises from f
gives directly that f (x;) < f(x,).

For 4., f is clearly continuous on [0,1] — C, since it is piecewise-constant here. Also, f
is “one-sided continuous” at each of the “boundary points” %, %, %, g, ..Ifx eC, for
any n > 1, there must be x,, x,,’ such thatx, < x < x,,’ (ifx =0, only need x,,/, if x = 1,
only need x,,) and f (x,,") — f(x,,) < 2,, Then, f is continuous at x by monotonicity of f.

1.8.2 Non-Measurable Sets?

We’ve shown then that there is indeed an uncountable set of measure 0. Another question we
may ask ourselves is, is there a A C R that is non-measurable? The answer to this turns out to
be yes, but the construction requires invoking the axiom of choice:
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Axiom 1 (Of Choice): If X a collection of nonempty sets, then 3 a function
S:2- |4
A€X

such that A € o, S(A) € A. Such a function is called a selection function, and S(A) a
representative of A.

We construct now a non-measurable set, assuming the above. Consider [0, 1], and define an

equivalence relation ~ on [0, 1] by

a~bea-be Q.
Its easy to check that this is indeed an equivalence relation. Denote by E, the equivalence class
containing 4, and set £ = {E, : a € [0, 1]}. Note that forany E, € L, E, # @.

Invoking the axiom of choice, we can select exactly one element S, from E, for each E, € X.
Set

N :={S, : S, is a representative of E,, E, € X}.
—Proposition 1.17: N, called a Vitali set, is non-measurable.

PrOOF. Assume towards a contradiction that N indeed measurable, N € M. Consider
[—1,1] N Q; this is countable, so we can enumerate it {g,}, k > 1. For each k, put

Nk !:N+qk.

By the assumption of measurability and translation invariance of m, it must be that

each N, measurable and has the same measure as N.

We claim each N disjoint. Assume not, then 3k # ( (i.e. g # qp) and S,, S, € N
such that S, + g = Sy + g¢. Butthen S, — S, = 9 — g € Q, hence S, ~ S;. But we
constructed N to have only one representative from each equivalence class, hence it
must be that S, = S;,and so S, + g = S, + 9 = qx = q;, contradicting the assumed
distinctness of the g’s; hence, the N;’s indeed disjoint.

We claim next that [0,1] C U;‘;l Ni. Let x € [0,1]. Then, x ~ S, for some unique
S,€Nandsox—S, € Q.Butalso, x,S, € [0,1], hencex — S, € [—1,1] (moreover,
x—5, € [-1,1] N Q) and there must exist a k such that x — S, = gy, since the g;s
enumerate the entire [-1,1] N Q. Thus, x € Ny by the construction of the N;’s. Thus,
[0,1] € U, _; N indeed.

On the other hand, | J;_; Ni C [—1,2] and so we have the “bound”

[0,1] C DNk C [-1,2].
n=1

Taking the measure of all sides then, we have the bound
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1SV(GN1<)S3-

n=1

Invoking the disjointness of the N}’s, we can also use countable additivity to write

[ee)

14( [j Nk) =) m(Ny) = im(N),
n=1 k=1

k=1

but this final line is a sequence of positive, constant real numbers; hence, it is
impossible for it to be within 1 and 3, and we have a contradiction. Hence, N indeed

not measurable.

Remark that this proof also shows that m*(N;) > 0so m*(N) > 0 (given the interval
bound on N we’ve found). [ ]

< Proposition 1.18: For every A € M such that m(A) > 0, there exists B C A such that B is

non-measurable.

PrOOF. Assume otherwise, that there isa A € M with m(A) > 0 such that any subset
B of A is also measurable.

Remark that A C |, cz A N [n,n+1]. Then, there exists an n such that m(A N
[n,n + 1]) > 0 and thus, translating A" := AN [n,n + 1] —n), m(A") > 0, noting that
A" C[0,1]. Now, for any B’ C A’, B’ + n C A. By assumption, then B’ + n must be

measurable so B’ measurable.

In summary, then, we have A" C [0, 1] with m(A") > 0 such that (by assumption) B’
measurable forall B C A'.

Let N, {gx}, Ni be as in the previous proof. Set
A =A"NN,k>1
Then, A’ disjoint, and
A'=[0,11NnA" C G(Nk NA") = [j Ap.
k=1 k=1
Since m(A") > 0, there exists a k such that m(A;") > 0. Set, for this k,
L:={{>1:g9,+q; €[-1,1]}.
This set is again countably infinite. We translate, obtaining a disjoint sequence of sets
{q0+ A" : L € L}; since gy + g € [-1,1]1 N Q, then gy + g, = g, for some unique m,

andso gy + A’ =g+ A" N (N +g;) C N,,,. Hence, we have on the one hand that by
countable additivity

U@+ Ad) CI-1,21= Y m(q +A) <3,
leL el

and so it must be that m(g, + A;") = m(Ax") = 0 (else the series couldn’t be finite),

contradicting the finiteness assumption on m(Ay"). [ |
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1.8.3 Non-Borel Measurable Set?
We may ask, is there A € M such that A & BR?

Letf : [0,1] — [0,1] be the Cantor-Lebesgue function, and put g(x) = f(x) + x; note that g is
continuous and strictly increasing, and is defined g : [0,1] — [0, 2]. Remark that g bijective; the
strictly increasing gives injective, and moreover g(0) = 0,g(1) = 2 hence by intermediate value
theorem it is surjective. Hence, g_l : [0,2] — [0, 1] exists, and is also continuous, so in short g is
a homeomorphism; it maps open to open, closed to closed. In particular, if A € B, then
g(A) € By.

Recall that if (a,b) an open interval that gets removed from the construction of C, then f is
constant and so ¢ will map (a,b) to another open interval of the same length b — a. Thus,

m(g([0,1]\ C)) = m([0,1]\ C) = 1.

Hence, m(g(C)) =2—-1=1> 0, since g(C U [0,1] \ C) = [0,2]. Hence, there exists a B C g(C)
such that B ¢ M, as per the previous proposition.

Let A := ¢71(B);then A C ¢7'(g(C)) = C. Since m(C) =0, A € M and m(A) =0.But, A &
B, if it were, then g(A) = B € By, since ¢ “maintains” Borel sets, but B is not even Lebesgue

measurable and so this is a contradiction).

§2 INTEGRATION THEORY

§2.1 Measurable Functions
We will be considering functions f defined on R or some subset of R that could take positive

or negative infinity as its value i.e.
f:R - R:= RU{—0c0, 0},

where R the extended real line; we say f is R-valued. If f never takes co, —cc for any x € R, we

say f finite-valued, or just R-valued.

For alla € R, we consider inverse images
fH=o,m) = {x R :f(x) € [~0,a)} = {f <a},
remarking the inclusion of —co; similarly
@ ]) ={x eR :f(x) € (a,0]} = {f >a},
and so on, for any B C R,
f1B)={xeR:f(x) € B} = {f €B}.
Remark that
1B = (F1(B))
fTHANB) =f1 A NfHB)
fTHAUB) =f"HA) Uf(B),
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which extend naturally for countable unions/intersections.

< Definition 2.1 (Measurable Function): f : R — R is measurable if ¥ a € R,

fl([—o0,a)) € M.

< Proposition 2.1 (Equivalent Definitions of Measurability):
f is measurable & Va € R,f‘l([a,oo]) eM
eVaeR, (@ x])eM
eVaeR,fI([-x,a)eM

Proor. We prove just the last equivalence. Notice that Va2 € R, we can use the
commuting of inverse images with countable unions, intersections, complement to
write

fH([—o0,m)) = nfjlf‘l(l—oo,a— %))

and

f U ([~c0,a]) = nfjlf—lq—oo,a + %))

= Proposition 2.2:If f finite-valued, Then

f is measurable s Va<b e R,f1((a,b)) e M

® - fH@b)eM
e o f(ab)eM
e - f([ab]) M.

< Definition 2.2 (Extended Borel Sigma Algebra): Define the Borel “extended” algebra B of
subsets of R, defined by

%E = U(%R U {{_OO}/{OO}})

<Proposition 2.3: Br = 0 ({[—,4q) : a € R}).

Proor. For every a € R, we may write
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[—OO,LI) = (—OO,&l) U {_OO} € %RI

EBg

s0 0 ({[—o0,a) :a € R}) C Br.

Conversely, notice that
{0} = [|[—o0,—n),
n=1

and

{0} =R — ( G [—oo,n)),
n=1

50 {—o0}, {0} € 0 ({[—o0,a) :a € R}). Hence, foranya € R,

(—o0,a) = [—o0,a) —{—oo} €0 ({[—,a) :a € R}),
and so Br C o ({[—o0,a) :a € R}). {—o0}, {0} € 0({[—00,a) :a € R}) already, and
thus B C 0 ({[—,a) :a € R}).

< Proposition 2.4:f : R —» R measurable < for all B € %E,f_l (B) € M.

PROOF. <« is immediate. For =, let C be a collection of subsets of R, then put
f~YC) :={f~Y(B): B C}.
By an assignment question (2.6),
fHe () = e(fHO)).
Take C = {[—o0,a) : a € R}. Then,
fHe(C) =f1(Bg) = (f T {[—,a) :a € RY)).
But f measurable, so f ~}([—c0,a)) € M for eacha € R, hence sigma (f 1 ({[—0,0) :

a € R})) C Mandsof~!(c(C)) C M completing the proof.

< Corollary 2.1: If f finite-valued, then f is measurable < for every B € By, f~1(B) € M.

< Proposition 2.5: Given f : R — R, define the finite valued component of f given by

fr(x) := {f(x) oo <f(x) < >,

0 otherwise

Then, f measurable & V B € By, fr (B) € M AND {f = oo}, {f = —oo} both in M.

ProOOEF. (=) Foranya € R,

fU([~o0,a)) = {f = —0} Uf 1 ((—0,a)) = {f = —0} UfR ((—0,a)),
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a union of measurable sets and hence is itself measurable.
(=) Remark that {f = oo}, {f = —oo} € M automatically. For any B € B, we have
fRIB)={reR:frx) €EB}={xeR:f(x) EB,—o<f<o}U{xER:0EB,f(x) =t} € M.

< Definition 2.3: If a statement is true for every x € A where A € M s.t. m(A°) = 0, then we

say the statement is true a.e. (almost everywhere).
< Proposition 2.6: If f : R — R is measurable and f = ¢ a.e. then g is measurable.

= Corollary 2.2:If f is finite-valued a.e., then f is measurable < f is measurable & Va <

beR,f1((ab) e M.

= Proposition 2.7: If f = c then f measurable.

If f = 1,4 for some A C R, then f is measurable < A € M.

Proor. Assume f = c. Then

1 _|Rifc<a
f Oo’a))_{mfczaEM‘

Assumenow f = 14.Foralla € R,

Rifa>1
f i ([—o,a) ={A°if0<a<leMe Ac M.
gifa<O0

= Proposition 2.8:If f is (finite-valued) continuous, then f is measurable.

PrOOF. f : R - R continuous « for all G C R open, f ~}(G) open. Foralla < b € R,
then f~1((a,b)) openso f~1((a,b)) € M so f measurable.

In fact, if f : R — R continuous, then for all B € %R,f_l(B) € Br;

FH(BRr) =f Yo ({opensets})) = o| f~1({open sets}) | C o ({open sets}) = B.

all open

Moreover, if f —1 (inverse) exists and is continuous, then for any B € By, f(B) € Br. A
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—Proposition 2.9: If f : R - R is measurable and ¢ : R — R is continuous, then ¢ o f is
P 8 8

measurable.

Remark 2.1: The order matters! The converse doesn’t hold in general.

Proor. Foralla € R,
(gof) ((—0,0)) = {x € R:g(f(x)) <a)
={xeR:f(x) €g 1 ([—c0,a))}
=g ([—o0,0))) € M.

< Proposition 2.10: If f : R — R is measurable, then:

1. for every c € R, cf is measurable (in particular —f measurable);
2. |f|is measurable;

3. for every k € N, f¥ is a measurable.

