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1 Linear Operators

Definition 1 : For 𝑋,𝑌  normed vector spaces, ℒ(𝑋, 𝑌 ) ≔ {𝑇 : 𝑋 → 𝑌 | ‖𝑇 ‖ ≔ sup𝑥∈𝑋
‖𝑇𝑥‖𝑌
‖𝑥‖𝑋

< ∞}

Theorem 1 : 𝑇 : 𝑋 → 𝑌  bounded iff continuous; if 𝑋,𝑌  Banach, so is ℒ(𝑋, 𝑌 ).

Theorem 2 :
(i) Any two nvs of the same finite dimension are isomorphic;

(ii) Any finite dimensional space complete, any finite dimensional subspace is closed;
(iii) 𝐵(0, 1) compact in 𝑋 iff 𝑋 finite dimensional.

Theorem 3 (Open Mapping) :  Let 𝑇 : 𝑋 → 𝑌  a bounded linear operator where 𝑋,𝑌  Banach. Then, if 
𝑇  surjective, 𝑇  open, that is, 𝑇 (𝒰) open in 𝑌  for any 𝒰 open in 𝑋.

Remark 1 :  By scaling & translating, openness of an operator is equivalent to proving 𝑇 (𝐵𝑋(0, 1))
contains 𝐵𝑌 (0, 𝑟) for some 𝑟 > 0.

Corollary 1 :  If 𝑇 : 𝑋 → 𝑌  bounded, linear and bijective for 𝑋,𝑌  Banach, 𝑇−1 continuous. In
particular, if (𝑋, ‖⋅‖1), (𝑋, ‖⋅‖2) are two Banach spaces such that ‖𝑥‖2 ≤ 𝐶‖𝑥‖1, then ‖⋅‖1, ‖⋅‖2 are
equivalent.

Theorem 4 (Closed Graph Theorem):  Let 𝑇 : 𝑋 → 𝑌  where 𝑋,𝑌  Banach. Then 𝑇  continuous iff 𝑇  is
closed, i.e. the graph 𝐺(𝑇 ) ≔ {(𝑥, 𝑇𝑥) : 𝑥 ∈ 𝑋} ⊂ 𝑋 × 𝑌  is closed in the product topology.

Remark 2 :  This theorem crucially uses the fact that the norm

‖(𝑥, 𝑦)‖∗ ≔ ‖𝑥‖𝑋 + ‖𝑦‖𝑌

(among others) induces the product topology on 𝑋 × 𝑌 , hence in particular such a norm can be used to
make 𝑋 × 𝑌  a nvs.

Theorem 5 (Uniform Boundedness) :  Let 𝑋 Banach and 𝑌  an nvs, and let ℱ ⊂ ℒ(𝑋, 𝑌 ) such that 
∀𝑥 ∈ 𝑋, ∃𝑀𝑥 > 0 s.t. ‖𝑇𝑥‖𝑌 ≤ 𝑀𝑥 ∀𝑇 ∈ ℱ (that is, ℱ pointwise bounded). Then, ℱ uniformly
bounded, i.e. there is some 𝑀 > 0 such that ‖𝑇 ‖𝑌 ≤ 𝑀  for every 𝑇 ∈ ℱ.
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Remark 3 :  This is implied by the consequence of the Baire Category theorem that states that if ℱ ⊂
𝐶(𝑋) where 𝑋 a complete metric space and ℱ pointwise bounded, then there is a nonempty open set 
𝒪 ⊂ 𝑋 such that ℱ uniformly bounded on 𝒪. In the case of a nvs, by linearity, being uniformly
bounded on an open set extends to being uniformly bounded on all of 𝑋.

Theorem 6 (Banach-Saks-Steinhaus) :  Let 𝑋 Banach and 𝑌  an nvs, and {𝑇𝑛} ⊂ ℒ(𝑋, 𝑌 ) such that for
every 𝑥 ∈ 𝑋, lim𝑛 𝑇𝑛(𝑥) exists in 𝑌 . Then

(i) {𝑇𝑛} uniformly bounded in ℒ(𝑋, 𝑌 );
(ii) 𝑇 ∈ ℒ(𝑋, 𝑌 ) where 𝑇 (𝑥) ≔ lim𝑛 𝑇𝑛(𝑥);

(iii) ‖𝑇 ‖ ≤ lim inf𝑛‖𝑇𝑛‖.

