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§1 ABSTRACT METRIC AND TOPOLOGICAL SPACES

§1.1 Review of Metric Spaces
Throughout fix X a nonempty set.

< Definition 1.1 (Metric): p : X x X — Ris called a metric, and thus (X, p) a metric space, if
for all y,z € X,

* p(z,y) >

® (xay)_()@x_y/

* p(z,y) = p(y, ), and

* p(z,y) < p(=, 2) + p(z,9).

< Definition 1.2 (Norm): Let X a linear space. A function | - | : X — [0, c0) is called a norm if

forallu,v € X and a € R,
* |u|=0<u=0,
* Ju+v| <uf + |v|, and

o llou] = faf ful.

Remark 1.1: A norm induces a metric by p(z,y) := |z — y|.

—Definition 1.3: Given two metrics p, o on X, we say they are equivalent if 3C > 0 such that
%a(w, y) < p(z,y) < Co(z,y) for every z,y € X. A similar definition follows for equivalence

of norms.

Given a metric space (X, p), then, we have the notion of

e openballs B(z,r) ={y € X : p(z,y) <r},

* open sets (subsets of X with the property that for every x € X, there is a constant r > 0 such
that B(z,r) C X), closed sets, closures, and

® convergence.

<~ Definition 1.4 (Convergence): {z, } C X converges to z € X if lim, . p(z,,,z) = 0.

We have several (equivalent) notions, then, of continuity; via sequences, € — § definition, and by

pullbacks (inverse images of open sets are open).
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< Definition 1.5 (Uniform Continuity): f: (X, p) — (Y, o) uniformly continuous if f has a

“modulus of continuity”, i.e. there is a continuous function w : [0,00) — [0, c0) such that

o(f(z1), f(x3)) < w(p(xq,22))

for every z,z, € X.

Remark 1.2: For instance, we say f Lipschitz continuous if there is a constant C' > 0 such that
w(-) = C(-). Leta € (0,1). We say f a-Holder continuous if w(-) = C(-)* for some constant C.

< Definition 1.6 (Completeness): We say (X, p) complete if every Cauchy sequence in (X, p)
converges to a point in X.

Remark 1.3: If (X, p) complete and E C X, then (E, p) is complete iff E closed in X.

§1.2 Compactness, Separability

< Definition 1.7 (Open Cover, Compactness): {X,} ver S 2%, where X, open in X and A an
arbitrary index set, an open cover of X if for every x € X, 3\ € A such that z € X,.

X is compact if every open cover of X admits a compact subcover. We say E C X compact if
(E, p) compact.

< Definition 1.8 (Totally Bounded, e-nets): (X, p) totally bounded if V e > 0, there is a finite
cover of X of balls of radius ¢. If E C X, an e-net of E is a collection {B(z;, e)}j\; , such that
E C Ujil B(z;,¢) and z; € X (note that z; need not be in E).

< Definition 1.9 (Sequentially Compact): (X, p) sequentially compact if every sequence in X

has a convergent subsequence whose limit is in X.
< Definition 1.10 (Relatively /Pre- Compact): E C X relatively compact if E compact.

—Theorem 1.1: TFAE:

1. X complete and totally bounded;
2. X compact;

3. X sequentially compact.
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Remark 1.4: E C X relatively compact if every sequence in E has a convergent subsequence.

Let f: (X, p) = (Y, o) continuous with (X, p) compact. Then,
* f(X) compactinY;
e if Y =R, the max and min of f over X are achieved,;

* fis uniformly continuous.

Let C(X) :={f: X — R | f continuous} and | f|, := max, . x|f(z)| the sup (max, in this case)

norm. Then,

—Theorem 1.2: Let (X, p) compact. Then, (C(X), | - |, ) is complete.

Proor. Let {f,} C C(X) Cauchy with respect to | - | o,
subsequence { fnk} such that foreach k > 1, ||f,, — f5, o < 2% (to construct this

subsequence, let n; > 1 be such that [ f,, — f,, [ < % for all n > n,, which exists since

. Then, there exists a

{f,} Cauchy. Then, for each k > 1, define inductively n,_ ; such that n, ; > n, and

| fr = oo < ﬁ for eachn > ny,, ;. Then, forany k > 1, | £, <27k,

R4l fnk ”00

Sil’lce nk+1 > nk)
Let j € N. Then, for any £ > 1,

ktj—1

ank+j o fnk Hoo < Z ”f"£+1 o fne ”00 < 22_6
{=k 0

and hence for each z € X, with ¢ := f,, (),

o
lepry — el < Y278
=

The RHS is the tail of a converging series, and thus |c;,; —¢,| = 0ask — coi.e. {c;} a
Cauchy sequence, in R. (R, | - |) complete, so lim;,_, . ¢, =: f(z) exists for each z € X.
So, for each z € X, we find

IA

()~ f@) <> 2,
=k

and since the RHS is independent of z, we may pass to the sup norm, and find
”fnk - f”oo < 22_47
=k

with the RHS — 0 as k — co. Hence, f,, — fin C(X) as k — oo. In other words, we
have uniform convergence of { fn, } Each { fnk} continuous, and thus f also
continuous, and thus f € C(X).

It remains to show convergence along the whole sequence. Suppose otherwise.
Then, there is some o > 0 and a subsequence { fnj} C {f,,} such that | fo, = f oo >
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a > 0 for every j > 1. Then, let k be sufficiently large such that | f — f,, [ < 5. Then,
for every j > 1 and k sufficiently large,

J

> a>0
a— —
2 )

which contradicts the Cauchy-ness of { f,, }, completing the proof. [ |

< Definition 1.11 (Density /Separability): A set D C X is called dense in X if for every
nonempty open subset A C X, DN A #+ &. We say X separable if there is a countable dense
subset of X.

Remark 1.5: If A dense in X, then A = X.

—Proposition 1.1: If X compact, X separable.

Prook. Since X compact, it is totally bounded. So, for n € N, there is some K, and
{x;} C X such that X C Ufi’i B(z;, 7). Then, D = |J™ | Ufi"l {x;} countable and dense
in X. n
§1.3 Arzela-Ascoli
The goal in this section is to find conditions for a sequence of functions {f, } C C(X) to be

precompact, namely, to have a uniformly convergent subsequence.

—Corollary 1.1: Any Cauchy sequence converges if it has a convergent subsequence.

ProoEF. Let {z,,} be a Cauchy sequence in a metric space (X, p) with convergent
subsequence {xnk} which converges to some x € X. Fix e > 0. Let N > 1 be such that
if m,n> N, p(z,,,,) < 5.Let K > 1besuch thatif k > K, p(xnk,x> < 5. Letn,n, >
max{N, K}, then
e €
plz,x,) < p(m,xnk> +p<xnk,xn) <3 + 3 =&

< Definition 1.12 (Equicontinuous): A family & C C(X) is called equicontinuous at z € X if
Ve > 0 there exists a § = d(z,e) > 0 such that if p(z,z’) < § then | f(x) — f(z’)| < € for every
fesd.

Remark 1.6: 7 equicontinuous at z iff every f € F share the same modulus of continuity.
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< Definition 1.13 (Pointwise/uniformly bounded): {f,} pointwise bounded if Vz € X,
I M(x) > 0 such that |f,,(z)| < M(x)V n, and uniformly bounded if such an M exists
independent of x.

—Lemma 1.1 (Arzela-Ascoli Lemma): Let X separable and let {f,,} C C(X) be pointwise
bounded and equicontinuous. Then, there is a function f and a subsequence { fnk} which

converges pointwise to f on all of X.

Proor. Let D = {:L‘j}jil C X be a countable dense subset of X. Since {f,} p-w.
bounded, {f, (z,)} as a sequence of real numbers is bounded and so by the Bolzano-
Weierstrass (BW) Theorem there is a convergent subsequence { Fnak) (:vl)}k that
converges to some a; € R. Consider now { Fr,0)(T2) }k, which is again a bounded
sequence of R and so has a convergent subsequence, call it { fr2.5)(®2) }k which
converges to some a4 € R. Note that {fn(Z,k)} C {fn(l,k)}, so also f,, o k) (z1) — a, as

k — co. We can repeat this procedure, producing a sequence of real numbers {a,}, and
for each j € N a subsequence {fn(j,k)}k C {f,}suchthat f, s (z,) = a, foreach 1 <
¢ < j. Define then

f:D— ]R,f(a:j) = a,.

Consider now
fnk = fn(k,k)?k > 17

the “diagonal sequence”, and remark that f,, (z;) = a; = f(z;) as k — oo for every
j > 1. Hence, { fn, }k converges to f on D, pointwise.

We claim now that { fnk} converges on all of X to some function f: X — R,
pointwise. Put g, := f,, for notational convenience. Fix z, € X, e > 0, and let § > 0 be
such that if z € X such that p(z, %) < 6, |g,(z) — gx(7o)| < 5 for every k > 1, which
exists by equicontinuity. Since D dense in X, there is some z; € D such that
p(z;,x4) < 4. Then, since g, (z,;) = f(z;) (pointwise), {g; (mj)}k is Cauchy and so
there is some K > 1 such that for every k,£ > K, |g,(z;) — g;(z;)| < . And hence, for
every k, ¢l > K,

9k (x0) — go(x0)| < |gr(20) — g1 ()| + |9k (2;) — go(z;) ] + 190(2;) — go(20)| <,

so namely {g,, ()}, Cauchy as a sequence in R. Since R complete, then {g;(z,)}, also
converges, to, say, f(z,) € R. Since z, was arbitrary, this means there is some function
f: X — Rsuch that g, — f pointwise on X as we aimed to show. [ |
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—Definition 1.14 (Uniformly Equicontinuous): & C C(X) is said to be uniformly
equicontinuous if for every ¢ < 0, there exists a § > 0 such that Vz,y € X with p(z,y) <,
|f(z) — f(y)| < e for every f € F. That is, every function in F has the same modulus of

continuity.

—Proposition 1.2 (Sufficient Conditions for Uniform Equicontinuity):
1. # C C(X) uniformly Lipschitz

2. F C C(X)NCYX) has a uniform L° bound on the first derivative
3. & C C(X) uniformly Holder continuous

4. (X, p) compact and F equicontinuous

PRrROOF.
1. If C > 0issuch that |f(x) — f(y)| < Cp(x,y) forevery z,y € X and f € F, then for

e >0,letd = g, thenif p(z,y) <4, |f(z) — f(y)| < Cd < ¢, and § independent of =
(and f) since it only depends on C' which is independent of z, y, f, etc.

3. Akinto 1.

—Theorem 1.3 (Arzela-Ascoli): Let (X, p) a compact metric space and {f,,} C C(X) bea
uniformly bounded and (uniformly) equicontinuous family of functions. Then, {f,, } is pre-
compact in C'(X), i.e. there exists { fnk} C {f,} such that f, is uniformly convergent on X.

PrOOF. Since (X, p) compact it is separable and so by the lemma there is a
subsequence { fnk} that converges pointwise on X. Denote by g, := f,, for notational

convenience.

We claim {g; } uniformly Cauchy. Let € > 0. By uniform equicontinuity, there is a
§ > O such that p(z,y) < § = |g,(z) — gx(y)| < 5. Since X compact it is totally
bounded so there exists {xz}f\il such that X C UZJL B(z;,6). Forevery 1 <i < N,
{91 (z;)} converges by the lemma hence is Cauchy in R. So, there exists a K; such that
for every k, £ > K, |gi(%;) — go(w;)| < 5. Let K := max{K,}. Then for every {,k < K,
9k (%;) — go(w;)| < 5 foreveryi =1,...,N.So, for all € X, there is some z; such that
p(x,z;) < 6,and so for every k,¢ > K,

|9k () — 9¢()] < |gp(@) — gp ()]
+ lgx(2:) — go(;)]
+ 19e(2;) — g0(2)| <,
the first and last follow by the equicontinuity and the second from the lemma. This

holds for every z and thus ||g;, — g/l < &, s0 {g;} Cauchy in C(X). But C(X)

complete so converges in the space. |
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Remark 1.7: If K C X a compact set, then K bounded and closed.

—Theorem 1.4: Let (X, p) compact and & C C(X). Then, F a compact subspace of C(X) iff

F closed, uniformly bounded, and (uniformly) equicontinuous.

PrOOF. (<) Let {f,,} C &F. By Arzela-Ascoli Theorem, there exists a subsequence
{ fnk} that converges uniformly to some f € C'(X). Since & closed, f € ¥ and so F
sequentially compact hence compact.

(=) F compact so closed and bounded in C(X). To prove equicontinuous, we argue
by contradiction. Suppose otherwise, that  not-equicontinuous at some x € X. Then,
thereissome e, > 0and {f,} C F and {z,,} C X such that |f,,(z,,) — f,.(z)| > ¢,
while p(z,z,) < % Since { f,,} bounded and # compact, there is a subsequence { fnk}
that converges to f uniformly. Let K be such that V& > K, |f,, — flo < 2. Then,

(20, ) = £ 1= 1 |F(20,) = Fu, (20, )| = 1 fn, (T0,) = Fu (@) = | £, (&) = F(2)] |
S €
>,

while ,o(x x) < L, so f cannot be continuous at , a contradiction. [ |
ng? ny

§1.4 Baire Category Theorem

< Definition 1.15 (Hollow /Nowhere Dense): We say a set E C X hollow if int(E) = &. We
say a set E C X nowhere dense if its closure is hollow, i.e. int(E) = &.

Remark 1.8: Notice that E hollow < E° dense, since int(E) = @ = (int(E))° = E¢ = X.

—Theorem 1.5 (Baire Category Theorem): Let X be a complete metric space.
(a) Let {F,,} a collection of closed hollow sets. Then, UZO: , £, also hollow.

(b) Let {O,, } a collection of open dense sets. Then, ﬂf:: , Oy, also dense.

Proor. Notice that (a) < (b) by taking complements. We prove (b).

Put G := ﬂzo: , O Fixz € X and r > 0, then to show density of G is to show G N
B(z,r) #+ &.

Since O, dense, then O; N B(x, r) nonempty and in particular open. So, let z; € X
and r; < 1 such that B(z,r,) C B(z,2r;) C 0, N B(z,7).

Similarly, since O, dense, O, N B(z,,r;) open and nonempty so there exists z, € X
and r, < 272 such that B(z,,7,) C Oy N B(xy,7,).
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Repeat in this manner to find z,, € X with r,, < 27" such that B(z,,,r,,) C 0,, N

B(z,_4,r,_;) for any n € N. This creates a sequence of sets
B(zy,71) 2 B(zy,75) 2 -,

with r, — 0. Hence, the sequence of points {z,,} Cauchy and since X complete, z; —

zy € X, so in particular
{'TO} = m E(‘Tn??nn)?
n=1
hence z, € O,, for every n and thus G N B(z, r) nonempty:. [ ]

< Corollary 1.2: Let X complete and {F,,} a sequence of closed setsin X. f X =] _ F),,
there is some n such that int (Fno) * .

Proor. If not, violates BCT since X is not hollow in itself; int(X) = X. [

<+ Corollary 1.3: Let X complete and {F,, } a sequence of closed sets in X. Then, [ J°° OF,

hollow.

Proor. We claim int(0F,,) = @&. Suppose not, then there exists some B(xz,r) C OF,,.
Then z, € OF,, but B(z,,r) N F¢ = &, a contradiction. So, since JF,, closed and 0F,, N
B(z,r) = & for every such ball, by BCT UZO: | OF,, must be hollow. [ ]

1.4.1 Applications of Baire Category Theorem

—Theorem 1.6: Let 7 C C(X) where X complete. Suppose F pointwise bounded. Then,
there exists a nonempty, open set O C X such that 7 uniformly bounded on O.

Proor. Let
E,={zeX:|f(x)|]<nVfeF}
= [ {=z: |f(x)| < n}.

feFr

closed

Since F pointwise bounded, for every « € X there is some M, > 0 such that | f(z)| <
M, for every f € 7. Hence, for every n € Nsuch thatn > M_, x € E,, and thus X =
U;’LO: B

E, closed and hence by the previous corollaries there is some n, such that
int (Eno) # @ and hence there is some r > 0 and z, € X such that B(z,,r) C E,, .
Then, for every z € B(x,, ), |f(z)| < n, for every f € F, which gives our desired non-

empty open set upon which & uniformly bounded. [ |

1.4.1 Applications of Baire Category Theorem



—Theorem 1.7: Let X complete, and {f,,} C C(X) such that f,, — f pointwise on X. Then,
there exists a dense subset D C X such that { f,,} equicontinuous on D and f continuous on
D.