Proor. We prove just 3. If k = 0 this is trivial. For any a € R,

f_1<[—00,a%)> if k is odd
(fk>_1([_°°'a)) =19 if kisevenanda < 0 € M.
f‘1<[—a%,a%)) ifkisevenanda > 0

—Proposition 2.11: If f, ¢ are two finite-valued measurable functions, thenf + g, f - g,f V
g = max{f,g},f A g := min{f, g} are measurable functions, where

(f v &) (x) = max{f (x),g(x)}.

Proor. Foralla € R,
(f +9) ([—o0,a) = {x € R: f(x) +g(x) < a}
={xeR:f(x)<a—gkx)}
= U {xeR:f(x)y<g<a—gx)}

9€Q
= xeR:f)<gin{xeR:g(x) <a—g} € M.
9€Q eM eM

This implies, then, that f — ¢ measurable, as are (f + g)2 and (f — g)z, and thus
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fo= [ +97 - (F - 9]

is measurable.

We have too that

1
fvg= E(lf—g|+ f +8))

and so is measurable, and so
fAg=—max{—f,—g} =—(=f V—g)
is measurable.

—Corollary 2.3: If f is measurable, then f* := f v 0 = max{f,0}and f~ := —(f AO) =
max{—f,0} are measurable, as is f A k for any k € R.

Remark 2.2: Notice that f = f* — f~, even with “infinities”, and |f| = f* + f~.

—Proposition 2.12: Let {f,;} be a sequence of measurable functions. Then, sup,, f,,, inf,, f,,,
limsup,,_, . f,, and lim inf,,_,  f,, are all measurable (where (lim sup,,_, . f,,) (x) :=

lim sup,, . f,, (x) = inf,,; 51 sup,s;, fru (x) = lim,, . sup,s,, f, (X))

Proor. To show sup,, f,, measurable, we will show for alla € R {sup,,f, < a} € M.

X E {supfn Sa} esupf,(x) <aef,(x) <aVn>lexe ﬂ{fn <a},

n=1

hence {sup, f, <a} = ,_; {f, <a} € M and hence sup,, f,, is measurable. Note that

emMm

using < was important; {sup,, f,, < a} C [, _,{f, < a}, since the sup, f,, could equal a.

We could say the following, however:

{supfn<a} = U{supfnﬁa——}z U ﬂ{fnﬁa——} e M.
" k=11 " k k=1n=1 k
Next, we have inf, f,, = — sup,,(—f,,) so we are done.

For lim sup, lim inf, we have

11mnsup fn = ngfl :1215 fu-

=8&m

g 1s measurable for each m > 1, hence inf,, g,,, is measurable, hence lim sup,, f,, is

measurable. Similar logic follows for lim inf.

We could have show, more directly, that
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{limnsupfn < a} = {nlféfl zgnpifn < a}

m=1 \nzm
o0 o0

- U Ofsupso<a- ¢
m=1k=1 \n2m

—Proposition 2.13: Let {f, } be a sequence of measurable functions. Then, all of the following
sets are also measurable:

{x eR: 7;i_r)rolofn(x) exists in R} = {Aggofn exists in ]R},
{limf, = oo}, {lim, = —o}, {limf, = c € R}.

Moreover, if lim,,_, ., f,, exists (in R or as +oc) a.e. with f = lim,,_, . f,, a.e. then f is measurable.

Proor. We have
{limf, existsin R} = {limsupf, = liminff, and — oo < limsupf,, < oo}
= {—co < liminff, < co} N {—c0 < limsupf, < oo} N {limsupf, — liminff, = 0} € M.

Similarly,

1
{imf, =c} = {xe R:Vk>1,dn>1 st.Vm>n,|f,(x) —cl < %}

QU D bonsl]

—_—

Ve=lsg 3n=1 Vmzn
k

§2.2 Approximation by Simple Functions

Given a functionf : R — R, measurable, we may write
f=f=f
where f*,f~ are non-negative measurable functions; so, it suffices to study non-negative

measurable functions. For any n > 1, we have
fi =" An)- ]l[—n,n]/

i.e,, we cap f* at n, and disregard values of f* outside of [—n, n]; hence we limit our view to a
2n x n “box”. Then, f,; is non-negative, measurable, bounded (by 1), compactly supported (zero
outside a bounded set), and in particular £,/ 1, with limit
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Jim fi = .
An identical construction follows for f~ with
fo =AML,
with f,;7 1 and
lim =~

Fix some n and consider f,f. For k = 0,1, 2, ...,2"n, define

k k+1 k k+1
Ap = {xE[—n,n]:z—nSf;T(X)< o }:{27 <fi < }ﬂ[_”'”]EM'

noting that A, , N A, y = @ if k # {. Set now

n-2" k n2"( k ...

) —ifin A, x

Pn = k§ IlAn,kz_" = : ,.{2 e
=0

k=0 |0 else

We call ¢, a “simple function”; more generally:

< Definition 2.4: ¢ is a simple function if ¢ = Zl%:l 1g, - a where L a positive integer, ;s are

constant, E;’s are measurable sets of finite measure.

Moreover, note that ¢,, 1; at each new stage n — n + 1, the regions are cut in two, A, | =
A1k UA, 41 241+ In addition, we have ¢, < f;7 < f* for all n. Moreover, we have the

following:

—Proposition 2.14:
lim ¢, (x) =f7(x)
forall x € R.
Proor. For all x € R, for sufficiently large n we have that x € [-n,n] and so f*(x) =

frx) 1, n1(x). Assume for now f * < co. Then, for sufficiently large(r?) n, we can

ensure f*(x) < nand sof*(x) = f;/ (x) for such an x. Further, we have that x € A, ;. for

some k so ¢, (x) = % and f, (x) < k2+n1 and thus
k+1 &k
0<f(x)—g,x) <2_n_2_n:2—n

by construction and so 0 < f*(x) — ¢,,(x) < 27" and thus lim,,_,, ¢, (x) = f T (x).
In the case that f (x) = oo, then ¢,,(x) = n for all sufficiently large n hence

1}1_{%10 P (x) = ’}ggon = oo = fT(x).
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—Theorem 2.1:If ¢ is measurable and non-negative, there exists a sequence of simple

functions {¢,,} such that ¢,, 1 and lim,,_, ., ¢,,(x) = g(x) for every x € R.

We can repeat this same construction and proof for f ~ with a sequence ¢,,. Even better:

—Theorem 2.2:If f is measurable, then 3 a sequence of simple functions {1, } such that |,,| 1
and |¢,,| < |f| for all n and for all x € R, lim,,_, , ¢,,(x) = f (x).

Proor. Take ¢, = ¢,, — @,, as above; then for all x € R, at least one of ¢,,(x), @,,(x)

equals zero. Then
|lpn|:¢n+@z<f++f_:|f|f
and

lim (0 = Jim 9, () = lim @, = f* —f~ = .

— Definition 2.5 (Step Function): 6 a step function if it takes the form
L
0(x) = ) aly (x),
k=1

where L € N, ;s constant, and I, finite, open intervals.

—Theorem 2.3: If f is measurable, then there exists a sequence of step functions {6, } such
that

Al_r& 6, (x) = f(x) for almost every x € R.

In particular, we do not have pointwise convergence as for general simple functions, but we

have convergence outside a zero-measure set.

Proor. Assume, wlog, that f non-negative (by the previous construction, we can
“split” f if not and approximate its positive, negative parts). Given A € M with finite
measure, recall that for every & > 0, there exists finitely many finite open intervals

I, ..., Iy such that
N
m(A A (U Il-)) <&
i=1

By renaming/rearranging I;’s if necessary, we may assume that I;’s are disjoint; hence

N
]1Uf\:T1 Iz' = l_Zl ]].Ii.
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Put

N
GA = Z ]]'Ii’
i=1

noting this is indeed a step function as the name suggests. Then, remark that
m({x € R:14(x) #04(x)}) <e.

=AA(UN, 1)

Since f measurable and non-negative, 3 {¢,,} sequence of simple functions with limit
f. In particular,

n2" k

¢7’l = Z z_n]lAn,k'
k=0

Applying our above analysis to each A,, ;, then, we have that forany n > 1and k =

0,1,...,n2" we can find a step function 8, ; such that

. 1 " "
m({x eR: ﬂAn,k * Qn,k(x)}) < m ("=¢&").
Put then
n2" k
Gn o= Z z—nen’k,
k=0

which is itself a step function. Put
E,={xeR:0,x)+¢,(x)}.

Then,

nan n2n
(e <l [ (00s# 1,1 < n((00s # 14, ) 27

k=0 k=0

The ¢,,’s are chosen such that Vx € R, |g, (x) — f,(x)| < Zin Putting
F,={xeR:10,x)—f,(x)|>27"},

then remark that F,, C E,, so m(F,) < 2%

We claim now that fora.e. x € R, 3m > 1 such that Vn >m, |0, (x) — f,(x)| < zi"’
remarking that such an m is dependent on x. Consider the complement of this
statement; if this set has measure 0, we are done. The logical negation would be “for
every m > 1, exist n > m such that |6,,(x) — f,(x) | > 27", which is equivalent to the

set

xeR:6,x) —f,(01>27" = (] |J Fu

m m=1n=m

T8
-

1n

% %ok %

Let B,, := J,_, F,; notice B,, |. Then, by continuity from above
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il (1 07 = JimmBa) < Jim, Y m(E) < Jm 3 5=

m=1n=m n=m n=m

since the tail of a convergent series must converge to zero. Hence, the set has measure
0 as desired so for almost every x € R there exists m > 1 such that for all n > m, |,, —
ful < 2%, hence almost every where lim,,_, . (6,, — f,,) = 0. Therefore, almost

everywhere,

0, = (971 _fn) +fn n:@)of

In this proof, we have proven (and then used) more generally:

< Lemma 2.1 (Borel-Cantelli Lemma): If {F,,} C M such that ) ~" , m(F,) < oo, then

(i ()0

m=1n=m

PrOOF. Remark that |J;”_ F, a decreasing sequence of functions indexed by m. By

continuity of the measure and subadditivity,
’”( N U Pn) = o [ 7)< Jim Y ) =0,
m=1n=m n=m n=m
since the tail of a converging sequence must converge to zero. [

§2.3 Convergence Almost Everywhere vs Convergence in Measure

< Definition 2.6 (Convergence Almost Everywhere): For measurable functions {f,,}, f we say

f, converges to f a.e. and write f,, — f a.e. if for almost every x € R, lim,,_, . f,, (x) = f (x).
Similarly, we say f,, — f a.e.on A if 3B C A with m(B) = 0 such that Vx € A — B,
lim,,_, . f,, (x) = f(x).

< Definition 2.7 (Convergence in Measure): For measurable, finite-valued functions {f,,}, f we

say f,, converges to f in measure and write f,, — f in measure if for every § > 0,

lim m({x € R : |, (x) — f(x)| = 6}) = 0.

Similarly, we say f,, — f in measure on A if V6 > 0,lim,,_, ,m({x € A : [f,,(x) —f(0)| = J}) =
0.

< Proposition 2.15: Given finite-valued measurable functions {f,,},f and A € M with finite

measure, then if f, — f a.e. on A, then f,, — f in measure on A.
Proor. Forall § > 0,
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ﬁ JxreA: fum-f@i>sc{xeA: limf,x £f(0}

The set on the RHS has measure zero and thus so does the left one. Then,

%@g@m( U {xeA:|f,(x) —f(x)|>c3}> =0

by continuity, and

U —f1> 01 € [ 1, —F1>9)
hence m({|f,, — fI > 6}) <m(U,_, {If. —f1 > 6}) = 0. [ |

® Example 2.1: We give an example of why the assumption that m(A) < oo is necessary. Let,
fn = 100y and f = 0. Then, lim,,_, . f,, (x) = f(x) for every x € R. But m({x € R : |f, (x) —
fI=1}) =m([n,o0)) = oo.