Remark 4 :  (i) follows from uniform boundedness, (ii) from just taking sums limits, (iii) from taking
lim(inf)its.

2 Hilbert Spaces; Weak Convergence

Theorem 7 (Cauchy-Schwarz) : |(𝑢, 𝑣)| ≤ ‖𝑢‖‖𝑣‖.

Theorem 8 (Orthogonality) :  If 𝑀 ⊂ 𝐻  a closed subspace, for every 𝑥 ∈ 𝐻 , there is a unique
decomposition

𝑥 = 𝑢 + 𝑣, 𝑢 ∈ 𝑀, 𝑣 ∈ 𝑀⟂ ≔ {𝑣 ∈ 𝐻 | (𝑣, 𝑦) = 0∀ 𝑦 ∈ 𝑀},

and

‖𝑥 − 𝑢‖ = inf
𝑦∈𝑀

‖𝑥 − 𝑦‖, ‖𝑥 − 𝑣‖ = inf
𝑦∈𝑀⟂

‖𝑥 − 𝑦‖.

Theorem 9 (Riesz) :  For 𝑓 ∈ 𝐻∗ ≔ ℒ(𝐻,ℝ), there is a unique 𝑦 ∈ 𝐻  such that 𝑓(𝑦) = (𝑦, 𝑥), ∀ 𝑥 ∈ 𝐻 .

Theorem 10 (Bessel's Inequality) :  If {𝑒𝑛} ⊂ 𝐻  orthonormal, then ∑∞
𝑖=1 |(𝑥, 𝑒𝑖)|

2 ≤ ‖𝑥‖2.

Theorem 11 (Equivalent Notions of Orthonormal Basis) :  If {𝑒𝑛} ⊂ 𝐻  orthonormal, TFAE:
(i) if (𝑥, 𝑒𝑖) = 0 for every 𝑖, 𝑥 = 0;

(ii) Parseval’s identity holds, ‖𝑥‖2 = ∑∞
𝑖=1 (𝑥, 𝑒𝑖)

2, for every 𝑥 ∈ 𝐻 ;
(iii) {𝑒𝑖} a basis for 𝐻 , that is 𝑥 = ∑∞

𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖 for every 𝑥 ∈ 𝐻 .

Theorem 12 :𝐻  is separable (has a countable dense subset) iff 𝐻  has a countable basis.

Theorem 13 (Properties of the Adjoint) :  For 𝑇 : 𝐻 → 𝐻 , the adjoint 𝑇 ∗ : 𝐻 → 𝐻  is defined as the
operator with the property (𝑇𝑥, 𝑦) = (𝑥, 𝑇 ∗𝑦) for every 𝑥, 𝑦 ∈ 𝐻 . Then:

• if 𝑇 ∈ ℒ(𝐻) then 𝑇 ∗ ∈ ℒ(𝐻) and ‖𝑇 ∗‖ = ‖𝑇 ‖;
• (𝑇 ∗)∗ = 𝑇 ;
• (𝑇 + 𝑆)∗ = 𝑇 ∗ + 𝑆∗;
• (𝑇 ∘ 𝑆)∗ = 𝑆∗ ∘ 𝑇 ∗;
• if 𝑇 ∈ ℒ(𝐻), then

‣ 𝑁(𝑇 ∗) = 𝑅(𝑇 )⟂, and similarly,
‣ 𝑁(𝑇 ) = 𝑅(𝑇 ∗)⟂.

Note that then 𝑅(𝑇 )⟂ closed, so one finds (𝑅(𝑇 )⟂)
⟂
= 𝑅(𝑇 ).
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Definition 2 (Weak Convergence) :  We say {𝑥𝑛} ⊂ 𝑋 converges weakly to 𝑥 ∈ 𝑋 and write 𝑥𝑛 ⇀ 𝑥 if
for every 𝑇 ∈ 𝑋∗, 𝑇𝑥𝑛 → 𝑇𝑥. By Riesz, this is equivalent to saying (𝑥𝑛, 𝑦) → (𝑥, 𝑦) for every 𝑦 ∈ 𝑋.