ProoF. For m,n € N, let

E(m,n) := {x € X :|fj(w) — fr(z)] < %Vj,k > n}

= N {0 - swi< 2

j,k>n m

The union of the boundaries of these sets are hollow, hence D := (Um o OE(m, n)) ’

is dense. Then, if x € DN E(m,n), then z € (OE(m,n))® implies z € int(E(m,n)).

We claim { f,, } equicontinuous on D. Let x, € D and € > 0. Let % < 7. Then, since
{f.(xy)} convergent it is therefore Cauchy (in R). Hence, there is some N such that
|f;(xo) — fr(mo)| < % for every j,k > N,soxzy, € DN E(m,N) hence z, €
int(E(m,N)).

Let B(zy,r) C E(m, N). Since f, continuous at z, there is some § > 0 such that § <

r and
1
(@) = f (@)l < — VY € Blwo, ),
and hence
£ (@) = fi(@o)| < [f;(z) — fn(@)] + [fn (@) — Fn(@o)| + [fn (o) — £;(20)]
3 3
< — < g,
m ~ 4

for every z € B(z,,d) and j > N, where the first, last bounds come from Cauchy and
the middle from continuity of f,. Hence, we’ve show { f,,} equicontinuous at z, since
0 was independent of f.

In particular, this also gives for every z € B(z, d) the limit

ZE > lim |f;(z) — f;(z0)| = |f(x) — f(z,)],

Jj—o0
so f continuous on D. (]

§1.5 Topological Spaces
Throughout, assume X # @.
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—Definition 1.16 (Topology): Let X # @&. A topology 7 on X is a collection of subsets of X,
called open sets, such that

* X,0€eT;

e f{E,} C7T, ﬂi:]: B, € T (closed under finite intersections);

o f{E,} CT,U, E, €7 (closed under arbitrary unions).

If z € X, aset E € T containing « is called a neighborhood of z.

—Proposition 1.3: E C X open < for every z € E, there is a neighborhood of = contained in
E.

PROOF. = is trivial by taking the neighborhood to be E itself. < follows from the fact
that, if for each = we let &/, a neighborhood of z contained in E, then

E=|]u,

zeFE

so E/ open being a union of open sets. [ |

® Example 1.1: Every metric space induces a natural topology given by open sets under the
metric. The discrete topology is given by 7 = 2% (and is actually induced by the discrete
metric), and is the largest topology. The trivial topology {&, X } is the smallest. The relative
topology defined on a subset Y C X is givenby Ty :={ENY : E € T}.

< Definition 1.17 (Base): Given a topological space (X,T), let z € X. A collection B, of
neighborhoods of z is called a base of T at x if for every neighborhood U of z, there is a set
B e B,suchthat BCU.

We say a collection B a base for all of T if for every « € X, there is a base for z, B, C B.

<Proposition 1.4: If (X, T) a topological space, then B C T a base for 7 < every nonempty
open set i/ € T can be written as a union of elements of 3.

PrOOF. = If U open, then for x € U there is some basis element B, contained in %. So
in particular & =J__, B,.

< Letz € U and B, := {B € B | z € B}. Then, for every neighborhood of z, there is
some B in B, such that B C U so B, a base for T at x. [

Remark 1.9: A base B defines a unique topology, {&,U B, }.

1.5 Topological Spaces 11



< Proposition 1.5: B C 2% a base for a topology on X <

* X:UBEBB
e If B,B, € Band z € B; N B,, then thereisa B € Bsuchthatx € B C B; N B,.

ProoF. (=) If B a base, then X openso X = Uy B.If B, B, € B, then B; N B, open
so there must exist some B C B; N B, in B.

(<) Let
T ={U|VzelU,IBe Bwithze BCU}.

One can show this a topology on X with 3B as a base. |

—Definition 1.18: If T, C T, we say T ; weaker/coarser and T , stronger/finer.

Given a subset S C 2%, define
T(S) = ﬂ all topologies containing S = unique weakest topology containing S

to be the topology generated by S.

—Proposition 1.6: If S C P

T(S)= U{finite intersections of elts of S}.
We call S a “subbase” for 7 (.S) (namely, we allow finite intersections of elements in S to serve

as a base for 7(.9)).

Proor. Let B := { X, finite intersections of elements of S}. We claim this a base for
T(S). ]

<~ Definition 1.19 (Point of closure/accumulation point): If £ C X,z € X, z is called a point
of closure if YU, U, N E # &. The collection of all such sets is called the closure of E, denoted
E. We say E closed if E = E.

—Proposition 1.7: Let £ C X, then

e F closed,

* FE is the smallest closed set containing F,
* E open < E° closed.

§1.6 Separation, Countability, Separability

<~ Definition 1.20: A neighborhood of a set K C X is any open set containing K.

1.6 Separation, Countability, Separability 12



<~ Definition 1.21 (Notions of Separation): We say (X, T):
* Tychonoff Separable if Vz,y € X,3U,, U, suchthaty ¢ U,z ¢ U,

* Hausdorff Separable if V z,y € X can be separated by two disjoint open setsi.e. 3U, NU, =

%}
* Normal if Tychonoff and in addition any 2 disjoint closed sets can be separated by disjoint

neighborhoods.

Remark 1.10: Metric space C normal space C Hausdorff space C Tychonoff space.

—Proposition 1.8: Tychonoff < Vz € X, {z} closed.

Proor. For every z € X,
{z} closed < {z}° open
eVye{z}*,3U, C {z}°
SVy#Fz,3IU, st.z¢lU,,

and since this holds for every z, X Tychonoff. [ |

—Proposition 1.9: Every metric space normal.

Proor. Define, for F' C X, the function
dist(F, z) := inf{p(z,z’) | 2’ € F}.
Notice that if F' closed and x ¢ F, then dist(F, z) > 0 (since F'° open so there exists

some B(x,e) C F¢so p(x,z’) > ¢ for every 2’ € F). Let F;, F, be closed disjoint sets,

and define
O, :={z € X | dist(F},z) < dist(F,, )},
Oy :={z € X | dist(Fy,z) > dist(F,, z)}.
Then, F}, C 0, F, C 0y, and O; N O, = &. If we show O, O, open, we’ll be done.

Let z € 0 and e > 0 such that dist(F}, z) 4+ € < dist(F,, z). I claim that B(z, £) C
O,.Lety € B(:L‘, %) Then,

1.6 Separation, Countability, Separability
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dist(F,,y) > p(y,y’') — % for some y’ € F,

€ . . .
> plz,y') —p(z,y) + R reverse triangle inequality

2
> dist(Fy, x) — g

2
> dist(Fy,z) + & — EE

> p(z,9) + — for some § € F}

- 2e . ) _
>p(y,9) —py,z) + 5 reverse triangle inequality

e 2

ZP(y,@)—g‘i‘g

> dist(Fy,y) + g > dist(£7, y),

hence, y € 0, and thus O, open. Similar proof follows for O,. [ |

—Proposition 1.10: Let X Tychonoff. Then X normal < V F' C X closed and neighborhood U
of F, there exists an open set O such that

Fcococu.

This is called the “nested neighborhood property” of normal spaces.

PrOOF. (=) Let F' closed and U a neighborhood of F'. Then, F' and U° closed disjoint
sets so by normality there exists O, V disjoint open neighborhoods of F', U/
respectively. So, O C V¢ hence OcC V° = V¢ and thus

FCOCOCPYeClU.

(<) Let A, B be disjoint closed sets. Then, B open and moreover A C B¢. Hence, there
exists some open set @ such that A C @ C O C B, and thus B C @°. Then, @ and O°
are disjoint open neighborhoods of A, B respectively so X normal. [ |

—Definition 1.22 (Separable): A space X is called separable if it contains a countable dense
subset.

< Definition 1.23 (1st, 2nd Countable): A topological space (X, T) is called

* 1st countable if there is a countable base at each point; and
* 2nd countable if there is a countable base for all of T

1.6 Separation, Countability, Separability
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® Example 1.2: Every metric space is first countable; for z € X let B, = {B(z, =) | n € N}.

—Proposition 1.11: Every 2nd countable space is separable.

< Definition 1.24 (Convergence): Let {z,} C X. Then, we say z,, — z in T if for every
neighborhood U ,, there exists an NV such that Vn > N, z,, € U .

Remark 1.11: In general spaces, such a limit may not be unique. For instance, under the trivial
topology, the only nonempty neighborhood is the whole space, so every sequence converges

to every point in the space.

—Proposition 1.12: Let (X, 7)) be Hausdorff. Then, all limits are unique.

ProOF. Suppose otherwise, that z,, — both x and y. If = # y, then since X Hausdorff
there are disjoint neighborhoods &, U, containing z, y. But then z,, cannot be on both

U, and U, for sufficiently large n, contradiction. [ ]

<sProposition 1.13: Let X be 1st countable and E C X. Then, z € E < there exists {xj} CE
such that T; = T.

PrOOF. (=) Let B, = {B,} be abase for X at z € E. Wlog, B; 2 B;,, for every j > 1
(by replacing with intersections, etc if necessary). Hence, B; N E # ¢ for every j. Let
z; € B; N E, then by the nesting property z;, - zin 7.

(<) Suppose otherwise, that = ¢ E. Let {z,} € E,. Then, E° open, and contains =.

Then, E* a neighborhood of z but does not contain any ;80 T; > . |

§1.7 Continuity and Compactness

—Definition 1.25: Let (X, T), (Y, §) be two topological spaces. Then, a function f : X — Y is
said to be continuous at z, if for every neighborhood O of f(z) there exists a neighborhood
U(zy) such that f(U) C O. We say f continuous on X if it is continuous at every point in X.

< Proposition 1.14: f continuous < V¢ openinY, f~1(0) open in X.

1.7 Continuity and Compactness
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—Definition 1.26 (Weak Topology): Consider 7 :={f, : X — X}, | where X, X,
topological spaces. Then, let

S={f10\) ] freF,0,eX,} CX.

We say that the topology 7 (S) generated by S is the weak topology for X induced by the family
F.

—Proposition 1.15: The weak topology is the weakest topology in which each f, continuous
on X.

® Example 1.3: The key example of the weak topology is given by the product topology.
Consider {X,}, _, a collection of topological spaces. We can defined a “natural” topology on
the product X := ][, _, X, by consider the weak topology induced by the family of projection
maps, namely, if 7, : X — X, a coordinate-wise projection and F = {7, : A € A}, then we say
the weak topology induced by F is the product topology on X. In particular, a base for this
topology is given, by previous discussions,

B = {ﬂ 77;],1 ((Dj)} = {H U, : U, open and all by finitely many U,’s = XA}.
j=1

AEA

<~ Definition 1.27 (Compactness): A space X is said to be compact if every open cover of X
admits a finite subcover.

—Proposition 1.16:

* Closed subsets of compact spaces are compact

e X compact < if {F},} C X-nested and closed, N2, F}, # &.
* Continuous images of compact sets are compact

* Continuous real-valued functions on a compact topological space achieve their min, max.

—Proposition 1.17: Let K compact be contained in a Hausdorff space X. Then, K closed in
X.

Proor. We show K¢ open. Let y € K¢. Then for every x € K, there exists disjoint open
sets U .,

,, containing y, z respectively. Then, it follows that {0, } . Anopen cover
T
of K, and since K compact there must exist some finite subcover, K C Uf\; ) (9% " Let

E := ﬂj\i U,., Then, E is an open neighborhood of y with EN O, , = & for every
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i=1,..N.Thus, E C ﬂfil 05, = (Uf\il Oxiy)c C K€ so since y was arbitrary K¢
open. [

<~ Definition 1.28 (Sequential Compactness): We say (X, T) sequentially compact if every

sequence in X has a converging subsequence with limit contained in X.

—Proposition 1.18: Let (X, T) second countable. Then, X compact < sequentially compact.

PrOOF. (=) Let {z,} C X and put F,, := {z,, | k > n}. Then, {F,,} defines a sequence
of closed and nested subsets of X and, since X compact, ﬂzo: | Fr nonempty. Let z, in
this intersection. Since X 2nd and so in particular 1st countable, let { B, } a (wlog
nested) countable base at z. z, € F,, for every n > 1 so each B; must intersect some
F,,. Let n; be an index such that z,, - € B;. Then, if I/ a neighborhood of z, there exists
some N such that B; C U for every j > N and thus {a:n]} C By CU,s0z, — xin
X.

(«) Remark that since X second countable, every open cover of X certainly has a
countable subcover by intersecting a given cover with our countable basis. So, assume
we have a countable cover X C Uzo: , U, and suppose towards a contradiction that no
finite subcover exists. Then, for every n > 1, there exists some m(n) > n such that
Oy \ U?: Ui # @. Let z, in this set for every n > 1. Since X sequentially compact,
there exists a convergent subsequence {xnk} C {z,} such thatz, — z,in X, so there
exists some Oy such that z, € 0. But by construction, z,, ¢ Oy if n;, > N, and we

have a contradiction. [

—Theorem 1.8:If X compact and Hausdorff, X normal.

Proor. We show that any closed set F' and any point « ¢ F' can be separated by

disjoint open sets. Then, the proof in the more general case follows.

For each y € X, X is Hausdorff so there exists disjoint open neighborhoods 0, and

U,, of z,y respectively. Then, {U,,, | y € F'} defines an open cover of F. Since F

Ty ‘
closed and thus, being a subset of a compact space, compact, there exists a finite

subcover F' C Ufi (Ugy, - Put N := ﬂf\i , Ogy,- This is an open set containing z, with
NN Uzj\il U,, = @hence F'and x separated by V, Ufil Uy, - [ |

§1.8 Connected Topological Spaces
—Definition 1.29 (Separate): 2 non-empty sets O, 0, separate X if O, O, disjoint and X =
O, U0O,.

< Definition 1.30 (Connected): We say X connected if it cannot be separated.
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Remark 1.12: Note that if X can be separated, then O, O, are closed as well as open, being
complements of each other.

< Proposition 1.19: Let f : X — Y continuous. Then, if X connected, so is f(X).

PrROOE. Suppose otherwise, that f(X) = 0; U O, for nonempty, open, disjoint 0, 0.
Then, X = f~1(0;) U f71(0,), and each of these inverse images remain nonempty and

open in X, so this a contradiction to the connectedness of X. [ |

Remark 1.13: On R, C C R connected <> an interval < convex.

— Definition 1.31 (Intermediate Value Property): We say X has the intermediate value
property (IVP) if V f € C(X), f(X) an interval.

—Proposition 1.20: X has IVP < X connected.

Proor. («) If X connected, f(X) connected in R hence an interval.

(=) Suppose otherwise, that X = O; U O,. Then define the function f : X — R by

1if z€0,
. Then, for rvACR
wH{Oifxe(?l en, for every A C R,

@ if{0,1} ¢ A

0,if0e A
_1A: 1
J=A O,ifleAd

X if{0,1} C A
which are all open sets, hence f continuous. But f(X) = {0, 1} which is not an

interval, hence the IVP fails and so X must be connected. [ |

—Definition 1.32 (Arcwise/Path Connected): X arc connected/path connected if V x,y € X,
there exists a continuous function f : [0,1] — X such that f(0) = z, f(1) = v.

—~Proposition 1.21: Arc connected = connected.

PrOOF. Suppose otherwise, X = 0, U 0,. Letz € 0.,y € O, and define a continuous
function f : [0,1] — X such that f(0) = z and f(1) = y. Then, f~1(0,) each open,
nonempty and disjoint for i = 1,2, but

f7H o) u 1 (0,) =[0,1],

a contradiction to the connectedness of [0, 1]. [ |
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§1.9 Urysohn’s Lemma and Urysohn’s Metrization Theorem

We present the main lemma of this section first, but need more tools before proving it.

—~Lemma 1.2 (Urysohn's): Let A, B C X closed and disjoint subsets of a normal space X.
Then, V [a,b] C R, there exists a continuous function f : [a,b] — R such that f(X) C [a, b],

fla=aand f|g =b.
Remark 1.14: We have a partial converse of this statement as well:

< Proposition 1.22: Let X Tychonoff and suppose X satisfies the properties of Urysohn’s
Lemma. Then, X normal.