In general, the converse statement f,, — f in measure does not imply that f,, — f almost
everywhere, even on finite measure sets. Put ¢1 1 = 1j9 1), ¢21 = 1[0,1)’ P2 = ]1[l 1) P31 =
]1[0,%>, P30 = ﬂ[%§>, P33 = ﬂ[é,l)’ or in general ¢y ; = ]1[,-__1 1) forj =1,... k. Reorder ¢ ;

k "k
“lexicographically” into {f,,}. Then, we claim f,, — 0 in measure on [0, 1); for any 6 € (0, 1),

m({vn—0|>(s}>=%eo,

where k(n) the “row” that f,, comes from. Hence, f,, converges in measure. However, f,, does
not converge almost eveywhere on [0,1). Indeed, for each x € R and k > 1, there exists a
unique j such that x € [ ] hence ¢y ;(x) = 1, so in other notation there always exists an n
such that f,(x) =1, and so prec1sely f,(x) =1 for infinitely many n. Hence, we do not have

convergence everywhere (in fact, anywhere).

= Proposition 2.16: Given {f,, }, f measurable, finite-valued functions, if f, — f in measure,
then there exists a subsequence { Y k} such thatf, — fae.ask — co.

PROOF. Assume f,, — f in measure, that is for every 6 > 0, m({|f,, — f| > }) — 0.

Hence, forallk > 1, with § = %, we have that for some sufficiently large 1, we have

that m {Ifnk —fl> %} kz,hence > peq M(Ag) < co. Hence,
::Ak

(=1k=t % \k=t T k=t
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since Y ;. , m(Ay) the tail of a converging series. Hence, complementing the above, a.e.
there 3 such that for every k > (, [f, —fI < % and so lim_, . |f,, —f| = 0 almost
everywhere, and sof, — f a.e.(ask — o). |

= Proposition 2.17 (Subsequence Test): Given {f,}, f measurable, finite-valued functions,

f,. — f in measure < for every subsequence {1, }, there exists a subsubsequence {”ke} C {ng}
such that f,, 0 f in measure as { — oo.

PROOF. = is clear. For <, suppose towards a contradiction that f,, + f in measure.

Then, 36 > 0 and subsequence {r;} m({lfnk —fl> (5}) > 0 for every k. By the
assumption of the RHS, there exists a further subsequence {nk e} such that f, W fin

measure. This is a contradiction. [ ]

® Example 2.2 (Assignment Exercise): Prove that if f, — f in measure and g, — g in measure,
f1u8n — fg in measure (everything finite valued, measurable).

§2.4 Egorov’s Theorem and Lusin’s Theorem

Recall that if f is measurable, then 3 {6, } sequence of step functions such that 6,, — f almost
everywhere.

—Theorem 2.4 (Egorov's): Given {f, }, f measurable functions and A € M with m(A) < oo, if

fn — f a.e.on A, then Ve > 0, there exists a closed subset A, C A with m(A \ A,) < e such
that f,, - f uniformly on A,.

PrOOF. We assume first f is finite-valued on A (otherwise, replace A with A N {—o0 <
f < oo}; we'll deal with {f = +oo} later). We want to show that Ve > 0,3 closed A, C
Ast.m(A\A,) < eandsupyea |fy(x) —f(xX)] > 0asn — co.

Foreachk >1andn > 1, put
(k) Ly
E,"’ := xeA:lfj(x) —fx)| < E‘v’jzn .
For fixed k, remark that E{) C Eflkjl, ie EP increasing (wrt 71), so we may consider
* 1
U E;k) = {x EA:dn>1stVj> n,lf]-(x) —fx) | < E} ) {x eA: Ai_r)gofn(x) :f(x)} = A
n=1

By assumption, m(A") = m(A), so by continuity and the superset relation above,
m(A) = m(A') < m(Ujj:l E;’Q) = lim,,_, m(E,ﬁ“) < m(A), and thus
lim,,_, m(E,(qk)) = m(A) for every k > 1.

Given, then, any ¢ > 0, there exists a 1, such that m<A \ E,(j; )> =m(A) — m(Eg;)) <

1e¢
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B:=A\ (ﬂ E;’;)),

k=1

then

(s s €
m(B) = m(kL:JlA \ E;’;)) < k;m(A \EW) < 5.

Put

~ x k
A=A\B=[)ED.
k=1
Then, if x € A, then x € Eff;) for every k, and hence for every k > 1 and j > ny, V}(x) —
f)) < % This shows then that f,, — f uniformly on A. By regularity of m, there exists a
closed A, C A such that m(A\ A,) < 5. Then, f,, - f uniformly on A,, and m(A \
Ag) =m(A\NA) +m(A\A,) <e.
Now, if f = c0o/ —ccon A, thenA = A UA™™ U AR (with A® := {f = ¢} N A). The

last case is done. For A* (similar construction for A=), define for every k, n > 1,
E,gk) = {x eA :f]-(x) >kVj> n}.

Then, the remainder of the proof follows precisely the same for the sequence of sets
E®, m

Remark 2.3:

1. The assumption m(A) < o is necessary. For instance f,, = 1;,, .., — 0 pointwise, but for any
a € R, f, does not converge to 0 uniformly on (g, o).

2. In general, Egorov’s # f,, — f uniformly a.e.. For instance, on [0, 1], let f,(x) = x" and
f(x) =0.Forevery x € [0,1), f,,(x) = f(x) asn — co. Hence, f,, — f a.e. on [0,1] (the only
point that doesn’t converge, indeed, is at 1). If A C [0, 1] is closed such that 1 € A, then
f, = f uniformly on A. To see this, let {x,,} C A such that x,, 1 and lim,,_, . x,,, = 1. Then,
for any fixed n,

Suplfn(x) _f(x)| > Sl;lnplfn(xm) _f(xm)l = S’;}qpx% =1,

xXEA

hence f,, does not converge uniformly on A.

—Theorem 2.5 (Lusin's Theorem): Given f measurable and finite-valued and A € M with
m(A) < oo, for all € > 0, there exists a closed A, C A withm(A \ A,) < € such tha’cflA8 is

continuous.
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Remark 2.4: Lusin’s Theorem states that f|4_is continuous as a function on A,, which is not

the same as saying f as a function on A is continuous at points in A,.

For instance, f = 1gpn(0,1] is not continuous anywhere on [0, 1]. However, f|gn0,17 1S

constant and therefore continuous on Q N [0,1].

ProoEF. Let {6, } be a sequence of step functions such that 6,, — f a.e. on A. Note that
6, piecewise constant and hence piecewise continuous. Given ¢ > 0 and n > 1, we can
find an open set E,, such that 6,,|¢c is continuous and m(E,,) < gzin Meanwhile,
Egorov’s implies that there exists a closed B C A such that m(A \ B) < % such that

6, — f uniformly on B. Set

A, =B\ DEn,

n=1

noting that A, C A closed and
(o) £ o0
m(A\ Ag) :m(A\B)+m(U En) =5+ Zm(Em) <e.
n=1 n=1

Finally, on A, 6,, — f uniformly and 6,4 _continuous, and hence f|4_continuous

(uniform limit of continuous functions is continuous). [ ]

Remark 2.5:

1. Lusin’s Theorem # f is continuous almost everywhere in general. For instance, recall that
fat Cantor set C, with m(C) = % Letf = 1. f is NOT continuous a.e. on [0,1],i.e. VB C
[0,1] with m(B) =1, f|g is NOT continuous. To see this, let D = [0,1] \ C. Since m(B) =1,
thenm(CNB) =m(DNB) = % Then for any x € C N B, f|3 is NOT continuous at x. If it
were at say some x € C N B, then there must exist some § > 0 such that for any x € (xy —
0,xg +0) N B, [f(x) —f(xg)l < % Hence, for any x € (xy — 6,x5+ ) N B, % <fx) < %
However, m((xy — 6,xy + 6) N BN D) > 0o it must be that 3y € (xg — 6,x9 + ) NBN
D= f(y) =0, a contradiction. How, then, does one apply Lusin’s; that is, V ¢ > 0, there
must exist some A, C [0,1] such that m([0,1]\ A,) < ¢ andflAg < ¢ (exercise)?

2. (Exercise) The {0, }’s are not continuous on R, but you can choose a sequence {9;} to be
continuous on R such that 6, — f a.e..

3. Lusin’s Theorem = V k sufficiently large, 3 A; C A closed such that m(A \ Ay) < % and
fla . continuous on Ay. In fact, we can construct them such that A; 1 (otherwise replace Ay

with J'_, A)).

§2.5 Construction of Integrals

2.5.1 Integral of Simple Functions
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— Definition 2.8: Given a simple function ¢ = legzl ar1g,, the (Lebesgue) integral of ¢ is

defined as

L
p(x)dx = | ¢@:= ) a;-m(Ey).
I. Je?= 2
For any A € M, 14¢ is again a simple function and we define

fA ¢ = fR 1ag.

< Proposition 2.18 (Properties of [, ¢):
1. (Well-definedness) The written representation of ¢ is not necessarily unique, but if ¢ =

Zizl ak]lEk = Zé\il be]lpﬂ’ then
L M
Y agm(Ex) =) bem(Fy).
k=1 =1
2. (Linearity) If ¢, ¢ two simple functions and a,b € R, then ag + by a simple function, and

fRa(p+b¢:a-qu)+b-fRz/J.
3. (Finite Additivity) If ¢ a simple function, A,B € M with A N B = g, then

jAqu):jAgp—i_jB(P'

4. (Monotonicity) If ¢, ¢ are two simple functions with ¢ < ¢, then [, ¢ < [ ¢.
5. If ¢ a simple function then so is |¢| and | fR @l < le(pl.

ProOOF.
1. wlog, we may assume E; and F; are respectively disjoint. Set ay = by = 0, E :=
Cc C
<Ui‘:1 Ek) ,Fo = (Ué\il PQ) for convenience. Now, {Ey, ..., E; }, {Fy, ..., Fps} are two
partitions of R. In particular, then, for each k, 1p_= Z?ﬁo 1g, A, since Ey =
Ué\io(Ek N Fy). Now, we have

L L M
¢ = Z alg, = Z Z”kﬂEkmﬂ-
k=0 k=01{=0
Similarly partitioning, we have

M M L
¢ = Z bylp, = Z Z belE,nF,:
(=0 (=0k=0

If E, N Fy # @, then a; = by, and thus on the one hand

L M
fRﬁﬂ =) ) am(ExNFy)
k=0

(=0

and on the other
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M L
fR 9= ) bum(ExnFy,
=0k=0

(with summation convention 0 - co = 0). If m(E, N Fy) > 0, then E, N F; # @ and so
a; = by and so the two sums agree.

4. Assume ¢ = Zizl alg,, ¥ = Zé\il by1F,. Repeat the partitioning/rewriting steps
from part 1, then note that since ¢ < ¢, if E, N Fy # @, it must be that a;, < by, so if
m(E; N Fy) > 0a; < by and thus the monotonicity follows.

2.5.2 Integral of Non-Negative Functions

< Definition 2.9: If f a non-negative, measurable function then the integral of f is given by

fRf(x) dx = fRf = sup{f]R @ : ¢ is simple and ¢ sf}

= Proposition 2.19: The definition above agrees with that for simple functions that are also

non-negative, namely this definition is consistent with the previous.

PrOOF. Let ¢ be non-negative. Then ¢ < ¢ certainly so the first definition [, ¢ <
sup{---}. Conversely, it suffices to show that for any non-negative simple ¢ < ¢, [, ¢ <
Jr @, using the first definition. But this simply follows from monotonicity of [, and we

are done. -

Remark 2.6: Given f > 0 and measurable, this definition implies that there exists a sequence
{¢,} of simple functions such that ¢,, < f and lim,,_,, [ ¢, = [ f- We would like to show

that, in some sense, the choice of {¢,,} is arbitrary.

