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1 Linear Operators

Definition 1: For X, Y normed vector spaces, £(X,Y) {T X =Y | |T| :=supgex "”m"‘”'”y < }

Theorem 1: T : X — Y bounded iff continuous; if X, Y Banach, sois £(X,Y).

Theorem 2:
(i) Any two nvs of the same finite dimension are isomorphic;
(ii) Any finite dimensional space complete, any finite dimensional subspace is closed,;
(iii) B(0,1) compact in X iff X finite dimensional.

Theorem 3 (Open Mapping): Let T': X — Y a bounded linear operator where X, Y Banach. Then, if
T surjective, T' open, that is, T' (i) open in Y for any U open in X.

Remark 1: By scaling & translating, openness of an operator is equivalent to proving T'(Bx (0, 1))
contains By (0, ) for some r > 0.

Corollary 1: If T : X — Y bounded, linear and bijective for X, Y Banach, 7! continuous. In
particular, if (X, ||||1), (X, ||||2) are two Banach spaces such that |z|,, < . then |-, -], are
equivalent.

Theorem 4 (Closed Graph Theorem): Let 7" : X — Y where X, Y Banach. Then T" continuous iff 7" is
closed, i.e. the graph G(T') := {(z,Tz) : x € X} C X x Y is closed in the product topology.

Remark 2: This theorem crucially uses the fact that the norm
[, 9)l, = Nzl + vl

(among others) induces the product topology on X x Y, hence in particular such a norm can be used to
make X x Y anvs.

Theorem 5 (Uniform Boundedness): Let X Banach and Y an nvs, and let & C £(X,Y) such that
VzeX,3M, >0st [Tz|, <M, VT € F (thatis, & pointwise bounded). Then, & uniformly
bounded, i.e. there is some M > 0 such that |T'||,, < M forevery T € F.



Remark 3: This is implied by the consequence of the Baire Category theorem that states that if & C
C'(X) where X a complete metric space and F pointwise bounded, then there is a nonempty open set
O C X such that F uniformly bounded on 0. In the case of a nvs, by linearity, being uniformly
bounded on an open set extends to being uniformly bounded on all of X.

Theorem 6 (Banach-Saks-Steinhaus): Let X Banach and Y an nvs, and {7,,} C £(X,Y) such that for
every x € X, lim,, T, (x) exists in Y. Then
(i) {T.,} uniformly bounded in £(X,Y);
(i) T € £(X,Y) where T'(z) := lim,, T,,(z);
(iii) |7'| < liminf,|T,,|-.

Remark 4: (i) follows from uniform boundedness, (ii) from just taking sums limits, (iii) from taking
lim(inf)its.
2 Hilbert Spaces; Weak Convergence

Theorem 7 (Cauchy-Schwarz): |(u,v)| < |ul|v]-

Theorem 8 (Orthogonality): If M C H a closed subspace, for every x € H, there is a unique
decomposition

T =u-+wv, ueEMuve Mt ={veH]| (v,y) =0Vy € M},
and

lo —ul = inflz—yl, |z —v] ygpﬂw yl

Theorem 9 (Riesz): For f € H* := £(H,R), there is a unique y € H such that f(y) = (y,z),Vz € H.
Theorem 10 (Bessel's Inequality): If {e, } C H orthonormal, then 3> |(z, e)” < |z

Theorem 11 (Equivalent Notions of Orthonormal Basis): If {e,, } C H orthonormal, TFAE:
(i) if (x,e;) = 0 for every i, z = 0;
(i) Parseval’s identity holds, || = Zzl (z,¢;)°, for every € H;
(iii) {e,;} a basis for H, thatis x = Zzl (z,e;)e; for every x € H.

Theorem 12: H is separable (has a countable dense subset) iff H has a countable basis.

Theorem 13 (Properties of the Adjoint): For T': H — H, the adjoint T* : H — H is defined as the
operator with the property (T'z,y) = (z, T*y) for every z,y € H. Then:
« if T € £(H)thenT* € £(H) and |T*| = || T
. (TH =T,
c (T+8) =T+ 5%
e (ToS) =8*oT*
« if T'€ £(H), then
» N(T*) = R(T)", and similarly,
» N(T) = R(T*)".
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Note that then R(T)" closed, so one finds (R(T)l)L = R(T).



