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§1 Abstract Metric and Topological Spaces

§1.1 Review of Metric Spaces
Throughout fix 𝑋 a nonempty set.

↪Definition 1.1 (Metric) :  𝜌 : 𝑋 × 𝑋 → ℝ is called a metric, and thus (𝑋, 𝜌) a metric space, if
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,
• 𝜌(𝑥, 𝑦) ≥ 0,
• 𝜌(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦,
• 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥), and
• 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦).

↪Definition 1.2 (Norm):  Let 𝑋 a linear space. A function ‖ ⋅ ‖ : 𝑋 → [0, ∞) is called a norm if
for all 𝑢, 𝑣 ∈ 𝑋 and 𝛼 ∈ ℝ,
• ‖𝑢‖ = 0 ⇔ 𝑢 = 0,
• ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖, and
• ‖𝛼𝑢‖ = |𝛼| ‖𝑢‖.

Remark 1.1 : A norm induces a metric by 𝜌(𝑥, 𝑦) ≔ ‖𝑥 − 𝑦‖.

↪Definition 1.3 : Given two metrics 𝜌, 𝜎 on 𝑋, we say they are equivalent if ∃ 𝐶 > 0 such that 
1
𝐶𝜎(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑦) ≤ 𝐶𝜎(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑋. A similar definition follows for equivalence
of norms.

Given a metric space (𝑋, 𝜌), then, we have the notion of
• open balls 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) < 𝑟},
• open sets (subsets of 𝑋 with the property that for every 𝑥 ∈ 𝑋, there is a constant 𝑟 > 0 such

that 𝐵(𝑥, 𝑟) ⊆ 𝑋), closed sets, closures, and
• convergence.

↪Definition 1.4 (Convergence) :  {𝑥𝑛} ⊆ 𝑋 converges to 𝑥 ∈ 𝑋 if lim𝑛→∞ 𝜌(𝑥𝑛, 𝑥) = 0.

We have several (equivalent) notions, then, of continuity; via sequences, 𝜀 − 𝛿 definition, and by
pullbacks (inverse images of open sets are open).
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↪Definition 1.5 (Uniform Continuity) :  𝑓 : (𝑋, 𝜌) → (𝑌 , 𝜎) uniformly continuous if 𝑓  has a
“modulus of continuity”, i.e. there is a continuous function 𝜔 : [0, ∞) → [0, ∞) such that

𝜎(𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝜔(𝜌(𝑥1, 𝑥2))

for every 𝑥1, 𝑥2 ∈ 𝑋.

Remark 1.2 : For instance, we say 𝑓  Lipschitz continuous if there is a constant 𝐶 > 0 such that 
𝜔(⋅) = 𝐶(⋅). Let 𝛼 ∈ (0, 1). We say 𝑓  𝛼-Holder continuous if 𝜔(⋅) = 𝐶(⋅)𝛼 for some constant 𝐶.

↪Definition 1.6 (Completeness) :  We say (𝑋, 𝜌) complete if every Cauchy sequence in (𝑋, 𝜌)
converges to a point in 𝑋.

Remark 1.3 :  If (𝑋, 𝜌) complete and 𝐸 ⊆ 𝑋, then (𝐸, 𝜌) is complete iff 𝐸 closed in 𝑋.

§1.2 Compactness, Separability

↪Definition 1.7 (Open Cover, Compactness) :  {𝑋𝜆}𝜆∈Λ ⊆ 2𝑋, where 𝑋𝜆 open in 𝑋 and Λ an
arbitrary index set, an open cover of 𝑋 if for every 𝑥 ∈ 𝑋, ∃ 𝜆 ∈ Λ such that 𝑥 ∈ 𝑋𝜆.

𝑋 is compact if every open cover of 𝑋 admits a compact subcover. We say 𝐸 ⊆ 𝑋 compact if 
(𝐸, 𝜌) compact.

↪Definition 1.8 (Totally Bounded, 𝜀-nets) :  (𝑋, 𝜌) totally bounded if ∀ 𝜀 > 0, there is a finite
cover of 𝑋 of balls of radius 𝜀. If 𝐸 ⊆ 𝑋, an 𝜀-net of 𝐸 is a collection {𝐵(𝑥𝑖, 𝜀)}

𝑁
𝑖=1 such that 

𝐸 ⊆ ⋃𝑁
𝑖=1 𝐵(𝑥𝑖, 𝜀) and 𝑥𝑖 ∈ 𝑋 (note that 𝑥𝑖 need not be in 𝐸).

↪Definition 1.9 (Sequentially Compact) :  (𝑋, 𝜌) sequentially compact if every sequence in 𝑋
has a convergent subsequence whose limit is in 𝑋.

↪Definition 1.10 (Relatively/Pre- Compact) :  𝐸 ⊆ 𝑋 relatively compact if 𝐸 compact.

↪Theorem 1.1 : TFAE:
1. 𝑋 complete and totally bounded;
2. 𝑋 compact;
3. 𝑋 sequentially compact.
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Remark 1.4 :  𝐸 ⊆ 𝑋 relatively compact if every sequence in 𝐸 has a convergent subsequence.

Let 𝑓 : (𝑋, 𝜌) → (𝑌 , 𝜎) continuous with (𝑋, 𝜌) compact. Then,
• 𝑓(𝑋) compact in 𝑌 ;
• if 𝑌 = ℝ, the max and min of 𝑓  over 𝑋 are achieved;
• 𝑓  is uniformly continuous.

Let 𝐶(𝑋) ≔ {𝑓 : 𝑋 → ℝ | 𝑓 continuous} and ‖𝑓‖∞ ≔ max𝑥∈𝑋|𝑓(𝑥)| the sup (max, in this case)
norm. Then,

↪Theorem 1.2 :  Let (𝑋, 𝜌) compact. Then, (𝐶(𝑋), ‖ ⋅ ‖∞) is complete.

Proof. Let {𝑓𝑛} ⊆ 𝐶(𝑋) Cauchy with respect to ‖ ⋅ ‖∞. Then, there exists a
subsequence {𝑓𝑛𝑘

} such that for each 𝑘 ≥ 1, ‖𝑓𝑛𝑘+1
− 𝑓𝑛𝑘

‖∞ ≤ 2−𝑘 (to construct this
subsequence, let 𝑛1 ≥ 1 be such that ‖𝑓𝑛 − 𝑓𝑛1

‖∞ < 1
2  for all 𝑛 ≥ 𝑛1, which exists since 

{𝑓𝑛} Cauchy. Then, for each 𝑘 ≥ 1, define inductively 𝑛𝑘+1 such that 𝑛𝑘+1 > 𝑛𝑘 and 
‖𝑓𝑛 − 𝑓𝑛𝑘+1

‖∞ < 1
2𝑘+1  for each 𝑛 ≥ 𝑛𝑘+1. Then, for any 𝑘 ≥ 1, ‖𝑓𝑛𝑘+1

− 𝑓𝑛𝑘
‖∞ < 2−𝑘,

since 𝑛𝑘+1 > 𝑛𝑘.).

Let 𝑗 ∈ ℕ. Then, for any 𝑘 ≥ 1,

‖𝑓𝑛𝑘+𝑗
− 𝑓𝑛𝑘

‖∞ ≤ ∑
𝑘+𝑗−1

ℓ=𝑘
‖𝑓𝑛ℓ+1

− 𝑓𝑛ℓ
‖∞ ≤ ∑

ℓ
2−ℓ

and hence for each 𝑥 ∈ 𝑋, with 𝑐𝑘 ≔ 𝑓𝑛𝑘
(𝑥),

|𝑐𝑘+𝑗 − 𝑐𝑘| ≤ ∑
∞

ℓ=𝑘
2−ℓ.

The RHS is the tail of a converging series, and thus |𝑐𝑘+𝑗 − 𝑐𝑘| → 0 as 𝑘 → ∞ i.e. {𝑐𝑘} a
Cauchy sequence, in ℝ. (ℝ, | ⋅ |) complete, so lim𝑘→∞ 𝑐𝑘 ≕ 𝑓(𝑥) exists for each 𝑥 ∈ 𝑋.
So, for each 𝑥 ∈ 𝑋, we find

|𝑓𝑛𝑘
(𝑥) − 𝑓(𝑥)| ≤ ∑

∞

ℓ=𝑘
2−ℓ,

and since the RHS is independent of 𝑥, we may pass to the sup norm, and find

‖𝑓𝑛𝑘
− 𝑓‖∞ ≤ ∑

∞

ℓ=𝑘
2−ℓ,

with the RHS → 0 as 𝑘 → ∞. Hence, 𝑓𝑛𝑘
→ 𝑓  in 𝐶(𝑋) as 𝑘 → ∞. In other words, we

have uniform convergence of {𝑓𝑛𝑘
}. Each {𝑓𝑛𝑘

} continuous, and thus 𝑓  also
continuous, and thus 𝑓 ∈ 𝐶(𝑋).

It remains to show convergence along the whole sequence. Suppose otherwise.
Then, there is some 𝛼 > 0 and a subsequence {𝑓𝑛𝑗

} ⊆ {𝑓𝑛} such that ‖𝑓𝑛𝑗
− 𝑓‖∞ >
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𝛼 > 0 for every 𝑗 ≥ 1. Then, let 𝑘 be sufficiently large such that ‖𝑓 − 𝑓𝑛𝑘
‖∞ ≤ 𝛼

2 . Then,
for every 𝑗 ≥ 1 and 𝑘 sufficiently large,

‖𝑓𝑛𝑗
− 𝑓𝑛𝑘

‖∞ ≥ ‖𝑓𝑛𝑗
− 𝑓‖∞ − ‖𝑓 − 𝑓𝑛𝑘

‖∞

> 𝛼 −
𝛼
2

> 0,

which contradicts the Cauchy-ness of {𝑓𝑛}, completing the proof. ■

↪Definition 1.11 (Density/Separability) :  A set 𝐷 ⊆ 𝑋 is called dense in 𝑋 if for every
nonempty open subset 𝐴 ⊆ 𝑋, 𝐷 ∩ 𝐴 ≠ ⌀. We say 𝑋 separable if there is a countable dense
subset of 𝑋.

Remark 1.5 :  If 𝐴 dense in 𝑋, then 𝐴 = 𝑋.

↪Proposition 1.1 :  If 𝑋 compact, 𝑋 separable.

Proof. Since 𝑋 compact, it is totally bounded. So, for 𝑛 ∈ ℕ, there is some 𝐾𝑛 and 
{𝑥𝑖} ⊆ 𝑋 such that 𝑋 ⊆ ⋃𝐾𝑛

𝑖=1 𝐵(𝑥𝑖, 1
𝑛). Then, 𝐷 = ⋃∞

𝑛=1 ⋃𝐾𝑛
𝑖=1{𝑥𝑖} countable and dense

in 𝑋. ■

§1.3 Arzelà-Ascoli
The goal in this section is to find conditions for a sequence of functions {𝑓𝑛} ⊆ 𝐶(𝑋) to be

precompact, namely, to have a uniformly convergent subsequence.

↪Corollary 1.1 : Any Cauchy sequence converges if it has a convergent subsequence.

Proof. Let {𝑥𝑛} be a Cauchy sequence in a metric space (𝑋, 𝜌) with convergent
subsequence {𝑥𝑛𝑘

} which converges to some 𝑥 ∈ 𝑋. Fix 𝜀 > 0. Let 𝑁 ≥ 1 be such that
if 𝑚, 𝑛 ≥ 𝑁 , 𝜌(𝑥𝑛, 𝑥𝑚) < 𝜀

2 . Let 𝐾 ≥ 1 be such that if 𝑘 ≥ 𝐾, 𝜌(𝑥𝑛𝑘
, 𝑥) < 𝜀

2 . Let 𝑛, 𝑛𝑘 ≥
max{𝑁, 𝐾}, then

𝜌(𝑥, 𝑥𝑛) ≤ 𝜌(𝑥, 𝑥𝑛𝑘
) + 𝜌(𝑥𝑛𝑘

, 𝑥𝑛) <
𝜀
2

+
𝜀
2

= 𝜀.

■

↪Definition 1.12 (Equicontinuous) :  A family ℱ ⊆ 𝐶(𝑋) is called equicontinuous at 𝑥 ∈ 𝑋 if 
∀ 𝜀 > 0 there exists a 𝛿 = 𝛿(𝑥, 𝜀) > 0 such that if 𝜌(𝑥, 𝑥′) < 𝛿 then |𝑓(𝑥) − 𝑓(𝑥′)| < 𝜀 for every 
𝑓 ∈ ℱ.

Remark 1.6 : ℱ equicontinuous at 𝑥 iff every 𝑓 ∈ ℱ share the same modulus of continuity.
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↪Definition 1.13 (Pointwise/uniformly bounded):  {𝑓𝑛} pointwise bounded if ∀ 𝑥 ∈ 𝑋, 
∃ 𝑀(𝑥) > 0 such that |𝑓𝑛(𝑥)| ≤ 𝑀(𝑥) ∀ 𝑛, and uniformly bounded if such an 𝑀  exists
independent of 𝑥.

↪Lemma 1.1 (Arzelà-Ascoli Lemma):  Let 𝑋 separable and let {𝑓𝑛} ⊆ 𝐶(𝑋) be pointwise
bounded and equicontinuous. Then, there is a function 𝑓  and a subsequence {𝑓𝑛𝑘

} which
converges pointwise to 𝑓  on all of 𝑋.

Proof. Let 𝐷 = {𝑥𝑗}
∞
𝑗=1

⊆ 𝑋 be a countable dense subset of 𝑋. Since {𝑓𝑛} p.w.
bounded, {𝑓𝑛(𝑥1)} as a sequence of real numbers is bounded and so by the Bolzano-
Weierstrass (BW) Theorem there is a convergent subsequence {𝑓𝑛(1,𝑘)(𝑥1)}𝑘

 that
converges to some 𝑎1 ∈ ℝ. Consider now {𝑓𝑛(1,𝑘)(𝑥2)}𝑘

, which is again a bounded
sequence of ℝ and so has a convergent subsequence, call it {𝑓𝑛(2,𝑘)(𝑥2)}𝑘

 which
converges to some 𝑎2 ∈ ℝ. Note that {𝑓𝑛(2,𝑘)} ⊆ {𝑓𝑛(1,𝑘)}, so also 𝑓𝑛(2,𝑘)(𝑥1) → 𝑎1 as 
𝑘 → ∞. We can repeat this procedure, producing a sequence of real numbers {𝑎ℓ}, and
for each 𝑗 ∈ ℕ a subsequence {𝑓𝑛(𝑗,𝑘)}𝑘

⊆ {𝑓𝑛} such that 𝑓𝑛(𝑗,𝑘)(𝑥ℓ) → 𝑎ℓ for each 1 ≤
ℓ ≤ 𝑗. Define then

𝑓 : 𝐷 → ℝ, 𝑓(𝑥𝑗) ≔ 𝑎𝑗.

Consider now

𝑓𝑛𝑘
≔ 𝑓𝑛(𝑘,𝑘), 𝑘 ≥ 1,

the “diagonal sequence”, and remark that 𝑓𝑛𝑘
(𝑥𝑗) → 𝑎𝑗 = 𝑓(𝑥𝑗) as 𝑘 → ∞ for every 

𝑗 ≥ 1. Hence, {𝑓𝑛𝑘
}

𝑘
 converges to 𝑓  on 𝐷, pointwise.

We claim now that {𝑓𝑛𝑘
} converges on all of 𝑋 to some function 𝑓 : 𝑋 → ℝ,

pointwise. Put 𝑔𝑘 ≔ 𝑓𝑛𝑘
 for notational convenience. Fix 𝑥0 ∈ 𝑋, 𝜀 > 0, and let 𝛿 > 0 be

such that if 𝑥 ∈ 𝑋 such that 𝜌(𝑥, 𝑥0) < 𝛿, |𝑔𝑘(𝑥) − 𝑔𝑘(𝑥0)| < 𝜀
3  for every 𝑘 ≥ 1, which

exists by equicontinuity. Since 𝐷 dense in 𝑋, there is some 𝑥𝑗 ∈ 𝐷 such that 
𝜌(𝑥𝑗, 𝑥0) < 𝛿. Then, since 𝑔𝑘(𝑥𝑗) → 𝑓(𝑥𝑗) (pointwise), {𝑔𝑘(𝑥𝑗)}𝑘

 is Cauchy and so
there is some 𝐾 ≥ 1 such that for every 𝑘, ℓ ≥ 𝐾, |𝑔ℓ(𝑥𝑗) − 𝑔𝑘(𝑥𝑗)| < 𝜀

3 . And hence, for
every 𝑘, ℓ ≥ 𝐾,

|𝑔𝑘(𝑥0) − 𝑔ℓ(𝑥0)| ≤ |𝑔𝑘(𝑥0) − 𝑔𝑘(𝑥𝑗)| + |𝑔𝑘(𝑥𝑗) − 𝑔ℓ(𝑥𝑗)| + |𝑔ℓ(𝑥𝑗) − 𝑔ℓ(𝑥0)| < 𝜀,

so namely {𝑔𝑘(𝑥0)}𝑘 Cauchy as a sequence in ℝ. Since ℝ complete, then {𝑔𝑘(𝑥0)}𝑘 also
converges, to, say, 𝑓(𝑥0) ∈ ℝ. Since 𝑥0 was arbitrary, this means there is some function 
𝑓 : 𝑋 → ℝ such that 𝑔𝑘 → 𝑓  pointwise on 𝑋 as we aimed to show. ■
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↪Definition 1.14 (Uniformly Equicontinuous) :  ℱ ⊆ 𝐶(𝑋) is said to be uniformly
equicontinuous if for every 𝜀 < 0, there exists a 𝛿 > 0 such that ∀ 𝑥, 𝑦 ∈ 𝑋 with 𝜌(𝑥, 𝑦) < 𝛿, 
|𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 for every 𝑓 ∈ ℱ. That is, every function in ℱ has the same modulus of
continuity.

↪Proposition 1.2 (Sufficient Conditions for Uniform Equicontinuity) :
1. ℱ ⊆ 𝐶(𝑋) uniformly Lipschitz
2. ℱ ⊆ 𝐶(𝑋) ∩ 𝐶1(𝑋) has a uniform 𝐿∞ bound on the first derivative
3. ℱ ⊆ 𝐶(𝑋) uniformly Holder continuous
4. (𝑋, 𝜌) compact and ℱ equicontinuous

Proof.

1. If 𝐶 > 0 is such that |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶𝜌(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑋 and 𝑓 ∈ ℱ, then for 
𝜀 > 0, let 𝛿 = 𝜀

𝐶 , then if 𝜌(𝑥, 𝑦) ≤ 𝛿, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶𝛿 < 𝜀, and 𝛿 independent of 𝑥
(and 𝑓) since it only depends on 𝐶 which is independent of 𝑥, 𝑦, 𝑓 , etc.

3. Akin to 1.

■

↪Theorem 1.3 (Arzelà-Ascoli) :  Let (𝑋, 𝜌) a compact metric space and {𝑓𝑛} ⊆ 𝐶(𝑋) be a
uniformly bounded and (uniformly) equicontinuous family of functions. Then, {𝑓𝑛} is pre-
compact in 𝐶(𝑋), i.e. there exists {𝑓𝑛𝑘

} ⊆ {𝑓𝑛} such that 𝑓𝑛𝑘
 is uniformly convergent on 𝑋.

Proof. Since (𝑋, 𝜌) compact it is separable and so by the lemma there is a
subsequence {𝑓𝑛𝑘

} that converges pointwise on 𝑋. Denote by 𝑔𝑘 ≔ 𝑓𝑛𝑘
 for notational

convenience.

We claim {𝑔𝑘} uniformly Cauchy. Let 𝜀 > 0. By uniform equicontinuity, there is a 
𝛿 > 0 such that 𝜌(𝑥, 𝑦) < 𝛿 ⇒ |𝑔𝑘(𝑥) − 𝑔𝑘(𝑦)| < 𝜀

3 . Since 𝑋 compact it is totally
bounded so there exists {𝑥𝑖}

𝑁
𝑖=1 such that 𝑋 ⊆ ⋃𝑁

𝑖=1 𝐵(𝑥𝑖, 𝛿). For every 1 ≤ 𝑖 ≤ 𝑁 , 
{𝑔𝑘(𝑥𝑖)} converges by the lemma hence is Cauchy in ℝ. So, there exists a 𝐾𝑖 such that
for every 𝑘, ℓ ≥ 𝐾𝑖 |𝑔𝑘(𝑥𝑖) − 𝑔ℓ(𝑥𝑖)| ≤ 𝜀

3 . Let 𝐾 ≔ max{𝐾𝑖}. Then for every ℓ, 𝑘 ≤ 𝐾, 
|𝑔𝑘(𝑥𝑖) − 𝑔ℓ(𝑥𝑖)| ≤ 𝜀

3  for every 𝑖 = 1, …, 𝑁 . So, for all 𝑥 ∈ 𝑋, there is some 𝑥𝑖 such that 
𝜌(𝑥, 𝑥𝑖) < 𝛿, and so for every 𝑘, ℓ ≥ 𝐾,

|𝑔𝑘(𝑥) − 𝑔ℓ(𝑥)| ≤ |𝑔𝑘(𝑥) − 𝑔𝑘(𝑥𝑖)|

+ |𝑔𝑘(𝑥𝑖) − 𝑔ℓ(𝑥𝑖)|

+ |𝑔ℓ(𝑥𝑖) − 𝑔ℓ(𝑥)| < 𝜀,

the first and last follow by the equicontinuity and the second from the lemma. This
holds for every 𝑥 and thus ‖𝑔𝑘 − 𝑔ℓ‖∞ < 𝜀, so {𝑔𝑘} Cauchy in 𝐶(𝑋). But 𝐶(𝑋)
complete so converges in the space. ■
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Remark 1.7 :  If 𝐾 ⊆ 𝑋 a compact set, then 𝐾 bounded and closed.

↪Theorem 1.4 : Let (𝑋, 𝜌) compact and ℱ ⊆ 𝐶(𝑋). Then, ℱ a compact subspace of 𝐶(𝑋) iff 
ℱ closed, uniformly bounded, and (uniformly) equicontinuous.

Proof. (⇐) Let {𝑓𝑛} ⊆ ℱ. By Arzelà-Ascoli Theorem, there exists a subsequence 
{𝑓𝑛𝑘

} that converges uniformly to some 𝑓 ∈ 𝐶(𝑋). Since ℱ closed, 𝑓 ∈ ℱ and so ℱ
sequentially compact hence compact.

(⇒) ℱ compact so closed and bounded in 𝐶(𝑋). To prove equicontinuous, we argue
by contradiction. Suppose otherwise, that ℱ not-equicontinuous at some 𝑥 ∈ 𝑋. Then,
there is some 𝜀0 > 0 and {𝑓𝑛} ⊆ ℱ and {𝑥𝑛} ⊆ 𝑋 such that |𝑓𝑛(𝑥𝑛) − 𝑓𝑛(𝑥)| ≥ 𝜀0

while 𝜌(𝑥, 𝑥𝑛) < 1
𝑛 . Since {𝑓𝑛} bounded and ℱ compact, there is a subsequence {𝑓𝑛𝑘

}
that converges to 𝑓  uniformly. Let 𝐾 be such that ∀ 𝑘 ≥ 𝐾, ‖𝑓𝑛𝑘

− 𝑓‖∞ ≤ 𝜀0
3 . Then,

|𝑓(𝑥𝑛𝑘
) − 𝑓 | ≥ | |𝑓(𝑥𝑛𝑘

) − 𝑓𝑛𝑘
(𝑥𝑛𝑘

)| − |𝑓𝑛𝑘
(𝑥𝑛𝑘

) − 𝑓𝑛𝑘
(𝑥)| − |𝑓𝑛𝑘

(𝑥) − 𝑓(𝑥)| |

≥
𝜀0
3

,

while 𝜌(𝑥𝑛𝑘
, 𝑥) ≤ 1

𝑛𝑘
, so 𝑓  cannot be continuous at 𝑥, a contradiction. ■

§1.4 Baire Category Theorem

↪Definition 1.15 (Hollow/Nowhere Dense) :  We say a set 𝐸 ⊆ 𝑋 hollow if int(𝐸) = ⌀. We
say a set 𝐸 ⊆ 𝑋 nowhere dense if its closure is hollow, i.e. int(𝐸) = ⌀.

Remark 1.8 :  Notice that 𝐸 hollow ⇔ 𝐸𝑐 dense, since int(𝐸) = ⌀ ⇒ (int(𝐸))𝑐 = 𝐸𝑐 = 𝑋.

↪Theorem 1.5 (Baire Category Theorem):  Let 𝑋 be a complete metric space.

(a) Let {𝐹𝑛} a collection of closed hollow sets. Then, ⋃∞
𝑛=1 𝐹𝑛 also hollow.

(b) Let {𝒪𝑛} a collection of open dense sets. Then, ⋂∞
𝑛=1 𝒪𝑛 also dense.

Proof. Notice that (𝑎) ⇔ (𝑏) by taking complements. We prove (𝑏).

Put 𝐺 ≔ ⋂∞
𝑛=1 𝒪𝑛. Fix 𝑥 ∈ 𝑋 and 𝑟 > 0, then to show density of 𝐺 is to show 𝐺 ∩

𝐵(𝑥, 𝑟) ≠ ⌀.

Since 𝒪1 dense, then 𝒪1 ∩ 𝐵(𝑥, 𝑟) nonempty and in particular open. So, let 𝑥1 ∈ 𝑋
and 𝑟1 < 1

2  such that 𝐵(𝑥, 𝑟1) ⊆ 𝐵(𝑥, 2𝑟1) ⊆ 𝒪1 ∩ 𝐵(𝑥, 𝑟).

Similarly, since 𝒪2 dense, 𝒪2 ∩ 𝐵(𝑥1, 𝑟1) open and nonempty so there exists 𝑥2 ∈ 𝑋
and 𝑟2 < 2−2 such that 𝐵(𝑥2, 𝑟2) ⊆ 𝒪2 ∩ 𝐵(𝑥1, 𝑟1).
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Repeat in this manner to find 𝑥𝑛 ∈ 𝑋 with 𝑟𝑛 < 2−𝑛 such that 𝐵(𝑥𝑛, 𝑟𝑛) ⊆ 𝒪𝑛 ∩
𝐵(𝑥𝑛−1, 𝑟𝑛−1) for any 𝑛 ∈ ℕ. This creates a sequence of sets

𝐵(𝑥1, 𝑟1) ⊇ 𝐵(𝑥2, 𝑟2) ⊇ ⋯,

with 𝑟𝑛 → 0. Hence, the sequence of points {𝑥𝑛} Cauchy and since 𝑋 complete, 𝑥𝑗 →
𝑥0 ∈ 𝑋, so in particular

{𝑥0} = ⋂
∞

𝑛=1
𝐵(𝑥𝑛, 𝑟𝑛),

hence 𝑥0 ∈ 𝒪𝑛 for every 𝑛 and thus 𝐺 ∩ 𝐵(𝑥, 𝑟) nonempty. ■

↪Corollary 1.2 : Let 𝑋 complete and {𝐹𝑛} a sequence of closed sets in 𝑋. If 𝑋 = ⋃𝑛≥1 𝐹𝑛,
there is some 𝑛0 such that int(𝐹𝑛0

) ≠ ⌀.

Proof. If not, violates BCT since 𝑋 is not hollow in itself; int(𝑋) = 𝑋. ■

↪Corollary 1.3 :  Let 𝑋 complete and {𝐹𝑛} a sequence of closed sets in 𝑋. Then, ⋃∞
𝑛=1 𝜕𝐹𝑛

hollow.

Proof. We claim int(𝜕𝐹𝑛) = ⌀. Suppose not, then there exists some 𝐵(𝑥0, 𝑟) ⊆ 𝜕𝐹𝑛.
Then 𝑥0 ∈ 𝜕𝐹𝑛 but 𝐵(𝑥0, 𝑟) ∩ 𝐹 𝑐

𝑛 = ⌀, a contradiction. So, since 𝜕𝐹𝑛 closed and 𝜕𝐹𝑛 ∩
𝐵(𝑥0, 𝑟) = ⌀ for every such ball, by BCT ⋃∞

𝑛=1 𝜕𝐹𝑛 must be hollow. ■

1.4.1 Applications of Baire Category Theorem

↪Theorem 1.6 :  Let ℱ ⊂ 𝐶(𝑋) where 𝑋 complete. Suppose ℱ pointwise bounded. Then,
there exists a nonempty, open set 𝒪 ⊆ 𝑋 such that ℱ uniformly bounded on 𝒪.

Proof. Let

𝐸𝑛 ≔ {𝑥 ∈ 𝑋 : |𝑓(𝑥)| ≤ 𝑛 ∀ 𝑓 ∈ ℱ}

= ⋂
𝑓∈ℱ

{𝑥 : |𝑓(𝑥)| ≤ 𝑛}⏟⏟⏟⏟⏟⏟⏟
closed

.

Since ℱ pointwise bounded, for every 𝑥 ∈ 𝑋 there is some 𝑀𝑥 > 0 such that |𝑓(𝑥)| ≤
𝑀𝑥 for every 𝑓 ∈ ℱ. Hence, for every 𝑛 ∈ ℕ such that 𝑛 ≥ 𝑀𝑥, 𝑥 ∈ 𝐸𝑛 and thus 𝑋 =
⋃∞

𝑛=1 𝐸𝑛.

𝐸𝑛 closed and hence by the previous corollaries there is some 𝑛0 such that 
int(𝐸𝑛0

) ≠ ⌀ and hence there is some 𝑟 > 0 and 𝑥0 ∈ 𝑋 such that 𝐵(𝑥0, 𝑟) ⊆ 𝐸𝑛0
.

Then, for every 𝑥 ∈ 𝐵(𝑥0, 𝑟), |𝑓(𝑥)| ≤ 𝑛0 for every 𝑓 ∈ ℱ, which gives our desired non-
empty open set upon which ℱ uniformly bounded. ■
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↪Theorem 1.7 :  Let 𝑋 complete, and {𝑓𝑛} ⊆ 𝐶(𝑋) such that 𝑓𝑛 → 𝑓  pointwise on 𝑋. Then,
there exists a dense subset 𝐷 ⊆ 𝑋 such that {𝑓𝑛} equicontinuous on 𝐷 and 𝑓  continuous on 
𝐷.

Proof. For 𝑚, 𝑛 ∈ ℕ, let

𝐸(𝑚, 𝑛) ≔ {𝑥 ∈ 𝑋 : |𝑓𝑗(𝑥) − 𝑓𝑘(𝑥)| ≤
1
𝑚

∀ 𝑗, 𝑘 ≥ 𝑛}

= ⋂
𝑗,𝑘≥𝑛

{𝑥 : |𝑓𝑗(𝑥) − 𝑓𝑘(𝑥)| ≤
1
𝑚

}.

The union of the boundaries of these sets are hollow, hence 𝐷 ≔ (⋃𝑚,𝑛≥1 𝜕𝐸(𝑚, 𝑛))
𝑐

is dense. Then, if 𝑥 ∈ 𝐷 ∩ 𝐸(𝑚, 𝑛), then 𝑥 ∈ (𝜕𝐸(𝑚, 𝑛))𝑐 implies 𝑥 ∈ int(𝐸(𝑚, 𝑛)).

We claim {𝑓𝑛} equicontinuous on 𝐷. Let 𝑥0 ∈ 𝐷 and 𝜀 > 0. Let 1
𝑚 ≤ 𝜀

4 . Then, since 
{𝑓𝑛(𝑥0)} convergent it is therefore Cauchy (in ℝ). Hence, there is some 𝑁  such that 
|𝑓𝑗(𝑥0) − 𝑓𝑘(𝑥0)| ≤ 1

𝑚  for every 𝑗, 𝑘 ≥ 𝑁 , so 𝑥0 ∈ 𝐷 ∩ 𝐸(𝑚, 𝑁) hence 𝑥0 ∈
int(𝐸(𝑚, 𝑁)).

Let 𝐵(𝑥0, 𝑟) ⊆ 𝐸(𝑚, 𝑁). Since 𝑓𝑁  continuous at 𝑥0 there is some 𝛿 > 0 such that 𝛿 <
𝑟 and

|𝑓𝑁(𝑥) − 𝑓𝑁(𝑥0)| <
1
𝑚

∀ 𝑥 ∈ 𝐵(𝑥0, 𝛿),

and hence

|𝑓𝑗(𝑥) − 𝑓𝑗(𝑥0)| ≤ |𝑓𝑗(𝑥) − 𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓𝑁(𝑥0)| + |𝑓𝑁(𝑥0) − 𝑓𝑗(𝑥0)|

≤
3
𝑚

≤
3
4
𝜀,

for every 𝑥 ∈ 𝐵(𝑥0, 𝛿) and 𝑗 ≥ 𝑁 , where the first, last bounds come from Cauchy and
the middle from continuity of 𝑓𝑁 . Hence, we’ve show {𝑓𝑛} equicontinuous at 𝑥0 since 
𝛿 was independent of 𝑓 .

In particular, this also gives for every 𝑥 ∈ 𝐵(𝑥0, 𝛿) the limit

3
4
𝜀 > lim

𝑗→∞
|𝑓𝑗(𝑥) − 𝑓𝑗(𝑥0)| = |𝑓(𝑥) − 𝑓(𝑥0)|,

so 𝑓  continuous on 𝐷. ■

§1.5 Topological Spaces
Throughout, assume 𝑋 ≠ ⌀.
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↪Definition 1.16 (Topology):  Let 𝑋 ≠ ⌀. A topology 𝒯 on 𝑋 is a collection of subsets of 𝑋,
called open sets, such that
• 𝑋, ⌀ ∈ 𝒯;
• If {𝐸𝑛} ⊆ 𝒯, ⋂𝑁

𝑛=1 𝐸𝑛 ∈ 𝒯 (closed under finite intersections);
• If {𝐸𝑛} ⊆ 𝒯, ⋃𝑛 𝐸𝑛 ∈ 𝒯 (closed under arbitrary unions).

If 𝑥 ∈ 𝑋, a set 𝐸 ∈ 𝒯 containing 𝑥 is called a neighborhood of 𝑥.