—Theorem 2.6: Suppose f > 0 and measurable. If {¢,,} a sequence of simple functions such

that ¢, 1 and lim,,_, ., ¢,, = f pointwise, then

,}LHO‘O »[R Pn = fRf

ProoF. Since ¢, < f foralln > 1, then [, ¢, < [, f and so lim,,_, [, ¢, < [ f
(nothing the limit on the LHS necessarily always exists by monotonicity). On the other
hand, it suffices to show that V ¢ < f simple, that [, ¢ < lim,_,, [ ¢,,. Assume ¢ =
Zizl alg, = Z}%:o ar1g, where {Ey, ..., E; } forms a partition of R. Since

L
JR p=) am(E)
k=0

and

2.5.2 Integral of Non-Negative Functions



L
J;Rq)n:kzz(:) Ek(Pn

by finite additivity. It suffices to show then that for eachk =0, ..., L, aym(Ey) <
Moo Jp, P
First, if a, = 0 or m(E;) = 0, then we are done. Assume a;, m(E;) > 0. For each fixed
k,lim,_, . ¢, =f = ¢ so for every x € E, lim,,_, ., ¢, (x) > ¢(x) = a;. Forany € > 0,
put

Cii={x €E;:¢,x) > 1 —-e¢ea}.

Since ¢,, < ¢,,.1, C5 1t wrt n. Then note

-
n=1
Then,

lim f ¢, = lim f 1g, ¢n 2 lim f leepy = lim (1 = e)apm(Cy) = (1 — e)agm(Ey),
k

Nn—o0 E Nn—-0oo

where we use the fact that 1, ¢, 2 Ice @), = (1 — €)ay 1 and lim, m(Ct) =
m(U,_, Cs) = m(Ey). Since ¢ arbitrary, then

lim fE q0n > akm(Ek),
k

n—o0

and we are done. [ ]

€—>Cor011ary 2.4: For any f > 0 measurable,if Vn > 1,k =0,1,...,n2" with A, ; := {zin <f<

n2" k

[.f= m D, g (An).

PrOOF. Let ¢, = ZZZO 2kn 14,, then ¢, 1and ¢, — f. .

= Proposition 2.20 (Properties of Integral of Non-Negative Functions):

1. (Well-definedness) If f,¢ > 0 measurable such thatf = g a.e., then [ f = [z &

2. (Linearity) For any f,¢ > 0 measurable and a,b > 0, then [, (af +bg) =a [ f +b [ &

3. (Monotonicity) If f,¢ > 0 measurable and f < g a.e., then [, f < [ &

4. i. Letf > 0 measurable, then [, f =0 o f =0 a.e.
ii. Let f > 0 measurable, A € M. Then [, f = 0 & either f = 0 a.e. on A or m(A) = 0.
iii. Let f > 0 measurable, then if [, f < co then f is finite valued a.e.

5. (Markov’s Inequality) Let f > 0 measurable and 0 < a < co. Then, m({f > a}) < % Jpf-In
particular, if the RHS is finite, lim, ., m({f > a}) = 0, in fact in Q( % )

ProOF.
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1. Let {9, }, {¢,,} sequences of simple functions such that both are monotonically
increasing with ¢, > f, 9, > g. Put hy, := ¢, 1oy + ¥, 1r.4y; then , again simple,
h, 1,and h,, — g everywhere. Then,

ng = ligm fR in = h’gn<f{f=g} ot j{f;&g} l/]n) =he =0 7"

Meanwhile,

ij = jﬂ% b= 117?1<Lf=g} ¥ f{f;tg} %) =i f{f=g} P

andso [ f = [z &
2. Take {¢,}, {1, } as in the previous proof. Then {h,, : ap,, + b} again a sequence of

monotonically increasing simple functions with limit af + bg. Then

fR(af +bg) = lim fR h, = lim fR(a¢n +by,,) = lirrln(a fR @, + be 1,[),1) =a fRf + beg.
3. wlog, assume that f < g everywhere by replacing f with f1;r,,. Then, {¢:

simple, ¢ < f} C {¢ : simple,¢ < g}andso [, f < [ &
4. i. < clear. Conversely, we would like to prove that if A = {f > 0}, m(A) = 0. Put

A, = {f > %} forn >1.Then, A, 1 and |J,_, A, = A. By continuity of m,

m(A) = limm(A,).

Suppose towards a contradiction that m(A) = § > 0. Then, § = lim,, m(A,,), and so
must exist N > 1 such that m(Ay) > %. Sincef > fl,,, 2 %]l Ay - By monotonicity,

Jof = Jr %HAN = %m(AN) > %g > 0, a contradiction.

ii.Byi, [,f =0e 14f =0ae.onR.Ifm(A) =0,then1, =0ae.s01,f =0ae.
Else, if m(A) > 0, thenf = 0 a.e. on A.

iii. Put A := {f = co}. Assume towards a contradiction that m(A) = 6 > 0. Then, for
everyn>1,f >f1, >nl, and so fRf > fR nl, = nm(A) = nd. But this holds for
any arbitrary 1, so [ f = oo, a contradiction.

5. Put A, := {f >a}. Thenf > fl1, >aly so [, f =>am(A,).

2.5.3 Integral of General Measurable, Integrable Functions
< Definition 2.10: For f measurable, [ f := [ fT — [p f~, provided that at least one of [, f*,

J f™ is finite; in particular, [, f may be finite or infinite.

Remark 2.7: Only having [ f being defined is not sufficient for the desirable properties
(linearity, monotonicity) to hold.
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< Definition 2.11 (Integrable): A measurable function f is called integrable, denoted f €
LY(R), if both JefT <coand [, f~ < co. Note that

fEL\(R) & fR|f| e (sincejR|f| - fRf+ + fRf—)

o fR f finite valued.

= Proposition 2.21 (Properties of Integrals of Integrable Functions):

L | fo fI S Sglf

2. f € LY(R) = f is finite valued a.e.

3. (Linearity) For f,¢ € L*(R) and a,b € R, af + bg € L' (R) and [ (af +bg) =a [ f +

bfr8
4. Iff € LY(R) and A € M and m(A) = 0 then fAf = 0; in particular if f,¢ € L (R) with f =

gae.then [, f= [, ¢
5. (Monotonicity) If f,¢ € L' (R) withf < g a.e,, then [ f < [, &

PROOF.

L~ fof < Jof < Jpf*tand [ f* < [ofl

2. We know [, |f| < oo s0 [f| < oo a.e. by properties of integrals of non-negative
functions so m({f = +o}) =0

3. laf| < lal |f] so by monotonicity of non-negative functions, leaf | < |a| fRIfI < co 50 af
in L1 (R). Note then that

+ |afrita=0 _ _|af~ita=0
@) _{—af—ifa<0' ) _{—af+ifa<0

SO
oo =] @ =] @)

B JpfT— Jgaf~ifa>0
| Sr(—a)f = [ (—a)ftifa<0

_ a(fRf+—fRf—>ifa20 :ajf
(—a)(fRf——fRf+)ifa<0 R

By the same argument bg € L'(R) and [, (bg) = b [, - wlog, a = b = 1. We want to
show f + ¢ € LY(R); clearly |f + g| < |f| + Ig] < co so it mustbe f + ¢ € L} (R). Set
h:=f + gthen|h,f,gl < c a.e. and each of the integrals of |1, f,g| < co. Then, h* —
h™=f*—f~+g*—g . Thenh* +f~ + ¢~ =f* + ¢g* + h~, where now both sides
are non-negative functions. By linearity of integrals of non-negative functions and

since all terms finite a.e.,

2.5.3 Integral of General Measurable, Integrable Functions

40



jh++ff‘+fg‘=jf++fg++fh—
ol LAl Kbl FAS Vbl el Iy
= [(f+g)=[n=[f+]s

41 fI< [l =0.
5. Puth = ¢ — f (valid since f,¢ € L' (R)) then 1 > 0 a.e. Then Jg 1 = 050 by linearity

fR(g _f) = ng_ f]Rf > 0.

§2.6 Convergence Theorems of Integral

—Theorem 2.7 (Monotone Covergence Theorem (MON)): Assume {f,}, f are non-negative,
measurable functions. If f,, 1 and lim,,_, . f,, = f, then

[ f=lim [ f

Remark 2.8: When we write lim,, f, = f, we mean pointwise convergence; however, one can
replace these statements with convergence a.e. and obtain an equivalent, more general result

wlog.

Proor. By monotonicity of non-negative functions, lim,,_,, [ f, exists, forming an

increasing sequence. Since f,, < f, then we know too that lim,, _, < .
g seq n n—-oo JpJn R

Conversely, for every n, let {¢,, 1} ren D€ a sequence of simple functions such that

@i twrtkand ¢, — f, ask — oo;

h o f - f feer o 2f

P1,k P2k Pr k Pk+1,k
P1,2 P22 Pr2 Pr+1,2
P11 P21 Pk,1 Pk+1,1

For eachk > 1, let

8k = max{%,kr P2 ks -eer (Pk,k}-

Then, g, simple for each k, and g, 1 and g < f. So, lim;_, , gx exists. Then, foralln > 1,

limy_, o gk = limy_ o @y i = f, 80 limy_ o g > lim,,_ . f,, = f. Thus, lim_ o, [ & = [x f
by a previous theorem. Since Yk > 1, @1 1, @2k, Pk < frr 8k < fx and thus by

monotonicity [, & < [ fe = [ f = lim .« [ &k < limy_« [} fi as desired. ]
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< Corollary 2.5: If {f,},f measurable functions such that f, t and lim,, f, = f and [, fi7 < oo,
then [, f = lim,, [ f-

PrOOF. Sincef, 1,f, = f1 sof = f1. Then, f,; <fi ,f~ < fi, all of these are finite valued
ae,and [ fi < [pfi <ccand [ f~ < [pfi < oo.Foreachn >1, setf, :=f, +fi =
ff —f7 +fi =20,and f, t with lim,, f,, = f + fi7 =:f > 0. By MON, fRf: limnfRﬁl SO
f]R(f +fr) = lim, fR(fn +f1)-

We have that f,, = f, + fi =fif —fi +fi = fo +fi =f +fi, which is valid since
f < oo a.e.. By linearity, then,

[ o+ fi=] fi+] f
= [ fu= [ fit = [ fr+ [ T because | fi< oo
= [ fo= [ far [ A

Similar work gives [ f=J =S + [ fi, and taking limits and using lim,, [, (f, +
fi)= fR (f + fi ) completes the proof. -

<Theorem 2.8 (Reverse MON): Assume {f,,}, measurable such thatf, | and lim,,_,f, =f. If
fRffr < oo, then [, f = lim,, [ f,.

Proor. Consider {—f,,} and use the previous corollary. [ |

—Theorem 2.9 (Fatou's Lemma): Assume {f, } non-negative, measurable. Then

 (pots) < e[ )

Proor. For every m > 1, set g, = inf,,5,, f,,. Then, g, non-negative and g, 1, with
lim,, g,,, = liminf, f,. By MON, [ liminf, f,, = lim,,_,, ( Jr gm>. For every n > m,

8m < fu, 80 by monotonicity, [ g, < [ fu for every n >m, so [ & < infysp, [ fur
and hence lim,,_,, [ & < lim,,,_ o inf,5,, [ fu = liminf, (fR fn), and the proof
follows. [ |

—Corollary 2.6: Assume {f,,} measurable and there exists a measurable function g such that
Jr 8§ < ccandf, > g for every n. Then,

[, (timyintf, ) <timin( [ £, ).

PROOF. Sincef, > gforalln >1,f; <g¢~ sofy <ocae.and [pf; < o.Setf, :=f, +
¢~ > 0. Then, apply Fatou to get [ liminf, fu < liminf, [ R fu, then it suffices to check
linearity. [
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—Theorem 2.10 (Reverse Fatou): Assume {f,} measurable and there exists a ¢ measurable
such that [, g7 < coand f,, < g for all n > 1. Then,

-[R <limnsup fn ) > limnsup ( IJR fn ) .

ProoF. Apply previous proof to {—f,}. [

—1ifx>n

Remark 2.9: The “floor” g is necessary. Let f,, (x) := { . Then, f,, 1, and lim,, f,, = 0 while

0 ifx<n

Jwfu = —oo for every 1, so MON doesn't apply.