Definition 2 (Weak Convergence): We say {z,,} C X converges weakly to z € X and write z,, — z if
for every T € X*, Tx,, — Tz. By Riesz, this is equivalent to saying (z,,,y) — (z,y) for every y € X.

We define, then, o(X, X™*) to be the weak topology (on X) generated by the collection of functions
X*; i.e,, the coarsest topology for which every functional 7' € X* is continuous.

Theorem 14 (Properties of Weak Convergence):
(i) If z,, — z, then {z,,} bounded in H and ||z|| < liminf, |z,
(ii) Ify,, — y (strongly) and z,, — x (weakly) then (z,,,v,,) — (z,y).

Theorem 15 (Helley's Theorem): Let X a separable normed vector space and {f,,} C X* such that
there is a C' > 0 such that | f,,(z)| < C||z|| for every z € X and n > 1. Then, there is a subsequence
{fnk} and f € X" such that f,, (z) — f(z) for every z € X.

Remark 5: This is just the Arzela-Ascoli Lemma; by linearity, the uniform boundedness implies uniform
Lipschitz continuity and thus equicontinuity.

Theorem 16 (Weak Compactness): Every bounded sequence in H has a weakly converging
subsequence.

Remark 6: This is a consequence of Helley’s.

3 LP Spaces

Theorem 17 (Basic Properties of LP({2)):
(i) (Holder’s Inequality) | fg[, < ||f”pHqu for f € LP(Q),g € LI(N)and 1 + 1 =1,1<p <
q < o0;

)

)
(iv) LP(9) is separable for every finite p;
(v) If © C R? has finite measure, then LP () C L*' () for every p > p’;
)

Theorem 18 (Riesz Representation for LP(£2)): Let 1 < p < oo and ¢ the Holder conjugate of p. Then,
if T € (L?(Q))", there is a unique g € L4(f) such that

Tf = , VY feLrP(Q),
f /fg felrQ)
and [T = |g] -

Remark 7: When p = 2 = ¢, then LP(2) is a Hilbert space so this reduces to the typical Hilbert space
theory.

Theorem 19 (Weak Convergence in L?(12)):
« Letp € (1,00) and {f,,} C LP(Q), then by Riesz, f,, — f iffo fng — fQ fgforevery g €
L1(Q).
+ Suppose f,, are bounded and f € LP(Q2), then f,, — fif and only if f,, — f pointwise a.e..
+ (Radon-Riesz) For p € (1,00), let {f,,} C LP(Q) such that f,, — f. Then, f,, — f strongly if and
only if [ £, ] = [f]-



Theorem 20 (Weak Compactness in L?(2)): Let p € (1, 00). Then, every bounded sequence in L?({2)
has a weakly converging subsequence in LP({2).

Remark 8: This is essentially the same as the Hilbert space proof.

Theorem 21 (Properties of Convolutions):
@) (fxg)xh=fx(gxh)
(i) With 7,f(2) == f(z — 2), 7.,(f *xg) = (7.f) * g = [ * (7.9)
(iii) supp(f *g) C supp(f) +supp(g) ={z +y | = € supp(f),y € supp(g)}

Theorem 22 (Young's Inequality): Let f € L*(R%) and g € LP(R?) for any p € [1, <], then
I£ gl < 1£1, 19l

so in particular f x g € LP(Q).

Theorem 23 (Derivatives of Convolutions): Let f € L' (R?) and g € C*(R?) with |9,g| € L>(R?)
fori =1,...,d. Then, f x g € C* (Rd), and in particular

0;(f*g) = f*(9:9)

Remark 9: This holds more generally for many different assumptions on f, g but you basically need to
be able to apply dominated convergence theorem to pass the limit involved in taking the derivative
under the integral sign.

This extends for g € C* (Rd); in particular, if g € C*° (Rd), then fxg € C (Rd). It also holds for
the gradient, i.e. V(f % g) = f * (Vg) (where the convolution is component-wise in the gradient
vector).

Theorem 24 (Good Kernels): A good kernel is a parametrized family of functions {p, : € € R} with the
properties
(i) fRd Pe (y) dy =1,
(i) [oqlp-(y)|dy < M,
(iii) for every § > 0, f‘y| >§|p€(y)| dy > 0ase — 07.