We define, then, 𝜎(𝑋,𝑋∗) to be the weak topology (on 𝑋) generated by the collection of functions 
𝑋∗; i.e., the coarsest topology for which every functional 𝑇 ∈ 𝑋∗ is continuous.

Theorem 14 (Properties of Weak Convergence) :
(i) If 𝑥𝑛 ⇀ 𝑥, then {𝑥𝑛} bounded in 𝐻  and ‖𝑥‖ ≤ lim inf𝑛→∞‖𝑥𝑛‖.

(ii) If 𝑦𝑛 → 𝑦 (strongly) and 𝑥𝑛 ⇀ 𝑥 (weakly) then (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦).

Theorem 15 (Helley's Theorem):  Let 𝑋 a separable normed vector space and {𝑓𝑛} ⊂ 𝑋∗ such that
there is a 𝐶 > 0 such that |𝑓𝑛(𝑥)| ≤ 𝐶‖𝑥‖ for every 𝑥 ∈ 𝑋 and 𝑛 ≥ 1. Then, there is a subsequence 
{𝑓𝑛𝑘} and 𝑓 ∈ 𝑋∗ such that 𝑓𝑛𝑘(𝑥) → 𝑓(𝑥) for every 𝑥 ∈ 𝑋.

Remark 5 :  This is just the Arzelà-Ascoli Lemma; by linearity, the uniform boundedness implies uniform
Lipschitz continuity and thus equicontinuity.

Theorem 16 (Weak Compactness) :  Every bounded sequence in 𝐻  has a weakly converging
subsequence.

Remark 6 :  This is a consequence of Helley’s.

3 𝐿𝑝 Spaces

Theorem 17 (Basic Properties of 𝐿𝑝(Ω)) :
(i) (Holder’s Inequality) ‖𝑓𝑔‖1 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞 for 𝑓 ∈ 𝐿𝑝(Ω), 𝑔 ∈ 𝐿𝑞(Ω) and 1𝑝 +

1
𝑞 = 1, 1 ≤ 𝑝 ≤

𝑞 ≤ ∞;
(ii) (Riesz-Fischer Theorem) 𝐿𝑝(Ω) is a Banach space for every 1 ≤ 𝑝 ≤ ∞;

(iii) 𝐶𝑐(ℝ𝑑), simple functions, and step functions are all dense in 𝐿𝑝(ℝ𝑑) for every finite 𝑝;
(iv) 𝐿𝑝(Ω) is separable for every finite 𝑝;
(v) If Ω ⊂ ℝ𝑑 has finite measure, then 𝐿𝑝(Ω) ⊂ 𝐿𝑝′(Ω) for every 𝑝 ≥ 𝑝′;

(vi) If 𝑓 ∈ 𝐿𝑝(Ω) ∩ 𝐿𝑞(Ω) for 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, then 𝑓 ∈ 𝐿𝑟(Ω) for every 𝑟 ∈ [𝑝, 𝑞].

Theorem 18 (Riesz Representation for 𝐿𝑝(Ω)) :  Let 1 ≤ 𝑝 < ∞ and 𝑞 the Holder conjugate of 𝑝. Then,
if 𝑇 ∈ (𝐿𝑝(Ω))∗, there is a unique 𝑔 ∈ 𝐿𝑞(Ω) such that

𝑇𝑓 = ∫
Ω
𝑓𝑔, ∀ 𝑓 ∈ 𝐿𝑝(Ω),

and ‖𝑇 ‖ = ‖𝑔‖𝑞 .

Remark 7 :  When 𝑝 = 2 = 𝑞, then 𝐿𝑝(Ω) is a Hilbert space so this reduces to the typical Hilbert space
theory.