—Theorem 2.11 (Dominated Convergence Theorem (DOM)): Assume {f, },f measurable with
lim,, f,, = f. If there exists a g € L' (R) such that |f,,| < |g| for all 1, then f,, — f in L} (R) i.e.
lim,_, [zlf, —f1 = 0.Inparticular, [ f = lim,, [ f,.

Prook. Since If,| < [gland f = lim,,_,.. f,, then |f| < [g]. So, [ Iful < [RIg] < oo and
similarly [, |fl < [18] < o so|f,l.f € LY(R).

Observe that |f, — f| < 2gl,and [ (2 Ig]) < co. Applying Reverse Fatou to
{Ifs = f1},,en We find

fR hmnsup(|fn _fl) > hl’l’lfllp(fRU:n _f|)

0

= Jim [ I, =f1=0,
so in particular
[ fa= A= [ G=Pi< [ =f1=0

solim,, [ fu = [o f- ]

Remark 2.10: We must find g € LY(R) to dominate Igl > |f,| irrespective of n. For instance, if

fu = Linony, thenlim,, f, = 0, but [, f, = n for all n > 1. DOM doesn’t apply, since we would
need a constant 1 function to dominate all f,,, which is not integrable.

< Proposition 2.22: Assume f € L} (R), {h,} a sequence of measurable functions that are
uniformly bounded, i.e. 3M > 0 such that |h,| < M a.e. foralln > 1.If h,, — h a.e. for some
measurable function /4, then

lim jR(fhn) = fR (fh).
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Prookr. Foreveryn, |f - h,| < M |f| € L{(R). The conclusion follows from DOM. [ ]

—Corollary 2.7: If f € LY (R) then for all € > 0, there exists a compact set K C R such that

Julfl < e

Prook. If h, := 1_,, .y, the lim,, [, fh, = lim, f[_n mf = Jrf,and also
lim,, I{R—[—n,n]}f = 0. ]

—Corollary 2.8: If f € LY(R), then for all e > 0, 3N > 1 such that f{lf\ >N}Ifl <e.

ProoF. Leth,, = 1y, thenlim,,_, I{VI >n}f =0. n

< Corollary 2.9:If {A,,} C M such that A,, 1, thenf A, f=1lm,_ fA fQaf = 1g= af)

< Corollary 2.10 (Countable Additivity):If {B,,} C M are disjoint, thenf ~ B f=Y" fB

< Corollary 2.11: If {A,,} € M such thatA, |, then [ . , f=1lim,_ [, f
n=14'n n

= Proposition 2.23: Assume f is non-negative, measurable, and finite-valued a.e.. Then, for
every k € Z, put Ay := {x eR:2k <fx) < Zk“}. Then,

f integrable < f f<oo e Z 26m(Ag) <
kez

ProOF. (=) Note that the A;’s disjoint and |J, o, Ax = {0 < f < oo}. So,

fRf: f{f:O}f +j{0<f<00}+ J‘{f=<>0}f :k%:ZJAkf.

=0 since f=0 =0 since f< a.e.

For each k € Z, for every x € Ay, 25 < f(x) < 251 50 2km(Ay) < fAkf(x) <
251m(A,). Hence,

Zka(Ak ZfAf:ij<oo.

keZ keZ

(<) Suppose Zkez ZkW(Ak) < co. We know again
k+1 _ k
f f= f{0<f<oo} By MON ZJ f < 2 m(Ag) =2 Z 2km(AL) < oo.

kez
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® Example 2.3: Let f(x) = [x[7* 1;_q 1;(x), with f (0) = co and a > 0; f finite-valued a.e.. For
every k € Z, put Ay := {Zk <f< 2k+1} = {x e[-1,1]: 2k < x™* < 2k+1}. By definition, |f| >

1, so
k —(k+1) —(k+1) k
Ap = [_Z_ZI_ZT)U (2 @ ,2_2] fork >0, A =@iftk <0.

Hence,

[ee)

Y 2km(Ay) = k;iozk 2. (1 - 2—%>2—§ _ 2(1 - 2—%) y (%)

kEZ k=0

Hence, the series < o < a < 1, and thus f[_l 1]le_"‘ dr< o eoa<l.

® Example 2.4: Let g(x) = x| =P Tgr_—1,17(x) with B > 0. We have |g| < 1; we again put
_k —(kt1) 1) _k
2B 2 P )U(zﬁ,zﬁ

%) ifk > 0.

A= {26 < g <241} = ifke<0
So,

x| P dx < © & 2km(A) < 0 < B> 1.
[ Tl p

® Example 2.5: Letf, (x) = (1 + %)_n sin(). What is lim,,_, f(o oo)fn(x) dx? We have that for
allx > 0, lim,,_, . f,, (x) = 0. We have that since |sin(=)| < 1, so

—n -2
If, (0l < (1+%) < <1+§> Vx>0,Vn>2.

Let g(x) := (1 + §>_2. We would like to apply DOM, so we need to check that g € L1((0, >)).
We have that

4
= + < 1+ f — dx < oo,
f (0,00) § (0,1] § (1,00) & (0,1] (1,00) x2

B=2 of previous example

soindeed ¢ € L!((0, «)). Applying DOM, then, we have that

lim fo = f(o lim f, = 0.

n—oo (0,00) oo) n—o00
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1
® Example 2.6: Letc > 0, f,,(x) = x~°(coshx) ". What is lim,, f(l oo)fn?

1 1
For every x > 1, coshx > 1, so (coshx) * 1 with respect to n, with lim,, (coshx) " =1, so
lim, . f,(x) = x~¢ for every x > 1. Let g(x) = x~¢, then. By previous examples, when c > 1,
g e L1((1,~)) so DOM applies and thus

lim = j limf, = f x ¢dx < co.
z <1,oo>f” (1,00) 7 Ju (1,00)

When 0 < ¢ < 1, by Fatou,

lim inf > lim inf = —Cdx,
o j(l,oo>f” - j(l,w) i inf(f) j(l,oo>x *

since f,, converges. When 0 < ¢ < 1, the RHS = oo, and thus lim,,_, ., [ (Loo) fn = .

® Example 2.7: Letc >0, f,,(x) := 1+:2x2 for x > 0. What s lim,, [, f,?
We have that
. 0 ifx>0
1 = .
lfllnfn ) {oo ifx=0
Onx € [1,00),f,(x) = f,41(x) foralln > 1, namely f,, |, and so f,,(x) < f;(x) = 1+1x2.f1 (x) €

LY(R), by comparison with xl—z (v = 2).

Ifx € (0,1),f,(x) = 32 < Ay, with A := supys9 715 < o0 But £ & L1((0,1)).

§1+(nx)2 -

Whenc >0, forallx >cand foralln > 1,

A A
fu(x) < 1pp o0y (X) + ey < Ti1,e)(® + ey (M)~ € L' ([c, ).

1+ x2 1+ x2

Hence, we may apply DOM, so
lifrln j[c,oo)fn B J.[c,oo) h’gnfn i

when ¢ > 0. However, when ¢ = 0, we have no such dominating function; so what is
f[O,oo)fn(x) dx?

§2.7 Riemann Integral vs Lebesgue Integral
Recall; let f be bounded on [4,b]. Then, f is Riemann integrable on [, b] if

f is continuous on [a, b]
f is monotonic on [a,b]

f is continuous except at possibly finitely many points in [a, b]

Recall the function f = 1gn(g,1;-f is not Riemann integrable, but is Lebesgue integrable, because

Ifl < 1017 € LY(R).
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Remark 2.11:

1. 3 bounded functions on [a, b] that are not Riemann integrable.

2. In general, ¢ being Riemann integrable and |f| < |g| # f is Riemann integrable (1gn0,1) <
Lio1p)-

3. In general, DOM and MON do not apply to Riemann integrable. For instance, consider {g,,}
an enumeration of Q N [0, 1]. Define f,, (x) := {(1) Z:eE{ql’""q”}.fn 1, with f,, = Ign(o,1;- So,
MON applies with the Lebesgue integral, but f,, is only discontinuous, for every n, at
finitely many points, so f,, Riemann integrable with f01<R> fn = 0, but the limit is not
Riemann integrable.

—Theorem 2.12: Assume f is Riemann integrable on [a,b]. Then, f is Lebesgue integrable on
(R)
[a,b],ie.f € L'([a,b]). Moreover, fab f=Jams

PROOF. f is Riemann integrable on [4, b], so there is some M > 0 such that |[f/| < M on
[a,b]. Further, there exist step functions ¢,,, ,, with ¢,, < f < ¢,, on [4,b] and
@, 1P, < Mforalln > 1, and

bR pR) pR)
fm [C =] f=Jm [y
Denote ¢ := lim,,_,, ¢,,, ¥ = lim,,_,, ,,, which exist by Monotonicity. Since ¢,,, ¢, are
step functions, they are measurable hence ¢, ) measurable with ¢ < f < 1. Observe
(R)
that the Lebesgue, Riemann integral coincide on step functions. Hence, fab P, =

f (a,b] Pns SAINE with ¢,,. By DOM, (with M as the dominator)
bR bR

f[a,b] ¢ = liT].;Il j[a,b] Pn = 1i’£n L Pn = . (f) = liﬁnj

a

[

Pn = hﬁn Pn = b

[a,b] [a,b]

Since ¢ < ¢ and f[a bl (¢ — @) =0, we have that ¢ = ¢ a.e. on [a, b] by properties of
integrals of non-negative functions, and thus f = ¢ = ¥ a.e. on [a,b]. In particular,
then, f is measurable, being equal a.e. to measurable functions. Thus, since |f| < M on

[a,b],f € L'([a,]]), and so since integrals agree on functions that are equal a.e.,
bR .
f[a,b]f = f[a,b] Q= fa f as desired. =
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® Example 2.8: We return to our example of computing lim,, ., . [0,00) 1+n2 > dx. We may

rewrite

j T dx = T dx + f T b

0,00 1+n2x2 "~ J0,T] 1 + n2x2 [T,00) 1+ n2x2

where T > 0. We know from the previous example that the RHS integral converges to 0 by
application of DOM. Now, ——75— is continuous on [0, T] and thus Riemann integrable, and so
by the previous theorem

J‘ n J‘(R) n tan(nT)
- = — = arctan(nT).
(0,71 1 4+ n2x2 [0,T1 1 4+ n2x2

Asn — oo, arctan(nT) — Z, and thus the limit of the whole integral indeed exists, and is in

2 4
fact equal to 7.

§2.8 LP-space

< Definition 2.12 (p-integrable): Let f measurable and 1 < p < co. We say f is p-integrable and
write f € LP(R) if [, IfIP < oo, ie. |fI’ € LY(R).

For f € LP(R), define the p-norm

T

Ity = ([ 7))

Remark 2.12: When p = 1, we see that || - [l; a norm fairly clearly from properties of the
integral. We need to show this for more general p > 1.

Remark 2.13: || - I also defined when p = oo; given f measurable, we define
Ifllo := €ss supyer If (X)| := inf{a eER: fl<a a.e.}.

Then, we define

L*(R) := {f measurable s.t. ||f]|, < oo}.

One can show that if f € L*(R), |f| < [fll. a.e

—Theorem 2.13 (Holder's Inequality): Let 1 < p < co and let g := — (such a q is called the
Hélder Conjugate of p). If f € LP(R) and ¢ € L7(R), then fg € Ll(R), and
If gl < IFll, gl

In particular, if p = g = 2, then we have the Cauchy-Schwarz Inequality.
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48



Remark 2.14: % + % =1.

Proor. We will employ “Young’s Inequality”, which states that for alla,b > 0, ab <

%+ where—+—_1 Sincef € [F,g € L1, setf := S and § := £ Then, ae.

11, iiglly”
. |P
for < I .
p ‘7
We have
P I8l
Jo 5=, Ifil, 18]l
and
P 159 1 SRIfP 11817 1 1
f |f_|+&:_fpr +—ngq =—4+-=1,
Rp g P, 4algll p o4
and thus

[ ifg1 = 1fglly <11, Nl

as required.

Remark 2.15: This inequality also holds for p = 1,4 = oo (assignment question).