↪Proposition 1.3 : 𝐸 ⊆ 𝑋 open ⇔ for every 𝑥 ∈ 𝐸, there is a neighborhood of 𝑥 contained in 
𝐸.

Proof. ⇒ is trivial by taking the neighborhood to be 𝐸 itself. ⇐ follows from the fact
that, if for each 𝑥 we let 𝒰𝑥 a neighborhood of 𝑥 contained in 𝐸, then

𝐸 = ⋃
𝑥∈𝐸

𝒰𝑥,

so 𝐸 open being a union of open sets. ■

⊛ Example 1.1 :  Every metric space induces a natural topology given by open sets under the
metric. The discrete topology is given by 𝒯 = 2𝑋 (and is actually induced by the discrete
metric), and is the largest topology. The trivial topology {⌀, 𝑋} is the smallest. The relative
topology defined on a subset 𝑌 ⊆ 𝑋 is given by 𝒯𝑌 ≔ {𝐸 ∩ 𝑌 : 𝐸 ∈ 𝒯}.

↪Definition 1.17 (Base) :  Given a topological space (𝑋, 𝒯), let 𝑥 ∈ 𝑋. A collection ℬ𝑥 of
neighborhoods of 𝑥 is called a base of 𝒯 at 𝑥 if for every neighborhood 𝒰 of 𝑥, there is a set 
𝐵 ∈ ℬ𝑥 such that 𝐵 ⊆ 𝒰.

We say a collection ℬ a base for all of 𝒯 if for every 𝑥 ∈ 𝑋, there is a base for 𝑥, ℬ𝑥 ⊆ ℬ.

↪Proposition 1.4 :  If (𝑋, 𝒯) a topological space, then ℬ ⊆ 𝒯 a base for 𝒯 ⇔ every nonempty
open set 𝒰 ∈ 𝒯 can be written as a union of elements of ℬ.

Proof. ⇒ If 𝒰 open, then for 𝑥 ∈ 𝒰 there is some basis element 𝐵𝑥 contained in 𝒰. So
in particular 𝒰 = ⋃𝑥∈𝒰 𝐵𝑥.

⇐ Let 𝑥 ∈ 𝒰 and ℬ𝑥 ≔ {𝐵 ∈ ℬ | 𝑥 ∈ 𝐵}. Then, for every neighborhood of 𝑥, there is
some 𝐵 in ℬ𝑥 such that 𝐵 ⊆ 𝒰 so ℬ𝑥 a base for 𝒯 at 𝑥. ■

Remark 1.9 :  A base ℬ defines a unique topology, {⌀, ∪ ℬ𝑥}.
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↪Proposition 1.5 :  ℬ ⊆ 2𝑋 a base for a topology on 𝑋 ⇔
• 𝑋 = ⋃𝐵∈ℬ 𝐵
• If 𝐵1, 𝐵2 ∈ ℬ and 𝑥 ∈ 𝐵1 ∩ 𝐵2, then there is a 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐵 ⊆ 𝐵1 ∩ 𝐵2.

Proof. (⇒) If ℬ a base, then 𝑋 open so 𝑋 = ∪𝐵 𝐵. If 𝐵1, 𝐵2 ∈ ℬ, then 𝐵1 ∩ 𝐵2 open
so there must exist some 𝐵 ⊆ 𝐵1 ∩ 𝐵2 in ℬ.

(⇐) Let

𝒯 = {𝒰 | ∀ 𝑥 ∈ 𝒰, ∃ 𝐵 ∈ ℬ with 𝑥 ∈ 𝐵 ⊆ 𝒰}.

One can show this a topology on 𝑋 with ℬ as a base. ■

↪Definition 1.18 :  If 𝒯1 ⊊ 𝒯2, we say 𝒯1 weaker/coarser and 𝒯2 stronger/finer.

Given a subset 𝑆 ⊆ 2𝑋, define

𝒯(𝑆) = ⋂ all topologies containing 𝑆 = unique weakest topology containing 𝑆

to be the topology generated by 𝑆.

↪Proposition 1.6 :  If 𝑆 ⊆ 2𝑋,

𝒯(𝑆) = ⋃{finite intersections of elts of 𝑆}.

We call 𝑆 a “subbase” for 𝒯(𝑆) (namely, we allow finite intersections of elements in 𝑆 to serve
as a base for 𝒯(𝑆)).

Proof. Let ℬ ≔ {𝑋, finite intersections of elements of 𝑆}. We claim this a base for 
𝒯(𝑆). ■

↪Definition 1.19 (Point of closure/accumulation point) :  If 𝐸 ⊆ 𝑋, 𝑥 ∈ 𝑋, 𝑥 is called a point
of closure if ∀ 𝒰𝑥, 𝒰𝑥 ∩ 𝐸 ≠ ⌀. The collection of all such sets is called the closure of 𝐸, denoted 
𝐸. We say 𝐸 closed if 𝐸 = 𝐸.

↪Proposition 1.7 :  Let 𝐸 ⊆ 𝑋, then
• 𝐸 closed,
• 𝐸 is the smallest closed set containing 𝐸,
• 𝐸 open ⇔ 𝐸𝑐 closed.

§1.6 Separation, Countability, Separability

↪Definition 1.20 :  A neighborhood of a set 𝐾 ⊆ 𝑋 is any open set containing 𝐾.
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↪Definition 1.21 (Notions of Separation):  We say (𝑋, 𝒯):

• Tychonoff Separable if ∀ 𝑥, 𝑦 ∈ 𝑋, ∃ 𝒰𝑥, 𝒰𝑦 such that 𝑦 ∉ 𝒰𝑥, 𝑥 ∉ 𝒰𝑦

• Hausdorff Separable if ∀ 𝑥, 𝑦 ∈ 𝑋 can be separated by two disjoint open sets i.e. ∃ 𝒰𝑥 ∩ 𝒰𝑦 =
⌀

• Normal if Tychonoff and in addition any 2 disjoint closed sets can be separated by disjoint
neighborhoods.

Remark 1.10 :  Metric space ⊆ normal space ⊆ Hausdorff space ⊆ Tychonoff space.

↪Proposition 1.8 :  Tychonoff ⇔ ∀ 𝑥 ∈ 𝑋, {𝑥} closed.

Proof. For every 𝑥 ∈ 𝑋,

{𝑥} closed ⇔ {𝑥}𝑐 open

⇔ ∀ 𝑦 ∈ {𝑥}𝑐, ∃ 𝒰𝑦 ⊆ {𝑥}𝑐

⇔ ∀ 𝑦 ≠ 𝑥, ∃ 𝒰𝑦 s.t. 𝑥 ∉ 𝒰𝑦,

and since this holds for every 𝑥, 𝑋 Tychonoff. ■

↪Proposition 1.9 :  Every metric space normal.

Proof. Define, for 𝐹 ⊆ 𝑋, the function

dist(𝐹 , 𝑥) ≔ inf{𝜌(𝑥, 𝑥′) | 𝑥′ ∈ 𝐹}.

Notice that if 𝐹  closed and 𝑥 ∉ 𝐹 , then dist(𝐹 , 𝑥) > 0 (since 𝐹 𝑐 open so there exists
some 𝐵(𝑥, 𝜀) ⊆ 𝐹 𝑐 so 𝜌(𝑥, 𝑥′) ≥ 𝜀 for every 𝑥′ ∈ 𝐹 ). Let 𝐹1, 𝐹2 be closed disjoint sets,
and define

𝒪1 ≔ {𝑥 ∈ 𝑋 | dist(𝐹1, 𝑥) < dist(𝐹2, 𝑥)},

𝒪2 ≔ {𝑥 ∈ 𝑋 | dist(𝐹1, 𝑥) > dist(𝐹2, 𝑥)}.

Then, 𝐹1 ⊆ 𝒪1, 𝐹2 ⊆ 𝒪2, and 𝒪1 ∩ 𝒪2 = ⌀. If we show 𝒪1, 𝒪2 open, we’ll be done.

Let 𝑥 ∈ 𝒪1 and 𝜀 > 0 such that dist(𝐹1, 𝑥) + 𝜀 ≤ dist(𝐹2, 𝑥). I claim that 𝐵(𝑥, 𝜀
5) ⊆

𝒪1. Let 𝑦 ∈ 𝐵(𝑥, 𝜀
5). Then,
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dist(𝐹2, 𝑦) ≥ 𝜌(𝑦, 𝑦′) −
𝜀
5

for some 𝑦′ ∈ 𝐹2

≥ 𝜌(𝑥, 𝑦′) − 𝜌(𝑥, 𝑦) +
𝜀
5

reverse triangle inequality

≥ dist(𝐹2, 𝑥) −
2𝜀
5

≥ dist(𝐹1, 𝑥) + 𝜀 −
2𝜀
5

≥ 𝜌(𝑥, 𝑦) +
2𝜀
5

for some 𝑦 ∈ 𝐹1

≥ 𝜌(𝑦, 𝑦) − 𝜌(𝑦, 𝑥) +
2𝜀
5

reverse triangle inequality

≥ 𝜌(𝑦, 𝑦) −
𝜀
5

+
2𝜀
5

≥ dist(𝐹1, 𝑦) +
𝜀
5

> dist(𝐹1, 𝑦),

hence, 𝑦 ∈ 𝒪1 and thus 𝒪1 open. Similar proof follows for 𝒪2. ■

↪Proposition 1.10 : Let 𝑋 Tychonoff. Then 𝑋 normal ⇔ ∀ 𝐹 ⊆ 𝑋 closed and neighborhood 𝒰
of 𝐹 , there exists an open set 𝒪 such that

𝐹 ⊆ 𝒪 ⊆ 𝒪 ⊆ 𝒰.

This is called the “nested neighborhood property” of normal spaces.

Proof. (⇒) Let 𝐹  closed and 𝒰 a neighborhood of 𝐹 . Then, 𝐹  and 𝒰𝑐 closed disjoint
sets so by normality there exists 𝒪, 𝒱 disjoint open neighborhoods of 𝐹 , 𝒰𝑐

respectively. So, 𝒪 ⊆ 𝒱𝑐 hence 𝒪 ⊆ 𝒱𝑐 = 𝒱𝑐 and thus

𝐹 ⊆ 𝒪 ⊆ 𝒪 ⊆ 𝒱𝑐 ⊆ 𝒰.

(⇐) Let 𝐴, 𝐵 be disjoint closed sets. Then, 𝐵𝑐 open and moreover 𝐴 ⊆ 𝐵𝑐. Hence, there
exists some open set 𝒪 such that 𝐴 ⊆ 𝒪 ⊆ 𝒪 ⊆ 𝐵𝑐, and thus 𝐵 ⊆ 𝒪𝑐. Then, 𝒪 and 𝒪𝑐

are disjoint open neighborhoods of 𝐴, 𝐵 respectively so 𝑋 normal. ■

↪Definition 1.22 (Separable) :  A space 𝑋 is called separable if it contains a countable dense
subset.

↪Definition 1.23 (1st, 2nd Countable) :  A topological space (𝑋, 𝒯) is called

• 1st countable if there is a countable base at each point; and
• 2nd countable if there is a countable base for all of 𝒯.
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⊛ Example 1.2 : Every metric space is first countable; for 𝑥 ∈ 𝑋 let ℬ𝑥 = {𝐵(𝑥, 1
𝑛) | 𝑛 ∈ ℕ}.

↪Proposition 1.11 :  Every 2nd countable space is separable.

↪Definition 1.24 (Convergence) :  Let {𝑥𝑛} ⊆ 𝑋. Then, we say 𝑥𝑛 → 𝑥 in 𝒯 if for every
neighborhood 𝒰𝑥, there exists an 𝑁  such that ∀ 𝑛 ≥ 𝑁 , 𝑥𝑛 ∈ 𝒰𝑥.

Remark 1.11 : In general spaces, such a limit may not be unique. For instance, under the trivial
topology, the only nonempty neighborhood is the whole space, so every sequence converges
to every point in the space.

↪Proposition 1.12 : Let (𝑋, 𝒯) be Hausdorff. Then, all limits are unique.

Proof. Suppose otherwise, that 𝑥𝑛 → both 𝑥 and 𝑦. If 𝑥 ≠ 𝑦, then since 𝑋 Hausdorff
there are disjoint neighborhoods 𝒰𝑥, 𝒰𝑦 containing 𝑥, 𝑦. But then 𝑥𝑛 cannot be on both 
𝒰𝑥 and 𝒰𝑦 for sufficiently large 𝑛, contradiction. ■

↪Proposition 1.13 : Let 𝑋 be 1st countable and 𝐸 ⊆ 𝑋. Then, 𝑥 ∈ 𝐸 ⇔ there exists {𝑥𝑗} ⊆ 𝐸
such that 𝑥𝑗 → 𝑥.

Proof. (⇒) Let ℬ𝑥 = {𝐵𝑗} be a base for 𝑋 at 𝑥 ∈ 𝐸. Wlog, 𝐵𝑗 ⊇ 𝐵𝑗+1 for every 𝑗 ≥ 1
(by replacing with intersections, etc if necessary). Hence, 𝐵𝑗 ∩ 𝐸 ≠ ⌀ for every 𝑗. Let 
𝑥𝑗 ∈ 𝐵𝑗 ∩ 𝐸, then by the nesting property 𝑥𝑗 → 𝑥 in 𝒯.

(⇐) Suppose otherwise, that 𝑥 ∉ 𝐸. Let {𝑥𝑗} ∈ 𝐸𝑗. Then, 𝐸𝑐 open, and contains 𝑥.
Then, 𝐸𝑐 a neighborhood of 𝑥 but does not contain any 𝑥𝑗 so 𝑥𝑗 ↛ 𝑥. ■

§1.7 Continuity and Compactness

↪Definition 1.25 :  Let (𝑋, 𝒯), (𝑌 , 𝒮) be two topological spaces. Then, a function 𝑓 : 𝑋 → 𝑌  is
said to be continuous at 𝑥0 if for every neighborhood 𝒪 of 𝑓(𝑥0) there exists a neighborhood 
𝒰(𝑥0) such that 𝑓(𝒰) ⊆ 𝒪. We say 𝑓  continuous on 𝑋 if it is continuous at every point in 𝑋.

↪Proposition 1.14 :  𝑓  continuous ⇔ ∀ 𝒪 open in 𝑌 , 𝑓−1(𝒪) open in 𝑋.
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↪Definition 1.26 (Weak Topology):  Consider ℱ ≔ {𝑓𝜆 : 𝑋 → 𝑋𝜆}𝜆∈Λ where 𝑋, 𝑋𝜆

topological spaces. Then, let

𝑆 ≔ {𝑓−1
𝜆 (𝒪𝜆) | 𝑓𝜆 ∈ ℱ, 𝒪𝜆 ∈ 𝑋𝜆} ⊆ 𝑋.

We say that the topology 𝒯(𝑆) generated by 𝑆 is the weak topology for 𝑋 induced by the family
ℱ.

↪Proposition 1.15 :  The weak topology is the weakest topology in which each 𝑓𝜆 continuous
on 𝑋.

⊛ Example 1.3 :  The key example of the weak topology is given by the product topology.
Consider {𝑋𝜆}𝜆∈Λ a collection of topological spaces. We can defined a “natural” topology on
the product 𝑋 ≔ ∏𝜆∈Λ 𝑋𝜆 by consider the weak topology induced by the family of projection
maps, namely, if 𝜋𝜆 : 𝑋 → 𝑋𝜆 a coordinate-wise projection and ℱ = {𝜋𝜆 : 𝜆 ∈ Λ}, then we say
the weak topology induced by ℱ is the product topology on 𝑋. In particular, a base for this
topology is given, by previous discussions,

ℬ = {⋂
𝑛

𝑗=1
𝜋−1

𝜆𝑗
(𝒪𝑗)} = {∏

𝜆∈Λ
𝒰𝜆 : 𝒰𝜆 open and all by finitely many 𝑈𝜆′𝑠 = 𝑋𝜆}.

↪Definition 1.27 (Compactness) :  A space 𝑋 is said to be compact if every open cover of 𝑋
admits a finite subcover.

↪Proposition 1.16 :
• Closed subsets of compact spaces are compact
• 𝑋 compact ⇔ if {𝐹𝑘} ⊆ 𝑋-nested and closed, ∩∞

𝑘=1 𝐹𝑘 ≠ ⌀.
• Continuous images of compact sets are compact
• Continuous real-valued functions on a compact topological space achieve their min, max.

↪Proposition 1.17 :  Let 𝐾 compact be contained in a Hausdorff space 𝑋. Then, 𝐾 closed in 
𝑋.

Proof. We show 𝐾𝑐 open. Let 𝑦 ∈ 𝐾𝑐. Then for every 𝑥 ∈ 𝐾, there exists disjoint open
sets 𝒰𝑥𝑦, 𝒪𝑥𝑦 containing 𝑦, 𝑥 respectively. Then, it follows that {𝒪𝑥𝑦}𝑥∈𝐾

 an open cover
of 𝐾, and since 𝐾 compact there must exist some finite subcover, 𝐾 ⊆ ⋃𝑁

𝑖=1 𝒪𝑥𝑖𝑦. Let 
𝐸 ≔ ⋂𝑁

𝑖=1 𝒰𝑥𝑖𝑦. Then, 𝐸 is an open neighborhood of 𝑦 with 𝐸 ∩ 𝒪𝑥𝑖𝑦 = ⌀ for every 
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𝑖 = 1, …𝑁 . Thus, 𝐸 ⊆ ⋂𝑁
𝑖=1 𝒪𝑐

𝑥𝑖𝑦 = (⋃𝑁
𝑖=1 𝒪𝑥𝑖𝑦)

𝑐
⊆ 𝐾𝑐 so since 𝑦 was arbitrary 𝐾𝑐

open. ■

↪Definition 1.28 (Sequential Compactness) :  We say (𝑋, 𝒯) sequentially compact if every
sequence in 𝑋 has a converging subsequence with limit contained in 𝑋.

↪Proposition 1.18 :  Let (𝑋, 𝒯) second countable. Then, 𝑋 compact ⇔ sequentially compact.

Proof. (⇒) Let {𝑥𝑘} ⊆ 𝑋 and put 𝐹𝑛 ≔ {𝑥𝑘 | 𝑘 ≥ 𝑛}. Then, {𝐹𝑛} defines a sequence
of closed and nested subsets of 𝑋 and, since 𝑋 compact, ⋂∞

𝑛=1 𝐹𝑛 nonempty. Let 𝑥0 in
this intersection. Since 𝑋 2nd and so in particular 1st countable, let {𝐵𝑗} a (wlog
nested) countable base at 𝑥0. 𝑥0 ∈ 𝐹𝑛 for every 𝑛 ≥ 1 so each 𝐵𝑗 must intersect some 
𝐹𝑛. Let 𝑛𝑗 be an index such that 𝑥𝑛𝑗

∈ 𝐵𝑗. Then, if 𝒰 a neighborhood of 𝑥0, there exists
some 𝑁  such that 𝐵𝑗 ⊆ 𝒰 for every 𝑗 ≥ 𝑁  and thus {𝑥𝑛𝑗

} ⊆ 𝐵𝑁 ⊆ 𝒰, so 𝑥𝑛𝑗
→ 𝑥0 in 

𝑋.

(⇐) Remark that since 𝑋 second countable, every open cover of 𝑋 certainly has a
countable subcover by intersecting a given cover with our countable basis. So, assume
we have a countable cover 𝑋 ⊆ ⋃∞

𝑛=1 𝒪𝑛 and suppose towards a contradiction that no
finite subcover exists. Then, for every 𝑛 ≥ 1, there exists some 𝑚(𝑛) ≥ 𝑛 such that 
𝒪𝑚(𝑛) \ ⋃𝑛

𝑖=1 𝒪𝑖 ≠ ⌀. Let 𝑥𝑛 in this set for every 𝑛 ≥ 1. Since 𝑋 sequentially compact,
there exists a convergent subsequence {𝑥𝑛𝑘

} ⊆ {𝑥𝑛} such that 𝑥𝑛𝑘
→ 𝑥0 in 𝑋, so there

exists some 𝒪𝑁  such that 𝑥0 ∈ 𝒪𝑁 . But by construction, 𝑥𝑛𝑘
∉ 𝒪𝑁  if 𝑛𝑘 ≥ 𝑁 , and we

have a contradiction. ■

↪Theorem 1.8 : If 𝑋 compact and Hausdorff, 𝑋 normal.

Proof. We show that any closed set 𝐹  and any point 𝑥 ∉ 𝐹  can be separated by
disjoint open sets. Then, the proof in the more general case follows.

For each 𝑦 ∈ 𝑋, 𝑋 is Hausdorff so there exists disjoint open neighborhoods 𝒪𝑥𝑦 and 
𝒰𝑥𝑦 of 𝑥, 𝑦 respectively. Then, {𝒰𝑥𝑦 | 𝑦 ∈ 𝐹} defines an open cover of 𝐹 . Since 𝐹
closed and thus, being a subset of a compact space, compact, there exists a finite
subcover 𝐹 ⊆ ⋃𝑁

𝑖=1 𝒰𝑥𝑦𝑖
. Put 𝒩 ≔ ⋂𝑁

𝑖=1 𝒪𝑥𝑦𝑖
. This is an open set containing 𝑥, with 

𝒩 ∩ ⋃𝑁
𝑖=1 𝒰𝑥𝑦𝑖

= ⌀ hence 𝐹  and 𝑥 separated by 𝒩, ⋃𝑁
𝑖=1 𝒰𝑥𝑦𝑖

. ■

§1.8 Connected Topological Spaces

↪Definition 1.29 (Separate) :  2 non-empty sets 𝒪1, 𝒪2 separate 𝑋 if 𝒪1, 𝒪2 disjoint and 𝑋 =
𝒪1 ∪ 𝒪2.

↪Definition 1.30 (Connected): We say 𝑋 connected if it cannot be separated.
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Remark 1.12 :  Note that if 𝑋 can be separated, then 𝒪1, 𝒪2 are closed as well as open, being
complements of each other.

↪Proposition 1.19 :  Let 𝑓 : 𝑋 → 𝑌  continuous. Then, if 𝑋 connected, so is 𝑓(𝑋).

Proof. Suppose otherwise, that 𝑓(𝑋) = 𝒪1 ⊔ 𝒪2 for nonempty, open, disjoint 𝒪1, 𝒪2.
Then, 𝑋 = 𝑓−1(𝒪1) ⊔ 𝑓−1(𝒪2), and each of these inverse images remain nonempty and
open in 𝑋, so this a contradiction to the connectedness of 𝑋. ■

Remark 1.13 :  On ℝ, 𝐶 ⊆ ℝ connected ⇔ an interval ⇔ convex.

↪Definition 1.31 (Intermediate Value Property) :  We say 𝑋 has the intermediate value
property (IVP) if ∀ 𝑓 ∈ 𝐶(𝑋), 𝑓(𝑋) an interval.

↪Proposition 1.20 :  𝑋 has IVP ⇔ 𝑋 connected.

Proof. (⇐) If 𝑋 connected, 𝑓(𝑋) connected in ℝ hence an interval.

(⇒) Suppose otherwise, that 𝑋 = 𝒪1 ⊔ 𝒪2. Then define the function 𝑓 : 𝑋 → ℝ by 
𝑥 ↦ {1 if 𝑥∈𝒪2

0 if 𝑥∈𝒪1
. Then, for every 𝐴 ⊆ ℝ,

𝑓−1(𝐴) =

⎩{
{{
⎨
{{
{⎧⌀ if {0, 1} ⊈ 𝐴

𝒪1 if 0 ∈ 𝐴
𝒪2 if 1 ∈ 𝐴
𝑋 if {0, 1} ⊆ 𝐴

,

which are all open sets, hence 𝑓  continuous. But 𝑓(𝑋) = {0, 1} which is not an
interval, hence the IVP fails and so 𝑋 must be connected. ■

↪Definition 1.32 (Arcwise/Path Connected):  𝑋 arc connected/path connected if ∀ 𝑥, 𝑦 ∈ 𝑋,
there exists a continuous function 𝑓 : [0, 1] → 𝑋 such that 𝑓(0) = 𝑥, 𝑓(1) = 𝑦.

↪Proposition 1.21 :  Arc connected ⇒ connected.

Proof. Suppose otherwise, 𝑋 = 𝒪1 ⊔ 𝒪2. Let 𝑥 ∈ 𝒪1, 𝑦 ∈ 𝒪2 and define a continuous
function 𝑓 : [0, 1] → 𝑋 such that 𝑓(0) = 𝑥 and 𝑓(1) = 𝑦. Then, 𝑓−1(𝒪𝑖) each open,
nonempty and disjoint for 𝑖 = 1, 2, but

𝑓−1(𝒪1) ⊔ 𝑓−1(𝒪2) = [0, 1],

a contradiction to the connectedness of [0, 1]. ■
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§1.9 Urysohn’s Lemma and Urysohn’s Metrization Theorem
We present the main lemma of this section first, but need more tools before proving it.

↪Lemma 1.2 (Urysohn's) : Let 𝐴, 𝐵 ⊆ 𝑋 closed and disjoint subsets of a normal space 𝑋.
Then, ∀ [𝑎, 𝑏] ⊆ ℝ, there exists a continuous function 𝑓 : [𝑎, 𝑏] → ℝ such that 𝑓(𝑋) ⊆ [𝑎, 𝑏], 
𝑓|𝐴 = 𝑎 and 𝑓|𝐵 = 𝑏.

Remark 1.14 : We have a partial converse of this statement as well:

↪Proposition 1.22 :  Let 𝑋 Tychonoff and suppose 𝑋 satisfies the properties of Urysohn’s
Lemma. Then, 𝑋 normal.

Proof. Let 𝐴, 𝐵 be closed nonempty disjoint subsets. Let 𝑓 : 𝑋 → ℝ continuous such
that 𝑓|𝐴 = 0, 𝑓|𝐵 = 1 and 0 ≤ 𝑓 ≤ 1. Let 𝐼1, 𝐼2 be two disjoint open intervals in ℝ with 
0 ∈ 𝐼1 and 1 ∈ 𝐼2. Then, 𝑓−1(𝐼1) open and contains 𝐴, and 𝑓−1(𝐼2) open and contains 
𝐵. Moreover, 𝑓−1(𝐼1) ∩ 𝑓−1(𝐼2) = ⌀; hence, 𝑓−1(𝐼1), 𝑓−1(𝐼2) disjoint open
neighborhoods of 𝐴, 𝐵 respectively, so indeed 𝑋 normal. ■

↪Definition 1.33 (Normally Ascending):  Let (𝑋, 𝒯) a topological space and Λ ⊆ ℝ. A
collection of open sets {𝒪𝜆}𝜆∈Λ is said to be normally ascending if ∀ 𝜆1, 𝜆2 ∈ Λ,

𝒪𝜆1
⊆ 𝒪𝜆2

if 𝜆1 < 𝜆2.

↪Lemma 1.3 :  Let Λ ⊆ (𝑎, 𝑏) a dense subset, and let {𝒪𝜆}𝜆∈Λ a normally ascending collection
of subsets of 𝑋. Let 𝑓 : 𝑋 → ℝ defined such that

𝑓(𝑥) =
⎩{
⎨
{⎧𝑏 if 𝑥 ∈ (⋃𝜆∈Λ 𝒪𝜆)

𝑐

inf{𝜆 ∈ Λ | 𝑥 ∈ 𝒪𝜆} else
.

Then, 𝑓  continuous.

Proof. We claim 𝑓−1(−∞, 𝑐) and 𝑓−1(𝑐, ∞) open for every 𝑐 ∈ ℝ. Since such sets
define a subbase for ℝ, it suffices to prove continuity on these sets. We show just the
first for convenience. Notice that since 𝑓(𝑥) ∈ [𝑎, 𝑏], if 𝑐 ∈ (𝑎, 𝑏) then 𝑓−1(−∞, 𝑐) =
𝑓−1[𝑎, 𝑐), so really it suffices to show that 𝑓−1[𝑎, 𝑐) open to complete the proof.

Suppose 𝑥 ∈ 𝑓−1([𝑎, 𝑐]) so 𝑎 ≤ 𝑓(𝑥) < 𝑐. Let 𝜆 ∈ Λ be such that 𝑎 < 𝜆 < 𝑓(𝑥). Then, 
𝑥 ∉ 𝒪𝜆. Let also 𝜆′ ∈ Λ such that 𝑓(𝑥) < 𝜆′ < 𝑐. By density of Λ, there exists a 𝜀 > 0
such that 𝑓(𝑥) + 𝜀 ∈ Λ, so in particular

𝒪𝑓(𝑥)+𝜀 ⊆ 𝒪𝜆′ ⇒ 𝑥 ∈ 𝒪𝜆′ ,

1.9 Urysohn’s Lemma and Urysohn’s Metrization Theorem 19



by nesting. So, repeating this procedure, we find

𝑓−1([𝑎, 𝑐)) ⊆ ⋃
𝑎≤𝜆<𝜆′<𝑐

𝒪𝜆′ \ 𝒪𝜆,

noticing the set on the right is open. By similar reasoning, the opposite inclusion holds
and we have equality. Hence, 𝑓  continuous. ■

↪Lemma 1.4 : Let 𝑋 normal, 𝐹 ⊆ 𝑋 closed, and 𝒰 a neighborhood of 𝐹 . Then, for any 
(𝑎, 𝑏) ⊆ ℝ, there exists a dense subset Λ ⊆ (𝑎, 𝑏) and a normally ascending collection {𝒪𝜆}𝜆∈Λ
such that

𝐹 ⊆ 𝒪𝜆 ⊆ 𝒪𝜆 ⊆ 𝒰, ∀ 𝜆 ∈ Λ.

Remark 1.15 :  This is essentially a generalization of the nested neighborhood property, and
indeed the proof essentially just uses this property repeatedly to construct the collection 
{𝒪𝜆}.

Proof. Without loss of generality, we assume (𝑎, 𝑏) = (0, 1), for the two intervals are
homeomorphic, i.e. the function 𝑓 : (0, 1) → ℝ, 𝑓(𝑥) ≔ 𝑎(1 − 𝑥) + 𝑏𝑥 is continuous,
invertible with continuous inverse and with 𝑓(0) = 𝑎, 𝑓(1) = 𝑏 so a homeomorphism.

Let

Λ ≔ {
𝑚
2𝑛 | 𝑚, 𝑛 ∈ ℕ | 1 ≤ 𝑚 ≤ 2𝑛−1} = ⋃

𝑛∈ℕ
{

𝑚
2𝑛 | 𝑚 ∈ ℕ, 1 ≤ 𝑚 ≤ 2𝑛−1}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕Λ𝑛

,

which is clearly dense in (0, 1). We need now to define our normally ascending
collection. We do so by defining on each Λ1 and proceding inductively.

For Λ1, since 𝑋 normal, let 𝒪1/2 be such that 𝐹 ⊆ 𝒪1/2 ⊆ 𝒪1/2 ⊆ 𝒰, which exists by
the nested neighborhood property.

For Λ2 = {1
4 , 3

4}, we use the nested neighborhood property again, but first with 𝐹  as
the closed set and 𝒪1/2 an open neighborhood of it, and then with 𝒪1/2 as the closed
set and 𝒰 an open neighborhood of it. In this way, we find

𝐹 ⊆ 𝒪1/4 ⊆ 𝒪1/4 ⊆ 𝒪1/2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
nested nbhd

⊆
nested nbhd

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝒪1/2 ⊆ 𝒪3/4 ⊆ 𝒪3/4 ⊆ 𝒰.

We repeat in this manner over all of Λ, in the end defining a normally ascending
collection {𝒪𝜆}𝜆∈Λ. ■

Proof (Of Urysohn’s Lemma, Lem. 1.2) . Let 𝐹 = 𝐴 and 𝒰 = 𝐵𝑐 as in the previous
lemma Lem. 1.4. Then, there is some dense subset Λ ⊆ (𝑎, 𝑏) and a normally ascending
collection {𝒪𝜆}𝜆∈Λ such that 𝐴 ⊆ 𝒪𝜆 ⊆ 𝒪𝜆 ⊆ 𝐵𝑐 for every 𝜆 ∈ Λ. Let 𝑓(𝑥) as in the
previous previous lemma, Lem. 1.3. Then, if 𝑥 ∈ 𝐵, 𝐵 ⊆ (⋃𝜆∈Λ 𝒪𝜆)

𝑐
 and so 𝑓(𝑥) = 𝑏.
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Otherwise if 𝑥 ∈ 𝐴, then 𝑥 ∈ ⋂𝜆∈Λ 𝒪𝜆 and thus 𝑓(𝑥) = inf{𝜆 ∈ Λ} = 𝑎. By the first
lemma, 𝑓  continuous, so we are done. ■

↪Theorem 1.9 (Urysohn's Metrization Theorem):  Let 𝑋 be a second countable topological
space. Then, 𝑋 is metrizable (that is, there exists a metric on 𝑋 that induces the topology) if
and only if 𝑋 normal.

Proof. (⇒) We have already showed, every metric space is normal.

(⇐) Let {𝒰𝑛} be a countable basis for 𝒯 and put

𝐴 ≔ {(𝑛, 𝑚) ∈ ℕ × ℕ | 𝒰𝑛 ⊆ 𝒰𝑚}.

By Urysohn’s lemma, for each (𝑛, 𝑚) ∈ 𝐴 there is some continuous function 𝑓𝑛,𝑚 :
𝑋 → ℝ such that 𝑓𝑛,𝑚 is 1 on 𝒰𝑐

𝑚 and 0 on 𝒰𝑛 (these are disjoint closed sets). For 
𝑥, 𝑦 ∈ 𝑋, define

𝜌(𝑥, 𝑦) ≔ ∑
(𝑛,𝑚)∈𝐴

1
2𝑛+𝑚 |𝑓𝑛,𝑚(𝑥) − 𝑓𝑛,𝑚(𝑦)|.

The absolute valued term is ≤ 2, so this function will always be finite. Moreover, one
can verify that it is indeed a metric on 𝑋. It remains to show that it induces the same
topology; it suffices to compare bases of the two.