Proor. Let A, B be closed nonempty disjoint subsets. Let f : X — R continuous such
that f|, =0, fl[g =1and 0 < f < 1. Let I, I, be two disjoint open intervals in R with
0 €I, and 1 € I,. Then, f~'(I;) open and contains A, and f~!(I,) open and contains
B. Moreover, f~1(I,;) N f~1(I,) = @; hence, f~1(1;), f~!(I,) disjoint open
neighborhoods of A, B respectively, so indeed X normal. [ ]

< Definition 1.33 (Normally Ascending): Let (X, T) a topological spaceand A C R. A
collection of open sets {0, }, _, is said to be normally ascending if ¥ Ay, Ay € A,

0,, C0O,, if A <A,

~Lemma 1.3: Let A C (a,b) a dense subset, and let {0, } e @ normally ascending collection
of subsets of X. Let f : X — R defined such that

f(z) = b itz € (U/\EA 0A>C.
infiA e A |z e€0,} else

Then, f continuous.

Proor. We claim f~!(—oo,c) and f~!(c, c0) open for every ¢ € R. Since such sets
define a subbase for R, it suffices to prove continuity on these sets. We show just the
first for convenience. Notice that since f(z) € [a,b), if ¢ € (a,b) then f~}(—oc0,c) =
f[a, c), so really it suffices to show that f~'[a, c¢) open to complete the proof.

Suppose z € f~([a,c]) so a < f(z) < c. Let A € A be such that a < XA < f(z). Then,
z ¢ O,. Letalso A" € A such that f(z) < A" < c. By density of A, there existsae > 0
such that f(z) + ¢ € A, so in particular

Ef(x)-i-a - (9)\/ =T c (9)\/,

1.9 Urysohn’s Lemma and Urysohn’s Metrization Theorem 19



by nesting. So, repeating this procedure, we find

faenc U ov\0O,

a<A<)\' <c

noticing the set on the right is open. By similar reasoning, the opposite inclusion holds

and we have equality. Hence, f continuous. [ |

~Lemma 1.4: Let X normal, F' C X closed, and U a neighborhood of F'. Then, for any
(a,b) C R, there exists a dense subset A C (a, b) and a normally ascending collection {0, }, _,
such that

FCO,C0O,CU, V€A

Remark 1.15: This is essentially a generalization of the nested neighborhood property, and

indeed the proof essentially just uses this property repeatedly to construct the collection

{05}

Proor. Without loss of generality, we assume (a, b) = (0, 1), for the two intervals are
homeomorphic, i.e. the function f : (0,1) — R, f(z) := a(1 — x) + bz is continuous,

invertible with continuous inverse and with f(0) = a, f(1) = b so a homeomorphism.

Let

m _ m —
A::{z—n\m,neNylgmgzn 1}:%{2—”\meN,1£mS2” 1},
ne

=A

n

which is clearly dense in (0, 1). We need now to define our normally ascending

collection. We do so by defining on each A; and proceding inductively.

For A,, since X normal, let 0, ), be such that F' C 0, , C 0, /2 € U, which exists by
the nested neighborhood property.

For A, = {1, 2}, we use the nested neighborhood property again, but first with F as
the closed set and 0, ;, an open neighborhood of it, and then with 0, /2 as the closed

set and U an open neighborhood of it. In this way, we find
nested nbhd

FCO4C0,4C0,,C0,,C03,C03,CU.

nested nbhd

We repeat in this manner over all of A, in the end defining a normally ascending
collection {0, }, _,. [ ]

Proor (Of Urysohn’s Lemma, ). Let F = Aand U = B¢ as in the previous
lemma . Then, there is some dense subset A C (a, b) and a normally ascending
collection {0, }, _, suchthat A C O, C 0, C B¢ forevery X € A. Let f(z) as in the
previous previous lemma, .Then,ifx € B, B C (U ver 9 )\)C and so f(z) = b.
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Otherwise if z € A, thenz € (1], _, O, and thus f(z) = inf{\ € A} = a. By the first

lemma, f continuous, so we are done. [ |

—Theorem 1.9 (Urysohn's Metrization Theorem): Let X be a second countable topological
space. Then, X is metrizable (that is, there exists a metric on X that induces the topology) if
and only if X normal.

PrOOF. (=) We have already showed, every metric space is normal.

(<) Let {U,,} be a countable basis for 7 and put
A= {(n,m) eNxN|U, QZ[m}.

By Urysohn’s lemma, for each (n,m) € A there is some continuous function f,, ,,, :
X — Rsuch that f,, ,, is1on U7, and 0 on U,, (these are disjoint closed sets). For
x,y € X, define

1
p(xvy) = Z W |fn,m(x)_fn,m(y)|
(n,m)eA

The absolute valued term is < 2, so this function will always be finite. Moreover, one
can verify that it is indeed a metric on X. It remains to show that it induces the same

topology; it suffices to compare bases of the two.

Let z € U,,,. We wish to show there exists B, (z,¢) C U,,. {z} is closed in X being
normal, so there exists some n such that

{g} CU,CU,CU,,

so (n,m) € Aandso f, .. (z) =0.Lete = ﬁ Then, if p(z,y) < ¢, it must be

1 1
on+m > Z on’+m’ |fn’,m’ (‘T) - fn’,m’ (y)|
(n’,m’)eA
S 1
= ont+m | fn,m (37) - fn,m (y)‘

=0

1

SO | fr.m(y)| < 1and thusy ¢ US, soy € U,,. It follow that B, (z,e) C U,,, and so every
open set in X is open with respect to the metric topology.

Conversely, if B,(z, €) some open ball in the metric topology, then notice that y
p(z,y) for fixed y a continuous function, and thus (p(z,-)) ' (—e, &) an open set in T
containing z. But this set also just equal to B,(z, €), hence B,(z,¢) openin 7. We
conclude the two topologies are equal, completing the proof. [ |

Remark 1.16: Recall metric = first countable hence not first countable = not metrizable.

1.9 Urysohn’s Lemma and Urysohn’s Metrization Theorem 21



§1.10 Stone-Weierstrass Theorem

We need to use the following theorem, which we’ll prove later.

<Theorem 1.10 (Weierstrass Approximation Theorem): Let f : [a,b] — R continuous. Then,
for every € > 0, there exists a polynomial p(z) such that | f — p| ., < e.

<~ Definition 1.34 (Algebra, Separation of Points): We call a subset A C C(X) an algebra if it is
a linear subspace that is closed under multiplication (thatis, f,g € A = f-g € A).

We say A separates points in X if for every x,y € X, there exists an f € A such that f(z) #
f(y)-

—Theorem 1.11 (Stone-Weierstrass): Let X be a compact Hausdorff space. Suppose A C
C(X) an algebra that separates points and contains constant functions. Then, .4 dense in
C(X).

We tacitly assume the conditions of the theorem in the following lemmas as as not to restate
them.

~Lemma 1.5: For every F' C X closed, and every z, € F'°, there exists a neighborhood % (z)
suchthat FNU = gand Ve > 0 thereissome h € Asuchthath<eonl,h >1—conF,
and0 < h <1lonX.

In particular, U is independent of choice of €.

ProOF. Our first claim is that for every y € F), thereis a g, € A such that g, (z,) =0
and g, (y) > 0, and moreover 0 < g, < 1. Since A separates points, there is an f € A
such that f(zy) # f(y). Then, let

f(z) — f(xo)r
If = F@)]oo]

Then, every operation used in this new function keeps g, € A. Moreover one readily

gy(z) = {

verifies it satisfies the desired qualities. In particular since g, continuous, there is a
neighborhood 0, such that g, \Oy > 0. Hence, we know that F' C UyE » 0y, but F closed
and so compact, hence there exists a finite subcover i.e. some n > 1 and finite sequence
{yl-}?: | such that F C U?: , Oy, Letforeach y; g, € A with the properties from above,
and consider the “averaged” function

ofa) = -3 g, () € 4
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Then, g(z;) =0,9 > 0on F and 0 < g < 1 on all of X. Hence, there is some 1 > ¢ >0
such that ¢ > c on F, and since g continuous at z, there exists some U (z,) such that
g<sonlU,withiNF =g.50,0<g|, <3,and 12> g|p > c. To complete the proof,
weneed (0, £) +» (0,¢) and (¢,1) +» (1 — ¢, 1). By the Weierstrass Approximation
Theorem, there exists some polynomial p such that p[(, ¢} <& and i ;) > 1 —e. Then
if we let h(z) := (p o g)(z), this is just a polynomial of g hence remains in A, and we
find

hly <e, hlp >1—c¢, 0<h<1.

—Lemma 1.6: For every disjoint closed set A, B and € > 0, there exists h € A such that |, <
g, hlg>1—¢,and0<h <1lonX.

Prookr. Let F' = B as in the last lemma. Let x € A, then there exists & , N B = @& and
foreverye >0, hly; <eandh|p>1—-eand0<h<1.ThenAClJ _, U,.Since A

N .
closed so compact, A C UZ]\L U, - Letey < esuch that (1—2)" >1—e. Foreachi, let

h; € A such that hz|l[z < %’, hilg >1— EN" and 0 < h; < 1. Then, put
h(z) = hy(2) - hy(z)--hy(z) € A.

Then, 0 < h < landh|g > ( —%‘J)N>1—5.Then,foreverymEA,a:EZ[xi SO

hi(z) < ¢ and h;(z) <isoh(z) < T sohlAd <8 <e. [

(3

Prook. (Of Stone-Weierstrass) WLOG, assume f € C(X), 0 < f <1, by replacing with

_ F@) 4 e
17+ 7ol

if necessary, since if there exists a § € A such that | f — §|, < ¢, then using the

f(x)

properties of A we can find some appropriate g € A such that | f — g[, <e.

Fix n € N, and consider the set {0, 2, 2,..., 221 1} and letfor 1 <j<n

n n

Aj=={weX\f<w>sE}, Bj=={wexrf<x>zi},

which are both closed and disjoint. By the lemma, there exists g, € A such that

1 1
gj|Aj < o gj|Bj >1-— o

with 0 < g; < 1. Let then

o(@) = =3 g,(@) € A

We claim then | f — g||, < 2, which proves the claim by taking n sufficiently large.
Suppose k € [1,n]. If f(z) < %, then
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SO

SO

So, we've show that if =1 < f(z) < £, then 222 < g(x) < E+1 "and so repeating this
% g
n n n

n

argument and applying triangle inequality we conclude | f — g, < 3 [ ]

n'

—Theorem 1.12 (Borsuk): X compact, Hausdorff and C'(X) separable < X is metrizable.

§2 FUNCTIONAL ANALYSIS
Here, we will primarily work with a normed vector space (nvs). Moreover, we usually work

in:

< Definition 2.1 (Banach Space): A normed vector space (X, | - ||) is a Banach space if it is

complete as a metric space under the norm-induced metric.

§2.1 Introduction to Linear Operators

<~ Definition 2.2 (Linear Operator, Operator Norm): Let X,Y be vector spaces. Then, a map
T : X — Y iscalled linearif Vz,y € X,a,8 € R, T(azx + By) = oT(x) + BT (y).

If X,Y normed vector spaces, we say T is a bounded linear operator if T linear and the

operator norm

ITI =T ¢x,y) = sup |Tzly <oo
zeX,
lzlx <1

is finite. Then, we put

L(X,Y) := {bounded linear operators X — Y'}.

We'll also write £(X) := £(X, X).
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—Theorem 2.1 (Bounded iff Continuous): If X,Y arenvs, T' € £(X,Y) iff and only if T' is
continuous, i.e.if x,, = zin X, thenTz,, = TxinY.

Proor. If T € £(X,Y),

[Tz, —Tz|y =T (2, —2)ly
|z, — 2zl x
< 7| e, —2]x =0,

—_—
<00

= |z, —2lx - Iy

hence T continuous. Conversely, if T' continuous, then by linearity 70 = 0, so by
continuity, there is some ¢ > 0 such that |Tz||y < 1if |z||x < ¢. For z € X nonzero, let
A= 22— Then, |\z|x < dso |[T(\z)|y < 1,ie. [T@ly 8 - 1. Hence,

(EPN (E BN

T(x

<
zeX:x#0 ||$||X

1
57
soT € L(X,Y). [

—Proposition 2.1 (Properties of £(X,Y)): If X, Y nvs, £(X,Y) anvs, and if X,Y Banach,
thensois £(X,Y).

Proor. (a) ForT,S € £(X,Y), a,B € R,and z € X, then
[(aT + BS)(x)ly < ol |Tx]y + (8] [Szly
<l | T) ] x + 18] 1T ] x-

Dividing both sides by |z|, we find ||aT" + S| < co. The same argument gives the
triangle inequality on | - ||. Finally, " = 0 iff |[T'z|y- = 0 for every z € X iff |T'| = 0.
(b) Let{T,,} C £(X,Y) be a Cauchy sequence. We have that

so in particular the sequence {7,,(x)} a Cauchy sequencein Y forany z € X. Y
complete so this sequence converges, say T,,(z) — y* in Y. Let T'(z) := y* for each z.

We claim that T € £(X,Y) and that T,, — T in the operator norm. We check:
oT'(zy) + BT (x3) = lim oT,(zy) + lim BT, (z,)
n—oo

n—oo
= 1im [T, (a,) + T, (4, )]
= lim T, (az, + Bz,y)
n—oo

=T(az, + fx,),

so T linear.
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Let now € > 0 and N such that for every n > N and k > 1 such that |T,, — T, .| <
. Then,

1T, (z) = T (@) lly = [[(T, — T (@),

< |7, —Tn+kH||rv||X
g
< §||93||X

Letting k — oo, we find that
€
17, (z) = T(@)ly <3 lzlx,

so normalizing both sides by |z| x, we find ||T,, — T'| < 5, and we have convergence. W

< Definition 2.3 (Isomorphism): We say T' € £(X,Y’) an isomorphism if T' is bijective and
T-! € £(Y, X). In this case we write X ~ Y, and say X, Y isomorphic.

§2.2 Finite versus Infinite Dimensional
If X a nvs, then we can look for a basis /5 such that span(8) = X.If 8 = {ey, ..., e, } hasno
proper subset spanning X, then we say dim(X) = n.

As we saw on homework, any two norms on a finite dimensional space are equivalent.

—Corollary 2.1: (a) Any two nvs of the same finite dimension are isomorphic.

(b) Any finite dimensional space is complete, and so any finite dimensional subspace is

closed.

(c) B(0,1) is compact in a finite dimensional space.

ProoF. (a) Let (X, || - |) have finite dimension n. Then, we claim (X, | - ||) =~ (R™,] - |).
Let {eq,...,e, } be abasis for X. Let T : R" — X given by

: :wl 17

where z = (x4, ..., z,,) € R", which is clearly linear. Moreover,

Tx:0<:>2xiei20<:>x=(),

so T injective, and so being linear between two spaces of the same dimension gives T'
surjective. It remains to check boundedness.

First, we claim z — |T'(z)| is a norm on R™. |T'(z)| = 0 < = = 0 by the injectivity of
T, and the properties |[T'(A\x)| = |A| |Tz| and |T(z + y)|| < |Tz| + |Ty| follow from
linearity of 7" and the fact that | - | already a norm. Hence, |T'(-)| a norm on R™ and so
equivalent to | - |, i.e. there exists constants C;, Cy > 0 such that
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Cila] < |T(2)] < Cyla,
for every z € X. It follows that || 7| (operator norm now) is bounded.
Letting T'(x) = y, we find similarly
Crlyl < 1T~ (y)] < Co Iyl
so |71 also bounded. Hence, we’ve shown any n-dimensional space is isomorphic to
R™, so by transitivity of isomorphism any two n-dimensional spaces are isomorphic.

(b) The property of completeness is preserved under isomorphism, so this follows

from the previous statement since R" complete.

(c) Consider B(0,1) C X. Let T be an isomorphism X — R". Then, for = € B(0, 1),
|Tz| < |T| < oo, so T(E(O, 1)) is a bounded subset of R"”, and since 7" and its inverse
continuous, T(E(O, 1)) closed in R™. Hence, T’ (E(O, 1)) closed and bounded hence
compact in R, so since 7! continuous 7! (T (E(O, 1))) = B(0, 1) also compact, in
X. [

<»Theorem 2.2 (Riesz's): If X is an nvs, then B(0, 1) is compact if and only if X if finite

dimensional.