—Lemma 2.2:For alla,b > 0, ab<—+ where—+—:1

ProOOF.

—Theorem 2.14 (Minkowski's Inequality): Let1 <p < oo and f,g € L’ (R). Then,f + g €
LP(R), and in particular

IF + gll, < I, + gl

In particular, then, || - I satisfies the triangle inequality and is indeed a norm on L? (R).

Proor. We have |f + ¢IP < 2P (|fIP + IgIP) hence f + ¢ € LP(R) since [fI?, |glF € L (R).
Further
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lef+g|P - leergWJrglp_l - fRVWJFng_l + legllf+glp_1
(Holder's) < <J‘R|f|p>’l’<J‘R|f +g|(p—])q>% N <IR|8|p)
< (1, + ||g||p)(jR|f +glp>%

= |If +gl, = (lef +g|p>*17 _ (fRUr +g|P) : <fR|f —|—g|P>

< (11, + 1) ( [, 1f +g|”)% ([r +g|”>_% = Il + gl

= IIf +gll, < Ifll, + lgll,

=
Q=

(o)

_1
q

Remark 2.16: Minkowski’s also holds for p = oo.

—Lemma 2.3: Let1 < p < oo.If {g;} € LF(R) such that Z;;lllgkllp < oo, then 3G € [P(R)
such that G,, := Z,T:l gr — Gasm — oo a.e. as well as in LP (R).

Proor. PutG,, := Y/ Igxl and G := 3 Il Then, G, 1 with lim,, ., G,, = G. By
MON,

m P
=y _ 1: AP 14 ~ P .
RGP = lim fR Gy = lim |G, ll, < lim (;Ilgkllp)

where the final inequality is by Minkowski’s. Then,

< ( Jim Zugkup) = (Zugknp> < o0, by assumption
k=1 k=1

Hence, G € [P(R) and IIGIIP < Zzozlllgkllp and thus G finite-valued a.e. and hence
> 11 8k absolutely convergent a.e.. Set G = lim,, ., G,, = Y ;_, 8 a.e.. Moreover, we
know

Gl=1) gl <) Igil=C=GeL\(R)
k=1 k=1
and
G=Gul< ) Igkh

k=m+1

Fix ¢ > 0. Since Z;:’:lllgkllp < oo, exists some M > 1 such that ZZO=M+1Ing||p < €. Then,
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o P L p
leG ~ G’ = IR ( Z 1ngl) = I]R (k:;+1|gk|)

k=M+

L p
(Minkowski) < Lh_{glo( Z ”gk”p)
k=M+1

oo p
=( > ||gk||p) <e
k=M+1

hence G,,, - Gin LP(R). [ ]
—Theorem 2.15: Let 1 < p < co. Then LF(R) is a complete normed space under the p-norm.

ProofF. Letf, € LP(R) be a Cauchy sequence under | - ||,. We can choose a
subsequence {n;} such that for every k > 1, IIf,,, | — f,, Il < 27k Set g, = fugoy =g BY
the lemma, if G,, := Y/, g, there exists some G € LP(R) such that G,, » G a.e. and
in LP(R). In fact, we have

G = ng = Z( Mgyl _f”k) :f”m+1 _fnl’
k=1 k=1

hence

G= n111£r<}o Gm = (r%grolofnm-#l) _fnl'
Letf := G +f,,. Then, f = lim,,_,..f, a.e.andsince G,, —» GinL?, we have thatf, —
fin LP as m — oo. It remains to show convergence in L¥ along the whole subsequence.

Fix e > 0. Let N > 1 such that supy > Nllfx — fill, < € and m sufficiently large such
that n,, > N and ”fnm —fllp < ¢. Then,

Vo = flly < Wfow = o Ny + Wi, = fll, < 26,

<e <¢

completing the proof. [

Remark 2.17: L* also complete.

2.8.1 Dense Subspaces of L (R)

—Lemma 2.4: Bounded and compactly supported functions are dense in LF (R).

Proor. Given f € LP(R), set

fn(x) = ]l[—n,n](x) f(X) : ]l{lfl §n}(x)

which are bounded and compactly supported on [—#n,n]. We claim f,, — f in L (R).
We have lefn — fIP nonzero only if x & [—n,n] or |f (x) > n|. Hence
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N 1P+

< IfI” - 0asn — oo.
R\[-n,n]

f{lfl >n}

—Lemma 2.5: Simple functions are dense in L” (R).

Proor. For f € LF(R), let f,, be as in the previous proof. For eachn > 1,k =
0,1,...,n2" — 1, set

on n - on ]IAn,k’

k+1 n2"-1 g
, eh
k=0

k
Ak = {x € [—n,n]: o <fi<

and

k+1 n2l g
;P

k
B, k= {x € [—-n,n]: o <fi < o

" o 1B
k=0 =

Put ¢, := ¢;f — ¢;;. This is a simple function, and |¢,,| < n and supported on [—n, n] for
every n hence ¢,, € L (R). In addition, lim,, ¢,,(x) = f (x). In particular, for any n > 1,
[ (X) = @ (O < I () = @3 (O + Ifi7 () — @ ()] <2277

Then, in particular

~———

-0

=

:<f[_n,n]|fn_¢’n|p)

<(@-27"Pm([-n,n)))

<=

-0

and so indeed ¢,, — f in L7 (R). |

—Theorem 2.16: Let C.(R) denote the space of continuous and compactly supported
functions. Then, C.(R) is dense in L’ (R) for 1 < p < co.

Proor. Givef € LF(R), let {¢,,} simple functions as in the previous proof. Recall that,
for every n > 1, there exists a step function 6, such that 8,, < sup,|¢,,(x)| < n, is
supported on [—n —1,n + 1], and {6,, # ¢,,} has arbitrarily small measure. In
particular, we choose 6, such that m({6,, # ¢,,}) < 27" for every n > 1.

Recall that given a step function 6,,, there exists a function 8,, continuous on R, 8,, is
supported on [—n — 2,n + 2], and m({éj1 — Gn}) < 2771 Thus, {9;} CC.(R),and

m({6, — ¢u}) < m({0 # 0,}) + m({6, # @,}) <27

So, we have
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I =8, < If —@ull, +  llgy —Oull,

—0 by lemma

=

:<fR|(Pn_§;z|p)

=(Siar 1= 0ul")

1
<((@2n)P2-1)7 -0

=

and thus 6,, - f in L7 (R), [

Remark 2.18: The density of C.(R) in LP(R) is useful in the study of properties of generic L”
functions. For instance, show that if f € L (R), then lim,,_, , |, RIf(x + %) — f(x)IP dx = 0, that

is f ( +%) — f in LP(R) using this density.

Remark 2.19: C.(R) is NOT dense in L* (R).

§2.9 Convergence Modes and Uniform Integrability
Recall that, given {f, },f measurable and finite-valued a.e., we have the following notions of
convergence
1. f, — f inmeasure = 3 {n; } such thatf, — fae. ask > o
2. f, > fae. onA e Mwithm(A) < o = f, - f in measure on A
3. f, = finLP(R).

<Proposition 2.24: If {f,},f in LF(R) for1 <p < ccand f,, —» f in LF(R), thenf, — f in

measure.

Proor. For 6 > 0, we have
m —fl>06}) = 1dx.

Remark that 1 < —=— f” | over {If, = f1 > 6}, further 1”7 =1 < (f” f) Hence,

|fn _flpd

<
(ffu—f1>0) O

1 1
p
x < 55 [ =V < 55 1 =I5

But by assumption |If,, —fllg — 0 for any 6 > 0, hence m({|f, — f| > 6}) —» Oie.f, - fin

measure. ]

Remark 2.20: In general, convergence in L? # convergence a.e., with the same counter

example from convergence in measure # convergence a.e..

Remark 2.21: When do we have convergence a.e. = convergence in LP? This doesn’t hold in

general, unless some integral convergence theorem from before holds.
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Remark 2.22: When do we have convergence in measure = convergence in L”? No in general,

unless one of the integral convergence theorem holds; with some slight adaptation.

= Proposition 2.25 (MON, Measure Version (nMON)): Let f, non-negative with f,, 1 and
f. — f in measure. Then,

ij = h};n ijn

PROOF. f,, — f in measure implies f,, — f almost everywhere along some subsequence
1, so it must be that f non-negative. Suppose the claim fails. Then, there exists some
subsequence {n} such that [ f, - [ f- However, along this subsequence we also
have f,, — f in measure, and hence exists a subsubsequence n, such that f, 0~ f ae.

Then, by MON applied to this subsubsequence, we know that
lirrjn fRf”“P - fRf'

a contradiction. [ ]

< Proposition 2.26 (mDOM): If f,, € L' (R) with f,, — f in measure and there exists some ¢ €
LY(R) such that If,] <Igl, thenf, — fin LY(R).

Recall thatif f € LY(R), then [ " >n}|f| — as n — oo. The converse does not hold in general;

consider f = 1. However, we can achieve a partial converse.
For A € M, we say f € L1 (A) if fAUfI < oo,
< Proposition 2.27: Given A € M with m(A) < oo, then

LY(A li =0
feLA) < lim Am{|f|>n}|f|

PRrROOF. (=) We've proven before, c.f. properties of integral of non-negative functions.

(<) Choose N such that fAm{lfl >N}lfl < 1. Then,

LJfl - fAm{Ufl SN}lf| + fAm{Vl >N}|f|

<N -m(A) +1< oo.
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< Definition 2.13 (Uniform Integrability): Given {f,,} measurable and A € M, we say {f,} is

uniformly integrable on A if

1i - 0.
Mg§<1£<meu>My“>)

< Proposition 2.28: Let {f,,} measurable, A € M.
1. If m(A) < oo and {f,,} uniformly integrable on A, then {f,,} is bounded in L1(A), thatis

supy>1 J4lful < oo
2. If {f,} is bounded in LF (A) for any 1 < p < oo, then {f,,} is uniformly integrable on A.

PROOE.
1. Let M such that sup,,>1 fAm{‘f | >M}Ifnl < 1. Then, we have that

Sup LJM - SuP(Lm{fnl 31\/1}|f”| + fAn{IfHI >M}|f”|)

n>1 n>1

<M -mA) +1< oo.

p—1
2. For any M > 0, note that 1 < <|fﬁ”> over A N {|f,,| > M}. So,

sup Iful < supf If,.] (lf—"|>p_l
n JAn(rd>mMy " T T Jangfismy T\ M

MpP-1

>0 <oo

sup fA|fn|P - 0asM — oo.

u
Remark 2.23: Notice that 2. does not require finiteness of the measure of A, in particular one

can take A = R.

< Proposition 2.29: Given {f,,} measurable and A € M with m(A) < oo, TFAE:
Q) f, €LY A Vn>1felL(A)andf, - finL(A),
(ii) {f,,} is uniformly integrable on A and f,, — f in measure on A.

PROOF. (i) = (ii) Assume f, — f in L' (A), hence [, |f,| = [,|fI so {f,,} bounded in
L1(A). Note we've already proven that f,, — f in measure. For M > 0,
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< —fl+
Lm{fnl >M}|f nl = Llﬂ{lfnl >M}|f n =/l fAﬂ{lfnl >M}|f |

SLﬁ”inmm»mﬂmﬁmm+£m%>mqmwmw'

-0

<VM-m(AN{[f,| >M}) < S a1 3 lf1 0 since fEL!

Sm—supnA{IA\fn\ —0as M-
(Markov's)

Fix € > 0. Choose N such thfat foralln >N, [,If, —fI < g, choose M such that
& supy, A'fnl &
fAﬁ{\f|>\/ﬁ}|f| < zand o < 3. Thus,

& & &€
<-+z+z=e
v ¢ Am{vn»M}'f”' S3T3T37¢

We want this to hold for N = 1 for uniformity, i.e. we need to deal with the first N — 1
terms. We achieve this by making M larger if necessary such that

<é¢g
fAn{lfk| >M}|fk| -

foreveryk=1,2,....N — 1.