Let 𝑥 ∈ 𝒰𝑚. We wish to show there exists 𝐵𝜌(𝑥, 𝜀) ⊆ 𝒰𝑚. {𝑥} is closed in 𝑋 being
normal, so there exists some 𝑛 such that

{𝑥} ⊆ 𝒰𝑛 ⊆ 𝒰𝑛 ⊆ 𝒰𝑚,

so (𝑛, 𝑚) ∈ 𝐴 and so 𝑓𝑛,𝑚(𝑥) = 0. Let 𝜀 = 1
2𝑛+𝑚 . Then, if 𝜌(𝑥, 𝑦) < 𝜀, it must be

1
2𝑛+𝑚 > ∑

(𝑛′,𝑚′)∈𝐴

1
2𝑛′+𝑚′ |𝑓𝑛′,𝑚′(𝑥) − 𝑓𝑛′,𝑚′(𝑦)|

≥
1

2𝑛+𝑚 |𝑓𝑛,𝑚(𝑥)⏟
=0

− 𝑓𝑛,𝑚(𝑦)|

=
1

2𝑛+𝑚 |𝑓𝑛,𝑚(𝑦)|,

so |𝑓𝑛,𝑚(𝑦)| < 1 and thus 𝑦 ∉ 𝒰𝑐
𝑚 so 𝑦 ∈ 𝒰𝑚. It follow that 𝐵𝜌(𝑥, 𝜀) ⊆ 𝒰𝑚, and so every

open set in 𝑋 is open with respect to the metric topology.

Conversely, if 𝐵𝜌(𝑥, 𝜀) some open ball in the metric topology, then notice that 𝑦 ↦
𝜌(𝑥, 𝑦) for fixed 𝑦 a continuous function, and thus (𝜌(𝑥, ⋅))−1(−𝜀, 𝜀) an open set in 𝒯
containing 𝑥. But this set also just equal to 𝐵𝜌(𝑥, 𝜀), hence 𝐵𝜌(𝑥, 𝜀) open in 𝒯. We
conclude the two topologies are equal, completing the proof. ■

Remark 1.16 :  Recall metric ⇒ first countable hence not first countable ⇒ not metrizable.
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§1.10 Stone-Weierstrass Theorem
We need to use the following theorem, which we’ll prove later.

↪Theorem 1.10 (Weierstrass Approximation Theorem):  Let 𝑓 : [𝑎, 𝑏] → ℝ continuous. Then,
for every 𝜀 > 0, there exists a polynomial 𝑝(𝑥) such that ‖𝑓 − 𝑝‖∞ < 𝜀.

↪Definition 1.34 (Algebra, Separation of Points) :  We call a subset 𝒜 ⊆ 𝐶(𝑋) an algebra if it is
a linear subspace that is closed under multiplication (that is, 𝑓, 𝑔 ∈ 𝒜 ⇒ 𝑓 ⋅ 𝑔 ∈ 𝒜).

We say 𝒜 separates points in 𝑋 if for every 𝑥, 𝑦 ∈ 𝑋, there exists an 𝑓 ∈ 𝒜 such that 𝑓(𝑥) ≠
𝑓(𝑦).

↪Theorem 1.11 (Stone-Weierstrass) :  Let 𝑋 be a compact Hausdorff space. Suppose 𝒜 ⊆
𝐶(𝑋) an algebra that separates points and contains constant functions. Then, 𝒜 dense in 
𝐶(𝑋).

We tacitly assume the conditions of the theorem in the following lemmas as as not to restate
them.

↪Lemma 1.5 : For every 𝐹 ⊆ 𝑋 closed, and every 𝑥0 ∈ 𝐹 𝑐, there exists a neighborhood 𝒰(𝑥0)
such that 𝐹 ∩ 𝒰 = ⌀ and ∀ 𝜀 > 0 there is some ℎ ∈ 𝒜 such that ℎ < 𝜀 on 𝒰, ℎ > 1 − 𝜀 on 𝐹 ,
and 0 ≤ ℎ ≤ 1 on 𝑋.

In particular, 𝒰 is independent of choice of 𝜀.

Proof. Our first claim is that for every 𝑦 ∈ 𝐹 , there is a 𝑔𝑦 ∈ 𝒜 such that 𝑔𝑦(𝑥0) = 0
and 𝑔𝑦(𝑦) > 0, and moreover 0 ≤ 𝑔𝑦 ≤ 1. Since 𝒜 separates points, there is an 𝑓 ∈ 𝒜
such that 𝑓(𝑥0) ≠ 𝑓(𝑦). Then, let

𝑔𝑦(𝑥) ≔ [
𝑓(𝑥) − 𝑓(𝑥0)
‖𝑓 − 𝑓(𝑥)‖∞

]
2

.

Then, every operation used in this new function keeps 𝑔𝑦 ∈ 𝒜. Moreover one readily
verifies it satisfies the desired qualities. In particular since 𝑔𝑦 continuous, there is a
neighborhood 𝒪𝑦 such that 𝑔𝑦|𝒪𝑦

> 0. Hence, we know that 𝐹 ⊆ ⋃𝑦∈𝐹 𝒪𝑦, but 𝐹  closed
and so compact, hence there exists a finite subcover i.e. some 𝑛 ≥ 1 and finite sequence
{𝑦𝑖}

𝑛
𝑖=1 such that 𝐹 ⊆ ⋃𝑛

𝑖=1 𝒪𝑦𝑖
. Let for each 𝑦𝑖 𝑔𝑦𝑖

∈ 𝒜 with the properties from above,
and consider the “averaged” function

𝑔(𝑥) ≔
1
𝑛

∑
𝑛

𝑖=1
𝑔𝑦𝑖

(𝑥) ∈ 𝒜.
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Then, 𝑔(𝑥0) = 0, 𝑔 > 0 on 𝐹  and 0 ≤ 𝑔 ≤ 1 on all of 𝑋. Hence, there is some 1 > 𝑐 > 0
such that 𝑔 ≥ 𝑐 on 𝐹 , and since 𝑔 continuous at 𝑥0 there exists some 𝒰(𝑥0) such that 
𝑔 < 𝑐

2  on 𝒰, with 𝒰 ∩ 𝐹 = ⌀. So, 0 ≤ 𝑔|𝒰 < 𝑐
2 , and 1 ≥ 𝑔|𝐹 ≥ 𝑐. To complete the proof,

we need (0, 𝑐
2) ↔ (0, 𝜀) and (𝑐, 1) ↔ (1 − 𝜀, 1). By the Weierstrass Approximation

Theorem, there exists some polynomial 𝑝 such that 𝑝|[0,𝑐
2] < 𝜀 and 𝑝|[𝑐,1] > 1 − 𝜀. Then

if we let ℎ(𝑥) ≔ (𝑝 ∘ 𝑔)(𝑥), this is just a polynomial of 𝑔 hence remains in 𝒜, and we
find

ℎ|𝒰 < 𝜀, ℎ|𝐹 > 1 − 𝜀, 0 ≤ ℎ ≤ 1.

■

↪Lemma 1.6 :  For every disjoint closed set 𝐴, 𝐵 and 𝜀 > 0, there exists ℎ ∈ 𝒜 such that ℎ|𝐴 <
𝜀, ℎ|𝐵 > 1 − 𝜀, and 0 ≤ ℎ ≤ 1 on 𝑋.

Proof. Let 𝐹 = 𝐵 as in the last lemma. Let 𝑥 ∈ 𝐴, then there exists 𝒰𝑥 ∩ 𝐵 = ⌀ and
for every 𝜀 > 0, ℎ|𝒰𝑥

< 𝜀 and ℎ|𝐵 > 1 − 𝜀 and 0 ≤ ℎ ≤ 1. Then 𝐴 ⊆ ⋃𝑥∈𝐴 𝒰𝑥. Since 𝐴
closed so compact, 𝐴 ⊆ ⋃𝑁

𝑖=1 𝒰𝑥𝑖
. Let 𝜀0 < 𝜀 such that (1 − 𝜀0

𝑁 )𝑁 > 1 − 𝜀. For each 𝑖, let
ℎ𝑖 ∈ 𝒜 such that ℎ𝑖|𝒰𝑥𝑖

< 𝜀0
𝑁 , ℎ𝑖|𝐵 > 1 − 𝜀0

𝑁  and 0 ≤ ℎ𝑖 ≤ 1. Then, put

ℎ(𝑥) = ℎ1(𝑥) ⋅ ℎ2(𝑥)⋯ℎ𝑁(𝑥) ∈ 𝒜.

Then, 0 ≤ ℎ ≤ 1 and ℎ|𝐵 > (1 − 𝜀0
𝑁 )𝑁 > 1 − 𝜀. Then, for every 𝑥 ∈ 𝐴, 𝑥 ∈ 𝒰𝑥𝑖

 so 
ℎ𝑖(𝑥) < 𝜀0

𝑁  and ℎ𝑖(𝑥) ≤ 𝑖 so ℎ(𝑥) < 𝜀0
𝑁  so ℎ|𝐴 < 𝜀0

𝑁 < 𝜀. ■

Proof. (Of Stone-Weierstrass) WLOG, assume 𝑓 ∈ 𝐶(𝑋), 0 ≤ 𝑓 ≤ 1, by replacing with

𝑓(𝑥) =
𝑓(𝑥) + ‖𝑓‖∞
‖𝑓 + ‖𝑓‖∞‖∞

if necessary, since if there exists a 𝑔 ∈ 𝒜 such that ‖𝑓 − 𝑔‖∞ < 𝜀, then using the
properties of 𝒜 we can find some appropriate 𝑔 ∈ 𝒜 such that ‖𝑓 − 𝑔‖∞ < 𝜀.

Fix 𝑛 ∈ ℕ, and consider the set {0, 1
𝑛 , 2

𝑛 , …, 𝑛−1
𝑛 , 1}, and let for 1 ≤ 𝑗 ≤ 𝑛

𝐴𝑗 ≔ {𝑥 ∈ 𝑋 | 𝑓(𝑥) ≤
𝑗 − 1

𝑛
}, 𝐵𝑗 ≔ {𝑥 ∈ 𝑋 | 𝑓(𝑥) ≥

𝑗
𝑛

},

which are both closed and disjoint. By the lemma, there exists 𝑔𝑗 ∈ 𝒜 such that

𝑔𝑗|𝐴𝑗
<

1
𝑛

, 𝑔𝑗|𝐵𝑗
> 1 −

1
𝑛

,

with 0 ≤ 𝑔𝑗 ≤ 1. Let then

𝑔(𝑥) ≔
1
𝑛

∑
𝑛

𝑗=1
𝑔𝑗(𝑥) ∈ 𝒜.

We claim then ‖𝑓 − 𝑔‖∞ ≤ 3
𝑛 , which proves the claim by taking 𝑛 sufficiently large.

Suppose 𝑘 ∈ [1, 𝑛]. If 𝑓(𝑥) ≤ 𝑘
𝑛 , then
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𝑔𝑗(𝑥) = {< 1
𝑛 if 𝑗 − 1 ≥ 𝑘

≤ 1 else
,

so

𝑔(𝑥) =
1
𝑛

∑
𝑛

𝑗=1
𝑔𝑗(𝑥) =

1
𝑛

[∑
𝑘

𝑗=1
𝑔𝑗(𝑥) + ∑

𝑛

𝑗=𝑘+1
𝑔𝑗(𝑥)] ≤

1
𝑛

[𝑘 +
𝑛 − 𝑘

𝑛
] ≤

𝑘
𝑛

+
𝑛 − 𝑘
𝑛2 ≤

𝑘 + 1
𝑛

.

Similarly if 𝑓(𝑥) ≥ 𝑘−1
𝑛 , then

𝑔𝑗(𝑥) = {> 1 − 1
𝑛 if 𝑗 ≤ 𝑘 − 1

≥ 0 else
,

so

𝑔(𝑥) ≥
1
𝑛

∑
𝑘−1

𝑗=1
(1 −

1
𝑛

) ≥
1
𝑛

(𝑘 − 1)(1 −
1
𝑛

) =
𝑘 − 1

𝑛
−

𝑘 − 1
𝑛2 ≥

𝑘 − 2
𝑛

.

So, we’ve show that if 𝑘−1
𝑛 ≤ 𝑓(𝑥) ≤ 𝑘

𝑛 , then 𝑘−2
𝑛 ≤ 𝑔(𝑥) ≤ 𝑘+1

𝑛 , and so repeating this
argument and applying triangle inequality we conclude ‖𝑓 − 𝑔‖∞ ≤ 3

𝑛 . ■

↪Theorem 1.12 (Borsuk):  𝑋 compact, Hausdorff and 𝐶(𝑋) separable ⇔ 𝑋 is metrizable.

§2 Functional Analysis
Here, we will primarily work with a normed vector space (nvs). Moreover, we usually work

in:

↪Definition 2.1 (Banach Space) :  A normed vector space (𝑋, ‖ ⋅ ‖) is a Banach space if it is
complete as a metric space under the norm-induced metric.

§2.1 Introduction to Linear Operators

↪Definition 2.2 (Linear Operator, Operator Norm):  Let 𝑋, 𝑌  be vector spaces. Then, a map 
𝑇 : 𝑋 → 𝑌  is called linear if ∀ 𝑥, 𝑦 ∈ 𝑋, 𝛼, 𝛽 ∈ ℝ, 𝑇 (𝛼𝑥 + 𝛽𝑦) = 𝛼𝑇(𝑥) + 𝛽𝑇 (𝑦).

If 𝑋, 𝑌  normed vector spaces, we say 𝑇  is a bounded linear operator if 𝑇  linear and the
operator norm

‖𝑇 ‖ = ‖𝑇 ‖ℒ(𝑋,𝑌 ) = sup
𝑥∈𝑋,

‖𝑥‖𝑋 ≤1

‖𝑇𝑥‖𝑌 < ∞

is finite. Then, we put

ℒ(𝑋, 𝑌 ) ≔ {bounded linear operators 𝑋 → 𝑌 }.

We’ll also write ℒ(𝑋) ≔ ℒ(𝑋, 𝑋).

2.1 Introduction to Linear Operators 24



↪Theorem 2.1 (Bounded iff Continuous) :  If 𝑋, 𝑌  are nvs, 𝑇 ∈ ℒ(𝑋, 𝑌 ) iff and only if 𝑇  is
continuous, i.e. if 𝑥𝑛 → 𝑥 in 𝑋, then 𝑇𝑥𝑛 → 𝑇𝑥 in 𝑌 .

Proof. If 𝑇 ∈ ℒ(𝑋, 𝑌 ),

‖𝑇𝑥𝑛 − 𝑇𝑥‖𝑌 = ‖𝑇 (𝑥𝑛 − 𝑥)‖𝑌

= ‖𝑥𝑛 − 𝑥‖𝑋 ⋅ ‖
𝑇 (𝑥𝑛 − 𝑥)
‖𝑥𝑛 − 𝑥‖𝑋

‖𝑌

≤ ‖𝑇 ‖⏟
<∞

‖𝑥𝑛 − 𝑥‖𝑋 → 0,

hence 𝑇  continuous. Conversely, if 𝑇  continuous, then by linearity 𝑇0 = 0, so by
continuity, there is some 𝛿 > 0 such that ‖𝑇𝑥‖𝑌 < 1 if ‖𝑥‖𝑋 < 𝛿. For 𝑥 ∈ 𝑋 nonzero, let 
𝜆 = 𝛿

‖𝑥‖𝑋
. Then, ‖𝜆𝑥‖𝑋 ≤ 𝛿 so ‖𝑇 (𝜆𝑥)‖𝑌 < 1, i.e. ‖ 𝑇 (𝑥)‖𝑌 𝛿

‖𝑥‖𝑋
< 1. Hence,

‖𝑇 ‖ = sup
𝑥∈𝑋:𝑥≠0

‖ 𝑇 (𝑥)‖𝑌
‖𝑥‖𝑋

≤
1
𝛿
,

so 𝑇 ∈ ℒ(𝑋, 𝑌 ). ■

↪Proposition 2.1 (Properties of ℒ(𝑋, 𝑌 )) :  If 𝑋, 𝑌  nvs, ℒ(𝑋, 𝑌 ) a nvs, and if 𝑋, 𝑌  Banach,
then so is ℒ(𝑋, 𝑌 ).

Proof. (a) For 𝑇 , 𝑆 ∈ ℒ(𝑋, 𝑌 ), 𝛼, 𝛽 ∈ ℝ, and 𝑥 ∈ 𝑋, then

‖(𝛼𝑇 + 𝛽𝑆)(𝑥)‖𝑌 ≤ |𝛼| ‖𝑇𝑥‖𝑌 + |𝛽| ‖𝑆𝑥‖𝑌

≤ |𝛼| ‖𝑇 ‖ ‖𝑥‖𝑋 + |𝛽| ‖𝑇 ‖ ‖𝑥‖𝑋.

Dividing both sides by ‖𝑥‖, we find ‖𝛼𝑇 + 𝛽𝑆‖ < ∞. The same argument gives the
triangle inequality on ‖ ⋅ ‖. Finally, 𝑇 = 0 iff ‖𝑇𝑥‖𝑌 = 0 for every 𝑥 ∈ 𝑋 iff ‖𝑇 ‖ = 0.

(b) Let {𝑇𝑛} ⊆ ℒ(𝑋, 𝑌 ) be a Cauchy sequence. We have that

‖𝑇𝑛𝑥 − 𝑇𝑚𝑥‖𝑌 ≤ ‖𝑇𝑛 − 𝑇𝑚‖ ‖𝑥‖𝑋,

so in particular the sequence {𝑇𝑛(𝑥)} a Cauchy sequence in 𝑌  for any 𝑥 ∈ 𝑋. 𝑌
complete so this sequence converges, say 𝑇𝑛(𝑥) → 𝑦∗ in 𝑌 . Let 𝑇 (𝑥) ≔ 𝑦∗ for each 𝑥.
We claim that 𝑇 ∈ ℒ(𝑋, 𝑌 ) and that 𝑇𝑛 → 𝑇  in the operator norm. We check:

𝛼𝑇(𝑥1) + 𝛽𝑇 (𝑥2) = lim
𝑛→∞

𝛼𝑇𝑛(𝑥1) + lim
𝑛→∞

𝛽𝑇𝑛(𝑥2)

= lim
𝑛→∞

[𝑇𝑛(𝛼𝑥1) + 𝑇𝑛(𝛽𝑥2)]

= lim
𝑛→∞

𝑇𝑛(𝛼𝑥1 + 𝛽𝑥2)

= 𝑇 (𝛼𝑥1 + 𝛽𝑥2),

so 𝑇  linear.
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Let now 𝜀 > 0 and 𝑁  such that for every 𝑛 ≥ 𝑁  and 𝑘 ≥ 1 such that ‖𝑇𝑛 − 𝑇𝑛+𝑘‖ <
𝜀
2 . Then,

‖𝑇𝑛(𝑥) − 𝑇𝑛+𝑘(𝑥)‖𝑌 = ‖(𝑇𝑛 − 𝑇𝑛+𝑘)(𝑥)‖
𝑌

≤ ‖𝑇𝑛 − 𝑇𝑛+𝑘‖‖𝑥‖𝑋

<
𝜀
2
‖𝑥‖𝑋.

Letting 𝑘 → ∞, we find that

‖𝑇𝑛(𝑥) − 𝑇 (𝑥)‖𝑌 <
𝜀
2

‖𝑥‖𝑋,

so normalizing both sides by ‖𝑥‖𝑋, we find ‖𝑇𝑛 − 𝑇‖ < 𝜀
2 , and we have convergence. ■

↪Definition 2.3 (Isomorphism):  We say 𝑇 ∈ ℒ(𝑋, 𝑌 ) an isomorphism if 𝑇  is bĳective and 
𝑇 −1 ∈ ℒ(𝑌 , 𝑋). In this case we write 𝑋 ≃ 𝑌 , and say 𝑋, 𝑌  isomorphic.

§2.2 Finite versus Infinite Dimensional
If 𝑋 a nvs, then we can look for a basis 𝛽 such that span(𝛽) = 𝑋. If 𝛽 = {𝑒1, …, 𝑒𝑛} has no

proper subset spanning 𝑋, then we say dim(𝑋) = 𝑛.

As we saw on homework, any two norms on a finite dimensional space are equivalent.

↪Corollary 2.1 :  (a) Any two nvs of the same finite dimension are isomorphic.

(b) Any finite dimensional space is complete, and so any finite dimensional subspace is
closed.

(c) 𝐵(0, 1) is compact in a finite dimensional space.

Proof. (a) Let (𝑋, ‖ ⋅ ‖) have finite dimension 𝑛. Then, we claim (𝑋, ‖ ⋅ ‖) ≃ (ℝ𝑛, | ⋅ |).
Let {𝑒1, …, 𝑒𝑛} be a basis for 𝑋. Let 𝑇 : ℝ𝑛 → 𝑋 given by

𝑇 (𝑥) = ∑
𝑛

𝑖=1
𝑥𝑖𝑒𝑖,

where 𝑥 = (𝑥1, …, 𝑥𝑛) ∈ ℝ𝑛, which is clearly linear. Moreover,

𝑇𝑥 = 0 ⇔ ∑
𝑛

𝑖=1
𝑥𝑖𝑒𝑖 = 0 ⇔ 𝑥 = 0,

so 𝑇  injective, and so being linear between two spaces of the same dimension gives 𝑇
surjective. It remains to check boundedness.

First, we claim 𝑥 ↦ ‖𝑇 (𝑥)‖ is a norm on ℝ𝑛. ‖𝑇 (𝑥)‖ = 0 ⇔ 𝑥 = 0 by the injectivity of 
𝑇 , and the properties ‖𝑇 (𝜆𝑥)‖ = |𝜆| ‖𝑇𝑥‖ and ‖𝑇 (𝑥 + 𝑦)‖ ≤ ‖𝑇𝑥‖ + ‖𝑇𝑦‖ follow from
linearity of 𝑇  and the fact that ‖ ⋅ ‖ already a norm. Hence, ‖𝑇 (⋅)‖ a norm on ℝ𝑛 and so
equivalent to | ⋅ |, i.e. there exists constants 𝐶1, 𝐶2 > 0 such that
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𝐶1|𝑥| ≤ ‖𝑇 (𝑥)‖ ≤ 𝐶2|𝑥|,

for every 𝑥 ∈ 𝑋. It follows that ‖𝑇 ‖ (operator norm now) is bounded.

Letting 𝑇 (𝑥) = 𝑦, we find similarly

𝐶1′‖𝑦‖ ≤ |𝑇 −1(𝑦)| ≤ 𝐶2′ ‖𝑦‖,

so ‖𝑇 −1‖ also bounded. Hence, we’ve shown any 𝑛-dimensional space is isomorphic to
ℝ𝑛, so by transitivity of isomorphism any two 𝑛-dimensional spaces are isomorphic.

(b) The property of completeness is preserved under isomorphism, so this follows
from the previous statement since ℝ𝑛 complete.

(c) Consider 𝐵(0, 1) ⊆ 𝑋. Let 𝑇  be an isomorphism 𝑋 → ℝ𝑛. Then, for 𝑥 ∈ 𝐵(0, 1), 
‖𝑇𝑥‖ ≤ ‖𝑇 ‖ < ∞, so 𝑇(𝐵(0, 1)) is a bounded subset of ℝ𝑛, and since 𝑇  and its inverse
continuous, 𝑇(𝐵(0, 1)) closed in ℝ𝑛. Hence, 𝑇(𝐵(0, 1)) closed and bounded hence
compact in ℝ𝑛, so since 𝑇 −1 continuous 𝑇 −1(𝑇(𝐵(0, 1))) = 𝐵(0, 1) also compact, in 
𝑋. ■

↪Theorem 2.2 (Riesz's) :  If 𝑋 is an nvs, then 𝐵(0, 1) is compact if and only if 𝑋 if finite
dimensional.

↪Lemma 2.1 (Riesz's) :  Let 𝑌 ⊊ 𝑋 be a closed nvs (and 𝑋 a nvs). Then for every 𝜀 > 0, there
exists 𝑥0 ∈ 𝑋 with ‖𝑥0‖ = 1 and such that

‖𝑥0 − 𝑦‖𝑋 > 𝜀 ∀ 𝑦 ∈ 𝑌 .

Proof. Fix 𝜀 > 0. Since 𝑌 ⊊ 𝑋, let 𝑥 ∈ 𝑌 𝑐. 𝑌  closed so 𝑌 𝑐 open and hence there exists
some 𝑟 > 0 such that 𝐵(𝑥, 𝑟) ∩ 𝑌 = ⌀. In other words,

inf{‖𝑥 − 𝑦′‖ | 𝑦′ ∈ 𝑌 } > 𝑟 > 0.

Let then 𝑦1 ∈ 𝑌  be such that

𝑟 < ‖𝑥 − 𝑦1‖ < 𝜀−1𝑟,

and take

𝑥0 ≔
𝑥 − 𝑦1

‖𝑥 − 𝑦1‖𝑋
.

Then, 𝑥0 a unit vector, and for every 𝑦 ∈ 𝑌 ,

𝑥0 − 𝑦 =
𝑥 − 𝑦1

‖𝑥 − 𝑦1‖
− 𝑦

=
1

‖𝑥 − 𝑦1‖
[𝑥 − 𝑦1 − 𝑦 ‖𝑥 − 𝑦1‖]

=
1

‖𝑥 − 𝑦1‖
[𝑥 − 𝑦′],
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where 𝑦′ = 𝑦1 + 𝑦 ‖𝑥 − 𝑦1‖ ∈ 𝑌 , since it is closed under vector addition. Hence

‖𝑥0 − 𝑦‖ =
1

‖𝑥 − 𝑦1‖
‖𝑥 − 𝑦′‖ >

𝜀
𝑟

‖𝑥 − 𝑦′‖ > 𝜀,

for every 𝑦 ∈ 𝑌 . ■

Proof. (Of Thm. 2.2) (⇐) By the previous corollary.

(⇒) Suppose 𝑋 infinite dimensonal. We will show 𝐵 ≔ 𝐵(0, 1) not compact.

Claim: there exists {𝑥𝑖}
∞
𝑖=1 ⊆ 𝐵 such that ‖𝑥𝑖 − 𝑥𝑗‖ > 1

2  if 𝑖 ≠ 𝑗.

We proceed by induction. Let 𝑥1 ∈ 𝐵. Suppose {𝑥1, …, 𝑥𝑛} ⊆ 𝐵 are such that ‖𝑥𝑖 −
𝑥𝑗‖ > 1

2  . Let 𝑋𝑛 = span{𝑥1, …, 𝑥𝑛}, so 𝑋𝑛 finite dimensional hence 𝑋𝑛 ⊊ 𝑋. By the
previous lemma (taking 𝜀 = 1

2 ) there is then some 𝑥𝑛+1 ∈ 𝐵 such that ‖𝑥1 − 𝑥𝑛+1‖ > 1
2

for every 𝑖 = 1, …, 𝑛. We can thus inductively build such a sequence {𝑥𝑖}
∞
𝑖=1. Then,

every subsequence of this sequence cannot be Cauchy so 𝐵 is not sequentially compact
and thus 𝐵 is not compact. ■

§2.3 Open Mapping and Closed Graph Theorems

↪Definition 2.4 (𝑇  open):  If 𝑋, 𝑌  toplogical spaces and 𝑇 : 𝑋 → 𝑌  a linear operator, 𝑇  is
said to be open if for every 𝒰 ⊆ 𝑋 open, 𝑇 (𝒰) open in 𝑌 .

In particular if 𝑋, 𝑌  are metric spaces (or nvs), then 𝑇  is open iff the image of every open
ball in 𝑋 containes an open ball in 𝑌 , i.e. ∀ 𝑥 ∈ 𝑋, 𝑟 > 0 there exists 𝑟′ > 0 such that 
𝑇 (𝐵𝑋(𝑥, 𝑟)) ⊇ 𝐵𝑌 (𝑇𝑥, 𝑟′). Moreover, by translating/scaling appropriately, it suffices to prove
for 𝑥 = 0, 𝑟 = 1.

↪Theorem 2.3 (Open Mapping Theorem):  Let 𝑋, 𝑌  be Banach spaces and 𝑇 : 𝑋 → 𝑌  a
bounded linear operator. If 𝑇  is surjective, then 𝑇  is open.

Proof. Its enough to show that there is some 𝑟 > 0 such that 𝑇 (𝐵𝑋(0, 1)) ⊇ 𝐵𝑌 (0, 𝑟).

Claim: ∃ 𝑐 > 0 such that 𝑇 (𝐵𝑋(0, 1)) ⊇ 𝐵𝑌 (0, 2𝑐).

Put 𝐸𝑛 = 𝑛 ⋅ 𝑇 (𝐵𝑋(0, 1)) for 𝑛 ∈ ℕ. Since 𝑇  surjective, ⋃∞
𝑛=1 𝐸𝑛 = 𝑌 . Each 𝐸𝑛

closed, so by the Baire Category Theorem there exists some index 𝑛0 such that 𝐸𝑛0
 has

nonempty interior, i.e.

int(𝑇 (𝐵𝑋(0, 1))) ≠ ⌀,

where we drop the index by homogeneity. Pick then 𝑐 > 0 and 𝑦0 ∈ 𝑌  such that 
𝐵𝑌 (𝑦0, 4𝑐) ⊆ 𝑇 (𝐵𝑋(0, 1)). We claim then that 𝐵𝑌 (−𝑦0, 4𝑐) ⊆ 𝑇 (𝐵𝑋(0, 1)) as well.
Indeed, if 𝐵𝑌 (𝑦0, 4𝑐) ⊆ 𝑇 (𝐵𝑋(0, 1)), then ∀ 𝑦 ∈ 𝑌  with ‖𝑦0 − 𝑦‖𝑌 < 4𝑐, Then, ‖ − 𝑦0 +
𝑦‖𝑌 < 4𝑐 so −𝑦 ∈ 𝐵𝑌 (−𝑦0, 4𝑐). But 𝑦 = lim𝑛→∞ 𝑇 (𝑥𝑛) and so −𝑦 = lim𝑛→∞ 𝑇 (−𝑥𝑛).
Since {−𝑥𝑛} ⊆ 𝐵𝑋(0, 1), this implies −𝑦 ∈ 𝑇(𝐵𝑋(0, 1)) hence the “subclaim” holds.

Now, for any 𝑦 ∈ 𝐵𝑌 (0, 4𝑐), ‖𝑦‖ ≤ 4𝑐 so
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𝑦 = 𝑦0 −𝑦0 + 𝑦⏟
∈𝐵𝑌 (−𝑦0,4𝑐)

=
∈𝐵(𝑦0,4𝑐)

⏞𝑦0 + 𝑦 − 𝑦0.

Therefore,

𝐵𝑌 (0, 4𝑐) = 𝐵𝑌 (𝑦0 − 𝑦0, 4𝑐)

⊆ 𝐵𝑌 (𝑦0, 4𝑐) + 𝐵𝑌 (−𝑦0, 4𝑐)

𝑇 (𝐵𝑋(0, 1)) + 𝑇 (𝐵𝑋(0, 1)) = 2𝑇 (𝐵𝑋(0, 1)),

(where summation of two sets is the vector addition of all the elements in the sets),
hence 𝐵𝑌 (0, 2𝑐) ⊆ 𝑇 (𝐵𝑋(0, 1)).

We claim next that 𝑇 (𝐵𝑋(0, 1)) ⊇ 𝐵𝑌 (0, 𝑐). Choose 𝑦 ∈ 𝑌  with ‖𝑦‖𝑌 < 𝑐. By the first
claim, 𝐵𝑌 (0, 𝑐) ⊆ 𝑇(𝐵𝑋(0, 1

2)), so for every 𝜀 > 0 there is some 𝑧 ∈ 𝑋 with ‖𝑧‖𝑋 < 1
2

and ‖𝑦 − 𝑇𝑧‖𝑌 < 𝜀. Let 𝜀 = 𝑐
2  and 𝑧1 ∈ 𝑋 such that ‖𝑧1‖𝑋 < 1

2  and ‖𝑦 − 𝑇𝑧1‖𝑌 < 𝑐
2 . But

the first claim can also be written as 𝐵𝑌 (0, 𝑐
2) ⊆ 𝑇(𝐵𝑋(0, 1

4)) so if 𝜀 = 𝑐
4 , let 𝑧2 ∈ 𝑋

such that ‖𝑧2‖𝑋 < 1
4  and ‖(𝑦 − 𝑇𝑧1) − 𝑇𝑧2‖𝑌 < 𝑐

4 . Continuing in this manner we find
that

𝐵𝑌 (0,
𝑐
2𝑘 ) ⊆ 𝑇(𝐵𝑋(0,

1
2𝑘+1 )),

so exists 𝑧𝑘 ∈ 𝑋 such that ‖𝑧𝑘‖𝑋 < 1
2𝑘  and ‖𝑦 − 𝑇 (𝑧1 + ⋯ + 𝑧𝑘)‖𝑌 < 𝑐

2𝑘 . Let 𝑥𝑛 = 𝑧1 +
⋯ + 𝑧𝑛 ∈ 𝑋. Then {𝑥𝑛} is Cauchy in 𝑋, since

‖𝑥𝑛 − 𝑥𝑚‖𝑋 ≤ ∑
𝑛

𝑘=𝑚
‖𝑧𝑘‖𝑋 < ∑

𝑛

𝑘=𝑚

1
2𝑘 → 0.

Since 𝑋 a Banach space, 𝑥𝑛 → 𝑥 and in particular ‖𝑥‖ ≤ ∑∞
𝑘=1‖𝑧𝑘‖𝑋 < ∑∞

𝑘=1
1
2𝑘 = 1, so 

𝑥 ∈ 𝐵𝑋(0, 1). Since 𝑇  bounded it is continuous, so 𝑇𝑥𝑛 → 𝑇𝑥, so 𝑦 = 𝑇𝑥 and thus 
𝐵𝑌 (0, 𝑐) ⊆ 𝑇 (𝐵(0, 1)). ■

↪Corollary 2.2 :  Let 𝑋, 𝑌  Banach and 𝑇 : 𝑋 → 𝑌  be bounded, linear and bĳective. Then, 𝑇 −1

continuous.