Theorem 19 (Weak Convergence in 𝐿𝑝(Ω)) :
• Let 𝑝 ∈ (1,∞) and {𝑓𝑛} ⊂ 𝐿𝑝(Ω), then by Riesz, 𝑓𝑛 ⇀ 𝑓  iff ∫

Ω
𝑓𝑛𝑔 → ∫

Ω
𝑓𝑔 for every 𝑔 ∈

𝐿𝑞(Ω).
• Suppose 𝑓𝑛 are bounded and 𝑓 ∈ 𝐿𝑝(Ω), then 𝑓𝑛 ⇀ 𝑓  if and only if 𝑓𝑛 → 𝑓  pointwise a.e..
• (Radon-Riesz) For 𝑝 ∈ (1,∞), let {𝑓𝑛} ⊂ 𝐿𝑝(Ω) such that 𝑓𝑛 ⇀ 𝑓 . Then, 𝑓𝑛 → 𝑓  strongly if and

only if ‖𝑓𝑛‖𝑝 → ‖𝑓‖.
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Theorem 20 (Weak Compactness in 𝐿𝑝(Ω)) :  Let 𝑝 ∈ (1,∞). Then, every bounded sequence in 𝐿𝑝(Ω)
has a weakly converging subsequence in 𝐿𝑝(Ω).

Remark 8 : This is essentially the same as the Hilbert space proof.

Theorem 21 (Properties of Convolutions) :
(i) (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)

(ii) With 𝜏𝑧𝑓(𝑥) ≔ 𝑓(𝑥 − 𝑧), 𝜏𝑧(𝑓 ∗ 𝑔) = (𝜏𝑧𝑓) ∗ 𝑔 = 𝑓 ∗ (𝜏𝑧𝑔)
(iii) supp(𝑓 ∗ 𝑔) ⊆ supp(𝑓) + supp(𝑔) = {𝑥 + 𝑦 | 𝑥 ∈ supp(𝑓), 𝑦 ∈ supp(𝑔)}

Theorem 22 (Young's Inequality) :  Let 𝑓 ∈ 𝐿1(ℝ𝑑) and 𝑔 ∈ 𝐿𝑝(ℝ𝑑) for any 𝑝 ∈ [1,∞], then

‖𝑓 ∗ 𝑔‖𝑝 ≤ ‖𝑓‖1‖𝑔‖𝑝,

so in particular 𝑓 ∗ 𝑔 ∈ 𝐿𝑝(Ω).

Theorem 23 (Derivatives of Convolutions) :  Let 𝑓 ∈ 𝐿1(ℝ𝑑) and 𝑔 ∈ 𝐶1(ℝ𝑑) with |𝜕𝑖𝑔| ∈ 𝐿∞(ℝ𝑑)
for 𝑖 = 1,…, 𝑑. Then, 𝑓 ∗ 𝑔 ∈ 𝐶1(ℝ𝑑), and in particular

𝜕𝑖(𝑓 ∗ 𝑔) = 𝑓 ∗ (𝜕𝑖𝑔).

Remark 9 :  This holds more generally for many different assumptions on 𝑓, 𝑔 but you basically need to
be able to apply dominated convergence theorem to pass the limit involved in taking the derivative
under the integral sign.

This extends for 𝑔 ∈ 𝐶𝑘(ℝ𝑑); in particular, if 𝑔 ∈ 𝐶∞(ℝ𝑑), then 𝑓 ∗ 𝑔 ∈ 𝐶∞(ℝ𝑑). It also holds for
the gradient, i.e. ∇(𝑓 ∗ 𝑔) = 𝑓 ∗ (∇𝑔) (where the convolution is component-wise in the gradient
vector).

Theorem 24 (Good Kernels) :  A good kernel is a parametrized family of functions {𝜌𝜀 : 𝜀 ∈ ℝ} with the
properties

(i) ∫
ℝ𝑑
𝜌𝜀(𝑦) d𝑦 = 1,

(ii) ∫
ℝ𝑑
|𝜌𝜀(𝑦)| d𝑦 ≤ 𝑀 ,

(iii) for every 𝛿 > 0, ∫
|𝑦| >𝛿

|𝜌𝜀(𝑦)| d𝑦 → 0 as 𝜀 → 0+.