(ii) = (i) assignment question. [ ]
§3 PRODUCT SPACE

§3.1 Preparations
Given a measure space (X, J, i) with p a o-finite measure (i.e. there exists a sequence
{X,} € FsuchthatX, tand |J, X, = X, and u(X,,) < oo for each ).

< Definition 3.1 (Measurable): f : X — R is J--measurableif Va € R, f~!([—~0,a)) € F.

We have similar properties for f in general as in the Lebesgue setting. -For f J--measurable,
cf,fk, Ifl,f Aa,fVvb,f*t f~ areall F-measurable fora,b,c € R.
e Forf,g F-measurable,f +g,f —g,f -9,f Ag,f V g are all J-measurable.

e If {f,} F-measurable, sup,, f,, inf, f,,, lim sup,, f,,, lim inf,, f,, are J--measurable.

We may “dissect” functions as before. For f JF-measurable, write f = f* — f~, and put forn > 1

and e = +, —,
fr = 1x,(f* An).

Then, f; 1 f*. Put

n2" k

ohi= ) oalay,
k=0
where, fork =0,1,...,n2" forn > 1,

. k . k+1
nlk:{xEanz—nan< o }Ej:.
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Then, we may define the integral of the simple function

n2" g
fX @ dp = k;) 5 (Ane):
Define then
[ frdu=tim | gndp,
and

e— + _ -
fo dp = fxf du fo dp.
We say, then, f € L!(p) if [ «fldp < co. This generalizes the notion of integration to a (slightly
more) general o-algebra.

§3.2 Product Lebesgue c-Algebra
We will restrict our constructions to the product of 2 spaces, i.e. R2, but generalizes for
general R¥.

< Definition 3.2 (Product c-algebra): The product o-algebra of subsets of R2, denoted by M ®
M or simply M?, is defined as

M?:=c({AxB:ABe M}),
where
AxB:={(x,y):x €A,y € B}

as is standard.

Notice M? contains

* rectangles I; x I,, I, I, intervals;

e singletons {(x,y)};

* open sets, closed sets, and so B(R?) := o ({open sets in R?}) C M=.

Given G open, then for every x € G, there exists some disc centered at x contained entirely in G.
Moreover, there exist (a1,a,), (by,b,) with a;, b; € Q such that x € (ay,a;,) x (by,b,) C G. Then,
G= Uxec(allaz) x (by,by).

< Definition 3.3 (Slice): Given E C R?, then for every x € R, define
E.:={yeR:(xy) EE}CR,

called the slice of E at x. Similarly, define fory € R,
EV:={xeR:(x,y) e E} CR.
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< Proposition 3.1: If E € M?, then for every x € R, E, € M, and for everyy € R EY € M;

that is, product measurability = marginal measurability.

ProoF. Define
A:={ECR?:VxeR,E, e M}.

We claim A a o-algebra of subsets of R2.

* R?2 € A? Yes, since foreveryx € R, RZ=R € M.
e LetE € A.Then, E, € M for every x € R. But we have too

(Ec)x = (EX)C/

and since E, € M = (E,) € M, it follows that E¢ € A.
e If{E,} C A, then for every x € R,

(1J52), = (o)< x

soU,E, € A.

Hence, A indeed a o-algebra of subsets of R2. For every A,B € M, we claimAx B €
A. We have that for every x € R,

@ifxe*EAe

(AXB)":{B ifxe A

hence A x B € A. Thus, since such sets generate M?, it follows that M? C A, and so
every set in M? has the desired property.

An identical proof follows for EY-type slices. [ |

Remark 3.1: Notice we didn’t prove A = M?, indeed, because its not true.

For instance, let E = N x A with N the Vitali set and A € M. Then, for everyx € A, E, =

Aif xeN 5 y _ [N ifyea
{@iferN € M, but E ¢ M#, because for everyy € R, EY = {zelse .

In fact, there eixsts sets such that E, and EY € M for every x,y € R, but E & M? (the
Sierpinski set).

However, if EC R2 a product set, i.e. E = A x B forsome A,BC R,thenA,BE M = E €
M?2.

< Definition 3.4 (Slice of sets): Let f : R? - R a function. For every x € R, define

fx:R_’E/ fy) =f(xy),
called the slice of f at x. Similarly define f¥.
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® Example 3.1:If f = 1 for some E C R?, then f, = 1.

< Proposition 3.2: Iff : R? — R is M?-measurable, then for every x € R, f, is M-measurable,

and for every y € R f¥ is M-measurable.

Proor. Observe that for every B C R,
(f~'B), =f'(B)

for every x € R, with similar for Y. In particular, then, if f M?2-measurable, then for
everya € R, f~1([—0,a)) € M? hence fy 1 ([—o0,a)) = (f~1([—~o0,a)), € M, with the
same idea following for Y. [

Remark 3.2:

o Iff: R2 - R is continuous, then f is measurable. For everya € R, f “1((=o0,n)) open by
virtue (indeed, definition) of continuity, hence in M?.

o Iff = 1f for some E C R?, f M?-measurable < E € M?.

o In general, there exists f : R2 — R such that f, M-measurable but f is not M?-measurable.

o Iff(x,y) = h(x)g(y) for some non-trivial 1, ¢ : R — R, then f is M?-measurable « both &
and g are M-measurable. We show <;

FH([~,a) = {(x,y) : h(x)g(y) < a}
={(x,y) :h(x) =0,0 < a}

a
U {(x,y) thix) >0,8(y) < %}

a
U {(x,y) thix) <0,8(y) > %}

={x:h(x)=0}xRN{0<a} & M?

a
U U{x:0<h<x),q<@}x{y:g(y)<q}
7€Q eM
eEmM
U U {x:0>h),g> ——tx (y:g() > q) | € M?
0> 704> s x y:3) > a) | €
7€Q eMm
eEMm

§3.3 Product Measure

3.3 Product Measure
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< Definition 3.5: Given E € M?, define functions
IV:R-R, I =mE)
and

I R-SR,  IP(y) =mE).

—Theorem 3.1: Given E € M2, It",1? are M-measurable functions, and in particular

fR I(l)(x) dx = f 1(2) ) dy. ®

1(1)

Prook. If indeed I (2> M-measurable, then the integrals of the functions are well-

defined, being non—negatlve functions.

Set
Y= {E e M?: Igﬁ;,llg are M-measurable and ® holds, for Ey := EN [-N,N]* forall N > 0}.
Note that for every E € M?, for all N > 0,

IgN)(x):{;n(( N)y) if x € [-N,N]

O.W.

]].[ N,N] (X)IE (X)

L 2)
similarly for I Ex
Let C:= {AxB:A,B € M} (recall M? = ¢(C)).
e Claim1: CC X
Forevery N > 0,Eyy = (AxB) N [—N,N]2 = An x By (An := AN [—=N,N]). Then,
1Dy = (D _ |m(By N @
Ex (X)) = L4 B, (%) 0 ifx & Ay Ex (V) =14 up, (V) = 0 ify & By’

and so I{ En X F ) ., are measurable seeing as they are both just indicator functions of

measurable sets times a constant. In particular,
j I = m(By)m(Ay) = f 12,

as required. Hence, indeed Ey;, € X and so C C 2.
e Claim2: R2e X%
For every N > 0,

(1) _|2Nifx € [-N, N]
I[ NN]z(X) B {O 0.W. ’

similar for I [( )N NP i [211;\],1\,], I [(E)N ) are both M-measurable, and their integrals agree,

and so it follows that R? € .
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* Claim3:E€E XL =>E‘€X
For each N > 0, denote

Fy = E°‘N [-N,N1°.
I(l) = 0 outside of [-N,N], and forx € [-N,N],

(Fn), = {y: (vy) €ECN[-N,NI*} = [-N,N]\ E, = [-N,N]\ (Ey),

SO

I£) (x) = 2N - I (x)
for x € [N, N]. Similarly,

12@) - {21\1 —I2(y) ify € [-N,N]

0 0.W.

In particular, then, I <1), I l(g2> measurable, and
N N

1 _ W _ a2 [ D
fR I = f[_N,N] 2N — I = 4N fR I

@) _ @) 2 @)
jR I = f[_N’N] 2N —If2) = 4N j I

but we know [, Igj = Jr I,(EZN) since Ey € X, hence it follows that [, Pz(\}) = Jr Pﬁ) and
so it follows that E€ € X.

e Claim4: {E} C L = E= >, E € X
Wilog, E,,’s disjoint. For N > 0, Eyy = |, E

I(l)(x) =1 NN](x)m( U (Ek,N)x) = 1NN Z m( (Ex,N) ) ZIS()N(x),
k=1 k=1

with similarly If E >(y) P Ek> (y). This implies Iy (1) g ) _ are )-measurable, and in
particular

LS fiR- e

which are equal since by assumption E; € X. Hence, E € %, and thus by Claims 2-4, %
a o-algebra of subsets of R?, and thus by Claim 1 £ = M?2.

Hence, for every E € M?, E € £ and so all the statements hold for Ej; for every N >
0. Then,
It (@) = lim 1y 5 om((Ey),) = lim m((Ey),) = m(E,) = lim Ig) (x),

—)OO

and in particular {I ,(51]3} 1, hence | ,(31) M-measurable, and

1 _ s ¢Y)
II = 11m IEN,
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with similar for I ](52), by monotonicity. Thus, since |, r1 1(52 = | Rl ](:%3 for every N, the
proof follows.

< Definition 3.6: Define a non-negative set function on (R?, M?) by

m(E) = fR I8 (x) dx = fR IP(x)dx, Ee M2

m is called the Lebesgue measure on R2.

<Proposition 3.3: m is indeed a measure on (R?, M?).

PRrROOF.
e m(@)=[0=0
o If {Ex} C M? disjoint, let E = {J;__; Ex. Then

o0

m(E) = ) m(Ey),
k=1

since for every x € R, E, = |J,_; (Ey), disjoint, so
W _\ [ W
fRIE B ,;IRIE" '

and the proof follows.
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Remark 3.3:

1. Forany E = I; x I,, m(E) = {(I;) - €(I,). It follows that any singleton, and countable set,
and any line on R? is a null set.

2. f AC Risanull setin M, then A x R, R x A are null sets, in M?2.

3. M? is not complete under m, since for instance if N C R the Vitali set, a € R, then {a} x
N C {a} x R is a subset of a null set, but {a} x N is not measurable.

4. Ttis possible to construct m on R? through the “outer measure” approach. We take E C
R2, and define

m*(E) = inf{ Z Area(R,,) : R,,'s closed, finite rectangles s.t. E C U Rn}.
n=1 n=1
Then, m* satisfies similar properties as the 1-dimensional analog. We then say a set E is
measurable if for every F C R2, m*(F) = m*(F N E) + m*(F N E°). Collect all such sets,
M? := {E C R? : E measurable}. This is a o-algebra of subsets of R?, with m := M a

measure when restricted to it. Indeed, m matches the Lebesgue measure defined above,

and M2, as suggestively notated, the completion of M? under the Lebesgue measure. In
addition, M? = By..
. The Lebesgue measure m on R? is the unique measure on M? /B> /M?2 such that for all

I; x I, rectangles, m(Iy x I,) = €(I;)€(I,). This is because J := {I; x I, : I, I, finite intervals}

is a 71-system and generates B>.

6. The Lebesgue measure on R? is translation invariant (rectangle area is invariant under
translation). Namely, show that m : M? = [0, c0], m,(E) := m(E + z) is a measure and
m, = mon J.

7. The Lebesgue measure m on R2 is the only measure on M?/5 r2/ M2 that is translation

invariant and assigns 1 to [0, 1] x [0, 1].

§3.4 Fubini’s Theorem

< Definition 3.7: Let f : R? - R be M?-measurable and non-negative. Define the functions

= [ fandy= [ fwdy,  1P@) = [ feyde= [ Foodx

Remark 3.4: Givenf : R2 - [0, co], M2-measurable and non-negative, the integral of f wrt

the Lebesgue measure on R? is denoted by | r2f(x,y)dxdy or [p.f if there is no ambiguity.
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<Theorem 3.2 (Tonelli's): Let f : R? — [0, o] be M?-measurable and non-negative. Then,
f f(x,y)dxdy = f I;D(x) dx = j 1(2) ) dy,

or more explicitly,

fsz(x,y) dxdy = fR<fRf(x,y) dy) dx = fR(ij(x,y) dx) dy.