Proof. Let 𝒰 ⊆ 𝑋 open. Then, (𝑇 −1)−1(𝒰) = 𝑇(𝒰) is open since 𝑇  surjective, so 𝑇 −1

continuous. ■

↪Corollary 2.3 :  Let (𝑋, ‖ ⋅ ‖1), (𝑋, ‖ ⋅ ‖2) be Banach spaces. Suppose there exists 𝑐 > 0 such
that ‖𝑥‖2 ≤ 𝐶‖𝑥‖1 for every 𝑥 ∈ 𝑋. Then, ‖ ⋅ ‖1, ‖ ⋅ ‖2 are equivalent.

Proof. Let 𝑇  be the identity linear operator and use the previous corollary. ■
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↪Definition 2.5 (𝑇  closed):  If 𝑋, 𝑌  are nvs and 𝑇  is linear, the graph of 𝑇  is the set

𝐺(𝑇 ) = {(𝑥, 𝑇𝑥) | 𝑥 ∈ 𝑋} ⊆ 𝑋 × 𝑌 .

We then say 𝑇  is closed if 𝐺(𝑇 ) closed in 𝑋 × 𝑌 .

Remark 2.1 : Since 𝑋, 𝑌  are nvs, they are metric spaces so first countable, hence closed ↔
contains all limit points.

In the product topology, a countable base for 𝑋 × 𝑌  at (𝑥, 𝑦) is given by

{𝐵𝑋(𝑥,
1
𝑛

) × 𝐵(𝑦,
1
𝑚

)}
𝑛,𝑚∈ℕ

.

Then, 𝐺(𝑇 ) closed iff 𝐺(𝑇 ) contains all limit points. How can we put a norm on 𝑋 × 𝑌  that
generates this product topology? Let

‖(𝑥, 𝑦)‖1 ≔ ‖𝑥‖𝑋 + ‖𝑦‖𝑌 .

If (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) in the product topology, then since Π1, Π2 continuous maps, (𝑥𝑛, 𝑦𝑛) →
(𝑥, 𝑦) in the ‖ ⋅ ‖1 topology. On the other hand if (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) in the ‖ ⋅ ‖1 norm, then

‖𝑥𝑛 − 𝑥‖𝑋 ≤ ‖(𝑥𝑛, 𝑦𝑛) − (𝑥, 𝑦)‖1,

hence since the RHS → 0 so does the LHS and so 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖𝑋; similar gives 𝑦𝑛 → 𝑦 in ‖ ⋅
‖𝑌 . From here it follows that (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) in the product topology.

So, to prove 𝐺(𝑇 ) closed, we just need to prove that if 𝑥𝑛 → 𝑥 in 𝑋 and 𝑇𝑥𝑛 → 𝑦, then 𝑦 =
𝑇𝑥𝑛.

↪Theorem 2.4 (Closed Graph Theorem):  Let 𝑋, 𝑌  be Banach spaces and 𝑇 : 𝑋 → 𝑌  linear.
Then, 𝑇  is continuous iff 𝑇  is closed.

Proof. (⇒) Immediate from the above remark.

(⇐) Consider the function

𝑥 ↦ ‖𝑥‖∗ ≔ ‖𝑥‖𝑋 + ‖𝑇𝑥‖𝑌 .

So by the above, 𝑇  closed implies (𝑋, ‖ ⋅ ‖∗) is complete, i.e. if 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖∗ in 𝑋 iff 
𝑥𝑛 → 𝑥 in ‖⋅‖𝑋 and 𝑇𝑥𝑛 → 𝑇𝑥 in ‖⋅‖𝑌 . However, ‖ ⋅ ‖𝑋 ≤ ‖⋅‖∗, hence since (𝑋, ‖⋅‖𝑋)
and (𝑋, ‖⋅‖∗) are Banach spaces, by the corollary, there is some 𝐶 > 0 such that ‖⋅‖∗ ≤
𝐶‖⋅‖𝑋. So,

‖𝑥‖𝑋 + ‖𝑇𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋,

so

‖𝑇𝑥‖𝑌 ≤ ‖𝑥‖𝑋 + ‖𝑇𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋,
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so 𝑇  bounded and thus continuous. ■

Remark 2.2 :  The Closed Graph Theorem simplifies proving continuity of 𝑇 . It tells us we can
assume if 𝑥𝑛 → 𝑥, {𝑇𝑥𝑛} Cauchy so ∃ 𝑦 such that 𝑇𝑥𝑛 → 𝑦 since 𝑌  is Banach. So, it suffices to
check that 𝑦 = 𝑇𝑥 to check continuity; we don’t need to check convergence of 𝑇𝑥𝑛.

§2.4 Uniform Boundedness Principle
Recall the following consequence of the Baire Category Theorem:

↪Theorem 2.5 :  Let ℱ ⊆ 𝐶(𝑋) where (𝑋, 𝜌) a complete metric space. Suppose ℱ pointwise
bounded. Then, there exists a nonempty open set 𝒪 ⊆ 𝑋 such that there is some 𝑀 > 0 such
that |𝑓(𝑥)| ≤ 𝑀  for every 𝑥 ∈ 𝒪, 𝑓 ∈ ℱ.

This leads to the following result:

↪Theorem 2.6 (Uniform Boundedness Principle) :  Let 𝑋 a Banach space and 𝑌  a nvs.
Consider ℱ ⊆ ℒ(𝑋, 𝑌 ). Suppose ℱ is pointwise bounded, i.e. for every 𝑥 ∈ 𝑋, there is some 
𝑀𝑥 > 0 such that

‖𝑇𝑥‖𝑌 ≤ 𝑀𝑥, ∀ 𝑇 ∈ ℱ.

Then, ℱ is uniformly bounded, i.e. ∃ 𝑀 > 0 such that

‖𝑇 ‖𝑌 ≤ 𝑀, ∀ 𝑇 ∈ ℱ.

Proof. For every 𝑇 ∈ ℱ, let 𝑓𝑇 : 𝑋 → ℝ be given by

𝑓𝑇 (𝑥) = ‖𝑇𝑥‖𝑌 .

Since 𝑇 ∈ ℒ(𝑋, 𝑌 ), 𝑇  is continuous, so 𝑥𝑛 →
𝑋

𝑥 ⇒ 𝑇𝑥𝑛 →
𝑌

𝑇𝑥, hence ‖𝑇𝑥𝑛‖𝑌 → ‖𝑇𝑥‖𝑌
so 𝑓𝑇  continuous for each 𝑇  i.e. 𝑓𝑇 ∈ 𝐶(𝑋), so {𝑓𝑇 } ⊆ 𝐶(𝑋) pointwise bounded. So by
the previous theorem, there is some ball 𝐵(𝑥0, 𝑟) ⊆ 𝑋 and some 𝐾 > 0 such that 
‖𝑇𝑥‖ ≤ 𝐾 for every 𝑥 ∈ 𝐵(𝑥0, 𝑟) and 𝑇 ∈ ℱ. Thus, for every 𝑥 ∈ 𝐵(0, 𝑟),

‖𝑇𝑥‖ = ‖𝑇 (𝑥 − 𝑥0 + 𝑥0)‖

≤

‖
‖
‖
‖
𝑇 (𝑥 − 𝑥0)⏟

∈𝐵(𝑥0,𝑟) ‖
‖
‖
‖

+ ‖𝑇𝑥0‖

≤ 𝐾 + 𝑀𝑥0
, ∀ 𝑥 ∈ 𝐵(0, 𝑟), 𝑇 ∈ ℱ.

Thus, for every 𝑥 ∈ 𝐵(0, 1),

‖𝑇𝑥‖ =
1
𝑟
‖
‖
‖
‖
𝑇 (𝑟𝑥)⏟

∈𝐵(0,𝑟)‖
‖
‖
‖

≤
1
𝑟
(𝐾 + 𝑀𝑥0

) ≕ 𝑀,

so its clear ‖𝑇 ‖ ≤ 𝑀  for every 𝑇 ∈ ℱ. ■
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↪Theorem 2.7 (Banach-Saks-Steinhaus) :  Let 𝑋 a Banach space and 𝑌  a nvs. Let {𝑇𝑛} ⊆
ℒ(𝑋, 𝑌 ). Suppose for every 𝑥 ∈ 𝑋, lim𝑛→∞ 𝑇𝑛(𝑥) exists in 𝑌 . Then,

a. {𝑇𝑛} are uniformly bounded in ℒ(𝑋, 𝑌 );

b. For 𝑇 : 𝑋 → 𝑌  defined by 𝑇 (𝑥) ≔ lim𝑛→∞ 𝑇𝑛(𝑥), we have 𝑇 ∈ ℒ(𝑋, 𝑌 );

c. ‖𝑇 ‖ ≤ lim inf𝑛→∞‖𝑇𝑛‖ (lower semicontinuity result).

Proof. (a) For every 𝑥 ∈ 𝑋, 𝑇𝑛(𝑥) → 𝑇(𝑥) so ‖𝑇𝑥‖ < ∞ hence sup𝑛‖𝑇𝑛𝑥‖ < ∞. By
uniform boundedness, then, we find sup𝑛‖𝑇𝑛‖ ≕ 𝐶 < ∞.

(b) 𝑇  is linear (by linearity of 𝑇𝑛). By (a),

‖𝑇𝑛𝑥‖ ≤ 𝐶‖𝑥‖,

for every 𝑛, 𝑥, so

‖𝑇𝑥‖ ≤ 𝐶‖𝑥‖ ∀ 𝑥 ∈ 𝑋,

so 𝑇  bounded.

(c) We know

‖𝑇𝑛𝑥‖ ≤ ‖𝑇𝑛‖‖𝑥‖ ∀ 𝑥 ∈ 𝑋,

so

‖𝑇𝑛𝑥‖
‖𝑥‖

≤ ‖𝑇𝑛‖,

so

lim inf
𝑛

‖𝑇𝑛𝑥‖
‖𝑥‖

=
‖𝑇𝑥‖
‖𝑥‖

≤ lim inf
𝑛

‖𝑇𝑛‖,

so by “suping” both sides,

‖𝑇 ‖ ≤ lim inf
𝑛

‖𝑇𝑛‖.

■

Remark 2.3 :
• We do not necessarily have 𝑇𝑛 → 𝑇  in ℒ(𝑋, 𝑌 ) i.e. with respect to the operator norm.
• If 𝑌  is a Banach space, then lim𝑛→∞ 𝑇𝑛(𝑥) exists in 𝑌  ⇔ {𝑇𝑛𝑥} Cauchy in 𝑌  for every 𝑥 ∈

𝑋.
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↪Definition 2.6 (Inner Product) :  An inner product on a vector space 𝑋 is a map (⋅, ⋅) : 𝑋 ×
𝑋 → ℝ such that for every 𝜆, 𝜇 ∈ ℝ and 𝑥, 𝑦, 𝑧 ∈ 𝑋,
• (𝜆𝑥 + 𝜇𝑦, 𝑧) = 𝜆(𝑥, 𝑧) + 𝜇(𝑦, 𝑧);
• (𝑥, 𝑦) = (𝑦, 𝑥);
• (𝑥, 𝑥) ≥ 0 and (𝑥, 𝑥) = 0 ⇔ 𝑥 = 0.

Remark 2.4 :  The first and second conditions combined imply that (⋅, ⋅) actually bilinear,
namely, linear in both coordinates.

Remark 2.5 :  An inner product induces a norm on a vector space by

‖𝑥‖ ≔ (𝑥, 𝑥)
1
2 .

↪Proposition 2.2 (Cauchy-Schwarz Inequality) :  Any inner product satisfies Cauchy-
Schwarz, namely,

|(𝑥, 𝑦)| ≤ ‖𝑥‖‖𝑦‖,

for every 𝑥, 𝑦 ∈ 𝑋.

Proof. Suppose first 𝑦 = 0. Then, the right hand side is clearly 0, and by linearity 
(𝑥, 𝑦) = 0, hence we have 0 ≤ 0 and are done. Suppose then 𝑦 ≠ 0. Then, let 𝑧 = 𝑥 −
(𝑥,𝑦)
(𝑦,𝑦)𝑦 where 𝑦 ≠ 0. Then,

0 ≤ ‖𝑧‖2 = (𝑥 −
(𝑥, 𝑦)
(𝑦, 𝑦)

𝑦, 𝑥 −
(𝑥, 𝑦)
(𝑦, 𝑦)

𝑦)

= (𝑥, 𝑥) −
(𝑥, 𝑦)
(𝑦, 𝑦)

(𝑥, 𝑦) −
(𝑥, 𝑦)
(𝑦, 𝑦)

(𝑦, 𝑥) +
(𝑥, 𝑦)2

(𝑦, 𝑦)2 (𝑦, 𝑦)

= (𝑥, 𝑥) −
2((𝑥, 𝑦))2

(𝑦, 𝑦)
+

(𝑥, 𝑦)2

(𝑦, 𝑦)

= ‖𝑥‖ −
(𝑥, 𝑦)2

(𝑦, 𝑦)

⇒
(𝑥, 𝑦)2

(𝑦, 𝑦)
≤ ‖𝑥‖ ⇒ (𝑥, 𝑦)2 ≤ ‖𝑥‖2‖𝑦‖2

⇒ |(𝑥, 𝑦)| ≤ ‖𝑥‖‖𝑦‖.

■

↪Corollary 2.4 :  The function ‖𝑥‖ ≔ (𝑥, 𝑥)
1
2  is actually a norm on 𝑋.
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Proof. By definition, ‖𝑥‖ ≥ 0 and equal to zero only when 𝑥 = 0. Also,

‖𝜆𝑥‖ = (𝜆𝑥, 𝜆𝑥)
1
2 = |𝜆|(𝑥, 𝑥)

1
2 = |𝜆|‖𝑥‖.

Finally,

‖𝑥 + 𝑦‖2 = (𝑥 + 𝑦, 𝑥 + 𝑦)

= (𝑥, 𝑥) + 2(𝑥, 𝑦) + (𝑦, 𝑦)

= ‖𝑥‖2 + ‖𝑦‖2 + 2(𝑥, 𝑦)

by Cauchy-Schwarz ≤ ‖𝑥‖2 + ‖𝑦‖2 + 2‖𝑥‖‖𝑦‖

= (‖𝑥‖ + ‖𝑦‖)2,

hence by taking square roots we see ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ as desired. ■

↪Proposition 2.3 (Parallelogram Law):  Any inner product space satisfies the following:

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2.

↪Corollary 2.5 :  (⋅, ⋅) is continuous, i.e. if 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, then (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦).

Proof.

|(𝑥𝑛, 𝑦𝑛) − (𝑥, 𝑦)| = |(𝑥𝑛, 𝑦𝑛) − (𝑥, 𝑦𝑛) + (𝑥, 𝑦𝑛) − (𝑥, 𝑦)|

= |(𝑥𝑛 − 𝑥, 𝑦𝑛) + (𝑥, 𝑦𝑛 − 𝑦)|

≤ |(𝑥𝑛 − 𝑥, 𝑦𝑛)| + |(𝑥, 𝑦𝑛 − 𝑦)|

(Cauchy-Schwarz) ≤ ‖𝑥𝑛 − 𝑥‖⏟
→0

‖𝑦𝑛‖⏟
≤𝑀

+ ‖𝑥‖ ‖𝑦𝑛 − 𝑦‖⏟
→0

→ 0.

■

↪Definition 2.7 (Hilbert Space) :  A Hilbert Space 𝐻  is a complete inner product space, namely,
it is complete with respect to the norm induced by the inner product.

⊛ Example 2.1 :
1. ℓ2, the space of square-summable real-valued sequences, equipped with inner product 

(𝑥, 𝑦) = ∑∞
𝑖=1 𝑥𝑖𝑦𝑖.

2. 𝐿2, with inner product (𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥) d𝑥.
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↪Definition 2.8 (Orthogonality) :  We say 𝑥, 𝑦 orthogonal and write 𝑥 ⟂ 𝑦 if (𝑥, 𝑦) = 0. If 𝑀 ⊆
𝐻 , then the orthogonal complement of 𝑀 , denoted 𝑀⟂, is the set

𝑀⟂ = {𝑦 ∈ 𝐻 | (𝑥, 𝑦) = 0, ∀ 𝑥 ∈ 𝑀}.

Remark 2.6 :  𝑀⟂ is always a closed subspace of 𝐻 . If 𝑦1, 𝑦2 ∈ 𝑀⟂, then for every 𝑥 ∈ 𝑀 ,

(𝑥, 𝛼𝑦1 + 𝛽𝑦2) = 𝛼(𝑥, 𝑦1) + 𝛽(𝑥, 𝑦2) = 0,

so 𝑀⟂ a subspace.

If 𝑦𝑛 → 𝑦 in the norm on 𝐻  and {𝑦𝑛} ⊆ 𝑀⟂, then using the continuity of (⋅, ⋅), we know
that for every 𝑥 ∈ 𝑀 , (𝑥, 𝑦𝑛) → (𝑥, 𝑦). But then (𝑥, 𝑦𝑛) = 0 for every 𝑛 and thus (𝑥, 𝑦) = 0 so 
𝑦 ∈ 𝑀⟂, hence 𝑀⟂ closed.

↪Proposition 2.4 :  If 𝑀 ⊊ 𝐻  is a closed subspace, then every 𝑥 ∈ 𝐻  has a unique
decomposition

𝑥 = 𝑢 + 𝑣, 𝑢 ∈ 𝑀, 𝑣 ∈ 𝑀⟂.

Hence, we may write 𝐻 = 𝑀 ⊕ 𝑀⟂. Moreover,

‖𝑥 − 𝑢‖ = inf
𝑦∈𝑀

‖𝑥 − 𝑦‖, ‖𝑥 − 𝑣‖ = inf
𝑦∈𝑀⟂

‖𝑥 − 𝑦‖.

Proof. Let 𝑥 ∈ 𝐻 . If 𝑥 ∈ 𝑀 , we’re done with 𝑢 = 𝑥, 𝑣 = 0. Else, if 𝑥 ∉ 𝑀 , then we
claim that there is some 𝑢 ∈ 𝑀  such that ‖𝑥 − 𝑢‖ = inf𝑦∈𝑀‖𝑥 − 𝑦‖ ≕ 𝛿 > 0. By
definition of the infimum, there exists a sequence {𝑢𝑛} ⊆ 𝑀  such that

‖𝑥 − 𝑢𝑛‖2 ≤ 𝛿2 +
1
𝑛

.

Let 𝑥 ≔ 𝑢𝑚 − 𝑥, 𝑦 = 𝑢𝑛 − 𝑥. By the Parallelogram Law,

‖𝑥 − 𝑦‖2 + ‖𝑥 + 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2

hence

‖𝑢𝑚 − 𝑢𝑛‖2 + ‖𝑢𝑚 + 𝑢𝑛 − 2𝑥‖2 = 2‖𝑢𝑚 − 𝑥‖2 + 2‖𝑢𝑛 − 𝑥‖2.

Now, the second term can be written

‖𝑢𝑚 + 𝑢𝑛 − 2𝑥‖2 = 4‖
𝑢𝑚 + 𝑢𝑛

2
− 𝑥‖

2
,

hence we find

‖𝑢𝑚 − 𝑢𝑛‖2 = 2‖𝑢𝑚 − 𝑥‖2 + 2‖𝑢𝑛 − 𝑥‖2 − 4‖
𝑢𝑚 + 𝑢𝑛

2
− 𝑥‖

2
.
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Recall that 𝑀  a subspace, hence 12(𝑢𝑚 + 𝑢𝑛) ∈ 𝑀  so ‖𝑥 − 1
2(𝑢𝑚 + 𝑢𝑛)‖ ≥ 𝛿 as defined

before. Thus, we find that by our choice of {𝑢𝑛},

‖𝑢𝑚 − 𝑢𝑛‖2 ≤ 2(𝛿2 +
1
𝑚

) + 2(𝛿2 +
1
𝑛

) − 4𝛿2 =
2
𝑚

+
2
𝑛

,

and thus, by making 𝑚, 𝑛 sufficiently large we can make ‖𝑢𝑚 − 𝑢𝑛‖ arbitrarily small.
Hence, {𝑢𝑛} ⊆ 𝑀  are Cauchy. 𝐻  is complete, hence the {𝑢𝑛}’s converge, and thus
since 𝑀  closed, 𝑢𝑛 → 𝑢 ∈ 𝑀. Then, we find

‖𝑥 − 𝑢‖ ≤ ‖𝑥 − 𝑢𝑛‖ + ‖𝑢𝑛 − 𝑢‖

≤ (𝛿2 +
1
𝑛

)
1
2

⏟⏟⏟⏟⏟
→𝛿

+ ‖𝑢𝑛 − 𝑢‖⏟
→0

→ 𝛿.

But also, 𝑢 ∈ 𝑀  and thus ‖𝑥 − 𝑦‖ ≥ 𝛿, and we conclude ‖𝑥 − 𝑢‖ = 𝛿 = inf𝑦∈𝑀‖𝑥 − 𝑦‖.

Next, we claim that if we define 𝑣 = 𝑥 − 𝑦, then 𝑣 ∈ 𝑀⟂. Consider 𝑦 ∈ 𝑀 , 𝑡 ∈ ℝ,
then

‖𝑥 − (𝑢 − 𝑡𝑦)⏟
∈𝑀

‖

2

= ‖𝑣 + 𝑡𝑦‖2 = ‖𝑣‖2 + 2𝑡(𝑣, 𝑦) + 𝑡2‖𝑦‖2.

Then, notice that the map

𝑡 ↦ ‖𝑣 + 𝑡𝑦‖2

is minimized when 𝑡 = 0, since ‖𝑥 − 𝑧‖ for 𝑧 ∈ 𝑀  is minimized when 𝑧 = 𝑢, as we
showed in the previous part, so equivalently ‖𝑥 − (𝑢 − 𝑡𝑦)‖2 minimized when 𝑡 = 0.
Thus,

0 =
𝜕
𝜕𝑡

‖𝑣 + 𝑡𝑦‖2|𝑡=0 =
𝜕
𝜕𝑡

[‖𝑣‖2 + 2𝑡(𝑣, 𝑦) + 𝑡2‖𝑦‖2]
𝑡=0

= (2(𝑣, 𝑦) + 2𝑡‖𝑦‖2)
𝑡=0

= (𝑣, 𝑦)

⇒ (𝑣, 𝑦) = 0 ∀ 𝑦 ∈ 𝑀 ⇒ 𝑣 ∈ 𝑀⟂.

So, 𝑥 = 𝑢 + 𝑣 and 𝑢 ∈ 𝑀, 𝑣 ∈ 𝑀⟂. For uniqueness, suppose 𝑥 = 𝑢1 + 𝑣1 = 𝑢2 + 𝑣2.
Then, 𝑢1 − 𝑢2 = 𝑣2 − 𝑣1, but then

‖𝑣2 − 𝑣1‖
2 = (𝑣2 − 𝑣1, 𝑣2 − 𝑣1) = (𝑣2 − 𝑣1, 𝑢2 − 𝑢1) = 0,

so 𝑣2 = 𝑣1 so it follows 𝑢2 = 𝑢1 and uniqueness holds. ■
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↪Definition 2.9 (Dual of 𝐻) :  The dual of 𝐻 , denoted 𝐻∗, is the set

𝐻∗ ≔ {𝑓 : 𝐻 → ℝ | 𝑓 continuous and linear}.

On this space, we may equip the operator norm

‖𝑓‖𝐻∗ = ‖𝑓‖ = sup
𝑥∈𝐻

|𝑓(𝑥)|
‖𝑥‖𝐻

= sup
‖𝑥‖≤1

|𝑓(𝑥)|.

⊛ Example 2.2 :  For 𝑦 ∈ 𝐻 , let 𝑓𝑦 : 𝐻 → ℝ be given by 𝑓𝑦(𝑥) = (𝑥, 𝑦). By CS,

‖𝑓𝑦‖𝐻∗
= sup

‖𝑥‖≤1
(𝑥, 𝑦) ≤ sup

‖𝑥‖≤1
‖𝑥‖‖𝑦‖ ≤ ‖𝑦‖.

Also, if 𝑦 ≠ 0, then

𝑓𝑦(
𝑦

‖𝑦‖
) = (

𝑦
‖𝑦‖

, 𝑦) = ‖𝑦‖.

Thus, ‖𝑓𝑦‖𝐻∗
= ‖𝑦‖𝐻 . It turns out all such functionals are of this form.

↪Theorem 2.8 (Riesz Representation for Hilbert Spaces) :  If 𝑓 ∈ 𝐻∗, there exists a unique 𝑦 ∈
𝐻  such that 𝑓(𝑥) = (𝑥, 𝑦) for every 𝑥 ∈ 𝑋.

Proof. We show first existence. If 𝑓 ≡ 0, then 𝑦 = 0. Otherwise, let 𝑀 = {𝑥 ∈
𝑋 | 𝑓(𝑥) = 0} = 𝑓−1({0}), so 𝑀 ⊊ 𝐻 . 𝑓  linear, so 𝑀  a linear subspace. 𝑓  is continuous,
so in addition 𝑀  is closed. By the previous theorem, 𝑀⟂ ≠ {0}. Let 𝑧 ∈ 𝑀⟂ of norm 1.

Fix 𝑥 ∈ 𝐻 , and define

𝑢 ≔ 𝑓(𝑥)𝑧 − 𝑓(𝑧)𝑥.

Then, notice that by linearity

𝑓(𝑢) = 𝑓(𝑥)𝑓(𝑧) − 𝑓(𝑧)𝑓(𝑥) = 0,

so 𝑢 ∈ 𝑀 . Thus, since 𝑧 ∈ 𝑀⟂, (𝑢, 𝑧) = 0, so in particular,

(𝑢, 𝑧) = 0 = (𝑓(𝑥)𝑧 − 𝑓(𝑧)𝑥, 𝑧)

= 𝑓(𝑥)(𝑧, 𝑧) − 𝑓(𝑧)(𝑥, 𝑧)

= 𝑓(𝑥)‖𝑧‖2 − (𝑥, 𝑓(𝑧)𝑧)

= 𝑓(𝑥) − (𝑥, 𝑓(𝑧)𝑧),

hence, rearranging we find

𝑓(𝑥) = (𝑥, 𝑓(𝑧)𝑧),

and thus letting 𝑦 = 𝑓(𝑧)𝑧 completes the proof of existence, noting 𝑧 independent of 𝑥.
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For uniqueness, suppose (𝑥, 𝑦) = (𝑥, 𝑦′) for every 𝑥 ∈ 𝑋. Then, (𝑥, 𝑦 − 𝑦′) = 0 for
every 𝑥 ∈ 𝑋, hence letting 𝑥 = 𝑦 − 𝑦′ we conclude (𝑦 − 𝑦′, 𝑦 − 𝑦′) = 0 thus 𝑦 − 𝑦′ = 0
so 𝑦 = 𝑦′, and uniquness holds. ■

↪Definition 2.10 (Orthonormal Set) :  A collection {𝑒𝑗} ⊆ 𝐻  is orthonormal if (𝑒𝑖, 𝑒𝑗) = 𝛿𝑗
𝑖 .

Remark 2.7 :  The following section writes notations assuming 𝐻  has a countable basis.
However, for more general Hilbert spaces, all countable summations can be replaced with
uncountable ones in which only countably many elements are nonzero. The theory is very
similar.

↪Definition 2.11 (Orthonormal Basis) :  A collection {𝑒𝑗} ⊆ 𝐻  is an orthonormal basis for 𝐻  if 
{𝑒𝑗} is an orthonormal set, and 𝑥 = ∑∞

𝑗=1(𝑥, 𝑒𝑗)𝑒𝑗 for every 𝑥 ∈ 𝐻 , in the sense that

‖𝑥 − ∑
𝑁

𝑗=1
(𝑥, 𝑒𝑗)𝑒𝑗‖ → 0, 𝑁 → ∞.

↪Theorem 2.9 (General Pythagorean Theorem):  If {𝑒𝑗}
∞
𝑗=1

⊆ 𝐻  are orthonormal and 
{𝛼𝑖}

∞
𝑖=1 ⊆ ℝ are orthonormal, then for any 𝑁 ,

‖∑
𝑁

𝑖=1
𝛼𝑖𝑒𝑖‖

2

= ∑
𝑁

𝑖=1
|𝛼𝑖|

2.

Proof.

‖∑
𝑁

𝑖=1
𝛼𝑖𝑒𝑖‖

2

= (∑
𝑁

𝑖=1
𝛼𝑖𝑒𝑖, ∑

𝑁

𝑗=1
𝛼𝑗𝑒𝑗) = ∑

𝑁

𝑖=1
∑
𝑁

𝑗=1
𝛼𝑖𝛼𝑗 (𝑒𝑖, 𝑒𝑗)⏟

=𝛿𝑗
𝑖

= ∑
𝑁

𝑖=1
𝛼2

𝑖 .

■

We can also Gram-Schmidt in infinite-dimensional Hilbert spaces. Let {𝑥𝑖} ⊆ 𝐻 . Let

𝑒1 =
𝑥1

‖𝑥1‖
,

and inductively, for any 𝑛 ≥ 2, define

𝑣𝑁 = 𝑥𝑁 − ∑
𝑁−1

𝑖=1
(𝑥𝑁 , 𝑒𝑖)𝑒𝑖.

Then, for any 𝑁 , span(𝑣1, …, 𝑣𝑁) = span(𝑒1, …, 𝑒𝑁), and for any 𝑗 < 𝑁 ,

(𝑣𝑁 , 𝑒𝑗) = (𝑥𝑁 , 𝑒𝑗) − ∑
𝑁

𝑖=1
(𝑥𝑁 , 𝑒𝑖)(𝑒𝑖, 𝑒𝑗) = (𝑥𝑁 , 𝑒𝑗) − (𝑥𝑁 , 𝑒𝑗) = 0.
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Let then 𝑒𝑁 = 𝑣𝑁
‖𝑣𝑁‖ . Then, {𝑒𝑖}

∞
𝑖=1 will be orthonormal; we discuss how to establish when this set

will actually be a basis to follow.

↪Theorem 2.10 (Bessel's Inequality) :  If {𝑒𝑖}
∞
𝑖=1 are orthonormal, then for any 𝑥 ∈ 𝐻 ,

∑
∞

𝑖=1
|(𝑥, 𝑒𝑖)|

2 ≤ ‖𝑥‖2.

Proof. We have

0 ≤ ‖𝑥 − ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)𝑒𝑖‖

2

= (𝑥 − ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)𝑒𝑖, 𝑥 − ∑

𝑁

𝑗=1
(𝑥, 𝑒𝑗)𝑒𝑗)

= ‖𝑥‖ − 2 ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)

2 + ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)

2

= ‖𝑥‖ − ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)

2,

so ∑𝑁
𝑖=1 (𝑥, 𝑒𝑖)

2 ≤ ‖𝑥‖; letting 𝑁 → ∞ proves the desired inequality, since the RHS is
independent of 𝑁 . ■

↪Theorem 2.11 :  If {𝑒𝑖}
∞
𝑖=1 are orthonormal, then TFAE:

(a) completeness: if (𝑥, 𝑒𝑖) = 0 for every 𝑖, then 𝑥 = 0, the zero vector;

(b) Parseval’s identity holds: ‖𝑥‖2 = ∑∞
𝑖=1 (𝑥, 𝑒𝑖)

2 for every 𝑥 ∈ 𝐻 ;

(c) {𝑒𝑖}
∞
𝑖=1 form a basis for 𝐻 , i.e. 𝑥 = ∑∞

𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖 for every 𝑥 ∈ 𝐻 .

Proof. ((a) ⇒ (c)) By Bessel’s, ∑∞
𝑖=1 (𝑥, 𝑒𝑖)

2 ≤ ‖𝑥‖2. So, for any 𝑀 ≥ 𝑁 ,

‖∑
𝑀

𝑖=𝑁
(𝑥, 𝑒𝑖)𝑒𝑖‖

2

= ∑
𝑀

𝑖=𝑁
(𝑥, 𝑒𝑖)

2,

which must converge to zero as 𝑁, 𝑀 → ∞, since the whole series converges (being
bounded). Hence, {∑𝑁

𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖}𝑁
 is Cauchy in ‖⋅‖ and since 𝐻  complete, 

∑𝑁
𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖 converges in 𝐻 . Putting 𝑦 = 𝑥 − ∑∞

𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖, we find

(𝑦, 𝑒𝑖) = (𝑥, 𝑒𝑖) − (𝑥, 𝑒𝑖) = 0 ∀ 𝑖,

hence by assumption in (𝑎), it follows that 𝑦 = 0 so 𝑥 = ∑∞
𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖 and thus {𝑒𝑖} a

basis for 𝐻  and (𝑐) holds.

((c) ⇒ (b)) Since 𝑥 = ∑∞
𝑖=1(𝑥, 𝑒𝑖)𝑒𝑖, then,
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‖𝑥‖2 − ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)

2 = ‖𝑥 − ∑
𝑁

𝑖=1
(𝑥, 𝑒𝑖)𝑒𝑖‖

2

→ 0

as 𝑁 → ∞, hence ‖𝑥‖2 = ∑∞
𝑖=1 (𝑥, 𝑒𝑖)

2.

((b) ⇒ (a)) If (𝑥, 𝑒𝑖) = 0 for every 𝑖, then by Parseval’s ‖𝑥‖2 = ∑∞
𝑖=1 0 = 0 so 𝑥 = 0. ■

Remark 2.8 :  (a) is equivalent to span(𝑒1, 𝑒2, …, ) is dense in 𝐻 .

↪Theorem 2.12 : Every Hilbert space has an orthonormal basis.

Proof. Let ℱ = {orthonormal subsets of 𝐻}. ℱ can be (partially) ordered by
inclusion, as can be upper bounded by the union over the whole space. By Zorn’s
Lemma, there is a maximal set in ℱ, which implies completeness, (a). ■

↪Proposition 2.5 :  𝐻  is separable iff 𝐻  has a countable basis.

Proof. (⇐) If 𝐻  has a countable basis {𝑒𝑗}, spanℚ{𝑒𝑗} is a countable dense set.