—Lemma 2.1 (Riesz's): Let Y C X be a closed nvs (and X a nvs). Then for every € > 0, there
exists z, € X with ||z,| = 1 and such that

lzo —ylx >evVyeY.

ProoOF. Fixe > 0.Since Y C X, letx € Y. Y closed so Y open and hence there exists
some r > 0 such that B(z,r) N Y = @&. In other words,

inf{lz — /| |y €Y} >r>0.

Let then y; € Y be such that

r<|lz—y | <elr,

and take

r—1Y

Lo i=r——— -
|z —vlx

Then, z, a unit vector, and for every y € Y,

" y = r—1Y y
° lz — v |
1
= [ Y1 — Y llz —y]
lz =yl
1
= x—y’],
|z — v
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wherey’ =y, +y |z — y,| €Y, since it is closed under vector addition. Hence

1 €
lzg =yl = ——= lz—¥'| > = |z —¥'| > ¢,
|z — vy r

foreveryy €Y. |
Proor. (Of ) (<) By the previous corollary.
(=) Suppose X infinite dimensonal. We will show B := B(0, 1) not compact.

Claim: there exists {xl}?; C Bsuch that |z; — z;] > T ifi # j.
We proceed by induction. Let z; € B. Suppose {z, ...,z,,} C B are such that ||z, —
;| > : . Let X,, = span{z,, ...,z,}, so X, finite dimensional hence X,, C X. By the
previous lemma (taking ¢ = 1) there is then some z,,; € B such that |z, —z,, 1| > 3
for every i = 1,...,n. We can thus inductively build such a sequence {z;} . Then,
every subsequence of this sequence cannot be Cauchy so B is not sequentially compact

and thus B is not compact. |

§2.3 Open Mapping and Closed Graph Theorems

< Definition 2.4 (T open): If X, Y toplogical spaces and T : X — Y a linear operator, 7" is
said to be open if for every &« C X open, T'(U) openinY.

In particular if X, Y are metric spaces (or nvs), then T is open iff the image of every open
ball in X containes an open ballin Y, i.e. V2 € X, r > 0 there exists * > 0 such that
T(Bx(z,r)) 2 By (Tx,r"). Moreover, by translating/scaling appropriately, it suffices to prove

forz =0,r=1.

—Theorem 2.3 (Open Mapping Theorem): Let X,Y be Banach spacesand 7 : X =+ Y a

bounded linear operator. If T' is surjective, then 7" is open.

Prook. Its enough to show that there is some r > 0 such that T'(Bx(0,1)) 2 By (0, 7).
Claim: 3¢ > 0such that T (Bx(0,1)) 2 By (0, 2¢).
Put E, = n-T(Bx(0,1)) for n € N. Since T surjective, | J*°  E, =Y.Each E,

closed, so by the Baire Category Theorem there exists some index n, such that E,, has

nonempty interior, i.e.
int(T(Bx(0,1))) # &,

where we drop the index by homogeneity. Pick then ¢ > 0 and y, € Y such that

By (yo,4¢) C T(Bx(0,1)). We claim then that By (—y,,4c) C T(Bx(0,1)) as well.
Indeed, if By (yy,4c) C T(Bx(0,1)), then V§ € Y with ||y, — 7]y < 4¢, Then, | — y, +
glly < 4cso —g € By (—y,,4c). Buty = lim,, ,  T(z,) and so —¢§ = lim,,_,  T'(—=z,,).
Since {—z,,} C Bx(0, 1), this implies —j € T(Bx(0,1)) hence the “subclaim” holds.

Now, for any § € By-(0,4c), 7| < 4c so
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€B(yg,4c)

- - —
Y=Y —Y+Y = Y +Y —Y:
E/_/
GBY(7y074C)

Therefore,
By (0,4c¢) = By (yo — Yo, 4c)
C By (o, 4¢) + By (—yp, 4c)
T(Bx(0,1)) + T(Bx(0,1)) = 2T(Bx(0, 1)),

(where summation of two sets is the vector addition of all the elements in the sets),
hence By (0,2¢) C T(By(0,1)).

We claim next that (B (0,1)) 2 By(0,c). Choose y € Y with |y|y < c. By the first
claim, By (0,¢) C T(Bx(0, 3)), so for every & > 0 there is some z € X with |z]x < 1
and |y — Tz|y <e.Lete = £ and z; € X such that |z] x < 3 and |y — Tz |y < £. But
the first claim can also be written as By (0, £) C T(Bx(0,1)) soife = £,let 2, € X
such that |z, x < T and |(y — Tz;) — T#,]y < <. Continuing in this manner we find

that
c 1
BY<07§>QT Bx |05 ) )

so exists z;, € X such that ||z ] x < 2% and |y —T(z; + -+ 2)|ly < 57 Letz, = 2z; +
-+ 2, € X. Then {z,} is Cauchy in X, since

n n
1
|z, —2mlx < D _lzelx < ) o5 = 0.
2
k=m k=m

Since X a Banach space, z,, — 7 and in particular |Z]| < 377 [zilx < >5.°, o = 1,80
T € Bx(0,1). Since T bounded it is continuous, so T'z,, — Tz, so y = Tz and thus

<+Corollary 2.2: Let X,Y Banach and T': X — Y be bounded, linear and bijective. Then, 7*

continuous.

Proor. Let U C X open. Then, (T‘l)fl(ll) = T(U) is open since T surjective, so T~ !

continuous. ]

—Corollary 2.3: Let (X, | - [;), (X,] - |2) be Banach spaces. Suppose there exists ¢ > 0 such
that |z|, < C|z|; for every x € X. Then, | - ||;, | - |, are equivalent.

Proor. Let T be the identity linear operator and use the previous corollary. [ |
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—Definition 2.5 (T closed): If X,Y are nvs and T is linear, the graph of T is the set
GT)={(z,Tz) |[ze X} C X xY.

We then say T is closed if G(T') closed in X x Y.

Remark 2.1: Since X, Y are nvs, they are metric spaces so first countable, hence closed +

contains all limit points.

In the product topology, a countable base for X x Y at («z, y) is given by

(o) oo )}

Then, G(T) closed iff G(T') contains all limit points. How can we put a norm on X x Y that
generates this product topology? Let

[ 9l = Nzl x + lyly-

If (z,,,y,) — (z,y) in the product topology, then since II,, II, continuous maps, (z,,,y,,) —
(z,y) in the | - ||; topology. On the other hand if (z,,,y,) — (z,y) in the | - |; norm, then

|z, — 2l x < (@0, 90) — (2,91,

hence since the RHS — 0 so does the LHS and so z,, — x in || - | x; similar gives y,, — yin | -
|y-- From here it follows that («,,,y,,) = (z,y) in the product topology.

So, to prove G(T') closed, we just need to prove that if x,, - zin X and T'z,, — y, theny =
Tx

n*

—Theorem 2.4 (Closed Graph Theorem): Let X,Y be Banach spacesand T' : X — Y linear.

Then, T is continuous iff T is closed.

PrOOF. (=) Immediate from the above remark.
(«) Consider the function
z = e, = [z x + [Ty

So by the above, T closed implies (X, || - |,) is complete, i.e. if x,, — zin | - |, in X iff
z, = zin ||, and Tz,, = Tz in |-|,,. However, | - | x < || , hence since (X, |H|X)
and (X , |H|*) are Banach spaces, by the corollary, there is some C' > 0 such that || <
Ol - So,

|zl + 1Tl < Claly,

SO

ITz]y, <] +IT=], <Clzly,
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so T bounded and thus continuous. [}

Remark 2.2: The Closed Graph Theorem simplifies proving continuity of 7T'. It tells us we can

assume if z,, — z, {T'z,, } Cauchy so 3y such that T'z,, — y since Y is Banach. So, it suffices to

check that y = T'x to check continuity; we don’t need to check convergence of T'z,,.

§2.4 Uniform Boundedness Principle

Recall the following consequence of the Baire Category Theorem:

—Theorem 2.5: Let & C C'(X) where (X, p) a complete metric space. Suppose F pointwise
bounded. Then, there exists a nonempty open set O C X such that there is some M > 0 such
that |f(z)| < M foreveryz € O, f € F.

This leads to the following result:

—Theorem 2.6 (Uniform Boundedness Principle): Let X a Banach space and Y a nvs.
Consider & C £(X,Y). Suppose J is pointwise bounded, i.e. for every « € X, there is some
M, > 0 such that

|Te|, < M,,¥T € 7.

Then, 7 is uniformly bounded, i.e. 3 M > 0 such that
ITly < M,¥T € F.

Proor. For every T' € 7, let fr : X — R be given by
fr(z) = |Tz]y.

Since T' € £(X,Y), T is continuous, so z,, 2= Tz, s Tz, hence [Tz, [, — |Tz|,
so fr continuous for each T'i.e. f; € C(X), so {fr} C C(X) pointwise bounded. So by
the previous theorem, there is some ball B(z,,r) C X and some K > 0 such that

|Tz| < K for every x € B(z,,r) and T € F. Thus, for every z € B(0,r),

[Tz = [T(z — 2 + )|
<|T (2 —zo) || + T

[ —
€B(zg,T)

<K+M,, Vz e B(0,r), T € &.

Thus, for every z € B(0,1),

1 1
ITz] = =|T (rz) | < =(K + M, ) =M,
T _— T 0
€B(0,r)
soits clear |T'|| < M forevery T € F. |
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—Theorem 2.7 (Banach-Saks-Steinhaus): Let X a Banach space and Y anvs. Let {T},} C
£L(X,Y). Suppose for every z € X, lim T, (z) exists in Y. Then,

n— 00 n
a. {T,,} are uniformly bounded in £(X,Y);
b.For T : X — Y defined by T'(z) := lim T, (z),wehaveT € £(X,Y);

n—oo T n

c. |T| < liminf, , |7, | (lower semicontinuity result).

PrOOE. (a) Forevery z € X, T, (x) — T'(x) so |Tz| < oo hence sup,,|T,,z| < co. By

uniform boundedness, then, we find sup,, |7,,| =: C < c.
(b) T is linear (by linearity of 7,,). By (a),
|7z < O],
for every n, z, so

|Tz| < Clz| V2 € X,

so T bounded.
(c) We know
| Tzl < [T, )l=] V2 € X,

SO

|7

— < [Tl

|z
SO
T T
lim inf IT,.2] = ITz] < lim inf|T, |,
no |z Ed n

so by “suping” both sides,
|7 < lim in] T, |

Remark 2.3:
e We do not necessarily have T,, — T in £(X,Y) i.e. with respect to the operator norm.

* If Y is a Banach space, then lim
X.

T, (x) exists in Y < {T,,z} Cauchy in Y for every z €

n—o0

§2.5 Introduction to Hilbert Spaces
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—Definition 2.6 (Inner Product): An inner product on a vector space X isamap (-,-) : X x
X — R such that for every A\, p € Rand z,y, z € X,

* (A\z+ py, z) = Az, 2) + p(y, 2);

* (z,y) = (y,2);

* (z,z) >0and (z,z) =0z =0.

Remark 2.4: The first and second conditions combined imply that (-, -) actually bilinear,

namely, linear in both coordinates.

Remark 2.5: An inner product induces a norm on a vector space by

N

|z] = (x, ).

< Proposition 2.2 (Cauchy-Schwarz Inequality): Any inner product satisfies Cauchy-
Schwarz, namely,

(@, 9)] < llyl,

for every z,y € X.

PrOOE. Suppose first y = 0. Then, the right hand side is clearly 0, and by linearity
(x,y) = 0, hence we have 0 < 0 and are done. Suppose then y # 0. Then, let z = x —
@), where y # 0. Then,

(,9)

v, 9)” " (y,y)
@) (@y) (@)
(z,z) (y,y)( ,Y) (y7y)(y, )+(y’y)2(y,y)
2@y | (@)
= () Wy )
~Jap - 22
(y,9)
o @Yl S (,9)? < el
(y,v)
= [(2,9)] < ],

—Corollary 2.4: The function ||z| := (=, x)% is actually a norm on X.
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ProokF. By definition, |z| > 0 and equal to zero only when x = 0. Also,

N
N

Az = Az, Az)? = |Al(z, 2)2 = [[|2].
Finally,
Iz +yI* = (z + 9.2 +y)
= (z,2) +2(z,y) + (v,9)
= [ + Jy]* + 2(=, )
by Cauchy-Schwarz < |z|” + Jy|* + 2|z||ly|
= (=l + Iyl)*,
hence by taking square roots we see |z + y| < ||z| + ||y| as desired. [ |

—Proposition 2.3 (Parallelogram Law): Any inner product space satisfies the following;:

2 +yI” + |z — yl* = 2/z|” + 2]y

< Corollary 2.5: (-,-) is continuous, i.e. if ,, — z and y,, — y, then (z,,,y,,) — (z,¥).

PRrRoOOF.

(@0 Yn) — (2, 9,,) + (2, 9,) — (,9)]
= |(xn - whyn) + ($7yn _y)‘
I(

< Ty — xvyn)‘ + ‘(x7yn _y)|
(Cauchy-Schwarz) < [z, — | |y,[ + |z |y, —yl| — 0.
N —— e —r’ N — e’
—0 <M —0

< Definition 2.7 (Hilbert Space): A Hilbert Space H is a complete inner product space, namely,
it is complete with respect to the norm induced by the inner product.

® Example 2.1:

1. £2, the space of square-summable real-valued sequences, equipped with inner product

(z,9) = 3207, Tas-
2. L?, with inner product (f, g) = [ f(z)g(z) d=.
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< Definition 2.8 (Orthogonality): We say z, y orthogonal and write x L y if (z,y) = 0. If M C
H, then the orthogonal complement of M, denoted M+, is the set

Mt ={yeH]| (z,y) =0,V € M}

Remark 2.6: M is always a closed subspace of H. If y;,y, € M*, then for every z € M,
(IL', ayYy + ByQ) = OZ(IL', yl) + ﬁ(xa y2) = 07
so M+ a subspace.

If y,, — y in the norm on H and {y,,} C M+, then using the continuity of (-, -), we know
that for every « € M, (z,y,,) — (z,y). But then (z,y,,) = 0 for every n and thus (z,y) = 0 so
y € M, hence M+ closed.

—Proposition 2.4: If M C H is a closed subspace, then every z € H has a unique
decomposition

T =u-+v, u€ M, ve M.
Hence, we may write H = M & M*. Moreover,

— | = inf |z — — | = inf |z —y].
|z —ul = inflz—yl, Jo—vl= inf|z—y|

Proor. Letx € H. If x € M, we're done with u = x,v = 0. Else, if x ¢ M, then we
claim that there is some u € M such that |z — u| = inf ¢,/ |z — y| =: 6 > 0. By
definition of the infimum, there exists a sequence {u,,} C M such that

1
& —u,|* < 8%+~
n

Letz := u,, — =,y = u,, — x. By the Parallelogram Law,
2 = g2 —2 )
Iz —3ylI" + [z +yl” = 2|z[" + 2|yl
hence
2 2 2 2
|, — wp ™ + |, + wp, — 22]° = 2|u,, — 2| + 2|u,, — 2|
Now, the second term can be written
Uy, + U, 2

I, +u, — 22| = 4HT e

Y

hence we find

2 2 2 U, + U 2
~ = 2, — o + 2, — 3l 4 2

Ju .

m
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Recall that M a subspace, hence % (u,, +u,) € M so ||z — 3(u,, + u,)| > 6 as defined
before. Thus, we find that by our choice of {u,, },

1 1 2 2
lu,, —u, | < 2(52 + —> +2<52 + —) — 462 == 4 =,
m n m n
and thus, by making m, n sufficiently large we can make |u,,, — u,, || arbitrarily small.
Hence, {u,,} C M are Cauchy. H is complete, hence the {u,, }'s converge, and thus

since M closed, u,, — u € M. Then, we find

|z —ul <o —u, | + v, —ul

1
1 2
< (62 + —) + |lu, —ul| — 4.
n ~——

_— —0
—d

But also, u € M and thus |z — y| > §, and we conclude ||z — u| = § = inf /|2 —y|.
Next, we claim that if we define v = z — g, then v € M*. Consider y € M, t € R,
then

2

2 2 2
z—(u—ty)|| =lv+ty]” = o|” + 2t(v,y) + 3|y|".
~———
eM

Then, notice that the map
t o+ ty)?

is minimized when ¢ = 0, since |z — z|| for z € M is minimized when z = u, as we
showed in the previous part, so equivalently |z — (u — ty)|* minimized when ¢ = 0.
Thus,

0 2 0 2 2 2
0= lv+tyllimo = - [Iol° + 2t ) + 2 1l°]

— 2 2t 2 =
(2(v, ) + 2t[y] >t=0 (v,y)

= (v,y) =0Vye M =ve M
So,z=u+wvandu € M,v € M*. For uniqueness, suppose = = u; + v; = Uy + V.