The canonical, and in particular both smooth and compactly supported, example is

1 .
p(.’L‘) — {Cexp(—m) if |£B| < ]_,

0 0.W.
where C = C(d) a scaling constant such that p integrates to 1. Then p_(z) := (i>p(§) is a good

Ed
kernel, supported on B(0, ¢). Then:
(i) if f € L= (R?), f. := p. * f and f continuous at z, then f_(z) — f(z) ase — 0;
(i) if feC (Rd) then f. — f uniformly on compact sets;
(iii) if f € LP (Rd) with p finite, then f. — fin L? (Rd).
Remark 10: Part 3. follows immediately from 2. by density of C., (Rd> in L? (Rd).

Corollary 2: C° (]Rd) dense in LP (]Rd) for any finite p.



Theorem 25 (Weierstrass Approximation Theorem): Polynomials are dense in C([a, b]), i.e. for any

f € C([a,b]) and n > 0, there is a polynomial p(z) such that |p — f“Loo([a oy <7

Theorem 26 (Strong Compactness): Let {f,,} C LP(R?) for p finite, such that
« {/,} uniformly bounded in L?(R?), and

o limy, Lo lfy — 7 ks ||p = 0 uniformly in n, i.e. for every n > 0 there isa § > 0 such that |h| < ¢
implies | f,, — T [, ||p < n for every n > 1.

Then, for every 2 C R? of finite measure, there exists a subsequence { fnk} such that f,, — fin
Lr ().

Remark 11: This is Arzela-Ascoli in disguise!

4 Fourier Analysis

Definition 3 (Fourier Series): Let L?(T) = {f :T—R| fT f2< oo} equipped with the inner product
(f,9) = fT f9. Then, e, () := €>™"* for n € Z, is an orthonormal basis for L?(T). The Fourier

coefficients of a function f are defined then, for n € Z,
f) = (Fre) = [ fajeminnda,
T

and so the complex Fourier series is defined

Z f(n)e27rinm .

neZ

Theorem 27 (Riemann-Lebesgue Lemma): If f € L?(T), lim,, ., |f(n)‘ = 0.
Remark 12: By expanding the real and complex parts of the coefficients, this also implies

lim [ f(z)sin(2nwz)dz = lim [ f(z)cos(2nmz)dz = 0.

Definition 4 (Dirichlet Kernel): The Dirichlet Kernel is the sequence of functions defined

sin(27r(N + %)x)

sin(27r%)

N
DN(l') = z e27mna: —
n=—N

Then, the partial sum Sy, f(z) := ZZZ,N f(n)ewim = (f* Dy)(z).

Theorem 28 (Convergence Results):
(i) If f € L?(T) and Lipschitz at xy, then Sy f(zo) — f(zo)
(i) If f € L*(T) N C*(T), then Sy f — f uniformly on T.



Definition 5 (Fourier Transform): The Fourier Transform of f : R — C is defined

:/f(w)e_%icm dz.
R

The Inverse Fourier Transform of f € L (R) is defined

f(z) = / F(O)e2mis d¢ = f)(a).
R

Theorem 29 (Properties of the Fourier Transform): Let f,g € L'(R).
(1) f.fe L=*®R)NC(R)

I

(if) 7,f(¢) = e 2"V f(¢), and 7, f(¢) = €20) f(-)(¢)
(111) f g=1r,-g
@) 1, fa)ita) do = [, fa 2
(V) Let h(z) := €™’ for a > O, then f(C) = Lo

Theorem 30 (Fourier Inversion): If f € L'(R) and f € L'(R), then f agrees almost everywhere with
some f, € C(R) and f = f= fo-

Theorem 31 (Plancherel's Theorem): If f € L'(R) N L?(R), then f € L*(R) and Ifl, = ”fHQ

Remark 13: Using this, one extends the Fourier Transform to f € L?(R) by taking a sequence of
smooth, compactly supporting functions approximating f in L2, and taking the limit of the Fourier
transforms in L?(R).

Theorem 32: If f € L'(R), f € C,y(R), the space of continuous functions with | f(z)| — 0 as |z| —
0.

Theorem 33 (Poisson Summation Formula): Let f € C(R) be such that | f(z)| < C(1 + |z|)~ (1+¢) and
‘f ‘ < C(1+[¢))" " for some constants C, & > 0. Then, for every = € R,

S fa k) =3 fkjerie,

keZ kEZ

Remark 14: In words, this means the periodization (the LHS) of f equals the Fourier series of f.
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