(⇒) If 𝐻  is separable, let {𝑥𝑛} be a countable dense set. Use Gram-Schmidt, to
produce a countable, orthonormal set, which is dense and hence a (countable) basis
for 𝐻 . ■

Remark 2.9 :  All this can be extended to uncountable bases.

§2.6 Adjoints, Duals and Weak Convergence (for Hilbert Spaces)
First consider 𝑇 : 𝐻 → 𝐻  bounded and linear. Fix 𝑦 ∈ 𝐻 . We claim that the map

𝑥 ↦ (𝑇 (𝑥), 𝑦)

belongs to 𝐻∗, namely is bounded and linear. Linearity is clear since 𝑇  linear. We know by
Cauchy-Schwarz that

|(𝑇 (𝑥), 𝑦)| ≤ ‖𝑇 (𝑥)‖‖𝑦‖ ≤ ‖𝑇 ‖‖𝑥‖‖𝑦‖ ≤ 𝐶‖𝑥‖,

so indeed 𝑥 ↦ (𝑇 (𝑥), 𝑦) ∈ 𝐻∗. By Riesz Representation Theorem, there is some unique 𝑧 ∈ 𝐻
such that

(𝑇 (𝑥), 𝑦) = (𝑥, 𝑧) ∀ 𝑥 ∈ 𝐻.

This motivates the following.

↪Definition 2.12 (Adjoint of 𝑇 ) :  Let 𝑇 ∗ : 𝐻 → 𝐻  be defined by

(𝑇𝑥, 𝑦) = (𝑥, 𝑇 ∗𝑦), ∀ 𝑥, 𝑦 ∈ 𝐻.
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Remark 2.10 :  In finite dimensions, 𝑇  can be identified with some 𝑛 × 𝑛 matrix, in which case 
𝑇 ∗ = 𝑇 𝑡, the transpose of 𝑇 ; namely 𝑇𝑥 ⋅ 𝑏 = 𝑥 ⋅ 𝑇 𝑡𝑏.

↪Proposition 2.6 :  If 𝑇 ∈ ℒ(𝐻) ≔ ℒ(𝐻, 𝐻), then 𝑇 ∗ ∈ ℒ(𝐻) and ‖𝑇 ∗‖ = ‖𝑇 ‖.

Proof. Linearity of 𝑇 ∗ is clear. Also, for any ‖𝑦‖ ≤ 1,

‖𝑇 ∗𝑦‖2 = (𝑇 ∗𝑦, 𝑇 ∗𝑦) = (𝑇𝑇 ∗𝑦, 𝑦) ≤ ‖𝑇 ‖‖𝑇 ∗(𝑦)‖‖𝑦‖

so ‖𝑇 ∗𝑦‖ ≤ ‖𝑇 ‖ for all ‖𝑦‖ = 1. so ‖𝑇 ∗‖ ≤ ‖𝑇 ‖ hence 𝑇 ∗ ∈ ℒ(𝐻). But also, if 𝑥 ∈ 𝐻  with 
‖𝑥‖ = 1, then symmetrically,

‖𝑇𝑥‖2 = (𝑇𝑥, 𝑇𝑥) = (𝑥, 𝑇 ∗𝑇𝑥) ≤ ‖𝑇 ∗‖‖𝑇𝑥‖

so similarly ‖𝑇 ‖ ≤ ‖𝑇 ∗‖ hence equality holds. ■

↪Proposition 2.7 :  (𝑇 ∗)∗ = 𝑇 .

Proof. On the one hand,

(𝑇 ∗𝑦, 𝑥) = (𝑦, (𝑇 ∗)∗𝑥) = ((𝑇 ∗)∗𝑥, 𝑦)

while also

(𝑇 ∗𝑦, 𝑥) = (𝑥, 𝑇 ∗𝑦) = (𝑇𝑥, 𝑦)

so (𝑇𝑥, 𝑦) = ((𝑇 ∗)∗, 𝑦), from which it follows that 𝑇 = 𝑇 ∗∗. ■

↪Proposition 2.8 :  (𝑇 + 𝑆)∗ = 𝑇 ∗ + 𝑆∗, and (𝑇 ∘ 𝑆)∗ = 𝑆∗ ∘ 𝑇 ∗.

We’ll write 𝑁(𝑇 ) for the nullspace/kernel of 𝑇 , and 𝑅(𝑇 ) for the range/image of 𝑇 .

↪Proposition 2.9 :  Suppose 𝑇 ∈ ℒ(𝐻). Then,
• 𝑁(𝑇 ∗) = 𝑅(𝑇 )⟂ (and hence, if 𝑅(𝑇 ) closed, 𝐻 = 𝑁(𝑇 ∗) ⊕ 𝑅(𝑇 ));
• 𝑁(𝑇 ) = 𝑅(𝑇 ∗)⟂ (and hence, if 𝑅(𝑇 ∗) closed, 𝐻 = 𝑁(𝑇 ) ⊕ 𝑅(𝑇 ∗)).

Proof. 𝑁(𝑇 ∗) = {𝑦 ∈ 𝐻 : 𝑇 ∗𝑦 = 0}, so if 𝑦 ∈ 𝑁(𝑇 ∗), (𝑇𝑥, 𝑦) = (𝑥, 𝑇 ∗𝑦) = (𝑥, 0) = 0,
which holds iff 𝑦 orthogonal to 𝑇𝑥, and since this holds for all 𝑥 ∈ 𝐻 , 𝑦 ∈ 𝑅(𝑇 )⟂.

Then, if 𝑅(𝑇 ) closed, the by orthogonal decomposition we’ll find 𝐻 = 𝑅(𝑇 ) ⊕
𝑅(𝑇 )⟂ = 𝑅(𝑇 ) ⊕ 𝑁(𝑇 ∗).

The other claim follows similarly. ■
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Remark 2.11 :  Recall that 𝑅(𝑇 )⟂ is closed; hence

(𝑅(𝑇 )⟂)
⟂

= {𝑧 ∈ 𝐻 | (𝑦, 𝑧) = 0 ∀ 𝑦 ∈ 𝑅(𝑇 )⟂},

and is also closed; hence (𝑅(𝑇 )⟂)
⟂

= 𝑅(𝑇 ) thus equivalently 𝑁(𝑇 ∗)⟂ = 𝑅(𝑇 ).

Remark 2.12 :  By the Closed Graph Theorem, 𝑇  linear and bounded gives 𝑇  closed; namely,
the graph of 𝑇  closed; this is not the same as saying the range of 𝑇  closed.

⊛ Example 2.3 :  Consider 𝐶([0, 1]) ⊆ 𝐿2([0, 1]), and 𝑇 : 𝐶([0, 1]) → 𝐿2([0, 1]) given by the
identity, 𝑇𝑓 = 𝑓 . Then, 𝑇  is bounded, but 𝑅(𝑇 ) = 𝐶([0, 1]); this subspace is not closed in 
𝐿2([0, 1]), since there exists sequences of continuous functions that converge to an 𝐿2, but not
continuous, function.

Remark 2.13 :  The prior theorem is key in “solvability”, especially if 𝑇  a differential or
integral operator. If we wish to find 𝑢 such that 𝑇𝑢 = 𝑓 , we need that 𝑓 ∈ 𝑅(𝑇 ), hence 𝑓 ∈
𝑁(𝑇 ∗)⟂.

⊛ Example 2.4 :  Let 𝑀 ⊊ 𝐻  a closed linear subspace. Then, 𝐻 = 𝑀 ⊕ 𝑀⟂; define the
projection operator

𝑃 : 𝐻 → 𝐻, 𝑥 = 𝑢 + 𝑣 ∈ 𝑀 ⊕ 𝑀⟂ ↦ 𝑢.

This means, in particular, 𝑥 = 𝑃𝑥 + (id −𝑃)𝑥. We claim 𝑃 ∈ ℒ(𝐻), ‖𝑃 ‖ = 1, 𝑃 2 = 𝑃 , and 
𝑃 ∗ = 𝑃 .

Linearity is clear. To show 𝑃 2 = 𝑃 , write 𝑥 = 𝑃𝑥 + 𝑣. Then, composing both sides with 𝑃 ,
we find 𝑃𝑥 = 𝑃 2𝑥 + 𝑃𝑣 = 𝑃 2𝑥, so 𝑃𝑥 = 𝑃 2𝑥 for every 𝑥 ∈ 𝐻 . To see the norm, we find that
for every 𝑥 ∈ 𝐻 ,

‖𝑥‖2 = (𝑥, 𝑥) = (𝑃𝑥 + (id −𝑃)𝑥, 𝑃𝑥 + (id −𝑃)𝑥)

= ‖𝑃𝑥‖2 + 2(𝑃𝑥, (id −𝑃)𝑥)⏟⏟⏟⏟⏟⏟⏟
⟂

+ ‖(id −𝑃)𝑥‖2

= ‖𝑃𝑥‖2 + ‖(id −𝑃)𝑥‖2 ≥ ‖𝑃𝑥‖2

⇒ ‖𝑃𝑥‖ ≤ ‖𝑥‖ ⇒ ‖𝑃‖ ≤ 1,

and moreover if 𝑥 ∈ 𝑀 , 𝑃𝑥 = 𝑥 so ‖𝑃𝑥‖ = ‖𝑥‖ hence ‖𝑃 ‖ = 1 indeed.

Finally, the show 𝑃  self-adjoint, let 𝑥, 𝑦 ∈ 𝐻 , then,

0 = (𝑃𝑥, (id −𝑃)𝑦) = (𝑃𝑥, 𝑦 − 𝑃𝑦) ⇒ (𝑃𝑥, 𝑦) = (𝑃𝑥, 𝑃𝑦).

Symmetrically, (𝑥, 𝑃𝑦) = (𝑃𝑥, 𝑃𝑦), hence (𝑃𝑥, 𝑦) = (𝑥, 𝑃𝑦), and so 𝑃 = 𝑃 ∗.
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§2.7 Introduction to Weak Convergence
We let throughout 𝑋 be a Banach space.

↪Definition 2.13 (Weak convergence) :  We say {𝑥𝑛} ⊆ 𝑋 converges weakly to 𝑥 ∈ 𝑋, and write
𝑥𝑛 ⇀ 𝑥

iff for every 𝑓 ∈ 𝑋∗ = {𝑓 : 𝑋 → ℝ bounded, linear}, 𝑓(𝑥𝑛) → 𝑓(𝑥).

↪Definition 2.14 (Weak topology 𝜎(𝑋, 𝑋∗)) :  The weak topology 𝜎(𝑋, 𝑋∗) is the weak
topology induced by

ℱ = 𝑋∗.

In particular, this is the smallest topology in which every 𝑓  continuous.

Recall that this was defined as being 𝜏({𝑓−1(𝒪)}) for 𝒪 open in ℝ. A base for this topology is
given by ℬ = {finite intersections of {𝑓−1𝒪}}. Namely, let ℬ𝑋 ≔ {𝐵𝜀,𝑓1,𝑓2,…,𝑓𝑛

(𝑥)} where

𝐵𝜀,𝑓1,𝑓2,…,𝑓𝑛
(𝑥) = {𝑥′ ∈ 𝑋 | |𝑓𝑘(𝑥′) − 𝑓𝑘(𝑥)| < 𝜀, ∀ 1 ≤ 𝑘 ≤ 𝑛}.

So, 𝑥𝑛 → 𝑥 in 𝜎(𝑋, 𝑋∗) if for every 𝜀 > 0, and ball 𝐵𝜀,𝑓1,…,𝑓𝑚
(𝑥), there is an 𝑁  such that for every

𝑛 ≥ 𝑁 , 𝑥𝑛 ∈ 𝐵𝜀,𝑓1,…,𝑓𝑚
(𝑥), hence for every 𝑓 ∈ 𝑋∗, |𝑓(𝑥𝑛) − 𝑓(𝑥)| < 𝜀.

For Hilbert spaces, by Riesz we know 𝑓 ∈ 𝐻∗ can always be identified with 𝑓(𝑥) = (𝑥, 𝑦) for
some 𝑦 ∈ 𝐻 . So, we find 𝑥𝑛 ⇀ 𝑥 in 𝐻  iff for every 𝑦 ∈ 𝐻 , (𝑥𝑛, 𝑦) → (𝑥, 𝑦).

Remark 2.14 :  If 𝑥𝑛 → 𝑥 in 𝐻 , then (𝑥𝑛, 𝑦) → (𝑥, 𝑦); so this “normal” (we say “strong”)
convergence implies weak convergence.

↪Proposition 2.10 :  (i) Suppose 𝑥𝑛 ⇀ 𝑥 in 𝐻 . Then, {𝑥𝑛} are bounded in 𝐻 , and ‖𝑥‖ ≤
lim inf𝑛→∞‖𝑥𝑛‖.

(ii) If 𝑦𝑛 → 𝑦 (strongly) in 𝐻  and 𝑥𝑛 ⇀ 𝑥 (weakly) in 𝐻 , then (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦).

Remark 2.15 :  It does not hold, though, that 𝑥𝑛 ⇀ 𝑥, 𝑦𝑛 ⇀ 𝑦 gives (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦).

Proof. (i) If 𝑥𝑛 ⇀ 𝑥, then

(𝑥𝑛,
𝑥

‖𝑥‖
) → (𝑥,

𝑥
‖𝑥‖

) = ‖𝑥‖.

By Cauchy-Schwarz, we also have

|(𝑥𝑛,
𝑥

‖𝑥‖
)| ≤ ‖𝑥𝑛‖(

‖𝑥‖
‖𝑥‖

) = ‖𝑥𝑛‖,
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hence we conclude

lim inf
𝑛→∞

(𝑥𝑛,
𝑥

‖𝑥‖
) ≤ lim inf

𝑛→∞
‖𝑥𝑛‖ ⇒ ‖𝑥‖ ≤ lim inf

𝑛→∞
‖𝑥𝑛‖.

To argue {𝑥𝑛} bounded, we need the uniform boundedness principle. We can view 
{𝑥𝑛} ⊆ 𝐻∗∗ by the canonical association 𝑥∗∗

𝑛 : 𝑓 ↦ 𝑓(𝑥𝑛). Since 𝑓 ∈ 𝐻∗, there is a 𝑦
such that 𝑓(⋅) = (⋅, 𝑦); label 𝑓 = 𝑓𝑦. Then, for every 𝑓 ∈ 𝐻∗,

𝑥∗∗
𝑛 (𝑓𝑦) = 𝑓𝑦(𝑥𝑛) = (𝑥𝑛, 𝑦) → (𝑥, 𝑦),

by weak convergence. Hence, it must be that sup𝑛|𝑥∗∗
𝑛 𝑓| = sup𝑛|𝑓𝑦(𝑥𝑛)| < ∞ for every 

𝑓 ∈ 𝐻∗, namely {𝑥∗∗
𝑛 } is a pointwise-bounded family of functions. Thus, by uniform

boundedness, there is a 𝐶 > 0 such that |𝑥∗∗
𝑛 𝑓| ≤ 𝐶 ‖𝑓‖ for every 𝑓 ∈ 𝐻∗ and 𝑛 ≥ 1. In

particular, if we take 𝑓(⋅) ≔ (⋅, 𝑥𝑛), we know by Riesz that ‖𝑓‖ = ‖𝑥𝑛‖ on the one hand,
so for every 𝑛 ≥ 1,

𝐶‖𝑓‖ = 𝐶 ‖𝑥𝑛‖ ≥ |𝑥∗∗
𝑛 𝑓| = |(𝑥𝑛, 𝑥𝑛)| = ‖𝑥𝑛‖2 ⇒ ‖𝑥𝑛‖ ≤ 𝐶,

completing the claim of boundedness.

(ii) If 𝑦𝑛 → 𝑦 in 𝐻 ,

|(𝑥𝑛, 𝑦𝑛) − (𝑥, 𝑦)| ≤ |(𝑥𝑛, 𝑦𝑛 − 𝑦)| + |(𝑥𝑛 − 𝑥, 𝑦)|

≤ ‖𝑥𝑛‖⏟
bounded

‖𝑦𝑛 − 𝑦‖⏟
→0

+ |(𝑥𝑛 − 𝑥, 𝑦)|⏟⏟⏟⏟⏟
→0 by weak

→ 0.

■

The real help of weak convergence is in the ease of achieving weak compactness;

↪Theorem 2.13 (Weak Compactness) :  Every bounded sequence in 𝐻  has a weakly
convergent subsequence.

↪Theorem 2.14 (Helley's Theorem):  Let 𝑋 a separable normed vector space and {𝑓𝑛} ⊆ 𝑋∗

such that there is a constant 𝐶 > 0 such that |𝑓𝑛(𝑥)| ≤ 𝐶‖𝑥‖ for every 𝑥 ∈ 𝑋 and 𝑛 ≥ 1. Then,
there exists a subsequence {𝑓𝑛𝑘

} and an 𝑓 ∈ 𝑋∗ such that 𝑓𝑛𝑘
(𝑥) → 𝑓(𝑥) for every 𝑥 ∈ 𝑋.

Proof. This is essentially a specialization of the Arzelà-Ascoli lemma. To apply it, we
need 𝑋 separable (done), the sequence to be pointwise bounded (done), and the
sequence to be equicontinuous. To verify this last one, we know that

‖𝑓𝑛(𝑥)‖ ≤ 𝐶‖𝑥‖ ⇒ ‖𝑓𝑛‖ ≤ 𝐶, ∀ 𝑛 ≥ 1,

hence by linearity, for any 𝑥, 𝑦 ∈ 𝑋,

‖𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖, ∀ 𝑛 ≥ 1,

so in particular {𝑓𝑛} uniformly Lipschitz, thus equicontinuous. ■
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Proof. (Of Thm. 2.13) Let {𝑥𝑛} ⊆ 𝐻  be bounded and let 𝐻0 = span{𝑥1, …, 𝑥𝑛, …}, so 
𝐻0 is separable, and (𝐻0, (⋅, ⋅)) is a Hilbert space (being closed). Let 𝑓𝑛 ∈ 𝐻∗

0  be given
by

𝑓𝑛(𝑥) = (𝑥𝑛, 𝑥), ∀ 𝑥 ∈ 𝐻0.

Then,

|𝑓𝑛(𝑥)| ≤ ‖𝑥𝑛‖‖𝑥‖ ≤ 𝐶‖𝑥‖,

since {𝑥𝑛} bounded by assumption. By Helly’s Theorem, then, there is a subsequence 
{𝑓𝑛𝑘

} such that 𝑓𝑛𝑘
(𝑥) → 𝑓(𝑥) for every 𝑥 ∈ 𝐻0, where 𝑓 ∈ 𝐻∗

0 . By Riesz, then, 𝑓(𝑥) =
(𝑥, 𝑥0) for some 𝑥0 ∈ 𝐻∗

0 . This implies

(𝑥𝑛𝑘
, 𝑥) → (𝑥0, 𝑥), ∀ 𝑥 ∈ 𝐻0.

Let 𝑃  the projection of 𝐻  onto 𝐻0. Then, for every 𝑥 ∈ 𝐻 ,

(𝑥𝑛𝑘
, (id −𝑃)𝑥) = (𝑥0, (id −𝑃)𝑥) = 0

so for any 𝑥 ∈ 𝐻 ,

lim
𝑘→∞

(𝑥𝑛𝑘
, 𝑥) = lim

𝑘→∞
(𝑥𝑛𝑘

, 𝑃𝑥 + (id −𝑃)𝑥)

= lim
𝑘→∞

(𝑥𝑛𝑘
, 𝑃𝑥⏟
∈𝐻0

)

= (𝑥0, 𝑃𝑥) = (𝑥0, 𝑃𝑥 + (id −𝑃)𝑥) = (𝑥0, 𝑥),

as we aimed to show. ■

§2.8 Review of 𝐿𝑝 Spaces
We always consider Ω ⊆ ℝ𝑑.

↪Definition 2.15 (𝐿𝑝(Ω)) :  For 1 ≤ 𝑝 < ∞, define

𝐿𝑝(Ω) ≔ {𝑓 : Ω → ℝ | 𝑓 measurable and ∫
Ω

|𝑓|𝑝 d𝑥 < ∞},

endowed with the norm

‖𝑓‖𝐿𝑝(Ω) = ‖𝑓‖𝑝 ≔ [∫
Ω

|𝑓(𝑥)|𝑝 d𝑥]

1
𝑝

.

For 𝑝 = ∞, define

𝐿∞(Ω) = {𝑓 : Ω → ℝ | 𝑓 measurable and ∃ 𝐶 < ∞ s.t. |𝑓| ≤ 𝐶 a.e.},

endowed with the norm

‖𝑓‖𝐿∞(Ω) = ‖𝑓‖∞ ≔ inf{𝐶 : |𝑓| ≤ 𝐶 a.e.}.

The following are recalled but not proven here, see here.
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↪Theorem 2.15 (Holder's Inequality) : For 1 ≤ 𝑝, 𝑞 ≤ ∞ with 1
𝑝 + 1

𝑞 = 1, then if 𝑓 ∈ 𝐿𝑝(Ω), 𝑔 ∈
𝐿𝑞(Ω), then 𝑓𝑔 ∈ 𝐿1(Ω), and

∫|𝑓𝑔| d𝑥 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞.

↪Theorem 2.16 (Minkowski's Inequality) :  For all 1 ≤ 𝑝 ≤ ∞, ‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝. In
particular, 𝐿𝑝(Ω) is a normed vector space.

↪Theorem 2.17 (Riesz-Fischer Theorem):  𝐿𝑝(Ω) is a Banach space for every 1 ≤ 𝑝 ≤ ∞.

↪Theorem 2.18 :  𝐶𝑐(ℝ𝑑), the space of continuous functions with compact support, simple
functions, and step functions are all dense subsets of 𝐿𝑝(ℝ𝑑), for every 1 ≤ 𝑝 < ∞.

↪Theorem 2.19 (Separability of 𝐿𝑝(Ω)) :  𝐿𝑝 is separable, for every 1 ≤ 𝑝 < ∞.

Proof. We prove for Ω = ℝ𝑑. Let

ℛ ≔ {∏
𝑑

𝑖=1
(𝑎𝑖, 𝑏𝑖) | 𝑎𝑖, 𝑏𝑖 ∈ ℚ},

and let

ℰ ≔ {finite linear combinations of 𝜒𝑅 for 𝑅 ∈ ℛ with coefficients in ℚ},

where 𝜒𝑅 the indicator function of the set 𝑅. Then, we claim ℰ dense in 𝐿𝑝(ℝ𝑑).

Given 𝑓 ∈ 𝐿𝑝(ℝ𝑑) and 𝜀 > 0, by density of 𝐶𝑐(ℝ𝑑) there is some 𝑓1 with 
‖𝑓 − 𝑓1‖𝑝 < 𝜀. Let supp(𝑓1) ⊆ 𝑅 ∈ ℛ. Now, let 𝛿 > 0. Write

𝑅 = ∪𝑁
𝑖=1 𝑅𝑖, 𝑅𝑖 ∈ ℛ,

such that

osc𝑅𝑖
(𝑓1) ≔ sup

𝑅𝑖

𝑓1 − inf
𝑅𝑖

𝑓1 < 𝛿.

Then, let

𝑓2(𝑥) = ∑
𝑁

𝑖=1
𝑞𝑖𝜒(𝑅𝑖), 𝑞𝑖 ∈ ℚ s.t. 𝑞𝑖 ≈ 𝑓1|𝑅𝑖

,

so

‖𝑓2 − 𝑓1‖∞ < 𝛿.
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Hence,

‖𝑓2 − 𝑓1‖𝑝 ≤ (∫
𝑅

|𝑓2(𝑥) − 𝑓1(𝑥)|𝑝 d𝑥)

1
𝑝

≤ |𝑓1 − 𝑓2|∞ ⋅ 𝑚(𝑅)
1
𝑝 < 𝛿 ⋅ 𝑚(𝑅)

1
𝑝 ,

where 𝑚 the Lebesgue measure on ℝ𝑑. 𝛿 was arbitrary so we may take it arbitrarily
small such that 𝛿𝑚(𝑅)

1
𝑝 < 𝜀, hence for such a 𝛿,

‖𝑓 − 𝑓2‖𝑝 ≤ ‖𝑓 − 𝑓1‖𝑝 + ‖𝑓1 − 𝑓2‖𝑝 < 2𝜀.

Now, 𝑓2 ∈ ℰ, and thus ℰ is dense in 𝐿𝑝(ℝ𝑑), and countable by construction, thus 
𝐿𝑝(ℝ𝑑) separable. ■

Remark 2.16 :  𝐿∞(Ω) is not separable, and 𝐶𝑐(ℝ𝑑) is not dense in 𝐿∞(Ω).

Remark 2.17 (Special Cases) :
• If Ω has finite measure, 𝐿𝑝(Ω) ⊆ 𝐿𝑝′(Ω) for every 𝑝 ≥ 𝑝′.
• ℓ𝑝 ≔ {𝑎 = (𝑎𝑛)∞

𝑛=1 | ∑∞
𝑛=1 |𝑎𝑛|𝑝 < ∞} endowed with the norm |𝑎|ℓ𝑝 ≔ (∑∞

𝑛=1 |𝑎𝑛|𝑝)
1/𝑝

.

§2.9 (𝐿𝑝)∗: The Riesz Representation Theorem
We are interested in functions 𝑇 : 𝐿𝑝(Ω) → ℝ which is bounded and linear. For instance, let 

𝑔 ∈ 𝐿𝑞(Ω) and 𝑓 ∈ 𝐿𝑝(Ω) where 𝑝, 𝑞 conjugates, and define

𝑇 (𝑓) ≔ ∫
Ω

𝑓(𝑥)𝑔(𝑥) d𝑥.

This is clearly linear, and by Holders,

|𝑇 𝑓| = |∫
Ω

𝑓𝑔| ≤ ‖𝑓‖𝑝‖𝑔‖𝑞.

so

|𝑇
⎝
⎜⎛

𝑓
‖𝑓‖𝑝 ⎠

⎟⎞| ≤ ‖𝑔‖𝑞, ∀ 𝑓 ∈ 𝐿𝑝(Ω), ⇒ ‖𝑇 ‖ ≤ ‖𝑔‖𝑞,

and thus 𝑇 ∈ (𝐿𝑝(Ω))∗. Moreover, if 1 < 𝑝 < ∞, 1 < 𝑞 < ∞, let

𝑓(𝑥) =
|𝑔(𝑥)|𝑞−2𝑔(𝑥)

‖𝑔‖𝑞−1
𝑞

.

Then,
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∫
Ω

|𝑓(𝑥)|𝑝 d𝑥 =
1

‖𝑔‖(𝑞−1)𝑝
𝑞

∫
Ω

|𝑔(𝑥)|(𝑞−2)𝑝|𝑔(𝑥)|𝑝 d𝑥

=
1

‖𝑔‖(𝑞−1)𝑝
𝑞

∫
Ω

|𝑔(𝑥)|𝑞𝑝−𝑝 d𝑥.

Since 1
𝑝 + 1

𝑞 = 1, we have 𝑞 + 𝑝 = 𝑝𝑞, so further

=
1

‖𝑔‖𝑞
𝑞

∫
Ω

|𝑔(𝑥)|𝑞 d𝑥 =
1

‖𝑔‖𝑞
𝑞

⋅ ‖𝑔‖𝑞
𝑞 = 1,

so 𝑓  as defined indeed in 𝐿𝑝(Ω) and moreover has 𝐿𝑝-norm of 1. In addition,

|𝑇 𝑓| =
1

‖𝑔‖𝑞−1
𝑞

∫
Ω
|𝑔(𝑥)𝑞−2|𝑔(𝑥)𝑔(𝑥) d𝑥

=
1

‖𝑔‖𝑞−1
𝑞

∫
Ω

|𝑔(𝑥)|𝑞 d𝑥

=
1

‖𝑔‖𝑞−1
𝑞

‖𝑔‖𝑞
𝑞 = ‖𝑔‖𝑞,

so ‖𝑇 ‖ = ‖𝑔‖𝑞 as desired. We have, more generally, akin to the Riesz representation theorem,

↪Theorem 2.20 (Riesz-Representation Theorem for 𝐿𝑝(Ω)) :  Let 1 ≤ 𝑝 < ∞. For any 𝑇 ∈
(𝐿𝑝(Ω))∗, there exists a unique 𝑔 ∈ 𝐿𝑞(Ω) such that 𝑇 (𝑓) = ∫

Ω
𝑓(𝑥)𝑔(𝑥) d𝑥 with ‖𝑇 ‖ = ‖𝑔‖𝑞.

We’ll only prove for Ω ⊆ ℝ. First:

↪Proposition 2.11 :  Let 𝑇 , 𝑆 ∈ (𝐿𝑝(Ω))∗. If 𝑇 = 𝑆 on a dense subset 𝐸 ⊆ 𝐿𝑝(Ω), then 𝑇 = 𝑆
everywhere.

Proof. Let 𝑓0 ∈ 𝐿𝑝(Ω). By density, there exists {𝑓𝑛} ⊆ 𝐸 such that 𝑓𝑛 → 𝑓  in 𝐿𝑝(Ω).
By continuity, 𝑇𝑓𝑛 → 𝑇𝑓0 and 𝑆𝑓𝑛 → 𝑆𝑓0, while 𝑇𝑓𝑛 = 𝑆𝑓𝑛 for every 𝑛 ≥ 1, so by
uniqueness of limits in ℝ, 𝑇𝑓0 = 𝑆𝑓0. ■

The general outline of the proof of Thm. 2.20 is the following:
• prove the theorem for 𝑓  a step function;
• prove the theorem for 𝑓  bounded and measurable;
• conclude the full theorem by appealing to the previous proposition.

To do this, we need first to recall the notion of absolutely continuous functions. Fix [𝑎, 𝑏] ⊆ 𝑅 and 
𝐺 : [𝑎, 𝑏] → ℝ. 𝐺 is said to be absolutely continuous on [𝑎, 𝑏] if for every 𝜀 > 0 there exists a 𝛿 > 0
such that for every disjoint collection {(𝑎𝑘, 𝑏𝑘)}𝑁

𝑘=1 ⊆ [𝑎, 𝑏] with ∑𝑁
𝑘=1(𝑎𝑘 − 𝑏𝑘) < 𝛿, then 

∑𝑁
𝑘=1|𝐺(𝑏𝑘) − 𝐺(𝑎𝑘)| < 𝜀. In particular, we need the following result, proven here:

2.9 (𝐿𝑝)∗: The Riesz Representation Theorem 48

https://notes.louismeunier.net/Analysis%203/analysis3.pdf?page=79


↪Theorem 2.21 : If 𝐺 : [𝑎, 𝑏] → ℝ is absolutely continuous, then 𝑔 = 𝐺′ exists a.e. on [𝑎, 𝑏], 𝑔 ∈
𝐿1([𝑎, 𝑏]), and for every 𝑥 ∈ [𝑎, 𝑏],

𝐺(𝑥) − 𝐺(𝑎) = ∫
𝑥

𝑎
𝑔(𝑡) d𝑡.

Proof (Of Thm. 2.20 with Ω = [𝑎, 𝑏]) . Let 𝑇 ∈ (𝐿𝑝([𝑎, 𝑏]))∗.

Step 1: Let 𝑓  a step function. The function 𝜒[𝑎,𝑥) ∈ 𝐿𝑝([𝑎, 𝑏]); define

𝐺𝑇 (𝑥) ≔ 𝑇(𝜒[𝑎,𝑥)).

We claim 𝐺𝑇  absolutely continuous. Consider {(𝑎𝑘, 𝑏𝑘)}𝑁
𝑘=1 disjoint. Then, for every 

[𝑐, 𝑑] ⊆ [𝑎, 𝑏], , 𝐺𝑇 (𝑑) − 𝐺𝑇 (𝑐) = 𝑇(𝜒[𝑎,𝑑)) − 𝑇(𝜒[𝑎,𝑐]) = 𝑇(𝜒[𝑎,𝑑) − 𝜒[𝑎,𝑐)) = 𝑇(𝜒[𝑐,𝑑)),
so

∑
𝑁

𝑘=1
(𝐺𝑇 (𝑏𝑘) − 𝐺𝑇 (𝑎𝑘)) = ∑

𝑁

𝑘=1
𝑐𝑘 ⋅ (𝐺𝑇 (𝑏𝑘) − 𝐺𝑇 (𝑎𝑘)), 𝑐𝑘 ≔ sgn(𝐺𝑇 (𝑏𝑘) − 𝐺𝑇 (𝑎𝑘))

= ∑
𝑁

𝑘=1
𝑐𝑘 ⋅ 𝑇 (𝜒[𝑎𝑘,𝑏𝑘))

= 𝑇(∑
𝑁

𝑘=1
𝑐𝑘𝜒[𝑎𝑘,𝑏𝑘))

≤ ‖𝑇‖‖∑
𝑁

𝑘=1
𝑐𝑘𝜒[𝑎𝑘,𝑏𝑘)‖

𝑝

.

By the disjointedness of the intervals, we may write

∫
𝑏

𝑎
|∑

𝑁

𝑘=1
𝑐𝑘𝜒[𝑎𝑘,𝑏𝑘)|

𝑝

d𝑥 ≤ ∑
𝑁

𝑘=1
∫

𝑏𝑘

𝑎𝑘

d𝑥 = ∑
𝑁

𝑘=1
(𝑏𝑘 − 𝑎𝑘).

So, ‖∑𝑁
𝑘=1 𝑐𝑘𝜒[𝑎𝑘,𝑏𝑘)‖𝑝

= (∑𝑁
𝑘=1(𝑏𝑘 − 𝑎𝑘))

1
𝑝 , thus

∑
𝑁

𝑘=1
|𝐺𝑇 (𝑏𝑘) − 𝐺𝑇 (𝑎𝑘)| ≤ ‖𝑇 ‖ ⋅ (∑

𝑁

𝑘=1
(𝑏𝑘 − 𝑎𝑘))

1
𝑝

.

Hence, for 𝜀 > 0, letting 𝛿 = ( 𝜀
‖𝑇‖)

𝑝
 proves absolute continuity of 𝐺𝑇 . Thus, 𝑔 = 𝐺′

𝑇

exists and is such that 𝑔 ∈ 𝐿1([𝑎, 𝑏]) and

𝐺𝑇 (𝑥) = ∫
𝑥

𝑎
𝑔(𝑡) d𝑡, ∀ 𝑥 ∈ [𝑎, 𝑏].