Then, u; — uy = v, — vy, but then

2
lvg — v1]” = (vg — 1,09 —vy) = (Vg — vy, uy —uy) =0,

S0 v, = v; so it follows u, = u; and uniqueness holds. [
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< Definition 2.9 (Dual of H): The dual of H, denoted H*, is the set
H*:={f: H— R | f continuous and linear}.

On this space, we may equip the operator norm

171, = 171 = sup T _ oy 1)1

veH 2], Jzp<a

® Example 2.2: Fory € H, let f, : H — Rbe given by f,(z) = (z,y). By CS,

o = sup (z,y) < sup ]yl < Jyl.
=<1 =<1

= . It turns out all such functionals are of this form.
Yl g

Also, if y # 0, then

—Theorem 2.8 (Riesz Representation for Hilbert Spaces): If f € H*, there exists a unique y €
H such that f(z) = (z,y) for every z € X.

Proor. We show first existence. If f = 0, then y = 0. Otherwise, let M = {z €
X | f(z) =0} = f71({0}),s0 M C H. f linear, so M a linear subspace. f is continuous,
so in addition M is closed. By the previous theorem, M+ # {0}. Let 2 € M~ of norm 1.

Fix x € H, and define
u= flz)z — f(2)z.

Then, notice that by linearity

f(u) = f(@)f(2) — f(2)f(z) =0,
sou € M. Thus, since z € M*, (u,2) = 0, so in particular,

(u,2) = 0= (f(z)z — f(2)z, 2)
f(@)(2,2) — f(2)(, 2)
f@)2)* = (z, f(2)2)
f(z) = (z, f(2)2),

(
)

hence, rearranging we find
f(z) = (z, f(2)2),

and thus letting y = f(2)z completes the proof of existence, noting z independent of .
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For uniqueness, suppose (z,y) = (z,y’) for every € X. Then, (z,y —y’) = 0 for
every z € X, hence letting z = y — y’ we conclude (y —y',y —y’) =0thusy —y’ =0
so y = y’, and uniquness holds. [

< Definition 2.10 (Orthonormal Set): A collection {e,} C H is orthonormal if (e;, e;) = 5.

Remark 2.7: The following section writes notations assuming H has a countable basis.
However, for more general Hilbert spaces, all countable summations can be replaced with
uncountable ones in which only countably many elements are nonzero. The theory is very

similar.

< Definition 2.11 (Orthonormal Basis): A collection {e,} C H is an orthonormal basis for H if

{e;} is an orthonormal set, and = = Z;’i ) (z,e;)e; for every z € H, in the sense that

o= 3 (@e)e

J=1

— 0, N — o0.

—Theorem 2.9 (General Pythagorean Theorem): If {ej}?o S H are orthonormal and
J:
{ai}z , € Rare orthonormal, then for any N,

N 2 N
= laf’
oe|l = oyl
=1 =1
PRrOOF.
N 2 N N N N N
} : _ 2 : 2 : _ Z Z _ 2
oe|l = o€, ae; | = Q0 (ei, ej) = o
=1 =1 =1 i=1 j=1 —_— =1
=5
[
We can also in infinite-dimensional Hilbert spaces. Let {z;} C H. Let
Z1
61 == ,
E3
and inductively, for any n > 2, define
N-1
UN =TN — (TN, €;)e;-

Il
-

i
Then, for any N, span(vy, ...,vy) = span(eq, ...,ey), and for any j < N,

N

(vno ;) = (zn,¢5) — Z(xN’ei)(ewej) = (zy,¢;) — (zn,¢;) = 0.

i=1

2.5 Introduction to Hilbert Spaces

38


https://notes.louismeunier.net/Algebra%202/algebra2.pdf#page=75

Let then ey = ”Zﬁ Then, {ei}z , Will be orthonormal; we discuss how to establish when this set

will actually be a basis to follow.

<Theorem 2.10 (Bessel's Inequality): If {e;} '~ are orthonormal, then for any = € H,

@

> 2 2
>l el < el

=1

Proor. We have

N
0< x—Z(:L‘,el)el
i=1
N N
= x—Z(m,el)eZ,x—Z(x,ej)ej)
=1 7j=1
N , &
= ||‘,E|| - 22 (xaei) + Z (37,62)
i=1 i=1
- 2
= =] = (z.e,)%,
i=1

SO Ef\i | (=, e;)? < |z|; letting N — oo proves the desired inequality, since the RHS is
independent of N. |

—Theorem 2.11: If {e;}>° , are orthonormal, then TFAE:

(a) completeness: if (z, e;) = 0 for every 4, then x = 0, the zero vector;
(b) Parseval’s identity holds: |z|* = ZZ L (=, e;)” for every z € H;
(c) {e;};-, form a basis for H,i.e.z = >3 (z,¢;)e, for every z € H.

PROOF. ((a) = (c)) By Bessel’s, Z;’ol (z,¢;)* < |z|>. So, for any M > N,

2

M M )
d (mede| =) (we),
i=N i=N

which must converge to zero as N, M — oo, since the whole series converges (being
bounded). Hence, {Zfi (=, ei)ei}N is Cauchy in ||-| and since H complete,
Zij\;l (x,e;)e; converges in H. Putting y = x — Zzl (z,e;)e;, we find

(y7ei) = (:L'a ez’) - (wvei) =0Vi,
hence by assumption in (a), it follows that y = 0 so z = Zz ,(z,e;)e; and thus {e;} a
basis for H and (¢) holds.

((c) = (b)) Since z = Zzl(a:, e;)e;, then,
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2

N N
||.’17||2—Z(.'13,€i)2 = x_Z('x:ei)ei —0
i=1 i=1

as N — oo, hence |z|* = >, (=, e;)’.

((b) = (a)) If (z,e;) = O for every i, then by Parseval’s |z|* = Z;’il 0=0sox=0. W

Remark 2.8: (a) is equivalent to span(e,, ey, ..., ) is dense in H.

—Theorem 2.12: Every Hilbert space has an orthonormal basis.

PrOOF. Let & = {orthonormal subsets of H}. F can be (partially) ordered by
inclusion, as can be upper bounded by the union over the whole space. By Zorn’s

Lemma, there is a maximal set in F, which implies completeness, (a). [ |

—Proposition 2.5: H is separable iff H has a countable basis.

PROOF. (<) If H has a countable basis {e;}, spang {e; } is a countable dense set.

(=) If H is separable, let {z,,} be a countable dense set. Use Gram-Schmidt, to
produce a countable, orthonormal set, which is dense and hence a (countable) basis
for H. [

Remark 2.9: All this can be extended to uncountable bases.

§2.6 Adjoints, Duals and Weak Convergence (for Hilbert Spaces)
First consider T' : H — H bounded and linear. Fix y € H. We claim that the map

z = (T(x),y)

belongs to H*, namely is bounded and linear. Linearity is clear since 7" linear. We know by

Cauchy-Schwarz that
(T(2), )| < [T @)yl < TNy < Cl,

so indeed z - (T'(x),y) € H*. By Riesz Representation Theorem, there is some unique z € H
such that

(T(x),y) = (z,2)Vx € H.

This motivates the following.

<~ Definition 2.12 (Adjoint of T'): Let T* : H — H be defined by
(Tz,y) = (z,T*y),V 2,y € H.
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Remark 2.10: In finite dimensions, T can be identified with some n x n matrix, in which case

T* = T", the transpose of T; namely Tz - b = = - T"*b.

< Proposition2.6: f T' € £(H) := £L(H,H),thenT* € £L(H) and |T*| = |T|.

ProoEF. Linearity of T* is clear. Also, for any |y| < 1,

* 2 * * * *
Ty = (T*y, T*y) = (TTy,y) < |TIT W)yl

so |[T*y| < ||T| for all |y| = 1.so |T*|| < |T|| hence T* € £(H). But also, if z € H with
|z = 1, then symmetrically,

2 * *
|Tz|” = (T%,Tz) = (z, T*Tz) < |T*|| T

so similarly |T'| < || 7| hence equality holds. [ |
<Proposition 2.7: (T*)" =T.

Proor. On the one hand,
(T*y,z) = (y,(T")"z) = ((T")"z,y)
while also
(T*y,z) = (2, T*y) = (T'z,y)

so (Tz,y) = ((T*)",y), from which it follows that T' = T**. ]
<sProposition 2.8: (T + S)* =T*+ §*,and (T - S)* = §* - T*.
We'll write N (T') for the nullspace/kernel of T', and R(T') for the range/image of T

<Proposition 2.9: Suppose T € £(H). Then,
e N(T*) = R(T)" (and hence, if R(T) closed, H = N(T*) & R(T));
e N(T) = R(T*)" (and hence, if R(T*) closed, H = N(T) & R(T*)).

Proor. N(T*)={ye€ H : T*y =0},s0ify € N(T*), (Tz,y) = (z,T*y) = (z,0) =0,
which holds iff y orthogonal to T'z, and since this holds forallz € H, y € R(T)".

Then, if R(T) closed, the by orthogonal decomposition we’ll find H = R(T') &
R(T)" = R(T) & N(T*).

The other claim follows similarly. [ |
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Remark 2.11: Recall that R(T)" is closed; hence
L
(R ={ze H| (n,2) =0vy e R(T)*},

and is also closed; hence (R(T)L)L = R(T') thus equivalently N (T*)* = R(T).

Remark 2.12: By the Closed Graph Theorem, T' linear and bounded gives T' closed; namely,
the graph of T closed; this is not the same as saying the range of T" closed.

® Example 2.3: Consider C([0,1]) C L%([0,1]), and T : C([0,1]) — L?([0, 1]) given by the
identity, T f = f. Then, T is bounded, but R(T") = C([0, 1]); this subspace is not closed in
L2([0,1]), since there exists sequences of continuous functions that converge to an L?, but not

continuous, function.

Remark 2.13: The prior theorem is key in “solvability”, especially if T a differential or
integral operator. If we wish to find u such that Tu = f, we need that f € R(T'), hence f €
N(T*)".

® Example 2.4: Let M C H a closed linear subspace. Then, H = M & M+*; define the

projection operator

P:H— H, r=u+veEMAM — u
This means, in particular, x = Pz + (id —P)z. We claim P € £(H), |P| = 1, P?> = P, and
P*=P.

Linearity is clear. To show P? = P, write z = Pz + v. Then, composing both sides with P,
we find Pz = P2z + Pv = P2z, so Pz = P2z for every z € H. To see the norm, we find that
forevery z € H,

|z|? = (z,z) = (Pz + (id —P)z, Pz + (id —P)z)
= | Pz|® + 2(Pz, (id —P)z) + | (id —P)z|”

1
2 o 2 2
= [Pz|” + [ (id—P)z|” > | Pz
= [Pz| <z = [P| <1,

and moreover if x € M, Px = z so |Pz| = ||z| hence ||P|| = 1 indeed.
Finally, the show P self-adjoint, let z,y € H, then,

Symmetrically, (x, Py) = (Px, Py), hence (Pz,y) = (z, Py), and so P = P*.

2.6 Adjoints, Duals and Weak Convergence (for Hilbert Spaces)

42



§2.7 Introduction to Weak Convergence

We let throughout X be a Banach space.

< Definition 2.13 (Weak convergence): We say {z,,} C X converges weakly to z € X, and write

By = 5

iff for every f € X* = {f : X — R bounded, linear}, f(z,,) = f(z).

< Definition 2.14 (Weak topology (X, X*)): The weak topology (X, X*) is the weak
topology induced by

F =X

In particular, this is the smallest topology in which every f continuous.

Recall that this was defined as being 7({f~(0)}) for O open in R. A base for this topology is

.....

B¢ g g (@) ={2" € X||fi(2") — fu(z)] <&, V1< k <n}.

So, z,, = zino(X, X") if for every e > 0,and ball B, ; . (), thereisan N such that for every

.....

7, (z), hence for every f € X*, [f(z,) — f(z)| <e.

For Hilbert spaces, by Riesz we know f € H* can always be identified with f(z) = (z,y) for
some y € H.So, we find z,, — z in H iff foreveryy € H, (z,,,y) — (z,y).

Remark 2.14: If z,, — z in H, then (z,,,y) — (z,y); so this “normal” (we say “strong”)

convergence implies weak convergence.

~Proposition 2.10: (i) Suppose z,, — x in H. Then, {z,, } are bounded in H, and |z| <

lim inf,, . z,].

(ii) If y,, — y (strongly) in H and z,, — x (weakly) in H, then (z,,,y,,) — (z,y).

Remark 2.15: It does not hold, though, that z,, — z, y,, — y gives (z,,,y,,) — (z,y).

Prook. (i) If z,, — z, then

By Cauchy-Schwarz, we also have

z |z
—_— < B —— =
‘(x uwu)‘ =l (nacu) ol
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hence we conclude

ol

lim inf( T, Iz ”) < hm 1nf||xn|| = |lz|| < hm 1nf||x

n—oo

To argue {z, } bounded, we need the uniform boundedness principle. We can view
{z,,} C H** by the canonical association z}* : f — f(z,,). Since f € H*, thereisay
such that f(-) = (-, y); label f = f,. Then, for every f € H*,

it (f,) = fy(@,) = (x,,y) = (z,y),

by weak convergence. Hence, it must be that sup,, |z} f| = sup,,| f,(z,,)| < oo for every
f € H*, namely {z}*} is a pointwise-bounded family of functions. Thus, by uniform
boundedness, there is a C' > 0 such that |z}* f| < C | f| for every f € H* and n > 1. In
particular, if we take f(-) := (-, z,,), we know by Riesz that | f| = ||z,,| on the one hand,
so for every n > 1,

Clfl = C lenl = |23 f1 = (20, 2,)| = |2,)° = 2] < C,
completing the claim of boundedness.
(ii)) If y,, > yin H,

(%, Yn) — (2, 9)| < (2, ¥ — 9| + (2, — 2, 9)]
||fr I 1y, — vl + [(z,, —z,y)| — 0.

bounded —0 —0 by weak

The real help of weak convergence is in the ease of achieving weak compactness;

~Theorem 2.13 (Weak Compactness): Every bounded sequence in H has a weakly
convergent subsequence.

—Theorem 2.14 (Helley's Theorem): Let X a separable normed vector space and {f,} C X*

such that there is a constant C' > 0 such that |f,,(z)| < C|z| for every z € X and n > 1. Then,

there exists a subsequence { fnk} and an f € X" such that f, (z) — f(z) for every z € X.

Proor. This is essentially a specialization of the Arzela-Ascoli lemma. To apply it, we
need X separable (done), the sequence to be pointwise bounded (done), and the

sequence to be equicontinuous. To verify this last one, we know that
|fn(@)] < Clz| = |f,l < C,Vn =1,

hence by linearity, for any z,y € X,

so in particular { f,, } uniformly Lipschitz, thus equicontinuous. |
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Proor. (Of ) Let {z,,} C H be bounded and let H, = span{z,, ..., z,,, ...}, SO
H, is separable, and (H, (-, -)) is a Hilbert space (being closed). Let f,, € Hj be given
by

fn(:C) = (:En,a?),v.’l? € HO'
Then,
|fo(@)] < |z, []z] < Clz],

since {z,, } bounded by assumption. By Helly’s Theorem, then, there is a subsequence
{fnk} such that f,, (z) — f(z) for every x € H,, where f € H{. By Riesz, then, f(z) =
(x,z() for some x, € H. This implies

(asnk,x) — (zg, ),V € Hy.
Let P the projection of H onto H,. Then, for every x € H,
(2, (id —P)z) = (=, (id —P)z) = 0
so forany x € H,
lim (a:nk,:v) = lim (xnk, Pz + (id —P)ac)

k—o0 k—o0

= L £2)
€H,

— (g, Px) = (29, Pz + (id—P)z) = (2, ),

as we aimed to show. [ |

§2.8 Review of L? Spaces
We always consider 2 C R¢.