The canonical, and in particular both smooth and compactly supported, example is

𝜌(𝑥) ≔
⎩{
⎨
{⎧𝐶 exp(− 1

1− |𝑥|2) if |𝑥| ≤ 1

0 o.w.
,

where 𝐶 = 𝐶(𝑑) a scaling constant such that 𝜌 integrates to 1. Then 𝜌𝜀(𝑥) ≔ ( 1𝜀𝑑)𝜌(
𝑥
𝜀 ) is a good

kernel, supported on 𝐵(0, 𝜀). Then:

(i) if 𝑓 ∈ 𝐿∞(ℝ𝑑), 𝑓𝜀 ≔ 𝜌𝜀 ∗ 𝑓  and 𝑓  continuous at 𝑥, then 𝑓𝜀(𝑥) → 𝑓(𝑥) as 𝜀 → 0;
(ii) if 𝑓 ∈ 𝐶(ℝ𝑑) then 𝑓𝜀 → 𝑓  uniformly on compact sets;

(iii) if 𝑓 ∈ 𝐿𝑝(ℝ𝑑) with 𝑝 finite, then 𝑓𝜀 → 𝑓  in 𝐿𝑝(ℝ𝑑).

Remark 10 :  Part 3. follows immediately from 2. by density of 𝐶𝑐(ℝ𝑑) in 𝐿𝑝(ℝ𝑑).

Corollary 2 :𝐶∞𝑐 (ℝ𝑑) dense in 𝐿𝑝(ℝ𝑑) for any finite 𝑝.
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Theorem 25 (Weierstrass Approximation Theorem):  Polynomials are dense in 𝐶([𝑎, 𝑏]), i.e. for any 
𝑓 ∈ 𝐶([𝑎, 𝑏]) and 𝜂 > 0, there is a polynomial 𝑝(𝑥) such that ‖𝑝 − 𝑓‖𝐿∞([𝑎,𝑏]) < 𝜂.

Theorem 26 (Strong Compactness) :  Let {𝑓𝑛} ⊆ 𝐿𝑝(ℝ𝑑) for 𝑝 finite, such that
• {𝑓𝑛} uniformly bounded in 𝐿𝑝(ℝ𝑑), and
• lim|ℎ| →0 ‖𝑓𝑛 − 𝜏ℎ𝑓𝑛‖𝑝 = 0 uniformly in 𝑛, i.e. for every 𝜂 > 0 there is a 𝛿 > 0 such that |ℎ| < 𝛿

implies ‖𝑓𝑛 − 𝜏ℎ𝑓𝑛‖𝑝 < 𝜂 for every 𝑛 ≥ 1.

Then, for every Ω ⊂ ℝ𝑑 of finite measure, there exists a subsequence {𝑓𝑛𝑘} such that 𝑓𝑛𝑘 → 𝑓  in 
𝐿𝑝(Ω).

Remark 11 :  This is Arzelà-Ascoli in disguise!

4 Fourier Analysis

Definition 3 (Fourier Series) : Let 𝐿2(𝕋) = {𝑓 : 𝕋 → ℝ |∫
𝕋
𝑓2 < ∞} equipped with the inner product

(𝑓, 𝑔) = ∫
𝕋
𝑓𝑔. Then, 𝑒𝑛(𝑥) ≔ 𝑒2𝜋𝑖𝑛𝑥, for 𝑛 ∈ ℤ, is an orthonormal basis for 𝐿2(𝕋). The Fourier

coefficients of a function 𝑓  are defined then, for 𝑛 ∈ ℤ,

𝑓(𝑛) = (𝑓, 𝑒𝑛) = ∫
𝕋
𝑓(𝑥)𝑒−2𝜋𝑖𝑛𝑥 d𝑥,

and so the complex Fourier series is defined

∑
𝑛∈ℤ

𝑓(𝑛)𝑒2𝜋𝑖𝑛𝑥.

Theorem 27 (Riemann-Lebesgue Lemma): If 𝑓 ∈ 𝐿2(𝕋), lim𝑛→∞|𝑓(𝑛)| = 0.

Remark 12 : By expanding the real and complex parts of the coefficients, this also implies

lim
𝑛→∞

∫
𝕋
𝑓(𝑥) sin(2𝑛𝜋𝑥) d𝑥 = lim

𝑛→∞
∫
𝕋
𝑓(𝑥) cos(2𝑛𝜋𝑥) d𝑥 = 0.

Definition 4 (Dirichlet Kernel) :  The Dirichlet Kernel is the sequence of functions defined

𝐷𝑁(𝑥) ≔ ∑
𝑁

𝑛=−𝑁
𝑒2𝜋𝑖𝑛𝑥 =

sin(2𝜋(𝑁 + 1
2)𝑥)

sin(2𝜋𝑥2)
.