Hence,
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𝑇(𝜒[𝑐,𝑑)) = 𝐺𝑇 (𝑑) − 𝐺𝑇 (𝑐) = ∫
𝑑

𝑎
𝑔(𝑡) d𝑡 − ∫

𝑐

𝑎
𝑔(𝑡) d𝑡

= ∫
𝑑

𝑐
𝑔(𝑡) d𝑡

= ∫
𝑏

𝑎
𝑔(𝑡) ⋅ 𝜒[𝑐,𝑑)(𝑡) d𝑡.

This proves the theorem for indicator functions; by linearity of 𝑇  and linearity of the
integral, we can repeat this procedure to find a function 𝑔 such that 𝑇𝑓 = ∫𝑏

𝑎
𝑓(𝑡)𝑔(𝑡) d𝑡

for every step function 𝑓 .

Step 2: Let 𝑓  bounded and measurable. We know that for every step function 𝜓, 
𝑇𝜓 = ∫𝑏

𝑎
𝜓(𝑡)𝑔(𝑡) d𝑡 (with the 𝑔 as “found” in step 1). So,

|𝑇 𝑓 − ∫
𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)| = |𝑇 (𝑓 − 𝜓) − ∫

𝑏

𝑎
(𝑓(𝑡) − 𝜓(𝑡))𝑔(𝑡) d𝑡|

≤ ‖𝑇 ‖‖𝑓 − 𝜓‖𝑝 + ∫
𝑏

𝑎
|𝑓(𝑡) − 𝜓(𝑡)||𝑔(𝑡)| d𝑡.

Then, since 𝑔 ∈ 𝐿1([𝑎, 𝑏]), for every 𝜀 > 0 there is some 𝛿 > 0 such that if 𝐸 a set of
measure less than 𝛿, ∫

𝐸
|𝑔(𝑡)| d𝑡 < 𝜀. Fix 𝜀 > 0 and 𝛿 > 0 such that this holds; let 𝛿 < 𝜀 if

necessary wlog. Since 𝑓  bounded and measurable, there is some step function 𝜓 such
that |𝑓 − 𝜓| < 𝛿 on 𝐸 ⊆ [𝑎, 𝑏], and that 𝑚(𝐸𝑐) < 𝛿 and |𝜓| ≤ ‖𝑓‖∞. Hence,

‖𝑓 − 𝜓‖𝑝
𝑝 = ∫

𝐸
|𝑓 − 𝜓|𝑝 + ∫

𝐸𝑐

|𝑓 − 𝜓|𝑝

≤ 𝛿𝑝 ⋅ 𝑚(𝐸) + (2‖𝑓‖∞)
𝑝
𝑚(𝐸𝑐)

≤ 𝛿𝑝 |𝑏 − 𝑎| + (2‖𝑓‖∞)
𝑝
𝛿.

Also,

∫
𝑏

𝑎
|𝑓 − 𝜓||𝑔| d𝑡 ≤ ∫

𝐸
𝛿 ⋅ |𝑔| d𝑡 + ∫

𝐸𝑐

2‖𝑓‖∞|𝑔| d𝑡

≤ 𝛿‖𝑔‖1 + 2‖𝑓‖∞𝜀.

All together then,

|𝑇 𝑓 − ∫
𝑏

𝑎
𝑓(𝑡)𝑔(𝑡) d𝑡| ≤ ‖𝑇 ‖(𝛿𝑝 |𝑏 − 𝑎| + (2‖𝑓‖∞)

𝑝
𝛿)

1
𝑝 + 𝛿‖𝑔‖1 + 2‖𝑓‖∞𝜀

< 𝐶(‖𝑓‖∞, ‖𝑔‖1, 𝑎, 𝑏, ‖𝑇 ‖) ⋅ 𝜀
1
𝑝 ,

where 𝐶 a constant. The LHS does not depend on 𝜀, hence taking the limit 𝜀 → 0+, we
conclude
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𝑇𝑓 = ∫
𝑏

𝑎
𝑓(𝑡)𝑔(𝑡) d𝑡.

Note that all simple functions are bounded and measurable, so the necessary property
also holds for 𝑓  simple.

We need now to show 𝑔 ∈ 𝐿𝑞([𝑎, 𝑏]) and ‖𝑔‖ = ‖𝑇 ‖.

• Case 1: 𝑝 > 1 so 𝑞 < ∞. Let 𝑔𝑛 ≔ {𝑔 if |𝑔|≤𝑛
0 o.w.

 and 𝑓𝑛 ≔ {|𝑔|𝑞−1 sgn(𝑔) if |𝑔|≤𝑛
0 o.w.

. Then,

‖𝑔𝑛‖𝑞
𝑞 = ∫

{|𝑔|≤𝑛}
|𝑔|𝑞 d𝑡

= ∫
{|𝑔|≤𝑛}

𝑓𝑛 ⋅ 𝑔𝑛 d𝑡

= ∫
{|𝑔|≤𝑛}

𝑓𝑛𝑔 d𝑡

= 𝑇𝑓𝑛 ≤ ‖𝑇 ‖‖𝑓𝑛‖𝑝,

since 𝑓𝑛 bounded and measurable so Step 2 applies. Also,

‖𝑓𝑛‖𝑝
𝑝 = ∫

{|𝑔|≤𝑛}
|𝑔|(𝑞−1)𝑝 d𝑡

= ∫
{|𝑔|≤𝑛}

|𝑔|𝑞 d𝑡 = ‖𝑔𝑛‖𝑞
𝑞.

All together then,

‖𝑔𝑛‖𝑞
𝑞 ≤ ‖𝑇 ‖‖𝑔𝑛‖𝑞/𝑝

𝑞 ⇒ ‖𝑔𝑛‖𝑞(1−1
𝑝)

𝑞 = ‖𝑔𝑛‖𝑞 ≤ ‖𝑇 ‖.

By construction, |𝑔𝑛|𝑞 → |𝑔|𝑞 a.e. and monotonely, so by the monotone convergence
theorem,

‖𝑔𝑛‖𝑞 → ‖𝑔‖𝑞,

so ‖𝑔‖𝑞 ≤ ‖𝑇 ‖ and so 𝑔 ∈ 𝐿𝑞([𝑎, 𝑏]). From here, as in the example at the beginning of
this section, one can show equality by chosing 𝑓  appropriately.

• Case 2: 𝑝 = 1 so 𝑞 = ∞. We claim that ‖𝑔‖∞ = sup‖𝑓‖1=1,
𝑓 bdd

∫ 𝑓𝑔. Let 𝜀 > 0 and 𝐴 ⊆

[𝑎, 𝑏] such that |𝑔| ≥ ‖𝑔‖∞ − 𝜀 on 𝐴 where 𝑚(𝐴) > 0. Let

𝑓(𝑥) =
𝜒𝐴

𝑚(𝐴)
sgn(𝑔).

Then, 𝑓  bounded and ‖𝑓‖1 = 1. So,

∫ 𝑓𝑔 =
1

𝑚(𝐴)
∫

𝐴
|𝑔| ≥

1
𝑚(𝐴)

∫
𝐴
(‖𝑔‖∞ − 𝜀) = ‖𝑔‖∞ − 𝜀,

hence we have proven ≤ of our claim. By Holder,
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sup
‖𝑓‖=1

∫ 𝑓𝑔 ≤ ‖𝑓‖1‖𝑔‖∞ = ‖𝑔‖∞,

so ≥ holds and the claim is proven. Thus,

‖𝑔‖∞ = sup
‖𝑓‖=1,
𝑓 bdd

𝑇𝑓 ≤ ‖𝑇 ‖‖𝑓‖1 = ‖𝑇 ‖,

so in particular 𝑔 ∈ 𝐿∞([𝑎, 𝑏]). For the other inequality,

|𝑇 𝑓| = |∫ 𝑓𝑔 d𝑡| ≤ ‖𝑓‖1‖𝑔‖∞,

hence

‖𝑇 ‖ ≤ ‖𝑔‖∞

so ‖𝑔‖∞ = ‖𝑇 ‖ as we aimed to show.

Step 3: We need to show 𝑇𝑓 = ∫𝑏
𝑎

𝑓𝑔 d𝑡 for every 𝑓 ∈ 𝐿𝑝([𝑎, 𝑏]). Simple functions are
dense in 𝐿𝑝([𝑎, 𝑏]), and since 𝑇𝑓 = ∫𝑏

𝑎
𝑓𝑔 d𝑡 for every simple function 𝑓 , we conclude 

𝑇𝑓 = ∫𝑏
𝑎

𝑓𝑔 d𝑡 for every 𝑓 ∈ 𝐿𝑝([𝑎, 𝑏]) by the previous density lemma.

Moreover, 𝑔 is unique because if

∫
𝑏

𝑎
𝑓𝑔 = ∫

𝑏

𝑎
𝑓𝑔′,

then

∫
𝑏

𝑎
𝑓(𝑔 − 𝑔′) = 0,

for every 𝑓 ∈ 𝐿𝑝. Let 𝑓(𝑡) = sgn(𝑔 − 𝑔′), then

0 = ∫
𝑏

𝑎
|𝑔 − 𝑔′| d𝑡 ⇒ 𝑔 = 𝑔′ a.e..

So, 𝑔 uniquely defined up to a set of measure 0 so 𝑔 = 𝑔′ in 𝐿𝑞. ■

Proof (Of RRT if Ω = ℝ) . Fix 𝑇 ∈ (𝐿𝑝(ℝ))∗. Then, 𝑇 |[−𝑁,𝑁] ∈ (𝐿𝑝([−𝑁, 𝑁]))∗ for every 
𝑁 ≥ 1, and ‖𝑇 |[−𝑁,𝑁]‖ ≤ ‖𝑇 ‖. Then, by RRT on [−𝑁, 𝑁], there is a 𝑔𝑁 ∈ 𝐿𝑞([−𝑁, 𝑁])
such that 𝑇𝑓 = ∫𝑁

−𝑁
𝑓𝑔𝑁 d𝑡. By uniqueness, 𝑔𝑁+1|[−𝑁,𝑁] = 𝑔𝑁 . Define

𝑔(𝑡) ≔ 𝑔𝑁(𝑡), 𝑡 ∈ [−𝑁, 𝑁].

So, 𝑔𝑁(𝑡) → 𝑔(𝑡) pointwise and |𝑔𝑁(𝑡)|𝑞 → |𝑔(𝑡)|𝑞 pointwise and monotonely. By
monotone convergence, then, ∫

ℝ
|𝑔𝑁 |𝑞 d𝑡 → ∫

ℝ
|𝑔|𝑞 d𝑡. So, 𝑔 ∈ 𝐿𝑞(ℝ) since 

‖𝑔𝑁‖𝐿𝑞([−𝑁,𝑁]) ≤ ‖𝑇 ‖ for every 𝑁 ≥ 1. Let 𝑓𝑁(𝑡) = 𝑓(𝑡)𝜒[−𝑁,𝑁]. Then, 𝑓𝑁 → 𝑓  in 𝐿𝑝(ℝ)
so 𝑇𝑓𝑁 → 𝑇𝑓 . So also

𝑇𝑓𝑁 = ∫
𝑁

−𝑁
𝑓𝑁𝑔𝑁 = ∫

𝑁

−𝑁
𝑓(𝑡)𝑔𝑁(𝑡) d𝑡 = ∫

ℝ
𝑓𝑔𝑁 d𝑡 → 𝑇𝑓,
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if we take by convention the 𝑔𝑁 ’s to be zero outside of [−𝑁, 𝑁]. But also, 𝑓 ∈ 𝐿𝑝(ℝ)
and 𝑔𝑁 → 𝑔 in 𝐿𝑞(ℝ), so applying Holder’s to the quantity ∫

ℝ
𝑓𝑔𝑁 , we know

∫
ℝ

𝑓𝑔𝑁 → ∫
ℝ

𝑓𝑔,

hence equating the two

𝑇𝑓 = ∫
ℝ

𝑓𝑔,

for every 𝑓 ∈ 𝐿𝑝(ℝ). A similar proof to the previous gives the necessary norm identity.
■

Proof (Of RRT for general Ω ⊆ ℝ) . If 𝑇 ∈ (𝐿𝑝(Ω))∗, let 𝑇 ∈ (𝐿𝑝(ℝ))∗ given by 𝑇𝑓 =
𝑇(𝑓 |Ω). Then by the previous case there is 𝑔 ∈ 𝐿𝑞(ℝ) such that 𝑇 (𝑓) = ∫ 𝑓𝑔. Let 𝑔 =
𝑔|Ω, then 𝑇𝑓 = ∫

Ω
𝑓𝑔. ■

So, RRT gives us that for 𝑝 ∈ [1, ∞], (𝐿𝑝(Ω))∗ ∼ 𝐿𝑞(Ω), and that ‖𝑓‖𝑝 = sup𝑔∈𝐿𝑞

‖𝑔‖𝑞=1
|∫ 𝑓𝑔|.

In particular, if 𝑝 = 1,

‖𝑓‖𝐿1 = ∫ 𝑓 sgn 𝑓(𝑥) d𝑥 = sup
‖𝑔‖∞=1

∫ 𝑓𝑔.

What, though, is (𝐿∞)∗. Certainly, 𝐿1(Ω) ⊆ (𝐿∞(Ω))∗ since for 𝑓 ∈ 𝐿∞, 𝑇𝑓 = ∫ 𝑓𝑔 d𝑥 with 𝑔 ∈
𝐿1, which is bounded by Holders. However, it turns out that this inclusion is a strict one.
Consider for instance

𝑇𝑓 ≔ 𝑓(0), 𝑇 : 𝐿∞([−1, 1]) → ℝ.

Then, certainly |𝑇 𝑓| ≤ ‖𝑓‖∞ so 𝑇 ∈ (𝐿∞)∗. However, there is no function 𝑔 such that 𝑓(0) =
∫ 𝑓(𝑡)𝑔(𝑡) d𝑡.

§2.10 Weak Convergence in 𝐿𝑝(Ω)

↪Definition 2.16 (Weak convergence in 𝐿𝑝(Ω)) :  Let Ω ⊂ ℝ𝑑, 𝑝 ∈ [1, ∞) and 𝑞 its conjugate.
Then, we say 𝑓𝑛 → 𝑓  weakly in 𝐿𝑝(Ω), and write

𝑓𝑛 ⇀𝐿𝑝(Ω) 𝑓,

if for every 𝑔 ∈ 𝐿𝑞(Ω),

lim
𝑛→∞

∫
Ω

𝑓𝑛𝑔 d𝑥 = ∫ 𝑓𝑔 d𝑥.
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Remark 2.18 :  Weak limits are unique; suppose otherwise that 𝑓𝑛 ⇀ 𝑓, 𝑓 . Let 𝑔 = sgn(𝑓 − 𝑓) ⋅
|𝑓 − 𝑓|

𝑝−1
, which is in 𝐿𝑞(Ω). So,

lim
𝑛

∫ 𝑔𝑓𝑛 d𝑥 = ∫ 𝑔𝑓 d𝑥 = ∫ 𝑔𝑓 d𝑥,

by assumption, so

0 = ∫
Ω

𝑔(𝑓 − 𝑓) d𝑥 = ∫ |𝑓 − 𝑓|
𝑝
d𝑥,

hence 𝑓 = 𝑓  a.e. (and so equal as elements of 𝐿𝑝(Ω)).

Remark 2.19 :  Many of the properties of weakly convergent sequences in a Hilbert space carry
over to this setting.

↪Proposition 2.12 :  Let Ω ⊆ ℝ𝑑.

(i) If 𝑝 ∈ (1, ∞), 𝑓𝑛 ⇀𝐿𝑝(Ω) 𝑓 , then {𝑓𝑛} ⊆ 𝐿𝑝(Ω) are bounded, and moreover ‖𝑓‖𝑝 ≤
lim inf𝑛 ‖𝑓𝑛‖𝑝.

(ii) If 𝑝 ∈ [1, ∞) and 𝑓𝑛 ⇀𝐿𝑝(Ω) 𝑓, 𝑔𝑛 →
𝐿𝑝(Ω)

𝑔, then lim𝑛→∞ ∫ 𝑔𝑛𝑓𝑛 d𝑥 = ∫ 𝑔𝑓 d𝑥.

Proof. Identical to Hilbert space proofs; replace usage of Cauchy-Schwarz with
Holder’s. ■

Remark 2.20 :  In (i), 𝑝 ∈ (1, ∞), since 𝐿𝑝 “reflexive” in this case, i.e. (𝐿𝑝)∗∗ = 𝐿𝑝 (just as we
had in the Hilbert space case). We don’t have this property for 𝑝 = 1.

Remark 2.21 :  A related notion of convergence is called weak∗ convergence, written 𝑓𝑛 ⇀∗𝐿𝑝(Ω) 𝑓 ;
we say this holds if for every 𝑔 ∈ 𝐿𝑞(Ω) such that (𝐿𝑞)∗ = 𝐿𝑝, then ∫ 𝑓𝑛𝑔 d𝑥 → ∫ 𝑓𝑔 d𝑥. So if 
𝑝 ∈ (1, ∞), weak convergence = weak∗ convergence, by Riesz.

Remark 2.22 :  There are many equivalent notions to weak convergence.

↪Theorem 2.22 (Equivalent Weak Convergence) :  Let 𝑝 ∈ (1, ∞). Suppose {𝑓𝑛} ⊆ 𝐿𝑝(Ω) are
bounded and 𝑓 ∈ 𝐿𝑝. Then, 𝑓𝑛 ⇀𝐿𝑝(Ω) 𝑓  iff

• for any 𝑔 ∈ 𝐺 ⊆ 𝐿𝑞(Ω) such that span(𝐺) = 𝐿𝑞(Ω), then lim𝑛→∞ ∫ 𝑓𝑛𝑔 = ∫ 𝑓𝑔;
• ∀ 𝐴 ⊆ Ω measurable with finite measure, then lim𝑛→∞ ∫

𝐴
𝑓𝑛 d𝑥 = ∫

𝐴
𝑓 d𝑥;

• if 𝑑 = 1 and Ω = [𝑎, 𝑏], then lim𝑛→∞ ∫𝑥
𝑎

𝑓𝑛 d𝑥 = ∫𝑥
𝑎

𝑓 d𝑥 for every 𝑥 ∈ [𝑎, 𝑏].
• 𝑓𝑛 → 𝑓  pointwise a.e..
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Remark 2.23 : Some of these notions extend to 𝑝 = 1, but we state in the 𝑝 > 1 case for
simplicity.

↪Theorem 2.23 (Radon-Riesz) :  Let 𝑝 ∈ (1, ∞). Suppose 𝑓𝑛 ⇀𝐿𝑝(Ω) 𝑓 , then 𝑓𝑛 →
𝐿𝑝(Ω)

𝑓  iff 

lim𝑛→∞ ‖𝑓𝑛‖𝑝 = ‖𝑓‖𝑝.

Alternatively, there exists a subsequence {𝑓𝑛𝑘
} such that 𝑓𝑛𝑘

→ 𝑓  in 𝐿𝑝(Ω) iff 
lim inf𝑛→∞ ‖𝑓𝑛‖𝑝 = ‖𝑓‖𝑝.

Proof. (⇒) If 𝑓𝑛 →
𝐿𝑝(Ω)

𝑓  then ‖𝑓𝑛‖𝑝 → ‖𝑓‖𝑝 by triangle inequality.

The converse, (⇐), is hard. ■

↪Theorem 2.24 (Weak Compactness) :  Let 𝑝 ∈ (1, ∞), then every bounded sequence in 𝐿𝑝(Ω)
has a weakly convergent subsequence, with limit in 𝐿𝑝(Ω).

Proof. Let {𝑓𝑛} ⊆ 𝐿𝑝(Ω) be bounded. 𝑝 ∈ (1, ∞) so so is 𝑞, and in particular 𝐿𝑞(Ω) is
separable. Let 𝑇𝑛 ∈ (𝐿𝑞(Ω))∗ be given by 𝑇𝑛(𝑔) ≔ ∫ 𝑓𝑛𝑔 d𝑥 for 𝑔 ∈ 𝐿𝑞(Ω). Then, ‖𝑇𝑛‖ =
‖𝑓𝑛‖𝑝 ≤ 𝐶. So,

sup
𝑛

|𝑇𝑛(𝑔)| ≤ ‖𝑇𝑛‖‖𝑔‖𝑞 ≤ 𝐶‖𝑔‖𝑞.

By Helley’s Theorem (Thm. 2.14), there exists a subsequence {𝑇𝑛𝑘
} and 𝑇 ⊆ (𝐿𝑞(Ω))∗

such that lim𝑘→∞ 𝑇𝑛𝑘
(𝑔) = 𝑇 (𝑔) for every 𝑔 ∈ 𝐿𝑞(Ω). By Riesz, there exists some 𝑓 ∈

𝐿𝑝(Ω) such that 𝑇 (𝑔) = ∫ 𝑓𝑔 d𝑥, and hence

lim
𝑘

∫ 𝑓𝑛𝑘
𝑔 d𝑥 = ∫ 𝑓𝑔 d𝑥,

for every 𝑔 ∈ 𝐿𝑞(Ω), so 𝑓𝑛𝑘
⇀𝐿𝑝(Ω) 𝑓 . ■

§2.11 Convolution and Mollifiers

↪Definition 2.17 (Convolution):

(𝑓 ∗ 𝑔)(𝑥) ≔ ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦 = ∫
ℝ𝑑

𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦.
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↪Proposition 2.13 (Properties of Convolution):
a. (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ) (convolution is associative)
b. Let 𝜏𝑧𝑓(𝑥) ≔ 𝑓(𝑥 − 𝑧) be the 𝑧-translate of 𝑥 which centers 𝑓  at 𝑧. Then,

𝜏𝑧(𝑓 ∗ 𝑔) = (𝜏𝑧𝑓) ∗ 𝑔 = 𝑓 ∗ (𝜏𝑧𝑔).

c. supp(𝑓 ∗ 𝑔) ⊆ {𝑥 + 𝑦 | 𝑥 ∈ supp(𝑓), 𝑦 ∈ supp(𝑔)}.

Proof. (a) Assuming all the necessary integrals are finite, we can change order of
integration,

((𝑓 ∗ 𝑔) ∗ ℎ)(𝑥) = (∫ 𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦) ∗ ℎ(𝑥)

= ∫ ∫ 𝑓(𝑦)𝑔(𝑥 − 𝑧 − 𝑦) d𝑦, ℎ(𝑧) d𝑧

= ∫ ∫ 𝑓(𝑦)𝑔(𝑥 − 𝑦 − 𝑧)ℎ(𝑧) d𝑧 d𝑦 (𝑦′ = 𝑥 − 𝑦)

= ∫ ∫ 𝑓(𝑥 − 𝑦′)𝑔(𝑦′ − 𝑧)ℎ(𝑧) d𝑧 d𝑦′

= ∫ 𝑓(𝑥 − 𝑦′)(𝑔 ∗ ℎ)(𝑦′) d𝑦′ = (𝑓 ∗ (𝑔 ∗ ℎ))(𝑥).

(b) For the first equality,

𝜏𝑧(𝑓 ∗ 𝑔)(𝑥) = 𝜏𝑧 ∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦

= ∫ 𝑓(𝑥 − 𝑧 − 𝑦)𝑔(𝑦) d𝑦

= ∫(𝜏𝑧𝑓(𝑥 − 𝑦))𝑔(𝑦) d𝑦 = ((𝜏𝑧𝑓) ∗ 𝑔)(𝑥).

The second follows from a change of variables in the second line.

(c) We’ll show that 𝐴𝑐 ⊆ (supp(𝑓 ∗ 𝑔))𝑐 where 𝐴 the set as defined in the
proposition. Let 𝑥 ∈ 𝐴𝑐, then if 𝑦 ∈ supp(𝑔), 𝑥 − 𝑦 ∉ supp(𝑓) so 𝑓(𝑥 − 𝑦) = 0; else if 
𝑦 ∉ supp(𝑔) it must be 𝑔(𝑦) = 0. So, if 𝑥 ∈ 𝐴𝑐, it must be that

∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦 = ∫
supp(𝑔)

𝑓(𝑥 − 𝑦)⏟
=0

𝑔(𝑦) d𝑦 + ∫
supp(𝑔)𝑐

𝑓(𝑥 − 𝑦)𝑔(𝑦)⏟
=0

d𝑦 = 0.

■

We’ve been rather loose with finiteness of the convolutions so far. To establish this, we need the
following result.
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↪Theorem 2.25 (Young's Inequality) :  Let 𝑓 ∈ 𝐿1(ℝ𝑑), 𝑔 ∈ 𝐿𝑝(ℝ𝑑) for any 𝑝 ∈ [1, ∞]. Then,

‖𝑓 ∗ 𝑔‖𝑝 ≤ ‖𝑓‖1‖𝑔‖𝑝,

hence 𝑓 ∗ 𝑔 ∈ 𝐿𝑝(ℝ𝑑).

Proof. Suppose first 𝑝 = ∞, then

(𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦 ≤ ‖𝑔‖∞ ∫|𝑓(𝑦)| d𝑦 = ‖𝑔‖∞‖𝑓‖1,

for every 𝑥 ∈ ℝ𝑑, so passing to the 𝐿∞-norm,

‖𝑓 ∗ 𝑔‖∞ ≤ ‖𝑓‖1‖𝑔‖∞.

Suppose now 𝑝 = 1. Then,

‖𝑓 ∗ 𝑔‖1 = ∫|∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦| d𝑥.

Let 𝐹(𝑥, 𝑦) = 𝑓(𝑥 − 𝑦)𝑔(𝑦), then for almost every 𝑦 ∈ ℝ𝑑,

∫|𝐹(𝑥, 𝑦)| d𝑥 = ∫|𝑔(𝑦)||𝑓(𝑥 − 𝑦)| d𝑥

= |𝑔(𝑦)| ∫|𝑓(𝑥 − 𝑦)| d𝑥

= |𝑔(𝑦)|‖𝑓‖1.

Applying Tonelli’s Theorem, we have then

∬|𝐹(𝑥, 𝑦)| d𝑦 d𝑥 = ∬|𝐹(𝑥, 𝑦)| d𝑥 d𝑦 = ∫|𝑔(𝑦)|‖𝑓‖1 d𝑦 = ‖𝑓‖1‖𝑔‖1,

(so really 𝐹 ∈ 𝐿1(ℝ𝑑) × 𝐿1(ℝ𝑑)), hence all together

‖𝑓 ∗ 𝑔‖1 = ∫|∫ 𝐹(𝑥, 𝑦) d𝑦| d𝑥 ≤ ∬|𝐹(𝑥, 𝑦)| d𝑦 d𝑥 = ‖𝑓‖1‖𝑔‖1.

Remark 2.24 :  It also follows that for a.e. 𝑥 ∈ ℝ𝑑, ∫|𝐹(𝑥, 𝑦)| d𝑦 < ∞, i.e. ∫|𝑓(𝑥 −
𝑦)𝑔(𝑦)| d𝑦 < ∞. Moreover, since if 𝑔 ∈ 𝐿𝑝(Ω) then |𝑔|𝑝 ∈ 𝐿1(Ω), a similar argument
gives that for almost every 𝑥 ∈ ℝ𝑑, ∫|𝑓(𝑥 − 𝑦)||𝑔(𝑦)|𝑝 d𝑦 < ∞.

Suppose now 1 < 𝑝 < ∞. For a.e. 𝑥 ∈ ℝ𝑑, ∫ |𝑔(𝑦)|𝑝|𝑓(𝑥 − 𝑦)| d𝑦 < ∞, so 𝑔 ∈ 𝐿𝑝(ℝ𝑑)
implies for a.e. 𝑥 ∈ ℝ𝑑, |𝑔(⋅)|𝑝 |𝑓(𝑥 − ⋅)| ∈ 𝐿1(ℝ𝑑) as a function of ⋅. This further
implies 𝑔(𝑦)𝑓

1
𝑝 (𝑥 − 𝑦) ∈ 𝐿𝑝(ℝ𝑑, d𝑦). Also, if 𝑓 ∈ 𝐿1(ℝ𝑑), then 𝑓

1
𝑞 ∈ 𝐿𝑞(ℝ𝑑). All

together then,

2.11 Convolution and Mollifiers 57



∫|𝑓(𝑥 − 𝑦)||𝑔(𝑦)| d𝑦 = ∫

𝑞
⏞⏞⏞⏞⏞
|𝑓

1
𝑞 (𝑥 − 𝑦)||𝑓

1
𝑝 (𝑥 − 𝑦)||𝑔(𝑦)| d𝑦

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

Holder's ≤ (∫|𝑓(𝑥 − 𝑦)| d𝑦)
1
𝑞

(∫|𝑓(𝑥 − 𝑦)||𝑔(𝑦)|𝑝 d𝑦)
1
𝑝

,

hence, raising both sides to the 𝑝,

|(𝑓 ∗ 𝑔)(𝑥)|𝑝 ≤ ‖𝑓‖
𝑝
𝑞
1 ⋅ (|𝑓| ∗ |𝑔|𝑝)(𝑥)

and integrating both sides

∫ |(𝑓 ∗ 𝑔)(𝑥)|𝑝 d𝑥 ≤ ‖𝑓‖
𝑝
𝑞
1 ∫

⎝
⎜⎜
⎜⎛ |𝑓|⏟

∈𝐿1(ℝ𝑑)

∗ |𝑔|𝑝⏟
∈𝐿1(ℝ𝑑)⎠

⎟⎟
⎟⎞(𝑥) d𝑥.

Hence, we can bound the right-hand term using the previous case for 𝑝 = 1, and find

∫ |(𝑓 ∗ 𝑔)(𝑥)|𝑝 d𝑥 ≤ ‖𝑓‖
𝑝
𝑞
1 ‖𝑓‖1‖𝑔

𝑝‖1

= ‖𝑓‖
𝑝
𝑞+1
1 ‖𝑔‖𝑝

𝑝

= ‖𝑓‖
𝑝+𝑞

𝑞
1 ‖𝑔‖𝑝

𝑝

(
𝑝 + 𝑞

𝑞
= 𝑝) = ‖𝑓‖𝑝

1‖𝑔‖𝑝
𝑝,

so raising both sides to 1
𝑝 , we conclude

‖𝑓 ∗ 𝑔‖𝑝 ≤ ‖𝑓‖1‖𝑔‖𝑝.

■

↪Proposition 2.14 :  If 𝑓 ∈ 𝐿1(ℝ𝑑) and 𝑔 ∈ 𝐶1(ℝ𝑑) with |𝜕𝑥𝑖
𝑔| ∈ 𝐿∞(ℝ𝑑) for 𝑖 = 1, …, 𝑑, then 

(𝑓 ∗ 𝑔) ∈ 𝐶1(ℝ𝑑) and moreover

𝜕𝑥𝑖
(𝑓 ∗ 𝑔) = 𝑓 ∗ (𝜕𝑥𝑖

𝑔).

Remark 2.25 :  There are many different conditions we can place on 𝑓, 𝑔 to make this true;
most basically, we need |(𝜕𝑖𝑔) ∗ 𝑓| < ∞.

Proof.

𝜕
𝜕𝑥𝑖

(∫ 𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦) = ∫ 𝑓(𝑦)⏟
∈𝐿1(ℝ𝑑)

𝜕𝑖𝑔(𝑥 − 𝑦)⏟⏟⏟⏟⏟
∈𝐿∞(ℝ𝑑)

d𝑦 < ∞,

citing the previous theorem for the finiteness; the dominated convergence theorem
allows us to pass the derivative inside. ■
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Remark 2.26 : This also follows for the gradient; namely ∇(𝑓 ∗ 𝑔) = 𝑓 ∗ (∇𝑔) with a
component-wise convolution.

Consider the function

𝜌(𝑥) =
⎩{
⎨
{⎧𝐶 exp(− 1

1−|𝑥|2
) if |𝑥| ≤ 1

0 o.w.
,

where 𝐶 = 𝐶(𝑑) a constant such that ∫
ℝ𝑑 𝜌(𝑥) d𝑥 = 1. Then, note that 𝜌 ∈ 𝐶∞

𝑐 (ℝ𝑑) (infinitely
differentiable with compact support). Let now

𝜌𝜀(𝑥) ≔
1
𝜀𝑑 𝜌(

𝑥
𝜀
).

Notice that 𝜌𝜀(𝑥) is supported on 𝐵(0, 𝜀), but

∫
ℝ𝑑

𝜌𝜀(𝑥) d𝑥 =
1
𝜀𝑑 ∫

ℝ𝑑

𝜌(
𝑥
𝜀
) d𝑥 =

1
𝜀𝑑 ⋅ 𝜀𝑑 ⋅ ∫

ℝ𝑑

𝜌(𝑦) d𝑦 = 1,

for every 𝜀, by making a change of variables 𝑦 = 𝑥
𝜀 . We’ll be interested in the convolution

𝑓𝜀(𝑥) ≔ (𝜌𝜀 ∗ 𝑓)(𝑥)

for some function 𝑓 . 𝜌𝜀 is often called a “convolution kernel”. In particular, it is a “good kernel”,
namely has the properties:
• ∫

ℝ𝑑 𝜌𝜀(𝑦) d𝑦 = 1;
• ∫

ℝ𝑑 |𝜌𝜀(𝑦)| d𝑦 ≤ 𝑀  for some finite 𝑀 ;
• ∀ 𝛿 > 0, ∫

{|𝑦|>𝛿}
|𝜌𝜀(𝑦)| d𝑦 →

𝜀→0
0.

The second condition is trivially satisfied in this case since our kernel is nonnegative. The last
also follows easily since 𝜌𝜀 has compact support; more generally, this imposes rapid decay
conditions on the tails of good kernels.

Since 𝜌𝜀 ∈ 𝐶∞
𝑐 (ℝ𝑑), for “reasonable” 𝑓 , 𝑓𝜀 = 𝜌𝜀 ∗ 𝑓 ∈ 𝐶∞(ℝ𝑑) by the previous proposition. In

fact, we’ll see that in many contexts 𝑓𝜀 → 𝑓  as 𝜀 → 0 in some notion of convergence. So, 𝑓𝜀

provides a good, now smooth, approximation to 𝑓 .