< Definition 2.15 (L?(2)): For 1 < p < oo, define
LP(Q) := {f : 2 — R | f measurable and/ |fIP dz < oo},
0

endowed with the norm

B =

17l ey = 1, = [ / |f(a:)|pdgc]
Q

For p = oo, define
L>*(Q)={f:9Q —= R | f measurable and3C < oo s.t. |f| < C a.e.},

endowed with the norm

17y = 1], = i0f{C: [f] < C ae}.

The following are recalled but not proven here, see
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—Theorem 2.15 (Holder's Inequality): For 1 < p, ¢ < oo with 1—1) + % =1, thenif f € LP(2),g €
L1(Q), then fg € L'(Q), and

[1tsldz <11, )l

<Theorem 2.16 (Minkowski's Inequality): Forall1 <p < oo, | f + g||p <|f ||p + | g||p. In
particular, L?(2) is a normed vector space.

—Theorem 2.17 (Riesz-Fischer Theorem): LP({2) is a Banach space for every 1 < p < oo.

<Theorem 2.18: C,(R?), the space of continuous functions with compact support, simple
functions, and step functions are all dense subsets of LP(R?), for every 1 < p < oo.

—Theorem 2.19 (Separability of LP(§2)): LP is separable, for every 1 < p < oo.

ProoF. We prove for Q2 = R<. Let
d
R = {H(awbz) ’ ai7bi € Q}a
=1
and let

& := {finite linear combinations of xp for R € & with coefficients in Q},

where x j the indicator function of the set R. Then, we claim & dense in L? (R).

Given f € L?(R%) and € > 0, by density of C,(R?) there is some f; with
|f = f1l, < e Letsupp(f,) C R € R. Now, let § > 0. Write

such that
oscp (fy) :==sup f; —inf f; < 4.
¢ R, R;

Then, let

N

f2($):Zin(Ri)a g € Q st.q; ~ filg,,

i=1

SO

If2 = fil , <.
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Hence,
If2= Al < ( /R o) fl(w)!pdfv)
<\fy = ol -m(R)> < §-m(R)7,

where m the Lebesgue measure on R%. § was arbitrary so we may take it arbitrarily
1
small such that ém(R)» < ¢, hence for such a ¢,

||f—f2||p < ||f—f1||p + [ f1 —f2||p < 2e.

Now, f, € &, and thus € is dense in L? (R?), and countable by construction, thus
L?(R?) separable. u

Remark 2.16: L>() is not separable, and C,(R?) is not dense in L>(£2).

Remark 2.17 (Special Cases):
e If Q has finite measure, L?(Q) C L* (Q) for every p > p’.
o (P:= {a = (a,)>" 1227 la, [P < oo} endowed with the norm |a] , == (Zzozl ]an|p)1/p.
§2.9 (LP)": The Riesz Representation Theorem

We are interested in functions T : L?(2) — R which is bounded and linear. For instance, let
g € L) and f € LP(Q2) where p, ¢ conjugates, and define

T(f) = / f(2)g(x) de.
Q

This is clearly linear, and by Holders,

Tf| = <11, lall.

/Qfg

SO

()| <o, vierr@), =TI <9l .
71 a a

and thus T' € (LP(2))". Moreover, if 1 < p < 00,1 < ¢ < oo, let

l9(2)|" 2 g() |
ol

flz) =

Then,
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1
z)Pde = —— )| 2P g (2)|P d
/Q 7(@) 7 [ lo@)l gl

gl Jo

1

_ ap—p

= ”g”(ql)p/ﬂ|9($)| dz.
q

Since % + % = 1, we have q + p = pg, so further

lg(z Ngll; =
g II" / T ||

so f as defined indeed in LP(£2) and moreover has LP-norm of 1. In addition,

- Hg\llq‘1 / l9(2)"|g(2)g(z) dx
Q
||g||q / l9(

lgll; = lall

1
||g||q
so |T| = |g| as desired. We have, more generally, akin to the Riesz representation theorem,
q 8 Y P

—Theorem 2.20 (Riesz-Representation Theorem for Lp( )): Let1 < p < oo.Forany T €
(LP(9))*, there exists a unique g € L(Q2) such that T(f = [, f(z)g(z) dz with |T| = ||g||q.

We’ll only prove for 2 C R. First:

< Proposition 2.11: Let T, S € (LP())".If T = S on a dense subset E C LP(Q2), then T = S
everywhere.

PrOOF. Let f, € LP(Q). By density, there exists {f,,} C E such that f,, — fin L?(Q).
By continuity, T'f,, — T f, and Sf,, = Sf,, while T f,, = Sf,, for every n > 1, so by
uniqueness of limits in R, T'f, = S f,. [

The general outline of the proof of is the following;:

* prove the theorem for f a step function;

* prove the theorem for f bounded and measurable;

* conclude the full theorem by appealing to the previous proposition.

To do this, we need first to recall the notion of absolutely continuous functions. Fix [a,b] C R and
G : [a,b] — R. G is said to be absolutely continuous on [a, b] if for every € > 0 there existsa § > 0
", Cla,b] with 3> (a), —by) < 6, then

>N _1|G(b,) — G(ay)| < e. In particular, we need the following result, proven

such that for every disjoint collection {(a, b)Y
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—Theorem 2.21:If G : [a, b] — R is absolutely continuous, then g = G’ exists a.e. on [a,b], g €
L'([a, b)), and for every x € [a, b],

G(z) — G(a) = /x g(t) dt.

a

Proor (Of with Q = [a,b]). Let T € (LP([a,b]))".
Step 1: Let f a step function. The function x|, ,) € L?([a, b]); define

GT(x) = T(X[a,w)) :

We claim G absolutely continuous. Consider {(a,, bk)}iv: , disjoint. Then, for every

[c,d] C [a,b],,Gr(d) — Gr(c) = T(X[a d)) T(X[a,c]) = T(X[a,d) _X[a,c)> = T(X[c,d)),
S0

N
Z Gr(by) — Grlag)) = Z (Gr(by) — Grlay)), ¢y, = sgn(Gr(b,) — Grlay))
N
Z ( ak»bk )
N
=T (Z CkX[akabk)>

k=1

N
Z CkXay,by)
k=1

N
k=

< ||

p

By the disjointedness of the intervals, we may write

b p N b, N
/ d:cSZ/ dsz(bk—ak).
a =1"ayg k=1

el = (S, = a0)),

N N %
> G (by) = Grlap)| < |7 - (Z(bk - ak)) -

k=1 k=1

*G\H

So, thus

Hence, for e > 0, letting § = (ﬁ

exists and is such that g € L!([a,b]) and

P
) proves absolute continuity of G. Thus, g = G

Gpl(z) = /wg(t) dt, Vo € [a,b)]

Hence,
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d c
T(xiea) = Go(d) ~ Gre) = [ g0yt~ [ gt)at

a a

= /dg(t) dt

=/ﬂwnmwa.

This proves the theorem for indicator functions; by linearity of T" and linearity of the
integral, we can repeat this procedure to find a function g such that T'f = f; f(t)g(t)dt
for every step function f.

Step 2: Let f bounded and measurable. We know that for every step function 1,
Ty = f; ¥(t)g(t) dt (with the g as “found” in step 1). So,

Tf—/’ﬂwmw

ﬂf—w—/kﬂw—wmmwa

b
< IS~ wl, + [ 170) — wit)lgfo)] e

Then, since g € L!(a, b]), for every € > 0 there is some § > 0 such that if F a set of
measure less than 6, fE\ g(t)|dt < e. Fixe > 0and § > 0 such that this holds; let § < ¢ if
necessary wlog. Since f bounded and measurable, there is some step function % such
that |[f —¢[ <don E C [a,d], and that m(E°) < § and |[¢| < | f[__. Hence,

=l = [ 15 =P+ [ 17-or
E Ec
<6 -m(B) + (2],,) m(E)
<o b—al+(21f1,)"5.

Also,

b
/v-wmas/&ma+/2mgmw
a E Ec
< blgl, +21f1_e.

All together then,

b2
<IT(8% b—al + (2011 )"6)" + dlgl, + 2171

b
Tf—/'ﬂwmwa

<C(1/l . lgl,-a,b,1T1) - &7,

where C' a constant. The LHS does not depend on ¢, hence taking the limite — 0%, we
conclude
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b
TS = / F(t)g(t) dt.

Note that all simple functions are bounded and measurable, so the necessary property

also holds for f simple.
We need now to show g € Li([a,b]) and ||g|| = |T|.

® Casel:p>1s0q<oo.Letg, = {glf 91" and [ = {'gq sen(9) itlgl<n Then,

0.W. 0 0.W.

loalt= [ lol"at
{lgl<n}
{lgl<n}

:/‘ fogdt
{lgl<n}
=Tf, <ITIIful,

since f,, bounded and measurable so Step 2 applies. Also,

Il = [ 1gl v
{lg|<n}

— [ lalat =g,
{lg|<n}

All together then,

q a/p q(1-%) _
lgul? < 1T g, 0% = 1,103 = g,1, <71

By construction, |g,,|? — |g|? a.e. and monotonely, so by the monotone convergence

theorem,

lg.l, = lgl,,
so | qu < |T'| and so g € L%([a, b]). From here, as in the example at the beginning of
this section, one can show equality by chosing f appropriately.

* Case2:p =150 ¢ = co. We claim that |[g| = supjs -1, [ fg.Lete >0and A C
£ bdd
[a,b] such that [g] > [g|_ — e on A where m(A4) > 0. Let

f(o) = s sen(o).

Then, f bounded and | f|, = 1. So,

1 1
/ fo= /A o> /A (ol —¢) = lgl_ —e.

hence we have proven < of our claim. By Holder,
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29 (

)"

s / f9 <1f1.lgl_ =lgl_.

so > holds and the claim is proven. Thus,

lgll, = sup Tf <|T[|f], = IT],

I1fl=1,
£ bdd

so in particular g € L*>({[a, b]). For the other inequality,
o1 =| [ st <t lal..
hence
1Tl < gl

so g, = [T']| as we aimed to show.

Step 3: We need to show T'f = f fgdt for every f € LP([a,b]). Simple functions are
dense in L?([a,b]), and since T'f = f fgdt for every simple function f, we conclude
Tf= f fgdt for every f € LP([a,b]) by the previous density lemma.

Moreover, g is unique because if

/abfg=/abfg',
/abf(g—g’)z

for every f € LP. Let f(t) = sgn(g — ¢’), then

then

b
0=/ lg—g'|dt = g=g ae.
a

So, g uniquely defined up to a set of measure 0 so g = g’ in L. [ |
PrOOF (Of RRT if @ = R). Fix T € (LP(R))". Then, T|_y nj € (LP([-N, NJ))* for every
N >1,and ||T|;_y uj|| < [T Then, by RRT on [N, N], thereis a g € L([~N, N])
such that Tf = f_NN fgn dt. By uniqueness, g1 /_n,n] = gn- Define

9(t) =gn(t), te[=N,N].

So, gn(t) — g(¢t) pointwise and |gy (¢)|? — |g(¢)|? pointwise and monotonely. By
monotone convergence, then, [ |gy|*dt — [ |g/* dt. So, g € L9(R) since
||gN||Lq([_N’N]) < |T| for every N > 1. Let fy(t) = f(t)x_n,n- Then, fy — fin LP(R)
soTfy — T f.So also

N N
Tfy = / oy = / F(E)gn(t) dt = / fndt = TF,
-N —-N R

The Riesz Representation Theorem
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if we take by convention the g5 ’s to be zero outside of [N, N]. But also, f € L?(R)
and gy — g in LY(R), so applying Holder’s to the quantity fR fan, we know

/ngN—>/ng,
Tf=/ng,

for every f € LP(R). A similar proof to the previous gives the necessary norm identity.

hence equating the two

[
ProOF (Of RRT for general Q CR). If T € (LP(Q))*, let T € (LP(R))* given by T'f =
T(f |o)- Then by the previous case there is § € L4(R) such that T'(f) = [ fg. Let g =
glo, then Tf = [ fg. m
So, RRT gives us that for p € [1,00], (LP(Q2))" ~ L(Q), and that I£1, = Supﬁm [ fql-
gl =1

In particular, if p = 1,

I, = [ £ sen f@)do = s [ go.

lgll =1

What, though, is (L>)". Certainly, L' () C (L>(Q2))" since for f € L, Tf = [ fgdz with g €
L', which is bounded by Holders. However, it turns out that this inclusion is a strict one.

Consider for instance
Tfi=f(0), T:L®(-1,1)) >R,

Then, certainly |T'f| < [[f|__soT € (L*)*. However, there is no function g such that f(0) =
J f()g(t) dt

§2.10 Weak Convergence in L”({2)

< Definition 2.16 (Weak convergence in LP(Q)): Let @ C R%, p € [1,00) and ¢ its conjugate.
Then, we say f,, — f weakly in L?(2), and write

fn L?Q) f’

if for every g € L1(9Q2),
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Remark 2.18: Weak limits are unique; suppose otherwise that f, — f, f.Letg = sgn( f— ?) .

|f =7, which is in L7(Q). So,

117?1/gfndx=/gfdx=/g?dx,

0= [ ols=F)ae= [|s -7 ae

hence f = f a.e. (and so equal as elements of LP(Q)).

by assumption, so

Remark 2.19: Many of the properties of weakly convergent sequences in a Hilbert space carry

over to this setting.

<sProposition 2.12: Let Q C R¢.

W) Ifpe(1,), f, Lot f,then {f,} C L?(9) are bounded, and moreover ||f||p <

lim in, | £, .

(i) Ifp € [1,00) and f,, ;= f,9, vy ¥ thenlim,, , . [ g,f,dz = [gfdz.

Proor. Identical to Hilbert space proofs; replace usage of Cauchy-Schwarz with
Holder’s. |

Remark 2.20: In (i), p € (1, 00), since L? “reflexive” in this case, i.e. (LP)™ = LP (just as we

had in the Hilbert space case). We don’t have this property for p = 1.

Remark 2.21: A related notion of convergence is called weak* convergence, written f,, L%Q) ;
we say this holds if for every g € L4(2) such that (L9)" = L?, then [ f,gdz — [ fgdz.So if

p € (1, 00), weak convergence = weak* convergence, by Riesz.

Remark 2.22: There are many equivalent notions to weak convergence.

—Theorem 2.22 (Equivalent Weak Convergence): Let p € (1, 00). Suppose {f,,} C LP(Q2) are

bounded and f € LP. Then, f, L) fiff

e forany g € G C L%(RQ) such that span(G) = L4(Q), then lim,,_, . [ f.g9 = [ fg
* VA C Qmeasurable with finite measure, then lim,,_,, [, f,dz = [, fdz;
ifd =1and Q = [a, b], then lim,,_, f; fndx = f; f dz for every z € [a, b].

f, — f pointwise a.e..
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Remark 2.23: Some of these notions extend to p = 1, but we state in the p > 1 case for

simplicity.

—Theorem 2.23 (Radon-Riesz): Let p € (1,00). Suppose f,, LAt f, then f, L—()ﬁ) fiff
lim, oo £l = 171

Alternatively, there exists a subsequence { fnk} such that f,, — fin LP(Q) iff

lim inf,,_, o | £,[, = 171 -

Proor. (=) If f, Lp—(>m f then || £, ||p —|f ||p by triangle inequality.

The converse, (<), is hard. [ ]

—Theorem 2.24 (Weak Compactness): Let p € (1, 00), then every bounded sequence in L? ()
has a weakly convergent subsequence, with limit in L”(£2).