PrOOF. Since f M?-measurable, non-negative, there exists {¢,, }-sequence of simple
functions with ¢,, 1 f, and [, f = lim,, [, ¢,,, where, eg

n2" k ) k k +
k=0
So,
n2"
f f(x, y)dxdy_hmz n)-
On the other hand, Vx € R, by MON
e = [ fxy)dy = Jim (x,y)d
f R ,y y 11— 00 R gvn ’y y
Tk
= Jim ) 5ela,, ()
i=2"
n2"
- 1’11—>Iro10 &= 2_nm<(An,k)x>-

We have then, again by MON, that
f I(l)(X) dx = lim f Z 2711(41) (x)dx = Ami%fﬂ% Iz(‘ll;j,k(x) dx.
Similarly, we find
[ 1P () dy = lim kio 25 12, W) dy.
By definition,

m( f 11(41) (x) dx _f I(Z) [(v)dy,

hence all of our terms actually agree, and bringing them together gives the proof.
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< Definition 3.8: Given f : R? > R M?-measurable, we write f € L!(R?) if
[ fGEyidedy < oo,

or equivalently if

fR2f+ and fsz‘ < oo.

Remark 3.5: Suppose f € L'(R?). Then by Tonelli’s,

[Lredrdy = [ ([ peondy)ax= [ ([ feomiax)dy,

and in particular all integrals are finite; namely, ], §c1|>, I ﬁ) e LY(R).

—Theorem 3.3 (Fubini's): If f : R? - R is M?-measurable and f € L!(RR?), then

1. I]S?,IJSD e LY(R) (product integrability = marginal integrability) .

2. I]S )(x) finite-valued for a.e. x € R :>fX e Ll(R) fora.e. x € R, similar for I( )’ i.e.fy c
LY(R) for a.e. y e R.

3. feof (x,y)dxdy = fo IV (o) dx = [ I (y) dy.

ProOF. Assume f € L1(R). Then by Tonelli’s

fRu}lH < jR(fRy(x,y)my) dx = fsz(x,y) dxdy < o = IV € L'(R).

We have 1. = 2..

Now, write f = f* —f~.f € L1(R?) gives thatf*,f~ € L1(R?) sof*,f~ each finite

valued a.e.. By Tonelli’s, then,

(1) _ (2) _ +
IRI Y (x)ydx = fRI Y (y)dy = J;sz (x,y)dxdy < o,

1) 1(2) I(l) I(%)

same with f~. Then, I;Jr e Ie- e L1(R), hence are finite-valued a.e.. By linearity

on L! functions, then
(1) (1) _ (I _ M
IRI+(x)dx—jRIf, (x)dx_fRI+ =
Fora.e.x € R, f,fr € LY(R), so by linearity
o -1 = [ frody - [ Fwdy= [ @ -0 = ] f
SO
(1) 1) _ (1)
fRu —le, _fRI )

with similarly for
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fRI(E’ - jRI@ = fR 12

All together, then,

J’R 1]51) _ J'R I}SZ) _ ij(f+ —f) = J;sz.

Remark 3.6: In general, 1]51)’1;2) e LY(R) #fe Ll(RZ). For instance, let

1 ifx<y<ax+1
fry) =1-1lifx-1<y<x
0 else

Then, for all x € R,
(1) _ _
If (x) = fRf(x,y) dy =0,

and similarly

) = [ floy)de=0,

so I, [ € LY(R), butf & L(R?).

Remark 3.7: If f : R2 - Ris W-measurable, Tonelli’s, Fubini’s still hold. We'll use the same
notations in this case.

In fact, there exists a f : R? — R that is M?-measurable such that f = f a.e. (exercise).

Remark 3.8: The constructions above extend to R4, d > 3. In particular, we have
o M%:=0({A; x-xAy:A; €M)).
* The product measure m is the Lebesgue measure on (]Rd, Md>.
e M¢ is the completion of M? under m.
¢ Tonelli’s, Fubini’s hold, with “d-embedded” integrals.
o m shares similar properties on R? as on R;
» translation invariance,
» scaling property,
» regularity, (outer: for every E € M“, m(E) = inf{m(G) : G open s.t. E C G}, inner: for
every E € M2, m(E) = sup{m(K) : K compacts.t. E 2 K}).

§4 DIFFERENTIATION

In the Riemann setting, differentiation and integration are closely related. For instance, if

F(x) := fax f (t) dt for some Riemann-integrable f on [4,b] and x € [a,b], then F is differentiable

and F' = f on (a,b). Or, if F differentiable, and F’ is Riemann integrable on some [a, b], then
F(b) — F(a) = fab F'(t) dt. How much does this extend to the Lebesgue setting?

4 Differentiation



§4.1 Hardy-Littlewood Maximal Function

< Definition 4.1 (Hardy-Littlewood Maximal Function): Suppose f € L' (R). The Hardy-
Littlewood Maximal Function (H-L max.), denoted f*, is defined as

1
f*(x) == sup WLW’

Ied(x)

where J(x) := {I : I an open interval containing x}.

< Proposition 4.1: Given f € L' (R), f* is measurable.

PROOE. f* > 0, so it suffices to show that for every a > 0, {f* > a} is measurable. Let
x € {f* > a}. Then, a < f*(x), hence there must exist some I € J(x) such that

ﬁ fIIfI > a. 1 is open, and x € I, so there exists some § > 0 such that (x — §,x + ) C
I.Foreveryy € (x —9,x+6),y € I, hence I € J(y).So, f*(y) = ﬁ fIIfI > a. Thus,
y € {f* > a} as well. It follows, then, that (x — §,x + 6) C {f* > a}, hence {f* > a} is

open, and so in particular is measurable. [ ]

< Lemma 4.1 (Vitali's Covering Lemma): Assume that J := {Iy, ..., Iy} a finite collection of
open intervals. Then, there exists a sub-collection {Ikl, ...,IkM} C J such that [, N I, =@ for
alli # j and

m(l@l 11-) < 3§1m(1k],).

ProOOF. Assume wlog that m(I;) < co forall 1 <i < N; if otherwise exists an i such
that m(I;) = oo, then simply take your subcollection [, := I;, and the claim holds
trivially.

Begin with the largest interval in J, call it I} . Let
To, ={IeT:Ink, + a}.

Forany I € Ji , NI, # @and m(l) < m(1k1>/ so in particular I C 3I; (if I, = (a,b),
I, = (a—3(b—a),a+3(b—a))).

£ > — )
TeXy, (,__-:
N WoRST . ’
Then, in particular
|J 1¢3r,.
IE«jkl
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Consider now J \ Jj , and choose the largest interval in the remaining part of the
collection. Call it [, . Set

Ikz = {IE j\j]ﬁ ZIﬂlkz 75 @}.
Similarly to before, 1e,. I € 3lk,- By choice, too, Iy, NI, = @.
2

Repeat this process, until J \ (Jfkl U--u Jko) = @, i.e. we have no intervals left in
the original collection. Then, we obtain I kyr oo Ly, disjoint intervals, with
corresponding subcollections Jy , ..., Ji,, forming a partition of J. Then,

N M M
m(UIn):Zm I §3Zm(1kj).
n=1 j=1 Ieﬂ‘kj j=1
[ |

< Proposition 4.2: Suppose f € L'(R) and let f* be the H-L. max function of f. Then, for every
£>0,

(xR f(0 > e < Il = [l

Proor. Fixe > 0and put B := {x € R : f*(x) > ¢}. By inner regularity,
m(B) = sup{m(K) : B D K compact}.

It suffices to show then that m(K) < % Ifll; for every compact K C B. For every x € K,
f*(x) > € so there exists some open interval I, such that x € I, and ﬁ flxlfl > e.
Hence, we may cover K C J, o I, Since K compact it admits a finite subinterval, call
itd ={I,..., Iy}, such that K C Uszl I,,. By the Covering Lemma,

N M
m(K) < m( U In) <3 m(lk].>,
n j=1

=1

for some disjoint subcollection I kyr oo Ty Meanwhile, for every 1 <j < M,

m(1k7> < %Lkw’

hence, we find

M 1 3 3 3
0 <33 G2 F by 1= =20

< Corollary 4.1: Given f € L1 (R), f* is finite-valued a.e..

4.1 Hardy-Littlewood Maximal Function 68



Prook. Forevery N >0, m({f* > N}) < % Ifll1. Taking N — oo, we find then m({f* >
N}) — 0, and since m({f* = co}) < m({f* > N}) VN > 0 it follows that m({f* =
oo}) = 0. u

Remark 4.1: While a Markov-like inequality, f* need not be integrable in general. For instance,
letf = 1;_1 17 € L'(R). Then, consider f*, and in particular consider the average of f over

intervals I = (a,b);
0 if (a,b) N [-1,1] =

1 b
tdt: min max *
= ), f® e -made D) i (0,b) 0 [-1,1] # @.

So we find that f*(x) = 1if x € (—1,1) (take your I = [—1, 1], this achieves max), and f*(x) =

= +1 if x & (—1,1) (you want as much of the [—1, 1] support as possible, and with your other

endpoint as close to x as possible). f* not integrable.

& C— e )
-
Fm(l):(t)(}-{-/ |

§4.2 Lebesgue Differentiation Theorem

—Theorem 4.1 (Lebesgue Differentiation Theorem): Given f & LY(R), for a.e. x € R, if {I,} a
sequence of open intervals such that x € [, Vn > 1 and lim,,_, . m(I,,)) = 0 (we say {I,} a

sequence of intervals shrinking to x), then

,;ggom(l J, Fo —feorde=o.
In particular,
H%Om =f(x).

Proor. The “In particular” comes from the fact that, for x such that f (x) < oo,

£) dt‘ < Fooldt,

|1
O

so if the RHS — 0, so does the left.

Without loss of generality, assume f finite valued everywhere, and only use finite-

valued intervals I,,. For every k > 1, define
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! t dt > !
), O =foldt E}'

By := {x e R:3{[,} C I(x) with lim m(1,) = 0 s.t.limsup -
n—oo

Notice By 1 and |J,_, By = {x € R : theorem fails}. So, it suffices to show that
m(By) = 0 for every k > 1.

Fix an arbitrary ¢ > 0. Continuous, compactly supported functions are dense in
LY(R) so we may find ¢ € C.(R) such that ||f — gll; < €. Since ¢ continuous and
compactly supported, for every x € R and k > 1, there exists some a > 0 such that if
It —x| <, |g(t) — gV < 5

= 3k
Given any x € R and any sequence {I,,} C J(x) with lim,, m(I,)) = 0, we have
! t dt < 1 t )| dt 1
D L PO = fende < s [ - g (1)
! t dt 2
by ) BB gl @)
+1g(x) — f(x) (3)

by triangle inequality, adding/subtracting g (¢), g(x). We know that when n sufficiently
large such that m(l,,) < a, |g(t) — g(x)| < 31—k Vtel, hence (2) < L

=% for sufficiently
large n. For x to be in By, we need too that lim sup,, ((1) + (2) + (3)) > % But we know

that (2) < % for all sufficiently large n, we must have that lim sup,, ((1) + (3)) > 32_k
Let

1 1
Cr={x € R:limsup(l) > —, Dy :=<4x € R :limsup(3) > —¢,
n 3k n 3k

then remark m(By) < m(Cy) + m(Dy) since By C C U Dy. Then,

m(Dy) = m({lf -gl> 31_k}> < 3k|f —gl; < 3ke,

by Markov’s, and

m(Cy) = m({limnsup — 11n) I(In) f =gl > %})

< m({(f—g)* > ;—k}) <3-3kIf —glh = ke,

by using the previous H-L inequality. Hence, we find
m(By) < 12ke,

and, sending ¢ — 0 we find m(By) = 0, completing the proof. [ |

4.2 Lebesgue Differentiation Theorem
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