↪Proposition 2.15 :  Suppose 𝑓 ∈ 𝐿∞(ℝ𝑑) and 𝑓𝜀 is well-defined. Then, if 𝑓  is continuous at 𝑥,
then 𝑓𝜀(𝑥) → 𝑓(𝑥) as 𝜀 → 0.

If 𝑓 ∈ 𝐶(ℝ𝑑), then 𝑓𝜀 → 𝑓  uniformly on compact sets.

Proof. 𝑓  continuous at 𝑥 gives that for every 𝜂 > 0 there exists a 𝛿 > 0 such that 
|𝑓(𝑦) − 𝑓(𝑥)| < 𝜂 whenver |𝑥 − 𝑦| < 𝛿. Then
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|𝑓𝜀(𝑥) − 𝑓(𝑥)| =

|
|
|
|
∫ 𝜌𝜀(𝑦)𝑓(𝑥 − 𝑦) d𝑦 − 𝑓(𝑥)∫ 𝜌𝜀(𝑦) d𝑦

⏟⏟⏟⏟⏟
=1 |

|
|
|

= |∫ 𝜌𝜀(𝑦)(𝑓(𝑥 − 𝑦) − 𝑓(𝑥)) d𝑦|

≤ ∫
{|𝑦|≤𝛿}

|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)||𝜌𝜀(𝑦)| d𝑦 + ∫
{|𝑦|>𝛿}

|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)||𝜌𝜀(𝑦)| d𝑦

(cnty in first argument
𝐿∞-bound in second ) ≤ ∫

{|𝑦|≤𝛿}
𝜂|𝜌𝜀(𝑦)| d𝑦 + 2‖𝑓‖∞ ∫

|𝑦|>𝛿
|𝜌𝜀(𝑦)| d𝑦

≤ 𝜂 ⋅ 𝑀 + 2‖𝑓‖∞ ∫
{|𝑦|>𝛿}

|𝜌𝜀|

for 𝜀 → 0, by using the second property of good kernels for the first bound. By the last
property, the right-most term → 0 as 𝜀 → 0; moreover, then,

lim
𝜀→0

|𝑓𝜀(𝑥) − 𝑓(𝑥)| ≤ 𝐶𝜂

for some 𝐶 and every 𝜂 > 0, and thus 𝑓𝜀(𝑥) → 𝑓(𝑥) as 𝜀 → 0.

Now, if 𝑓 ∈ 𝐶(ℝ𝑑) fix a subset 𝐾 ⊆ ℝ𝑑 compact. Hence, ‖𝑓‖𝐿∞(𝐾) < ∞ and 𝑓
uniformly continuous on 𝐾 since 𝐾 compact; so the modulus of continuity is uniform
for all 𝑥 ∈ 𝐾, so for 𝛿 > 0 and for every 𝑥 ∈ 𝐾,

∫
{|𝑦|≤𝛿}

|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)||𝜌𝜀(𝑦)| d𝑦 ≤ 𝐶𝜂.

Also, using the bound on 𝑓 , we may write the second integral in the argument above
as

∫
𝜀>|𝑦|>𝛿

|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)||𝜌𝜀(𝑦)| d𝑦 ≤ ‖𝑓‖𝐿∞(𝐾+𝐵𝜀) ∫
{|𝑦|>𝛿}

|𝜌𝜀(𝑦)| d𝑦 →
𝜀→0

0

where we take 𝐾 slighly larger as 𝐾 + 𝐵𝜀, which is still compact. So, since this held for
all 𝑥 ∈ 𝐾,

max
𝑥∈𝐾

|𝑓𝜀(𝑥) − 𝑓(𝑥)| →
𝜀→0

0.

Note that we proved the first for general good kernels but the second only in our constructed
one. ■

Remark 2.27 :  This pointwise convergence result is why “good kernels” are called
“approximations to the identity”.
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Remark 2.28 :  If 𝑓 ∈ 𝐶𝑐(ℝ𝑑), then supp(𝑓𝜀) ⊆ supp (𝑓) + 𝐵(0, 𝜀); so, 𝑓𝜀 is compactly
supported if 𝑓  is. Hence in this case 𝑓𝜀 → 𝑓  uniformly on ℝ𝑑. More generally, there are many
different restrictions one can place on the last claim, such as compact support of 𝑓 , uniform
continuity of 𝑓 , compact support of the kernel, lack of compact support for the kernel but an 
𝐿∞ bound on 𝑓 , etc. In practice, the proofs are all the same, with different bounds; namely
one finds something of the form

|𝑓𝜀(𝑥) − 𝑓(𝑥)| ≤ ∫
|𝑦| <𝛿

(…)
⏟⏟⏟⏟⏟

small by
(uniform) continuity

+ ∫
|𝑦| ≥𝛿

(…)
⏟⏟⏟⏟⏟

small by
compact support, etc

↪Theorem 2.26 (Weierstrass Approximation Theorem):  Let [𝑎, 𝑏] ⊆ ℝ and let 𝑓 ∈ 𝐶([𝑎, 𝑏]).
Then for every 𝜂 > 0, there exists a polynomial 𝑃𝑁(𝑥) of degree 𝑁  such that

‖𝑃𝑁 − 𝑓‖𝐿∞([𝑎,𝑏]) < 𝜂.

That is, polynomials are dense in 𝐶([𝑎, 𝑏]).

Proof. Extend 𝑓  to be continuous with compact support on all of ℝ in whatever
convenient way, such that supp(𝑓) ⊆ [−𝑀, 𝑀] for some sufficiently large 𝑀 > 0.
Consider now

𝐾𝜀(𝑥) ≔
1

√
𝜀
𝑒−𝜋𝑥2

𝜀 ,

noting that

∫
∞

−∞
𝐾𝜀(𝑥) d𝑥 = ∫

∞

−∞

1
√

𝜀
𝑒−𝜋𝑥2

𝜀 d𝑥 = 1,

which is clear by a change of variables 𝑦 =
√

2𝜋√
𝜀 𝑥. As a consequence, ∫∞

−∞
|𝐾𝜀(𝑥)| d𝑥 =

1 < ∞, since 𝐾𝜀 ≥ 0. Finally,

∫
|𝑥|>𝛿

|𝐾𝜀(𝑥)| d𝑥 = ∫
|𝑥|>𝛿

1
√

𝜋
𝑒−𝜋𝑥2

𝜀 d𝑥

= ∫
|𝑦|>

√
2𝜋√
𝜀 𝛿

𝑒−𝑦2
2

√
2𝜋

d𝑦

since |𝑦| ≥ 1 here for suff. small 𝜀 ≤ ∫
|𝑦|>

√
2𝜋√
𝜀 𝛿

|𝑦|
√

2𝜋
𝑒−𝑦2

2
√

2𝜋
d𝑦

≤ 𝐶𝑒−𝑦2
2

∞

√
2𝜋√
𝜀 𝛿

→
𝜀→0

0.

So, 𝐾𝜀 is a good kernel, and so (𝑓 ∗ 𝐾𝜀)(𝜀) →
𝜀→0

𝑓  uniformly in [𝑎, 𝑏] by our last remark.
In particular, for 𝜂 > 0 there is some 𝜀0 > 0,
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‖(𝑓 ∗ 𝐾𝜀0
) − 𝑓‖

𝐿∞([𝑎,𝑏])
<

𝜂
2
.

We claim now that there is a polynomial 𝑃𝑁  such that ‖𝑃𝑁 − (𝑓 ∗ 𝐾𝜀0
)‖

𝐿∞([𝑎,𝑏])
< 𝜂

2 .

Recall that 𝑒𝑥 = ∑∞
𝑛=0

𝑥𝑛

𝑛! , which converges uniformly on compact sets. So, there exists
a polynomial 𝑆𝑁  (from truncating this sum) such that ‖𝐾𝜀0

− 𝑆𝑁‖
𝐿∞([−𝑀,𝑀])

<
𝜂

4‖𝑓‖∞𝑀 . Thus,

|𝑓 ∗ 𝐾𝜀0
(𝑥) − 𝑓 ∗ 𝑆𝑛(𝑥)| ≤ |∫ 𝑓(𝑥 − 𝑦)(𝐾𝜀0

(𝑦) − 𝑆𝑁(𝑦)) d𝑦|

supp(𝑓) ⊂ [−𝑀, 𝑀] ≤ ∫
𝑀

−𝑀
|𝑓(𝑥 − 𝑦)||𝐾𝜀0

(𝑦) − 𝑆𝑁(𝑦)| d𝑦

≤ 2𝑀‖𝑓‖∞
𝜂

4𝑀‖𝑓‖∞
=

𝜂
2
,

for every 𝑥. Let 𝑃𝑁(𝑥) = (𝑓 ∗ 𝑆𝑛)(𝑥), which we see to be a polynomial. ■

↪Theorem 2.27 :  Let 𝑓 ∈ 𝐿𝑝(ℝ𝑑) with 𝑝 ∈ [1, ∞). Then 𝑓𝜀 →
𝐿𝑝(ℝ𝑑)

𝑓 .

Proof. Since 𝑓 ∈ 𝐿𝑝(ℝ𝑑), for every 𝜂 > 0 there is a 𝑓 ∈ 𝐶𝑐(ℝ𝑑) such that ‖𝑓 − 𝑓‖
𝑝

<

𝜂. Since 𝑓 ∈ 𝐶𝑐(ℝ𝑑), by the previous theorem dealing with mollifiers and uniform
convergence, 𝑓𝜀 → 𝑓  uniformly. In particular, we have ‖𝑓𝜀 − 𝑓‖

𝑝
→
𝑝

0, hence

‖𝑓 − 𝑓𝜀‖𝑝 ≤ ‖𝑓𝜀 − 𝑓𝜀‖𝑝
+ ‖𝑓𝜀 − 𝑓‖

𝑝
+ ‖𝑓 − 𝑓‖

𝑝
.

We’ve dealt with the second two bounds. For the first,

‖𝑓𝜀 − 𝑓𝜀‖𝑝
= ‖(𝑓 − 𝑓) ∗ 𝜌𝜀‖𝑝

(Young's) ≤ ‖𝜌𝜀‖1‖𝑓 − 𝑓‖
𝑝

= ‖𝑓 − 𝑓‖
𝑝
,

so

‖𝑓 − 𝑓𝜀‖𝑝 ≤ 2‖𝑓 − 𝑓‖
𝑝

+ ‖𝑓𝜀 − 𝑓‖
𝑝

< 3𝜂.

■

↪Corollary 2.6 :  𝐶∞
𝑐 (ℝ𝑑) dense in 𝐿𝑝(ℝ𝑑).

Proof. We showed 𝑓𝜀 approximates 𝑓  in 𝐿𝑝(ℝ𝑑), and by construction 𝑓𝜀 is smooth
with compact support. ■

§2.12 Strong Compactness in 𝐿𝑝(ℝ𝑑)

2.12 Strong Compactness in 𝐿𝑝(ℝ𝑑) 62



We saw that for 𝑝 ∈ (1, ∞), {𝑓𝑛} ⊂ 𝐿𝑝(Ω), that any bounded sequence admits a weakly
converging subsequence, 𝑓𝑛𝑘

⇀𝐿𝑝 𝑓 . In addition, if the norms also converge i.e. lim𝑛→∞ ‖𝑓𝑛‖𝑝 =
‖𝑓‖𝑝, then we actually have strong convergence 𝑓𝑛𝑘

→
𝐿𝑝

𝑓 .

We provide now a strong compactness result in 𝐿𝑝, akin to Arzelà-Ascoli.

↪Theorem 2.28 (Strong Compactness) :  Let {𝑓𝑛} ⊆ 𝐿𝑝(ℝ𝑑) for 𝑝 ∈ [1, ∞) s.t.
i. ∃ 𝐶 > 0 s.t. ‖𝑓𝑛‖𝑝 < 𝐶 ∀ 𝑛, i.e. {𝑓𝑛} uniformly bounded in 𝐿𝑝;
ii. lim|ℎ|→0 ‖𝑓𝑛 − 𝜏ℎ𝑓𝑛‖𝑝 = 0 uniformly in 𝑛, i.e. for every 𝜂 > 0, there exists 𝛿 > 0 such that if 
|ℎ| < 𝛿, ∫ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥 − ℎ)|𝑝 d𝑥 < 𝜂𝑝 for every 𝑛;

Then, for any Ω ⊆ ℝ𝑑 with finite measure, there exists a subsequence {𝑓𝑛𝑘
} such that 

𝑓𝑛𝑘
→

𝐿𝑝(Ω)
𝑓 .

Proof. Recall that 𝐿𝑝(Ω) is a complete metric space, so TFAE:
1. sequential compactness;
2. totally bounded (& complete);
3. compact.

Let ℱ = {𝑓 ∈ 𝐿𝑝(ℝ𝑑) satisfying i., ii.} and fix Ω ⊆ ℝ𝑑 with finite measure. We aim to
show that ℱ|Ω is sequentially compact in 𝐿𝑝(Ω) (with no regard to whether the limit
lives in ℱΩ); equivalently, we wish to show ℱ|Ω is precompact in 𝐿𝑝(Ω) i.e. ℱ|Ω is
compact. Since ℱ|Ω is a complete metric space, to prove the result it suffices to show
that ℱ|Ω is totally bounded (recall: for every 𝛿 > 0, ℱ|Ω ⊆ ⋃𝑁

𝑖=1 𝐵𝐿𝑝(Ω)(𝑔𝑖, 𝛿)). We’ll do
this using mollifiers and AA.

Step 1: Fix 𝜂, 𝛿 as in ii. in the statement of the theorem, and let 𝑓 ∈ ℱ. Then, for every
𝜀 < 𝛿, we claim

‖(𝜌𝜀 ∗ 𝑓) − 𝑓‖𝐿𝑝(ℝ𝑑) < 𝜂.

We have

|(𝜌𝜀 ∗ 𝑓)(𝑥) − 𝑓(𝑥)| = |∫
𝐵𝜀

𝜌𝜀(𝑦)𝑓(𝑥 − 𝑦) d𝑦 − 𝑓(𝑥) ∫ 𝜌𝜀(𝑦) d𝑦|

≤ ∫
𝐵𝜀

𝜌𝜀(𝑦)|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| d𝑦

= ∫
𝐵𝜀

𝜌
1
𝑞
𝜀 (𝑦)𝜌

1
𝑝
𝜀 (𝑦)|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| d𝑦

(Holder's) ≤ (∫ 𝜌𝜀(𝑦)|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)|𝑝 d𝑦)
1/𝑝

(∫ 𝜌𝜀(𝑦) d𝑦)
1/𝑞

⏟⏟⏟⏟⏟⏟⏟
=1

,

and hence
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∫ |(𝜌𝜀 ∗ 𝑓)(𝑥) − 𝑓(𝑥)|𝑝 d𝑥 ≤ ∬ 𝜌𝜀(𝑦)|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)|𝑝 d𝑦 d𝑥

(Tonelli's) = ∫
𝐵𝜀

𝜌𝜀(𝑦)∫ |𝑓(𝑥 − 𝑦) − 𝑓(𝑥)|𝑝 d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜀<𝛿⇒𝜂𝑝

d𝑦

< 𝜂𝑝∫
𝐵𝜀

𝜌𝜀(𝑦) d𝑦
⏟⏟⏟⏟⏟

=1

= 𝜂𝑝,

hence ‖(𝜌𝜀 ∗ 𝑓)(𝑥) − 𝑓(𝑥)‖𝑝 < 𝜂.

Step 2: We first claim that there exists some 𝐶𝜀 such that for any 𝑓 ∈ ℱ,

‖𝜌𝜀 ∗ 𝑓‖∞ ≤ 𝐶𝜀‖𝑓‖𝑝, (1)

and that for any 𝑥1, 𝑥2 ∈ ℝ𝑑,

|(𝜌𝜀 ∗ 𝑓)(𝑥1) − (𝜌𝜀 ∗ 𝑓)(𝑥2)| ≤ 𝐶𝜀‖𝑓‖𝑝|𝑥1 − 𝑥2|. (2)

In particular, this shows that for 𝜀 fixed, (𝜌𝜀 ∗ 𝑓) satisfy hypothesis of AA. Remark that
the first is a uniform boundedness type condition for 𝜌𝜀 ∗ 𝑓 , and the second is a
uniform Lipschitz bound.

For the first claim (1),

|(𝜌𝜀 ∗ 𝑓)(𝑥)| = |∫ 𝜌𝜀(𝑥 − 𝑦)𝑓(𝑦) d𝑦|

(Holder's) ≤ (∫ 𝜌𝑞
𝜀(𝑥 − 𝑦) d𝑦)

1
𝑞

⋅ ‖𝑓‖𝑝

= ‖𝜌𝜀‖𝑞‖𝑓‖𝑝,

so we have the bound with 𝐶𝜀 ≔ ‖𝜌𝜀‖𝑞 since the bound is independent of 𝑥.

Remark 2.29 :  One can explicitly compute ‖𝜌𝜀‖𝑞, and realize that it will in general
depend explicitly on 𝜀.

For the second statement (2), we find that ∇(𝜌𝜀 ∗ 𝑓) = (∇𝜌𝜀) ∗ 𝑓  since the RHS is finite,
because

(∇𝜌𝜀 ∗ 𝑓)(𝑥) = ∫ ∇𝜌𝜀(𝑥 − 𝑦)𝑓(𝑦) d𝑦 ≤ ‖∇𝜌𝜀‖𝑞‖𝑓‖𝑝.

So,

‖∇(𝜌𝜀 ∗ 𝑓)‖∞ ≤ ‖∇𝜌𝜀‖𝑞⏟
≕𝐶𝜀

‖𝑓‖𝑝.

By the mean-value theorem then, we have all together
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‖(𝜌𝜀 ∗ 𝑓)(𝑥1) − (𝜌𝜀 ∗ 𝑓)(𝑥2)‖ ≤ ‖∇(𝜌𝜀 ∗ 𝑓)‖∞|𝑥1 − 𝑥2|

≤ 𝐶𝜀‖𝑓‖𝑝|𝑥1 − 𝑥2|.

This proves (2).

Step 3: Next, we claim that for 𝜂 > 0 and fixed 𝜀 < 𝜂 and Ω ⊆ ℝ𝑑 with finite measure,
there exists 𝐸 ⊆ Ω ⊆ ℝ𝑑 such that 𝐸 is bounded, i.e. 𝐸 ⊆ 𝐵(0, 𝑀) where 𝑀
sufficiently large, and moreover that ‖𝑓‖𝐿𝑝(Ω\𝐸) < 𝜂 for every 𝑓 ∈ ℱ.

We have that

‖𝑓‖𝐿𝑝(Ω\𝐸) ≤ ‖𝑓 − (𝜌𝜀 ∗ 𝑓)‖𝐿𝑝(ℝ𝑑) + ‖𝜌𝜀 ∗ 𝑓‖𝐿𝑝(Ω\𝐸).

By the very first step of the proof, the first term is < 𝜂, so this is bounded by

< 𝜂 + (∫
Ω/𝐸

|𝜌𝜀 ∗ 𝑓|𝑝 d𝑥)
1/𝑝

< 𝜂 + ‖𝜌𝜀 ∗ 𝑓‖∞ |Ω \ 𝐸|
1
𝑝

< 𝜂 + 𝐶𝜀‖𝑓‖𝑝|Ω \ 𝐸|
1
𝑝 .

𝐶𝜀 finite and ‖𝑓‖𝑝 upper bounded uniformly over ℱ, so it suffices to construct 𝐸 with
the measure of Ω \ 𝐸 sufficiently small, so we can get ‖𝑓‖𝐿𝑝(Ω\𝐸) < 2𝜂.

Step 4: Fix 𝜂 > 0. We claim ℱ|Ω is totally bounded. Let 𝜀 < 𝛿 then let

ℋ ≔ (𝜌𝜀 ∗ ℱ)|𝐸 = {𝜌𝜀 ∗ 𝑓|𝐸 : 𝑓 ∈ ℱ}.

𝐸 ⊆ Ω ⊆ ℝ𝑑 is bounded implies 𝐸 is compact. So by Step 2., we showed (𝜌𝜀 ∗ ℱ)
satisfies hypotheses of AA on 𝐸. Hence, ℋ is precompact in 𝐶(𝐸). Thus, since we
have uniform convergence we certainly have 𝐿𝑝 convergence thus ℋ also precompact
in 𝐿𝑝(𝐸). Thus, for 𝜂 > 0, there exists {𝑔𝑖} ⊆ 𝐿𝑝(𝐸) such that

ℋ ⊆ ⋃
𝑁

𝑖=1
𝐵𝐿𝑝(𝐸)(𝑔𝑖, 𝜂). ★

Let 𝑔𝑖 : Ω → ℝ be given by

𝑔𝑖(𝑥) = {
𝑔𝑖 on 𝐸
0 on Ω \ 𝐸

.

Then, we claim ℱ|Ω ⊆ ⋃𝑁
𝑖=1 𝐵𝐿𝑝(Ω)(𝑔𝑖, 3𝜂). If 𝑓 ∈ ℱ by ★, there is an 𝑖 such that 

‖𝜌𝜀 ∗ 𝑓 − 𝑔𝑖‖𝐿𝑝(𝐸)
< 𝜂. But also,
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‖𝑓 − 𝑔𝑖‖
𝑝
𝐿𝑝(Ω) = ∫

Ω\𝐸
|𝑓|𝑝 d𝑥 + ∫

𝐸
|𝑓 − 𝑔𝑖|

𝑝
d𝑥

= ‖𝑓‖𝑝
𝐿𝑝(Ω\𝐸) + ∫

𝐸
|𝑓 − 𝑔𝑖|

𝑝
d𝑥

(Step 3.) ≤ 𝜂𝑝 + ∫
𝐸

|𝑓 − 𝑔𝑖|
𝑝
d𝑥.

Recall (𝑎 + 𝑏)
1
𝑝 ≤ 𝑎

1
𝑝 + 𝑏

1
𝑝 . Applying this bound to the above, we find

‖𝑓 − 𝑔𝑖‖𝐿𝑝(Ω) ≤ 𝜂 + ‖𝑓 − 𝑔𝑖‖𝐿𝑝(𝐸)

≤ 𝜂 + ‖𝑓 − 𝑓 ∗ 𝜌𝜀‖𝐿𝑝(ℝ𝑑)⏟⏟⏟⏟⏟⏟⏟
<𝜂 by Step 1.

+ ‖(𝑓 ∗ 𝜌𝜀) − 𝑔𝑖‖𝐿𝑝(𝐸)⏟⏟⏟⏟⏟⏟⏟⏟⏟
<𝜂 by ★

≤ 3𝜂.

Hence, ℱ|Ω ⊆ ⋃𝑁
𝑖=1 𝐵(𝑔𝑖, 3𝜂), thus ℱ|Ω is sequentially compact so any sequence in ℱ

has a converging subsequence, which proves the theorem. ■

Remark 2.30 :  This can be extended to 𝐿𝑝(ℝ𝑑) with some conditions.

§3 Introduction to Fourier Analysis
References are Folland, Chapter 8 and Fourier Analysis by Stein & Sharkarchi.

§3.1 Fourier Series
We will denote the torus 𝕋 = [0, 1) ≃ ℝ/ℤ (with 1 identified back with 0), and specifically

complex-valued functions on the torus

𝐿2(𝕋) = {𝑓 : 𝕋 → ℂ ∫
1

0
|𝑓(𝑥)|2 d𝑥 < ∞},

where now |⋅| the modulus (i.e. |𝑎 + 𝑏𝑖|2 = 𝑎2 + 𝑏2). Equivalently, 𝑓 : 𝕋 → ℂ can be identified
with 𝑓 : ℝ → ℂ which is periodic.

↪Proposition 3.1 :  The function 𝐿2(𝕋) × 𝐿2(𝕋) → ℂ

(𝑓, 𝑔) = ∫
1

0
𝑓(𝑥)𝑔(𝑥) d𝑥

is an inner product on 𝐿2(𝕋). In particular, (𝐿2(𝕋), (⋅, ⋅)) a Hilbert space.

Proof. For ℂ-valued functions, we need to check:
• linearity in the first variable: for 𝛼 ∈ ℂ,

(𝛼𝑓 + ℎ, 𝑔) = ∫
1

0
(𝛼𝑓 + ℎ)𝑔 d𝑥 = 𝛼(𝑓, 𝑔) + (ℎ, 𝑔)

by linearity of the integral;
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• conjugate symmetry:

∫
1

0
𝑓(𝑥)𝑔(𝑥) d𝑥 = ∫

1

0
(Re(𝑓) + 𝑖Im(𝑓))(Re(𝑔) − 𝑖Im(𝑔)) d𝑥

≕ ∫
1

0
(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑) d𝑥

= ∫
1

0
(𝑎𝑐 + 𝑏𝑑) + 𝑖(𝑏𝑐 − 𝑎𝑑) d𝑥

= ∫
1

0
(𝑎𝑐 + 𝑏𝑑) − 𝑖(𝑎𝑑 − 𝑏𝑐) d𝑥

= ∫
1

0
𝑔𝑓 d𝑥 = (𝑔, 𝑓);

• 𝑓  inner product with 𝑓  properties:

(𝑓, 𝑓) = ∫
1

0
𝑓(𝑥)𝑓(𝑥) d𝑥 = ∫

1

0
|𝑓(𝑥)|2 d𝑥 = ‖𝑓‖2

𝐿2(𝕋) ≥ 0, = 0 iff 𝑓 ≡ 0.

We know 𝐿2(𝕋) is complete, so 𝐿2(𝕋) a Hilbert space with this inner product since it
induces the same norm as the usual norm 𝐿2-norm. ■

↪Theorem 3.1 :  Let 𝑒𝑛(𝑥) ≔ 𝑒2𝜋𝑖𝑛𝑥 for 𝑛 ∈ ℤ. Then, {𝑒𝑛}𝑛∈ℤ is an orthonormal basis of 𝐿2(𝕋).

Proof. For orthonormality, if 𝑛 ≠ 𝑚,

(𝑒𝑛, 𝑒𝑚) = ∫
1

0
𝑒2𝜋𝑖𝑛𝑥𝑒−2𝜋𝑖𝑚𝑥 d𝑥

= ∫
1

0
𝑒2𝜋𝑖(𝑛−𝑚)𝑥 d𝑥

=
1

2𝜋𝑖(𝑛 − 𝑚)
𝑒2𝜋𝑖(𝑛−𝑚)𝑥

1

0

=
1

2𝜋𝑖(𝑛 − 𝑚)
[𝑒2𝜋𝑖(𝑛−𝑚) − 1]

=
1

2𝜋𝑖(𝑛 − 𝑚)
⎣
⎢
⎡cos(2𝜋(𝑛 − 𝑚))⏟⏟⏟⏟⏟⏟⏟

=1

+ 𝑖 sin(2𝜋(𝑛 − 𝑚))⏟⏟⏟⏟⏟⏟⏟
=0

− 1
⎦
⎥
⎤ = 0,

and if 𝑛 = 𝑚,

(𝑒𝑛, 𝑒𝑛) = ∫
1

0
|𝑒2𝜋𝑖𝑛𝑥|2 d𝑥 = ∫

1

0
1 d𝑥 = 1.

To prove its a basis, we use Stone-Weierstrass. 𝕋 is compact; let
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𝒜 ≔ { ∑
𝑁

𝑛=−𝑁
𝛼𝑛𝑒𝑛 : 𝛼𝑛 ∈ ℂ, 𝑁 ∈ ℕ}.

Notice 𝑒𝑛𝑒𝑚 = 𝑒2𝜋𝑖(𝑛+𝑚)𝑥 = 𝑒𝑛+𝑚, and 𝑒0 = 1, so this family stays closed under
multiplication (and clearly addition and scalar multiplication by definition), so is an
algebra which contains constant functions. Also, if 𝑥1 ≠ 𝑥2 and 𝑥1, 𝑥2 ∈ [0, 1), then if 
𝑛 ≠ 0, 𝑒𝑛(𝑥1) = 𝑒2𝜋𝑖𝑛𝑥1 ≠ 𝑒2𝜋𝑖𝑛𝑥2 = 𝑒𝑛(𝑥2), so 𝒜 separates points. By (complex) Stone-
Weierstrass, then we know 𝒜 is dense in 𝐶(𝕋, ℂ) with respect to ‖⋅‖∞. We know 
𝐶(𝕋, ℂ) is dense in 𝐿2(𝕋) (by some mollifier argument, for example) with respect to 
‖⋅‖𝐿2(𝕋). So,

𝑓(𝑥) = lim
𝑁→∞

∑
𝑁

𝑛=−𝑁
𝛼𝑛𝑒𝑛(𝑥),

with the limit taken in the sense of 𝐿2(𝕋). ■

Recall that in Hilbert spaces, TFAE:
• {𝑒𝑛} are a basis, i.e. 𝑓 = ∑∞

𝑛=−∞ 𝛼𝑛𝑒𝑛 = ∑∞
𝑛=−∞(𝑓, 𝑒𝑛)𝑒𝑛, in 𝐿2(𝕋);

• if (𝑓, 𝑒𝑛) = 0 for every 𝑛, 𝑓 ≡ 0 (completeness);
• ‖𝑓‖2

𝐿2(𝕋) = ∑∞
𝑛=−∞ |(𝑓, 𝑒𝑛)|2 (Parseval’s).

With this in mind, we define:

↪Definition 3.1 (Fourier Series) :  Let

𝑓(𝑛) ≔ (𝑓, 𝑒𝑛) = ∫
1

0
𝑓(𝑥)𝑒−2𝜋𝑖𝑛𝑥 d𝑥.

Then, the complex Fourier series is defined by

∑
∞

𝑛=−∞
𝑓(𝑛)𝑒2𝜋𝑖𝑛𝑥.

Remark 3.1 :  A Fourier series can be defined for any periodic function, while we only do so
for 1-periodic here. If 𝑓  were 𝐿-periodic, we’d define

𝑓𝐿(𝑛) ≔
1
𝐿

∫
𝐿

0
𝑓(𝑥)𝑒−2𝜋𝑖𝑛𝑥

𝐿 d𝑥,

with complex Fourier series ∑∞
𝑛=−∞ 𝑓𝐿(𝑛)𝑒2𝜋𝑖𝑛𝑥

𝐿 .
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Remark 3.2 :  We can also make Fourier series to be real-valued, with sines and cosines, of the
form

𝐴0 + ∑
∞

𝑛=1
[𝐴𝑛 cos(

2𝑛𝜋𝑥
𝐿

) + 𝐵𝑛 sin(
2𝑛𝜋𝑥

𝐿
)],

for some 𝐴𝑛, 𝐵𝑛 also given by inner products.

What conditions do we need on 𝑓  to make this series converge? In the general 𝐿2-theory, we just
need 𝑓 ∈ 𝐿2(𝕋). By Parseval’s,

‖𝑓‖2
𝐿2(𝕋) = ∑

∞

𝑛=−∞
|𝑓(𝑛)|

2
.

So, the operator ̂⋅ : 𝐿2(𝕋) → ℓ2(ℂ). Note that this implies lim𝑛→∞ |𝑓(𝑛)|
2

= 0, so also 
lim𝑛→∞|𝑓(𝑛)| = 0. This proves the following proposition:

↪Proposition 3.2 (Riemann-Lebesgue Lemma):  If 𝑓 ∈ 𝐿2(𝕋),

lim
𝑛→∞

|𝑓(𝑛)| = 0.

Remark 3.3 :  This result in very useful, particularly for the real Fourier Series. In particular, it
tells us statements such as

lim
𝑛→∞

∫
1

0
𝑓(𝑥) sin(2𝑛𝜋𝑥) d𝑥 = 0,

with similar for the cosine term. These are so-called “oscillatory integrals”.

While the 𝐿2(𝕋)-theory is very useful for Hilbert space interpretation, we are really concerned
with the partial sums

𝑆𝑁(𝑥) = ∑
𝑁

𝑛=−𝑁
𝑓(𝑛)𝑒2𝜋𝑖𝑛𝑥,

and ways it might converge. We may rewrite by definition

𝑆𝑁(𝑥) = ∑
𝑁

𝑛=−𝑁
(∫

1

0
𝑓(𝑦)𝑒−2𝜋𝑖𝑛𝑦 d𝑦)𝑒2𝜋𝑖𝑛𝑥

(because finite sum) = ∫
1

0
𝑓(𝑦) ∑

𝑁

𝑛=−𝑁
𝑒2𝜋𝑖𝑛(𝑥−𝑦) d𝑦

(∗ just over [0, 1)) = (𝑓 ∗ 𝐷𝑁)(𝑥), 𝐷𝑁(𝑥) ≔ ∑
𝑁

𝑛=−𝑁
𝑒2𝜋𝑖𝑛𝑥.

So in short,
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𝑆𝑁(𝑥) = (𝑓 ∗ 𝐷𝑁)(𝑥),

where 𝐷𝑁(𝑥) is called the Dirichlet kernel. Let’s look at some of its properties.

𝐷𝑁(𝑥) = 1 + ∑
𝑁

𝑛=1
[𝑒2𝜋𝑖𝑛𝑥 + 𝑒−2𝜋𝑖𝑛𝑥],

so

∫
1

0
𝐷𝑁(𝑥) d𝑥 = ∫

1

0
1 d𝑥 + ∑

𝑁

𝑛=1
∫

1

0
(some periodic functions)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= 1,

by periodicity. However, 𝐷𝑁(𝑥) is not actually a good kernel; one can show that 
∫1

0
|𝐷𝑁(𝑥)| d𝑥 ≥ 𝐶 log 𝑁  as 𝑁 → ∞.