Proor. Let {f,} C L?(2) be bounded. p € (1, 00) so so is ¢, and in particular L?(Q2) is
separable. Let T, € (L4(Q2))" be given by T,,(g) := [ f,gdz for g € L1(Q). Then, |T,| =
Il < €. 5o,

sup|T, ()| < [T, llgl, < Cll,-

By Helley’s Theorem ( ), there exists a subsequence {Tnk} and T C (L%(2))"
such that lim,_,  T,, (g9) = T'(g) for every g € L?(f2). By Riesz, there exists some f €
L?(Q) such that T(g) = [ fgdz, and hence

lim [ £,,9d0 = [ foda,

for every g € LY(Q), so f,,, iy I [

§2.11 Convolution and Mollifiers

< Definition 2.17 (Convolution):

(f*g)(z):

Il
o
Q

=

)

|

NS
S
—
NS

a.
<

[l

o
QU

kﬁ
—~~
<
N—
S
—~

8

|

<
N—

a.
<
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—Proposition 2.13 (Properties of Convolution):
a.(f*g)*xh= f=x(g=h) (convolution is associative)
b. Let 7, f(z) := f(xz — z) be the z-translate of z which centers f at z. Then,

T.(fxg) = (1,f)*xg= f*(1.9)

c.supp(f *xg) C{z+y | = € supp(f),y € supp(g)}.

ProOF. (a) Assuming all the necessary integrals are finite, we can change order of

integration,

((f 9) * b)(a (/f gz —y dy) h(x)

z//f(y)g(m—z—y)dy,h(Z)dz

~ [ [ 10 -y-2mazay =2y

//f z—1vy" )9y —2)h(z)dzdy’

— [ 1=y g W) = (7 (g W) o).

(b) For the first equality,

(f*g)(@) =, / £z — y)g(y) dy
- / f(z— 7 —)g(y) dy

- / (r.f(@— y)g(y) dy = ((7.1) * 9)(a).

The second follows from a change of variables in the second line.

(c) We'll show that A¢ C (supp(f * g))° where A the set as defined in the
proposition. Let x € A¢, then if y € supp(g), z — y ¢ supp(f) so f(z —y) = 0; else if
y ¢ supp(g) it must be g(y) = 0. So, if x € A°, it must be that

/fx— dy—/ f(x—y)g(y)dy+/ f(z—y)gy) dy = 0.
supp(9) — o supp(g)*© 0

We’ve been rather loose with finiteness of the convolutions so far. To establish this, we need the

following result.
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<Theorem 2.25 (Young's Inequality): Let f € L!'(R?), g € LP(R?) for any p € [1, 0o]. Then,

17 *gl, < 1fl,lal,

hence f * g € LP(R?).

PrROOE. Suppose first p = oo, then
(F+9)@ = [ 1w~y <., [176)]dy =gl I,

for every = € R?, so passing to the L>-norm,
If+9gl, <1f1, 19l

Suppose now p = 1. Then,

7, = [ ] [ 1oy

Let F(z,y) = f(x — y)g(y), then for almost every y € R?,

/ F(z,y)| dz = / 9@)|I1f(z —y)|d
y)|/|f(x—y)|dar

= lg@)IIf1;-

Applying Tonelli’s Theorem, we have then

J[iF@wlayaz = [[\Pay)idey = [l av =111, 1ol

(soreally F € L*(R%) x L'(R?)), hence all together

If*al, = /\/F(:n,y) dy

Remark 2.24: It also follows that for a.e. z € R¢, [|F(z,y)|dy < oo, ie. [|f(z —
y)g(y)| dy < co. Moreover, since if g € LP(2) then |g|” € L'(£2), a similar argument

dzx.

dr < // IF(z,9)|dydz = |f], lgl,-

gives that for almost every z € R?, [|f(z — y)||g(y)|* dy < oco.

Suppose now 1 < p < co. Fora.e. z € R, [ |g(y)|"|f(z — y)|dy < oo, s0 g € LP(R%)
implies for a.e. z € R%, [g(")|P |f(z — )| € L*(R?) as a function of . This further
implies g(y) f7 (z — y) € LP(R%,dy). Also, if f € L*(R?), then fa € LI(R?). All
together then,
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q
r— —

fitz—y)|

f7 (@ —y)|law)| dy

J11 = wlswlas= [
Holder's < </|f(w—y)|dy>;(/If(w—y)llg(y)lpdyf,

hence, raising both sides to the p,

(f*g)@)P <112 - (If] *|gl”) (=)

and integrating both sides

Jisa@raa<isti [| 11+ lof | @
cLIRY)  eLI®)

Hence, we can bound the right-hand term using the previous case for p = 1, and find

g @l de < 111171, o1,

—FIE T AP
— IA15 gl?
ptq
_ g p
= 17155 gl?
ptq —L£IP AP
(20=p) = 1rmal

so raising both sides to %, we conclude
17 %l < 1f1,lgl,.
[
<Proposition 2.14: If f € L! (Rd) and g € C! (]Rd) with ’3@9‘ € L>® (Rd) fori=1,...,d, then
(f * g) € C*(R?) and moreover

0, (f*g)=1x*(,,9).

Remark 2.25: There are many different conditions we can place on f, g to make this true;

most basically, we need |(9;,g) * f| < oo.

PRroOF.

0
Ox;

( [ 1wt - dy) = [ 1) dge -y ay <,

€Ll (R?) €L>(R9)

citing the previous theorem for the finiteness; the dominated convergence theorem

allows us to pass the derivative inside. [ ]
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Remark 2.26: This also follows for the gradient; namely V(f % g) = f * (Vg) with a

component-wise convolution.

Consider the function

Cexp (— 1_1902) if || <1

0 0.W.

p(x) =

where C = C(d) a constant such that [, , p(z) dz = 1. Then, note that p € C2°(R?) (infinitely
differentiable with compact support). Let now

pe(@) = gidp(f)-

€

Notice that p,(z) is supported on B(0, €), but

1 1
/ :_d/ dx— ~ Ed-/ p(y)dy =1,
R4 Rd Rd

for every ¢, by making a change of variables y = £. We'll be interested in the convolution
fe(@) = (pe * f)(x)

for some function f. p, is often called a “convolution kernel”. In particular, it is a “good kernel”,
namely has the properties:

¢ fpare()dy=1;

* Jpalpe(y)l dy < M for some finite M;

© V>0, [ sle)ldy = 0.

The second condition is trivially satisfied in this case since our kernel is nonnegative. The last
also follows easily since p, has compact support; more generally, this imposes rapid decay
conditions on the tails of good kernels.

Since p, € C°(R?), for “reasonable” f, f. = p. * f € C°°(R%) by the previous proposition. In
fact, we'll see that in many contexts f, — f as ¢ — 0 in some notion of convergence. So, f,
provides a good, now smooth, approximation to f.

< Proposition 2.15: Suppose f € L>°(R%) and f. is well-defined. Then, if f is continuous at z,
then f.(z) — f(z) ase — 0.

ItfecC (Rd), then f. — f uniformly on compact sets.

PrOOF. f continuous at z gives that for every n > 0 there exists a § > 0 such that
|f(y) — f(z)| < n whenver |z — y| < 6. Then
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Fale) — f(2)] = / po(W)f(z —y)dy — f(z) / p.(y) dy

= | [ r.ti) () - f<x>>dy]

= /{mg}lf(x —y) = f(@)llp(y)| dy+/ [f(z —y) = f(2)llp(y)| dy

{lyl>d}

(e n st oty / alo. ) dy + 2111 / 1p.(4)] dy
{ly|<d} ly|>6

< n-M+2HfHoo/ .|
{ly|>6}

for e — 0, by using the second property of good kernels for the first bound. By the last
property, the right-most term — 0 as ¢ — 0; moreover, then,

lim| /. (2) — f(2)| < Co

for some C' and every n > 0, and thus f.(z) — f(z) ase — 0.

Now, if f € C(R?) fix a subset K C R? compact. Hence, | f] .. () < ooand f
uniformly continuous on K since K compact; so the modulus of continuity is uniform
for all z € K, so for § > 0 and for every z € K,

/ @ —y) — £(@)|lp. )| dy < Cn.
{ly|<8}

Also, using the bound on f, we may write the second integral in the argument above
as

| Wa-n) = 1@l < Wl e, [ oy 0
e>ly|>6 {lyl>e}

where we take K slighly larger as K + B,, which is still compact. So, since this held for
allz € K,

max| 1. () — [(#)| = 0.

Note that we proved the first for general good kernels but the second only in our constructed
one. [ |

Remark 2.27: This pointwise convergence result is why “good kernels” are called

“approximations to the identity”.
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Remark 2.28: If f € C (R?), then supp(f.) C supp (f) + B(0,¢); so, f. is compactly

supported if f is. Hence in this case f. — f uniformly on R%. More generally, there are many

different restrictions one can place on the last claim, such as compact support of f, uniform

continuity of f, compact support of the kernel, lack of compact support for the kernel but an

L*° bound on f, etc. In practice, the proofs are all the same, with different bounds; namely

one finds something of the form

fo(z) — f(z)| < /| PR / )

—— —— e’
small by small by
uniform) continuit compact support, etc

Yy p pport,

—Theorem 2.26 (Weierstrass Approximation Theorem): Let [a,b] C R and let f € C([a, b)).

Then for every n > 0, there exists a polynomial Py (x) of degree N such that
”PN - f||Loo([a7bD <n.

That is, polynomials are dense in C({[a, b]).

Proor. Extend f to be continuous with compact support on all of R in whatever

convenient way, such that supp(f) C [—M, M] for some sufficiently large M > 0.
Consider now

KE (:L') =—=e e

noting that

o0 oo 1 w2
/_OOKE(x)d:cz/ ﬁe_ = dr=1,

— 00

which is clear by a change of variables y = Y21, Asa consequence, ffooo |K_ (x)| dx

\/E
1 < oo, since K, > 0. Finally,

1 2
\Kg(x)]dwz/ —e ¢ dz
/ZL'|>5 ﬁ

|z|>6

y|>

_y?
e 2
/ ¢?5 V2

y2

e 'z
since |y| > 1 here for suff. small e < / ’y‘ dy
>3

Nover

2100

<Ce 7 — 0.

@6 e—0
Ve

So, K, is a good kernel, and so (f * K_)(e) = f uniformly in [a, b] by our last remark.
E—

In particular, for > 0 there is some ¢ > 0,
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(525 =11, < 2

We claim now that there is a polynomial Py such that H Py — ( f*xK ) !

L=(ap) %
Recall that e” = ZOO o n, , which converges uniformly on compact sets. So, there exists
a polynomial Sy (from truncating this sum) such that H K. —Sy H Lot
aAm Thus,

oK (@) — f*S,(@)| < ‘/f(:n—y)(KEO(y) —SN<y>)dy\

supp(f) € [-MM) < [ |G~ 9)[ K., () Sw(w)| v

n n
S2M\fl  mm = 5
Wi, =2
for every z. Let Py (z) = (f * S,,)(x), which we see to be a polynomial. [

—Theorem 2.27: Let f € LP(Rd) with p € [1,00). Then f, L?Rd f.
ProOF. Since f € LP(R%), for every n > 0 thereis a f € C,(R?) such that Hf — fH <
P

n. Since f € C,(R%), by the previous theorem dealing with mollifiers and uniform
convergence, f. — f uniformly.

— — 0, hence
p P

If — £l <

— I+ 117 =1l -
We've dealt with the second two bounds. For the first,

A == F) <]
Yous's) <o |1 7], =771,

S0
If = £ <2||f = 7| +||F.—F|| <30
P P
[
< Corollary 2.6: C°(R?) dense in LP(R?).
Proor. We showed f. approximates f in LP(R?), and by construction f. is smooth
with compact support. |

§2.12 Strong Compactness in L? (R%)
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We saw that for p € (1,00), {f,,} C LP(Q2), that any bounded sequence admits a weakly
converging subsequence, f,, 73 f.In addition, if the norms also converge i.e. lim,,_, . || f,, ||p =

I f ||p, then we actually have strong convergence f,, = f.
p

We provide now a strong compactness result in L?, akin to Arzela-Ascoli.

< Theorem 2.28 (Strong Compactness): Let {f,} C LP(R%) for p € [1,00) s.t.

i. 3C > 0s.t. |f, ||p < CVmn,ie. {f,} uniformly bounded in L?;

ii. lim, 0 [ f, — T S5 ||p = 0 uniformly in n, i.e. for every n > 0, there exists § > 0 such that if
B < 6, [ 1£,(®) — fule — W) do < 1 for every n;

Then, for any @ C R? with finite measure, there exists a subsequence { fnk} such that

I

%
k Lr(Q)

PrROOF. Recall that LP(2) is a complete metric space, so TFAE:

1. sequential compactness;

2. totally bounded (& complete);

3. compact.

Let # = {f € L?(R?) satisfying i.,ii.} and fix @ C R? with finite measure. We aim to
show that 7|, is sequentially compact in LP(2) (with no regard to whether the limit
lives in F ,); equivalently, we wish to show F |, is precompact in L?(Q) i.e. F|, is
compact. Since F |, is a complete metric space, to prove the result it suffices to show
that F |, is totally bounded (recall: for every § > 0, | C Ui\i L Brr(o)(95,9)). We'll do
this using mollifiers and AA.

Step 1: Fix n, § as in ii. in the statement of the theorem, and let f € . Then, for every

€ < 6, we claim
”(pa * f) - f”Lp(Rd) < T]

We have

(o * f)(z) — f(=)]

/ pe(y) f(r —y) dy—f(w)/ps(y) dy
B

€

IA

p(Y)|f(z —y) — flz)|dy

1>

P2 (y)pt ()| f(z —y) — F(z)| dy

€

J
J

totder's) < ([ . lfa =)~ o) ) " (fp-twya) "

and hence
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/ (oo f)(@) — F(@)" de < // o WIf (@ —y) — f@) dyda

(Tonelli's) :/ p.(y /|f r—y)— f(z)Pdzdy
e<d=nP
< 77”/ pe(y) dy = 7P,
B
;,_/

hence |(p. * f)(z) — f(@)], <.
Step 2: We first claim that there exists some C, such that for any f € 7,

loe* fl o < Celfl,, (1)

and that for any z,,z, € RY,
|(pe * £)(@1) — (pe * (@) < C|f]Jey — 2ol (2)

In particular, this shows that for € fixed, (p, * f) satisfy hypothesis of AA. Remark that
the first is a uniform boundedness type condition for p, * f, and the second is a

uniform Lipschitz bound.

[(pe * f)(z \—‘/pgw— dy‘

atoders) < ([ ate—vian) 11,
el )1,

For the first claim (1),

so we have the bound with C. := |p, Hq since the bound is independent of z.

Remark 2.29: One can explicitly compute | p, ||q, and realize that it will in general
depend explicitly on e.

For the second statement (2), we find that V(p, * f) = (Vp,) * f since the RHS is finite,

because
(Voo * f)(z / V(e —9)fy)dy < Vo], |11,

So,
V(o * Dl o, < IVeel, 111,

::Ca

By the mean-value theorem then, we have all together
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(o * P)(@1) — (pe % Di@s)l < Vo, * ]|z, — ]
< LSl Joy — ).

This proves (2).

Step 3: Next, we claim that for n > 0 and fixed € < 5 and Q C R? with finite measure,
there exists E C 2 C R? such that E is bounded, i.e. E C B(0, M) where M

sufficiently large, and moreover that | f|| < nforevery f € F.

LP(Q\E)
We have that

By the very first step of the proof, the first term is < 7, so this is bounded by

1/p
<n+ (/ |pe *f|pdw>
Q/E

<ntlp.+ S, 19\ B
<0+ C.Afl, 2\ Bl

C. finite and | f || upper bounded uniformly over 7, so it suffices to construct E with

the measure of Q \ E sufficiently small, so we can get | f| < 2.

LP(Q\E)
Step 4: Fix n > 0. We claim # |, is totally bounded. Let € < ¢ then let

Ho=(p.xF)lg=Ap-+flg: f€F}

E C Q C R%is bounded implies E is compact. So by Step 2., we showed (p, * F)
satisfies hypotheses of AA on E. Hence,  is precompact in C(E). Thus, since we
have uniform convergence we certainly have LP convergence thus J{ also precompact
in L?(E). Thus, for > 0, there exists {g } C L?(E) such that

J(CUBU, 1(gom).

i=1

Let g; :  — R be given by

g,onkE
gi(x) = .
0 on Q\ E

Then, we claim |, C Uf\il Brro(0)(9;,3n). If f € F by %, there is an i such that

< n. But also,

il (g
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—_ |P
I =0y = [ 17+ [ |15 as
Q\E E

— |P

Pdz.

Swep3)  <w+ [ |13,
E

Recall (a + b)% < av +bs. Applying this bound to the above, we find

||f_gi||Lp(Q) =n+ Hf_gl Lr(E)

<n+ ||f_f*p€HLp(Rd) + H(f*ps)_gZ

Lr(E)

<n by Step 1. <n by %
< 3n.