Then, the partial sum 𝑆𝑁𝑓(𝑥) ≔ ∑𝑁
𝑛=−𝑁 𝑓(𝑛)𝑒

2𝜋𝑖𝑛𝑥 = (𝑓 ∗ 𝐷𝑁)(𝑥).

Theorem 28 (Convergence Results) :
(i) If 𝑓 ∈ 𝐿2(𝕋) and Lipschitz at 𝑥0, then 𝑆𝑁𝑓(𝑥0) → 𝑓(𝑥0)

(ii) If 𝑓 ∈ 𝐿2(𝕋) ∩ 𝐶2(𝕋), then 𝑆𝑁𝑓 → 𝑓  uniformly on 𝕋.
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Definition 5 (Fourier Transform):  The Fourier Transform of 𝑓 : ℝ → ℂ is defined

𝑓(𝜁) ≔ ∫
ℝ
𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥.

The Inverse Fourier Transform of 𝑓 ∈ 𝐿1(ℝ) is defined

̌𝑓(𝑥) ≔ ∫
ℝ
𝑓(𝜁)𝑒2𝜋𝑖𝜁𝑥 d𝜁 = 𝑓(− ⋅)(𝑥).

Theorem 29 (Properties of the Fourier Transform):  Let 𝑓, 𝑔 ∈ 𝐿1(ℝ).
(i) 𝑓, ̌𝑓 ∈ 𝐿∞(ℝ) ∩ 𝐶(ℝ)

(ii) 𝜏𝑦𝑓(𝜁) = 𝑒−2𝜋𝑖𝜁𝑦𝑓(𝜁), and 𝜏𝜂𝑓(𝜁) = ̂𝑒2𝜋𝑖𝜂(⋅)𝑓(⋅)(𝜁)
(iii) 𝑓 ∗ 𝑔 = 𝑓 ⋅ 𝑔
(iv) ∫

ℝ
𝑓(𝑥)𝑔(𝑥) d𝑥 = ∫

ℝ
𝑓(𝑥)𝑔(𝑥) d𝑥

(v) Let ℎ(𝑥) ≔ 𝑒𝜋𝑎𝑥2  for 𝑎 > 0, then 𝑓(𝜁) = 1√
𝑎𝑒
−𝜋𝜁

2
𝑎

Theorem 30 (Fourier Inversion) :  If 𝑓 ∈ 𝐿1(ℝ) and 𝑓 ∈ 𝐿1(ℝ), then 𝑓  agrees almost everywhere with
some 𝑓0 ∈ 𝐶(ℝ) and ̂̌𝑓 = ̌𝑓 = 𝑓0.

Theorem 31 (Plancherel's Theorem):  If 𝑓 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ), then 𝑓 ∈ 𝐿2(ℝ) and ‖𝑓‖2 = ‖𝑓‖2.

Remark 13 :  Using this, one extends the Fourier Transform to 𝑓 ∈ 𝐿2(ℝ) by taking a sequence of
smooth, compactly supporting functions approximating 𝑓  in 𝐿2, and taking the limit of the Fourier
transforms in 𝐿2(ℝ).

Theorem 32 :  If 𝑓 ∈ 𝐿1(ℝ), 𝑓 ∈ 𝐶0(ℝ), the space of continuous functions with |𝑓(𝑥)| → 0 as |𝑥| →
∞.

Theorem 33 (Poisson Summation Formula) :  Let 𝑓 ∈ 𝐶(ℝ) be such that |𝑓(𝑥)| ≤ 𝐶(1 + |𝑥|)−(1+𝜀) and 
|𝑓(𝜁)| ≤ 𝐶(1 + |𝜁|)−(1+𝜀) for some constants 𝐶, 𝜀 > 0. Then, for every 𝑥 ∈ ℝ,

∑
𝑘∈ℤ

𝑓(𝑥 + 𝑘) =∑
𝑘∈ℤ

𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥.

Remark 14 :  In words, this means the periodization (the LHS) of 𝑓  equals the Fourier series of 𝑓 .

6


	Linear Operators
	Hilbert Spaces; Weak Convergence
	Lp Spaces
	Fourier Analysis