Note too that

𝐷𝑁(𝑥) = ∑
𝑁

𝑛=−𝑁
𝑒2𝜋𝑖𝑛𝑥

= ∑
2𝑁

𝑛=0
𝑒2𝜋𝑖(𝑛−𝑁)𝑥

= 𝑒−2𝜋𝑖𝑁𝑥 ∑
2𝑁

𝑛=0
(𝑒2𝜋𝑖𝑥)𝑛

= 𝑒−2𝜋𝑖𝑁𝑥(
1 − 𝑒2𝜋𝑖(2𝑁+1)𝑥

1 − 𝑒2𝜋𝑖𝑥 ) (geometric series)

=
𝑒−2𝜋𝑖𝑁𝑥 − 𝑒2𝜋𝑖(𝑁+1)𝑥

1 − 𝑒2𝜋𝑖𝑥 ⋅
𝑒−2𝜋𝑖𝑥

2

𝑒−2𝜋𝑖𝑥
2

=
𝑒−2𝜋𝑖(𝑁+1

2)𝑥 − 𝑒2𝜋𝑖(𝑁+1
2)𝑥

𝑒−2𝜋𝑖𝑥
2 − 𝑒2𝜋𝑖𝑥

2

=
sin(2𝜋(𝑁 + 1

2)𝑥)
sin(2𝜋𝑥

2)
.

This form leads nicely to the following results.

↪Theorem 3.2 (Pointwise Convergence) :  Let 𝑓 ∈ 𝐿2(𝕋) and suppose 𝑓  is Lipschitz
continuous at 𝑥0. Then,

𝑆𝑁(𝑥0) → 𝑓(𝑥0).

Proof. Left as an exercise.

■

↪Theorem 3.3 (Uniform convergence) :  If 𝑓 ∈ 𝐶2(𝕋), then 𝑆𝑁(𝑥) → 𝑓(𝑥) uniformly on 𝕋.
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Proof. Exercise. ■

Remark 3.4 :  In fact, we see that 𝑓(𝑛) = ∫1
0

𝑓(𝑥)𝑒−2𝜋𝑖𝑛𝑥 d𝑥 is well-defined whenever 𝑓 ∈
𝐿1(𝕋). So, we can view

⋅̂ : 𝐿1(𝕋) → ℓ∞(ℂ).

Remark 3.5 :  All the prior results can be extended to 𝑓 ∈ 𝐿1(𝕋), via density.

§3.2 Introduction to the Fourier Transform

↪Definition 3.2 (Fourier Transform):  Let 𝑓 : ℝ → ℂ. Then, for any 𝜁 ∈ ℝ, define

𝑓(𝜁) ≔ ∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥.

Remark 3.6 :  If 𝑓 ∈ 𝐿1(ℝ),

|𝑓(𝜁)| ≤ ∫
∞

−∞
|𝑓(𝑥)| |𝑒−2𝜋𝑖𝜁𝑥|⏟

=1

d𝑥 = ‖𝑓‖𝐿1(ℝ)

so in particular, 𝑓 ∈ 𝐿∞(ℝ). Moreover,

|𝑓(𝜁 + ℎ) − 𝑓(𝜁)| = |∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖(𝜁+ℎ)𝑥 − 𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥|

= |∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥(𝑒−2𝜋𝑖ℎ𝑥 − 1)|

≤ ∫
ℝ
|𝑓(𝑥)||𝑒−2𝜋𝑖ℎ𝑥 − 1| d𝑥.

We have that

lim
ℎ→0

|𝑒−2𝜋𝑖ℎ𝑥 − 1| = 0

for a.e. 𝑥 ∈ ℝ, and

∫
ℝ
|𝑓(𝑥)||𝑒−2𝜋𝑖ℎ𝑥 − 1| d𝑥 ≤ 2 ∫

ℝ
|𝑓(𝑥)| d𝑥 = 2‖𝑓‖𝐿1(ℝ),

so we can apply dominated convergence theorem to find

lim
ℎ→0

|𝑓(𝜁 + ℎ) − 𝑓(𝜁)| ≤ ∫
ℝ
|𝑓(𝑥)|lim

ℎ→0
|𝑒−2𝜋𝑖ℎ𝑥 − 1|

⏟⏟⏟⏟⏟⏟⏟
=0

d𝑥 = 0,

so 𝑓 ∈ 𝐶(ℝ).
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↪Proposition 3.3 (Properties of the Fourier Transform):  Let 𝑓 ∈ 𝐿1(ℝ) and 𝑔 ∈ 𝐿1(ℝ). Then,
a. 𝜏𝑦𝑓(𝜁) = 𝑒−2𝜋𝑖𝜁𝑦𝑓(𝜁), and 𝜏𝜂𝑓(𝜁) = ̂𝑒2𝜋𝑖𝜂(⋅)𝑓(⋅)(𝜁);
b. 𝑓 ∗ 𝑔 = 𝑓 ⋅ 𝑔;
c. ∫

ℝ
𝑓(𝑥)𝑔(𝑥) d𝑥 = ∫

ℝ
𝑓(𝑥)𝑔(𝑥) d𝑥.

Proof. a. A change of variables gives

𝜏𝑦𝑓(𝜁) = ∫
ℝ

𝑓(𝑥 − 𝑦)𝑒−2𝜋𝑖𝜁𝑥 d𝑥 = 𝑒−2𝜋𝑖𝜁𝑦 ∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥 = 𝑒−2𝜋𝑖𝜁𝑦𝑓(𝜁).

Similarly,

𝜏𝜂𝑓(𝜁) = ∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖(𝜁−𝜂)𝑥 d𝑥 = ∫
ℝ

𝑓(𝑥)𝑒2𝜋𝑖𝜂𝑥 ⋅ 𝑒−2𝜋𝑖𝜁𝑥 d𝑥 = ̂𝑒2𝜋𝑖𝜂(⋅)𝑓(⋅)(𝜁).

b. First, by Young’s inequality 𝑓 ∗ 𝑔 ∈ 𝐿1(ℝ) so this makes sense. Moreover, since 
𝑓, 𝑔 ∈ 𝐿1(ℝ), everything we need to be finite is finite, so we can apply Fubini’s theorem
to find

𝑓 ∗ 𝑔(𝜁) = ∫(∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦)𝑒−2𝜋𝑖𝜁𝑥 d𝑥

= ∫(∫ 𝑓(𝑥 − 𝑦)𝑒−2𝜋𝑖𝜁𝑥 d𝑥)𝑔(𝑦) d𝑦

= ∫(∫ 𝑓(𝑥 − 𝑦)𝑒−2𝜋𝑖𝜁(𝑥−𝑦) d𝑥)𝑒−2𝜋𝜁𝑦𝑔(𝑦) d𝑦

= (∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥)(∫ 𝑔(𝑦)𝑒−2𝜋𝑖𝜁𝑦 d𝑦) = 𝑓(𝜁) ⋅ 𝑔(𝜁),

where we “multiply by 1” in the second to last line to change variables in the
appropriate way.

c. We can apply Fubini’s again,

∫ 𝑓(𝑥)𝑔(𝑥) d𝑥 = ∫ 𝑓(𝑥)(∫ 𝑔(𝑦)𝑒−2𝜋𝑖𝑥𝑦 d𝑦) d𝑥

= ∫ 𝑔(𝑦)(∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝑦 d𝑥) d𝑦

= ∫ 𝑔(𝑦)𝑓(𝑦) d𝑦.

■

↪Lemma 3.1 :  Let 𝑓(𝑥) = 𝑒−𝜋𝑎𝑥2  for 𝑎 > 0. Then,

𝑓(𝜁) =
1

√
𝑎
𝑒−𝜋𝜁2

𝑎 .
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Proof. First, note that

d̂
d𝑥

𝑓(𝜁) = ∫
∞

−∞
𝑓 ′(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥

= 𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥
∞

𝑥=−∞
− ∫

∞

−∞
𝑓(𝑥)(−2𝜋𝑖𝜁)𝑒−2𝜋𝑖𝜁𝑥 d𝑥.

Specifying 𝑓(𝑥) = 𝑒−2𝜋𝑎𝑥2 , this becomes

= 𝑒−𝜋𝑎𝑥2 ⋅ 𝑒−2𝜋𝑖𝜁𝑥
∞

𝑥=−∞
− ∫

∞

−∞
𝑒−𝜋𝑎𝑥2(−2𝜋𝑖𝜁)𝑒−2𝜋𝑖𝜁𝑥 d𝑥

= 2𝜋𝑖𝜁 ⋅ ∫
∞

−∞
𝑒−𝜋𝑎𝑥2𝑒−2𝜋𝑖𝜁𝑥 d𝑥 = 2𝜋𝑖𝜁 ⋅ 𝑓(𝜁).

On the other hand,

d
d𝜁

𝑓(𝜁) =
d
d𝜁

(∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥)

= ∫
∞

−∞
𝑓(𝑥)(−2𝜋𝑖𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥,

assuming finiteness; indeed,

|∫
∞

−∞
𝑒−𝜋𝑎𝑥2(−2𝜋𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥| ≤ 𝐶 ∫

∞

−∞
|𝑥|𝑒−𝜋𝑎𝑥2 d𝑥

= 2𝐶 ∫
∞

0
𝑥𝑒−𝜋𝑎𝑥2 d𝑥 = 𝐶𝑒−𝜋𝑎𝑥2

∞

0
< ∞,

so our differentiation was valid. Thus, combining these two,

d
d𝜁

𝑓(𝜁) = ∫
∞

−∞
−2𝜋𝑖𝑥𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥

= ∫
∞

−∞
𝑖(−2𝜋𝑥𝑒−𝜋𝑎𝑥2)𝑒−2𝜋𝑖𝜁𝑥 d𝑥

= ∫
∞

−∞

𝑖
𝑎
𝑓 ′(𝑥)𝑒−2𝜋𝑖𝜁𝑥 d𝑥

=
𝑖
𝑎
2𝜋𝑖𝜁𝑓(𝜁)

⇒
d
d𝜁

𝑓(𝜁) = −
2𝜋
𝑎

𝜁𝑓(𝜁).

Thus,

d
d𝜁

(𝑒
𝜋𝜁2

𝑎 𝑓(𝜁)) = 𝑒(𝜋𝜁2)/𝑎(−
2𝜋
𝑎

𝜁𝑓(𝜁)) +
2𝜋𝜁
𝑎

𝑒(𝜋𝜁2)/𝑎𝑓(𝜁) = 0,

and thus 𝑒
𝜋𝜁2

𝑎 𝑓(𝜁) is constant in 𝜁 so 𝑒
𝜋𝜁2

𝑎 𝑓(𝜁) = 𝑓(0) = ∫∞
−∞

𝑒−𝜋𝑎𝑥2 d𝑥 = 1√
𝑎 . Thus, 

𝑓(𝜁) = 1√
𝑎𝑒−𝜋𝜁2

𝑎 . ■
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With this, we are ready to define the inverse Fourier transform;

↪Definition 3.3 (Inverse Fourier Transform):  If 𝑓 ∈ 𝐿1(ℝ), then

̌𝑓(𝑥) ≔ ∫
ℝ

𝑓(𝜁)𝑒2𝜋𝑖𝜁𝑥 d𝜁 = 𝑓(− ⋅)(𝑥).

Remark 3.7 : By similar computations to before, 𝑓 ∈ 𝐿1(ℝ) implies ̌𝑓 ∈ 𝐿∞(ℝ) ∩ 𝐶(ℝ).

Remark 3.8 :  One would hope ̌𝑓 = 𝑓 . However, if we check, naively,

̌𝑓(𝑥) = ∫(∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝜁𝑦 d𝑦)𝑒2𝜋𝑖𝜁𝑥 d𝜁;

however the integral may not be finite in general, i.e. we cannot switch the integrals for free.
We must be more careful, in short.

↪Theorem 3.4 (Fourier Inversion):  If 𝑓 ∈ 𝐿1(ℝ) and 𝑓 ∈ 𝐿1(ℝ), then 𝑓  agrees almost
everywhere with some 𝑓0 ∈ 𝐶(ℝ), and ̌𝑓 = ̂̌𝑓 = 𝑓0.

Proof. Let 𝜀 > 0 and 𝑥 ∈ ℝ. Let 𝜑(𝜁) ≔ 𝑒2𝜋𝑖𝑥𝜁𝑒−𝜋𝜀𝜁2 . Then,

�̂�(𝑦) = ∫ 𝜑(𝜁)𝑒−2𝜋𝑖𝑦𝜁 d𝜁

= ∫ 𝑒2𝜋𝑖𝑥𝜁𝑒−𝜋𝜀𝜁2𝑒−2𝜋𝑖𝑦𝜁 d𝜁

= ̂𝑒2𝜋𝑖𝑥(⋅)𝑒−𝜋𝜀(⋅)2(𝑦)

= 𝜏𝑥
̂𝑒−𝜋𝜀(⋅)2(𝑦)

= 𝜏𝑥(
1

√
𝜀
𝑒−𝜋𝑦2

𝜀 )

=
1

√
𝜀
𝑒−𝜋

𝜀 (𝑦−𝑥)2
.

Since ∫ 𝑓�̂� d𝑦 = ∫ 𝑓𝜑 d𝑦, we find

∫ 𝑓(𝑦)
1

√
𝜀
𝑒−𝜋

𝜀 (𝑥−𝑦)2
= ∫ 𝑓(𝑦)𝜑(𝑦) d𝑦.

Let 𝐾𝜀(𝑦) ≔ 1√
𝜀𝑒−𝜋

𝜀 𝑦2 . Recall that this is the good kernel that we used in the proof of
the Weierstrass Approximation Theorem. In particular, the formula above can be
written

(𝑓 ∗ 𝐾𝜀)(𝑥) = ∫ 𝑓(𝑦)𝑒2𝜋𝑖𝑥𝑦𝑒−𝜋𝜀𝑦2 d𝑦. ⊛
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Recall that if 𝑓  is continuous at 𝑥 and compactly-supported, then lim𝜀→0|(𝑓 ∗ 𝐾𝜀)(𝑥) −
𝑓(𝑥)| = 0. This implies that for every 𝑓 ∈ 𝐿1(ℝ) lim𝜀→0 ‖(𝑓 ∗ 𝐾𝜀) − 𝑓‖1 = 0, by an
approximation argument by 𝐶𝑐(ℝ). So, taking 𝜀 → 0 in ⊛, 𝑓(𝑥) =

𝐿1(ℝ)
lim𝜀→0 ∫ 𝑓(𝑦)𝑒2𝜋𝑖𝑥𝑦𝑒−𝜋𝜀𝑦2 d𝑦. 𝑓 ∈ 𝐿1(ℝ), so by DCT we can pass the limit inside, so

𝑓(𝑥) =
𝐿1(ℝ)

∫ 𝑓(𝑦)𝑒2𝜋𝑖𝑥𝑦 d𝑦 = ̌𝑓(𝑥).

This equality in 𝐿1(ℝ) thus gives ̌𝑓 = 𝑓  a.e.. A similar proof follows for showing ̂̌𝑓 = 𝑓
a.e. by replacing 𝑒2𝜋𝑖𝑥 with 𝑒−2𝜋𝑖𝑥 everywhere it appears. Since ̂̌𝑓, ̌𝑓  are continuous by
our remarks earlier, it follows that 𝑓  is equal to a continuous function almost
everywhere. ■

So far, all we’ve worked with is 𝑓 ∈ 𝐿1(ℝ), which results in 𝑓 ∈ 𝐿∞(ℝ). Really, we’d like to
extend the Fourier transform to act on 𝐿2(ℝ), since this is a nice Hilbert space. To do so, we need
the following:

↪Theorem 3.5 (Plancherel's Theorem):  Let 𝑓 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ). Then 𝑓 ∈ 𝐿2(ℝ) and 
‖𝑓‖𝐿2(ℝ) = ‖𝑓‖

𝐿2(ℝ)
.

Remark 3.9 :  One can view Plancherel’s Theorem as a type of continuous analog of Parseval’s
identity for Fourier Series.

Proof. Let 𝑓(𝑥) ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ), and put 𝑔(𝑥) ≔ 𝑓(−𝑥), noting that then 𝑔 ∈ 𝐿1(ℝ) ∩
𝐿2(ℝ) as well. Put

𝑤(𝑥) ≔ (𝑓 ∗ 𝑔)(𝑥).

By Young’s,

‖𝑤‖𝐿1(ℝ) ≤ ‖𝑓‖𝐿1(ℝ)‖𝑔‖𝐿1(ℝ) < ∞

so 𝑤 ∈ 𝐿1(ℝ).

We claim 𝑤 continuous at 0. For ℎ sufficiently small, we find

|𝑤(ℎ) − 𝑤(0)| = |∫
ℝ

𝑓(ℎ − 𝑦)𝑔(𝑦) d𝑦 − ∫
ℝ

𝑓(−𝑦)𝑔(𝑦) d𝑦|

= |∫
ℝ
(𝑓(ℎ − 𝑦) − 𝑓(−𝑦))𝑔(𝑦) d𝑦|

≤ ‖𝑓(ℎ − ⋅) − 𝑓(− ⋅)‖𝐿2(ℝ)‖𝑔‖𝐿2(ℝ)

≤ ‖𝜏ℎ𝑓 − 𝑓‖𝐿2(ℝ)‖𝑔‖𝐿2(ℝ).

Let 𝑓 ∈ 𝐶𝑐(ℝ) such that ‖𝑓 − 𝑓‖
𝐿2(ℝ)

< 𝜂 for some small 𝜂 > 0. Then we further bound
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‖𝜏ℎ𝑓 − 𝑓‖𝐿2(ℝ) ≤ ‖𝜏ℎ𝑓 − 𝜏ℎ𝑓‖
𝐿2(ℝ)

+ ‖𝜏ℎ𝑓 − 𝑓‖
𝐿2(ℝ)

+ ‖𝑓 − 𝑓‖
𝐿2(ℝ)

(since norm translation invariant) = 2‖𝑓 − 𝑓‖
𝐿2(ℝ)

+ ‖𝜏ℎ𝑓 − 𝑓‖
𝐿2(ℝ)

≤ 2𝜂 + ‖𝜏ℎ𝑓 − 𝑓‖
𝐿2(ℝ)

.

Now, 𝑓 ∈ 𝐶𝑐(ℝ) and thus is uniformly continuous hence |𝜏ℎ𝑓(𝑥) − 𝑓(𝑥)| → 0
uniformly on ℝ hence ‖𝜏ℎ𝑓 − 𝑓‖

𝐿2(ℝ)
→ 0 as well, as ℎ → 0. Finally, since ‖𝑔‖𝐿2(ℝ)

finite, we conclude indeed 𝑤 continuous at 0.

Next, notice that �̂� = 𝑓 ⋅ 𝑔, and

𝑔(𝜁) = 𝑓(− ⋅)(𝜁) = ∫
ℝ

𝑓(−𝑥)𝑒−2𝜋𝑖𝑥𝜁 d𝑥

= ∫
ℝ

𝑓(−𝑥)𝑒2𝜋𝑖𝑥𝜁 d𝑥

= ∫
ℝ

𝑓(−𝑥)𝑒2𝜋𝑖𝑥𝜁 d𝑥

= ∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜁 d𝑥

= 𝑓(𝜁),

so

�̂� = 𝑓 ⋅ 𝑓 = |𝑓|
2

≥ 0.

Recall our good kernel from the Weierstrass Approximation Theorem, 𝐾𝜀(𝑦) =
1√
𝜀𝑒−𝜋

𝜀 𝑦2 = ̂𝑒−𝜋𝜀(⋅)2 . So,

∫ �̂�(𝑦)𝑒−𝜋𝜀𝑦2 d𝑦 = ∫ 𝑤(𝑦)
1

√
𝜀
𝑒−(𝜋𝑦2)/𝜀 d𝑦

= ∫ 𝑤(𝑦)𝐾𝜀(𝑦) d𝑦

(by symmetry) = ∫ 𝑤(𝑦)𝐾𝜀(−𝑦) d𝑦

= (𝑤 ∗ 𝐾𝜀)(0).

On the LHS, �̂� ≥ 0 so �̂�(𝑦)𝑒−𝜋𝜀𝑦2 ↗
𝜀→0+

�̂�(𝑦) so by monotone convergence, 

∫ �̂�𝑒−𝜋𝜀𝑦2 →
𝜀→0

∫ �̂�(𝑦) d𝑦. On the other hand, we claim (𝑤 ∗ 𝐾𝜀)(0) →
𝜀→0

𝑤(0) (this isn’t
immediate from the fact that 𝐾𝜀 is a good kernel because we don’t know a priori that 
𝑤 (essentially) bounded). Supposing this claim holds, this implies ∫ �̂�(𝑦) d𝑦 = 𝑤(0),
hence
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∫ �̂�(𝑦) d𝑦 = ∫|𝑓(𝑦)|2 d𝑦 = 𝑤(0)

= (𝑓 ∗ 𝑔)(0)

= ∫ 𝑓(𝑦)𝑓(0 − (−𝑦)) d𝑦

= ∫|𝑓(𝑦)|2 d𝑦,

which precisely means ‖𝑓‖
𝐿2(ℝ)

= ‖𝑓‖𝐿2(ℝ).

To prove the claim of (𝐾𝜀 ∗ 𝑤)(0) → 𝑤(0), let 𝜂 > 0. Since 𝑤 continuous at 0, there is
a 𝛿 > 0 such that |𝑦| < 𝛿 ⇒ |𝑤(𝑦) − 𝑤(0)| < 𝜂. Then,

|∫ 𝑤(0 − 𝑦)𝐾𝜀(𝑦) d𝑦 − 𝑤(0)| = |∫(𝑤(−𝑦) − 𝑤(0))𝐾𝜀(𝑦) d𝑦|

≤ 𝜂 ∫
|𝑦|<𝛿

𝐾𝜀(𝑦) d𝑦 + ∫
|𝑦|>𝛿

|𝑤(0)|𝐾𝜀(𝑦) d𝑦 + ∫
|𝑦|>𝛿

|𝑤(−𝑦)|𝐾𝜀(𝑦) d𝑦

≤ 𝜂 ⋅ 1 + |𝑤(0)|⏟
𝑤 cnts at 0
so this finite

⋅ ∫
|𝑦|>𝛿

𝐾𝜀(𝑦) d𝑦
⏟⏟⏟⏟⏟⏟⏟
→

𝜀→0
0 since good kernel

+ ∫
|𝑦|>𝛿

|𝑤(−𝑦)|𝐾𝜀(𝑦) d𝑦.

It remains to show the last term → 0. We have

∫
|𝑦|>𝛿

|𝑤(−𝑦)| 𝐾𝜀(𝑦) d𝑦 ≤ ∫
|𝑦| >𝛿

|𝑤(−𝑦)|
1

√
𝜀
𝑒−𝜋𝛿2

𝜀 d𝑦

≤
1

√
𝜀
𝑒−𝜋𝛿2

𝜀

⏟
→0 as 𝜀→0

⋅ ‖𝑤‖𝐿1(ℝ) → 0.

This completes the proof. ■

With these, we can extend the definition of 𝑓  to 𝑓 ∈ 𝐿2(ℝ).

Let 𝑓 ∈ 𝐿2(ℝ). Then, there are {𝑓𝑘} ⊆ 𝐶∞
𝑐 (ℝ) such that 𝑓𝑘 → 𝑓  in 𝐿2(ℝ). Since {𝑓𝑘} ⊆ 𝐶∞

𝑐 (ℝ),
𝑓𝑘 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ). So, by Plancherel’s,

‖𝑓𝑗 − 𝑓𝑘‖
𝐿2(ℝ)

= ‖ ̂𝑓𝑗 − 𝑓𝑘‖
𝐿2(ℝ)

= ‖𝑓𝑗 − 𝑓𝑘‖
𝐿2(ℝ)

.

So in particular, {𝑓𝑘} also Cauchy in 𝐿2(ℝ) so by completeness converges. Thus, we simply
define the Fourier transform of 𝑓  as the limit of these, namely,

↪Definition 3.4 (Fourier Transform on 𝐿2(ℝ)) :  Let 𝑓 ∈ 𝐿2(ℝ) and {𝑓𝑘} ⊆ 𝐶∞
𝑐 (ℝ) such that 

𝑓𝑘 → 𝑓  in 𝐿2(ℝ). Then, we define the Fourier transform of 𝑓  to be

𝑓(𝜁) ≔ lim
𝑗→∞

𝑓𝑗(𝜁),

with the limit taken in 𝐿2(ℝ).
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It’s not obvious that this is well-defined a priori. Let 𝑓𝑘, 𝑓 ′
𝑘 be two sequences in 𝐶∞

𝑐 (ℝ)
converging to 𝑓  in 𝐿2(ℝ), and suppose 𝑓𝑘 → 𝑓, 𝑓 ′

𝑘 → 𝑓 ′ in 𝐿2(ℝ). We need to show that 𝑓 = 𝑓 ′ in
𝐿2(ℝ). Since 𝑓𝑘, 𝑓 ′

𝑘 → 𝑓  in 𝐿2(ℝ),

‖𝑓𝑘 − 𝑓 ′
𝑘‖2 → 0,

so also by Plancherel’s,

‖𝑓𝑘 − 𝑓 ′
𝑘‖

2
→ ‖𝑓 − 𝑓 ′‖

2
= 0.

Denote by 𝐶0(ℝ) ≔ {𝑓 ∈ 𝐶(ℝ) | lim|𝑥| →∞|𝑓(𝑥)| = 0}.

↪Proposition 3.4 :
1. If 𝑥𝑓(𝑥) ∈ 𝐿1(ℝ), 𝑓 ∈ 𝐶1(ℝ) and 𝜕𝜁𝑓(𝜁) = ̂(−2𝜋𝑖(⋅))𝑓(⋅)(𝜁)
2. If 𝑓 ∈ 𝐶1(ℝ) ∩ 𝐶0(ℝ) and 𝜕𝑥𝑓 ∈ 𝐿1(ℝ), then 𝜕𝑥𝑓(𝜁) = (2𝜋𝑖𝜁)𝑓(𝜁)
3. If 𝑓 ∈ 𝐿1(ℝ), then 𝑓 ∈ 𝐶0(ℝ) (“Riemann-Lebesgue” type result)

Proof. We prove only 3. If 𝑓 ∈ 𝐿1(ℝ), let {𝑔𝑛} ⊆ 𝐶1(ℝ) ∩ 𝐶𝑐(ℝ) such that 𝑔𝑛 → 𝑓  in 
𝐿1(ℝ). Then, 𝑔′

𝑛 are compactly supported and continuous so 𝑔′
𝑛 ∈ 𝐿1(ℝ). Thus, 𝑔′

𝑛 ∈
𝐿∞(ℝ). By 2., 𝑔′

𝑛(𝜁) = (2𝜋𝑖𝜁)𝑔𝑛(𝜁) ∈ 𝐿∞(ℝ). Thus is only possible if 𝑔𝑛 ∈ 𝐶0(ℝ).

Since ‖𝑔𝑛 − 𝑓‖1 → 0,

‖𝑔𝑛 − 𝑓‖
∞

= sup
𝜁

|∫(𝑔𝑛(𝑥) − 𝑓(𝑥))𝑒−2𝜋𝑖𝜁𝑥 d𝑥| ≤ ‖𝑔𝑛 − 𝑓‖1 → 0,

so 𝑔𝑛 → 𝑓  in 𝐿∞. Finally, for any 𝑛,

lim
|𝜁| →∞

|𝑓(𝜁)| ≤ lim
|𝜁| →∞

|𝑔𝑛(𝜁)|
⏟⏟⏟⏟⏟

=0

+ ‖𝑓 − 𝑔𝑛‖
∞

.

Sending then 𝑛 → ∞, we know that ‖𝑓 − 𝑔𝑛‖
∞

→ 0, completing the proof. ■

Remark 3.10 : Properties 1., 2. here can be extended to 𝑓 ∈ 𝐿2(ℝ) and 𝜕𝑥𝑓 ∈ 𝐿2(ℝ), but require
more delicate mollifying arguments. 3., however, does not extend.

Remark 3.11 :  Why is it important to extend 𝑓(𝜁) to 𝑓 ∈ 𝐿2(𝜁)? One reason is the analysis of
Sobolev Spaces.

The final topic we’ll cover is how we can relate Fourier Series to the Fourier Transform.
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↪Theorem 3.6 :  If 𝑓 ∈ 𝐿1(ℝ), then there exists 𝑃𝑓 : 𝕋 → ℂ defined by

𝑃𝑓(𝑥) = ∑
𝑘∈ℤ

𝜏𝑘𝑓(𝑥) = ∑
𝑘∈ℤ

𝑓(𝑥 − 𝑘)

(that is, we tacitly claim this summation converges pointwise a.e. and in 𝐿1(𝕋)), and

‖𝑃𝑓‖𝐿1(𝕋) ≤ ‖𝑓‖𝐿1(ℝ).

Also, for every 𝑘 ∈ ℤ,

𝑓(𝑘) = 𝑃𝑓(𝑘),

where the first ̂⋅ is the Fourier transform on ℝ and the second on 𝕋.

Proof. Let 𝑄 = [−1
2 , 1

2) so ℝ = ⨆𝑗∈ℤ 𝑄 + 𝑗. Then,

∫
ℝ
|𝑓(𝑥)| d𝑥 = ∑

𝑗∈ℤ
∫

𝑄+𝑗
|𝑓(𝑥)| d𝑥

= ∑
𝑗∈ℤ

∫
𝑄

|𝑓(𝑥 − 𝑗)|⏟⏟⏟⏟⏟
≥0

d𝑥

(Tonelli's) = ∫
𝑄

∑
𝑗∈ℤ

|𝑓(𝑥 − 𝑗)| d𝑥.

Thus,

∫
𝑄

∑
𝑗∈ℤ

𝜏𝑗𝑓(𝑥) d𝑥 ≤ ∫
𝑄

∑
𝑗∈ℤ

|𝑓(𝑥 − 𝑗)| d𝑥 = ‖𝑓‖𝐿1(ℝ).

So, 𝑃𝑓  as defined above has

‖𝑃𝑓‖𝐿1(𝕋) ≤ ‖𝑓‖𝐿1(ℝ),

and also 𝑃𝑓  is finite a.e.. Hence, the sum in question defining 𝑃𝑓(𝑥) converges a.e..
Moreover,

𝑃𝑓(𝑘) = ∫
𝑄

∑
𝑗∈ℤ

𝑓(𝑥 − 𝑗)
⏟⏟⏟⏟⏟

∈𝐿1(𝑄)

𝑒−2𝜋𝑖𝑘𝑥 d𝑥

(By Fubini) = ∑
𝑗∈ℤ

∫
𝑄

𝑓(𝑥 − 𝑗)𝑒−2𝜋𝑖𝑘𝑥 d𝑥

= ∑
𝑗∈ℤ

∫
𝑄−𝑗

𝑓(𝑥) 𝑒−2𝜋𝑖𝑘(𝑥+𝑗)⏟⏟⏟⏟⏟
= 𝑒−2𝜋𝑖𝑘𝑥

since 𝑒−2𝜋𝑖𝑘𝑗 = 1

d𝑥

= ∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖𝑘𝑥 d𝑥 = 𝑓(𝑘).

■
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This series 𝑃𝑓  is called the periodization of 𝑓 .

↪Theorem 3.7 (Poisson Summation Formula) :  Let 𝑓 ∈ 𝐶(ℝ) such that there are 𝐶, 𝜀 > 0 such
that |𝑓(𝑥)| ≤ 𝐶(1 + |𝑥|)−(1+𝜀) (so namely 𝑓 ∈ 𝐿1(ℝ)) and similarly |𝑓(𝜁)| ≤ 𝐶(1 + |𝜁|)−(1+𝜀).
Then,

∑
𝑘∈ℤ

𝑓(𝑥 + 𝑘) = ∑
𝑘∈ℤ

𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥,

where both series converge absolutely and uniformly on 𝕋. In particular, if 𝑥 = 0,

∑
𝑘∈ℤ

𝑓(𝑘) = ∑
𝑘∈ℤ

𝑓(𝑘).

Remark 3.12 : By the last remark, 𝑓(𝑘) = 𝑃𝑓(𝑘). So, this theorem says “periodized 𝑓” = 𝑃𝑓 =
“Fourier series of 𝑃𝑓”.

Proof. Fix 𝑥 ∈ ℝ then

|∑
𝑘∈ℤ

𝑓(𝑥 + 𝑘)| ≤ ∑
𝑘∈ℤ

|𝑓(𝑥 + 𝑘)|

≤ ∫
ℝ
|𝑓(𝑥 + 𝑦)| d𝑦

≤ ∫
ℝ

𝐶
(1 + |𝑥 + 𝑦|)1+𝜀 d𝑦

= ∫
ℝ

𝐶
(1 + |𝑦|)1+𝜀 d𝑦

= −
𝐶

(1 + |𝑦|)𝜀

∞

𝑦=−∞
≤ 𝐶,

hence the series absolutely converges, and since our bound is independent of 𝑥, it also
converges uniformly. Since 𝑆𝑁(𝑥) ≔ ∑𝑁

𝑘=−𝑁 𝑓(𝑥 + 𝑘) is continuous for each 𝑁  and 
𝑆𝑁 → 𝑃𝑓  uniformly, 𝑃𝑓  itself is continuous, in 𝐶(𝕋) so thus also in 𝐿2(𝕋). Thus, by
Hilbert space theory,

𝑃𝑓(𝑥) = ∑
𝑘∈ℤ

𝑃𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥,

in 𝐿2(𝕋). By the last result, 𝑃𝑓(𝑘) = 𝑓(𝑘), thus

𝑃𝑓(𝑥) = ∑
𝑘∈ℤ

𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥.

Finally, by the same computation as before, ∑𝑘∈ℤ 𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 will also converge
absolutely and uniformly as well, call it 𝑃𝑓(𝑥). Thus, we claim 𝑃𝑓 = 𝑃𝑓 . Indeed, 𝑃𝑓  is
continuous, and 𝑃𝑓 = lim𝑁→∞ ∑𝑁

𝑘=−𝑁 𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 so 𝑃𝑓  also continuous. So,
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𝑆𝑁(𝑥) →
𝐿2(𝕋)

𝑃𝑓(𝑥)

𝑆𝑁(𝑥) →
uniform

𝑃𝑓(𝑥),

and 𝑃𝑓, 𝑃𝑓  are both continuous hence 𝑃𝑓 ≡ 𝑃𝑓 . Thus, indeed 𝑃𝑓 = ∑ 𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 as
we aimed to show. ■
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