Hence, 7|, C UZ]\L , B(g;,3n), thus F|g, is sequentially compact so any sequence in F
has a converging subsequence, which proves the theorem. [

Remark 2.30: This can be extended to LP (Rd) with some conditions.

§3 INTRODUCTION TO FOURIER ANALYSIS
References are Folland, Chapter 8 and Fourier Analysis by Stein & Sharkarchi.

§3.1 Fourier Series
We will denote the torus T = [0,1) ~ R/Z (with 1 identified back with 0), and specifically

complex-valued functions on the torus
1
| 1@ an < oo},
0

where now |-| the modulus (i.e. |a + bi|> = a2 + b2). Equivalently, f : T — C can be identified

with f : R — C which is periodic.

LQ(T)z{f:T—HC

<sProposition 3.1: The function L?(T) x L?(T) — C
1 —
(1.9 = | $@)i@)da
0

is an inner product on L?(T). In particular, (L*(T), (-, -)) a Hilbert space.

Proor. For C-valued functions, we need to check:

* linearity in the first variable: for oo € C,
1
(@f +hg)= [ (af +Wgds = alf.g) + (h,9)
0

by linearity of the integral;
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* conjugate symmetry:

/ flx / (Re(f) +iIm(f))(Re(g) — ilm(g)) dz
0

1(a +ib)(c —id) dz

I
S~

1
(ac + bd) + i(bc — ad) dx

1
(ac + bd) —i(ad — be) dx

Il
c\\

:/0 gfdz = (g, f);

* finner product with f properties:
(/1) = /f dx—/ F@)P de = £, > 0.= 0 iff £ =0.

We know L?(T) is complete, so L?(T) a Hilbert space with this inner product since it

induces the same norm as the usual norm L%-norm. [}

<»Theorem 3.1: Let e, (2) := ™" for n € Z. Then, {e,, } _, is an orthonormal basis of L*(T).

Proor. For orthonormality, if n # m,

1
— 2minx ,—2mimz
(€ny€m) = / e e dz
0

1
:/ e27r'L'(n—m):Eda7
0

1 ) 1
— eQﬂz(nfm)w
2mi(n —m) 0
1 .
— : [627Tz(n—m) o 1]
27i(n —m)
1
=————|cos(2nr(n —m)) +isin(2r(n —m)) —1| =0,
2mi(n —m)
=1 =0

and if n = m,

1 1
(€y€n) = / ‘62“"9”‘2dx =/ ldz = 1.
0 0

To prove its a basis, we use Stone-Weierstrass. T is compact; let
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N
./l:z{ Z anen:anec,NEN}.
n=—N

Notice e, e,, = €2 M = ¢ . and e, = 1, so this family stays closed under
multiplication (and clearly addition and scalar multiplication by definition), so is an
algebra which contains constant functions. Also, if z; # z, and z,, z, € [0, 1), then if
n#0,e,(x,) = X% £ 2™N%2 = ¢ (7,),s0 A separates points. By (complex) Stone-
Weierstrass, then we know A is dense in C(T, C) with respect to |-|__. We know

C(T,C) is dense in L?(T) (by some mollifier argument, for example) with respect to

”‘”L2(T)' SO/
N
)= Jim 32 aneno)
with the limit taken in the sense of L?(T). [

Recall that in Hilbert spaces, TFAE:

* {e,}areabasis ie. f=3"" a.e,=3""
e if (f,e,) =0 for every n, f = 0 (completeness);
© W e = X0 1(f,€n)|” (Parseval’s).

n=—oo

(f;en)e,, in L*(T);

With this in mind, we define:
< Definition 3.1 (Fourier Series): Let
A 1 .
f(n) = ( ,en) — / f(l.)e—ZTrzna: dz.
0
Then, the complex Fourier series is defined by

Z f(n)e27rina: )

Remark 3.1: A Fourier series can be defined for any periodic function, while we only do so
for 1-periodic here. If f were L-periodic, we’'d define

A 1 L —2minx
foln) = [ f@)e*5 da,
0

2minx

with complex Fourier series Zzo:_oo fr(n)e
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Remark 3.2: We can also make Fourier series to be real-valued, with sines and cosines, of the

form

= 2 2
A0+Z{Ancos< mrx) —I—anin< mm:)],
— L L

for some A,,, B,, also given by inner products.

What conditions do we need on f to make this series converge? In the general L?-theory, we just
need f € L%(T). By Parseval’s,

o0

2
11 ey = D

n=—oo

2

fn)

So, the operator - : L(T) — £2(C). Note that this implies lim,, , ‘ f(n) ‘2 =0, so also

lim,_, ‘ f (n)‘ = 0. This proves the following proposition:
< Proposition 3.2 (Riemann-Lebesgue Lemma): If f € L?(T),

lim ‘f(n)’ =0.

n—o0

Remark 3.3: This result in very useful, particularly for the real Fourier Series. In particular, it
tells us statements such as

1
lim / f(z)sin(2nmz)dz = 0,
n—o0 0

with similar for the cosine term. These are so-called “oscillatory integrals”.

While the L?(T)-theory is very useful for Hilbert space interpretation, we are really concerned
with the partial sums

N
Sn(z)= > f(n)e?min=,
n=—N

and ways it might converge. We may rewrite by definition

N 1
Snlz)= ) ( / f(y)e‘2”"ydy> e?mine
n=—N 0
1 N
(because finite sum) = / fly) Z e2min(z=y) 4y
0 n=—N

(* just over [0,1)) = (f*Dy)(z), Dy(z) := Z p2minT.

So in short,
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Sy(z) = (f* Dy)(),

where D y(z) is called the Dirichlet kernel. Let’s look at some of its properties.

N
DN (:L') =1+ Z[ezﬂ'in$ + e*QTFi'rLZE],
n=1
SO

1 1 N 1
/ Dy(xz)dz = / l1dx + Z / (some periodic functions) = 1,
0 0 0

n=1

=0

by periodicity. However, Dy (z) is not actually a good kernel; one can show that
J;|Dy(z)|dz > Clog N as N — oo

Note too that

N
DN(.’L') — Z e27rznm
n=—N

2N
— Z 6271'1'(n—N)ac
n=0
2N

— e—27riNa: Z (627ria:)n

n=0

__2mi(2N+1)
e—27riNa:(1 € z

oo ) (geometric series)
—e

e 2miNz __ 6271'1'(N—|—1):13

1— e27rim

6727m%

2T

67271'1'(N+%)w - eQﬂ'i(N—i—%)m

» T + L
—2mig 2mig

sin(27r(N + %)w)

sin(27r§)

— €

This form leads nicely to the following results.

—Theorem 3.2 (Pointwise Convergence): Let f € L?(T) and suppose f is Lipschitz
continuous at x,. Then,

Sn(zg) = f(=g).

Proor. Left as an exercise.

< Theorem 3.3 (Uniform convergence): If f € C?(T), then Sy (x) — f(z) uniformly on T.
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Proor. Exercise.

Remark 3.4: In fact, we see that f(n f f(x)e 2% dx is well-defined whenever f €

LY(T). So, we can view

21 LY(T) — £(C).

Remark 3.5: All the prior results can be extended to f € L!(T), via density.

§3.2 Introduction to the Fourier Transform

—Definition 3.2 (Fourier Transform): Let f : R — C. Then, for any ¢ € R, define

:/f(ac)e_%icm dz.
R

Remark 3.6: If f € L}(R),

Ol [ 1#@ e do = 1fl, g

— 00 N — e’
=1

so in particular, f € L>(R). Moreover,

‘f(c + h) — f(C)‘ = / f(m)efZW’i(C'i"h):B _ f(x)efQﬂ'iCm dz

/f —27rz§:v —27rih:c _ 1)
R

/‘f "6—271'1]'@ 1’ dx.
R

We have that

hm|e

—2mwihx 1| =0
h—0

fora.e.z € R, and

J@llemte —1jar <2 [ 7@l de =211,
R R

so we can apply dominated convergence theorem to find

llm’f C+h) /|f ‘llm‘e 2mihx 1’ dr = O,

=0

so f € C(R).
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< Proposition 3.3 (Properties of the Fourier Transform): Let f € L'(R) and g € L'(R). Then,
a.7,f(¢) = >V f(¢), and 7, f(¢) = 20 F(-)(Q);

b.fxg=1f-g )
c.J, F@)i@) dz = J, f(z)g(a) .

ProoEF. a. A change of variables gives

,;y\f(c) — \/Rf(x - y)e—2ﬂ'iCz dx = e—QWiCy/ f(x)e—%nfm dx = e—QTriCyf(C)‘

R

Similarly,

—

7 f(Q) = [ st da = [ fayernine . inice do — mi0F((¢),
R R

b. First, by Young’s inequality f x g € L'(R) so this makes sense. Moreover, since
f,g € L'(R), everything we need to be finite is finite, so we can apply Fubini’s theorem
to find

oo = | ( [ 1= vatw) dy) e-27ica dg

- / ( / flx —y)e2mice dx) 9(y) dy
= / ( / fz —y)e 2mice=y) dm) e 2™ Yg(y) dy
- ([ s@e o) [ atwer=vay) = 70560

where we “multiply by 1” in the second to last line to change variables in the
appropriate way.

c. We can apply Fubini’s again,
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Proor. First, note that

0= r@eren

oo

— f(x)e—ZTrij

— /00 f(z)(—2mi¢)e 2™ dx.

T=— —00

Specifying f(z) = e~27*", this becomes

oo

—mrax? | —2milx

=€ (&

r=—00

- / 6—71'(13:2 (_271_,L'<)e—27ri§:c dz

= 27i¢ - / e~ maw? e 72T o — Qi - f(C)

—0o0

On the other hand,

Fo=+ ( [ s@ee dx)

= /00 f(z)(—2miz)e 2™ de,

assuming finiteness; indeed,

00 , '
/ e~ TaT (_27Tx)e—27m§“m dz
oo

° 2
gC/ |z|e~™*" dx
—o00

o o]
— 2 _ 2
= 20/ xe T dx = Ce ™| < oo,
0 0

so our differentiation was valid. Thus, combining these two,

dig“f(o = /: —2miz f(z)e2m% dg

= / i(—27m:e_7”””2 ) e 2miCT q
—00

:/ zf'(a:)e_%i@ dz
a

— Loricf(¢)
a
d ., 27 A
= 2610 =—2¢F©)
Thus,
d ™ 2 A 2 ™ ~ ™ 2
1o (e 0) = et (<Zefie)) + Zeeteiefig) o,
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With this, we are ready to define the inverse Fourier transform;

< Definition 3.3 (Inverse Fourier Transform): If f € L'(R), then

= [ 1(©emics 4 = f) @),
R

Remark 3.7: By similar computations to before, f € L' (R) implies f e L=(R)NC(R).

Remark 3.8: One would hope f = f. However, if we check, naively,

flor = | ( [ @ —m@dy) ice d(;

however the integral may not be finite in general, i.e. we cannot switch the integrals for free.
We must be more careful, in short.

—Theorem 3.4 (Fourier Inversion): If f € LlA(R) and f € L'(R), then f agrees almost

<

everywhere with some f, € C(R),and f = f = f,.

PROOE. Lete > 0and z € R. Let (¢) := €2™#¢e~¢* Then,
o) = [ ple)emmnag

_ / e2m‘x(€—mg2 e—2miy¢ d¢

= e2miz() e—71'€(~)2 (y>

= 7,0 0 (y)

e

Since [ f¢pdy = [ fody, we find

/ f<y>%e—’é<w—y>2 - / F@)e(y) dy

Let K_(y) := Le =¥". Recall that this is the good kernel that we used in the proof of
€ NG & p

the Weierstrass Approximation Theorem. In particular, the formula above can be

written

(f * K / f 2mazye—7r€y dy ®
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Recall that if f is continuous at  and compactly-supported, then lim__,|(f * K_)(z) —
f(z)| = 0. This implies that for every f € L'(R) lim__,, |(f *x K.) — fl, =0,by an
approximation argument by C,(R). So, taking ¢ — 0in ®, f(x) L)

lim,_, [ f(y)e*™ e ¥ dy. f € L'(R), so by DCT we can pass the limit inside, so

~
A

— £ 2mix —
f@) 5, [ Fwemeay = fa),
This equality in L' (R) thus gives JE = f a.e.. A similar proof follows for showing f =f
a.e. by replacing 2™ with e~2™® everywhere it appears. Since f, f are continuous by

our remarks earlier, it follows that f is equal to a continuous function almost
everywhere. [ |

So far, all we've worked with is f € L'(R), which results in f € L°(R). Really, we’d like to
extend the Fourier transform to act on L?(R), since this is a nice Hilbert space. To do so, we need
the following:

< Theorem 3.5 (Plancherel's Theorem): Let f € L'(R) N L2(R). Then f € L2(R) and
12m, = ]

L2(R)

Remark 3.9: One can view Plancherel’s Theorem as a type of continuous analog of Parseval’s
identity for Fourier Series.

Proor. Let f(z) € L'(R) N L?(R), and put g(x) := f(—), noting that then g € L*(R) N
L?(R) as well. Put
w(z) = (f * g)(z).
By Young's,
ol gy < 110 16l < 50
sow € L*(R).

We claim w continuous at 0. For h sufficiently small, we find

fw(h) — w(0)] = / F(h—y)g(y) dy — / F(—p)g(y) dy

- / (Fh—y) — F(—))g(y) dy
R

S ||7-hf - f”LZ(R) ||g||L2(R)

Let f € C,(R) such that H f—f HL2(]R) < n for some small > 0. Then we further bound
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If = Py < I = o+ 7 f =Pl 17 =11,

(since norm translation invariant) = QH f— f‘ o) + H’Th f—f L@

<20t [ =l

Now, f € C,(R) and thus is uniformly continuous hence ‘Th flz)—f (:c)‘ —0

uniformly on R hence ”Th f—f ’ — 0 as well, as h — 0. Finally, since ||g|| LR

L2(R) )

finite, we conclude indeed w continuous at 0.

Next, notice that @ = f - §, and

g(g) = f(_ )(C) — / f(_w)e—%m‘mc dx
R

:/f(_x)ewri:vﬁdw
R

z/f(—m)e%mcdx
R

z/f(w)e%ixgdx
R
F(¢)

=f

SO

A

w=f

A

2
> 0.

<~

Recall our good kernel from the Weierstrass Approximation Theorem, K_(y) =

JE——

Lo—29" = g—me()?, So,

3
/ B(y)e ™ dy = / w(y)%e‘(”yz)/a dy
= /w(y)Ke(y) dy
(by symmetry) = [ w()K.(-y)dy
— (w+ K.)(0).

On the LHS, @ > 0 s0 &(y)e ™% 2 @(y) so by monotone convergence,
e—0*

e Y’ e J w(y) dy. On the other hand, we claim (w * K_)(0) = w(0) (this isnt
e e—
immediate from the fact that K, is a good kernel because we don’t know a priori that
w (essentially) bounded). Supposing this claim holds, this implies [ @(y) dy = w(0),
hence
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which precisely means H f ‘

L2(]R) = ||f||L2(R)
To prove the claim of (K, * w)(0) — w(0), let n > 0. Since w continuous at 0, there is
a d > 0such that |y| < § = |w(y) — w(0)| < n. Then,

[ w0 it ay = w0 = | [ - wO) )y

<n zmw@+/|MW&@@+/ w(—y)|K. () dy

ly|<d ly[>0 ly|>6
<otd o) - [ K@y + [ jeylK.o)dy
— ly|>d ly[>d
w cnts at 0
so this finite jOO since good kernel
It remains to show the last term — 0. We have
1 82
lw(—y)| K (y)dy < [w(—y)| 7 dy
ly[>6 ly| >6 €
< e ul, =0
VAR AT S
N ———
—0 as e—0
This completes the proof. |

With these, we can extend the definition of f to f € L%(R).

Let f € L?(R). Then, there are {f,.} € C°(R) such that f, — f in L?(R). Since {f.} € C>(R),
fr € L*(R) N L?(R). So, by Plancherel’s,

15 = Fill oy = 15— 7

L2(R) - HfJ o fk L2(R).

So in particular, { fk} also Cauchy in L?(R) so by completeness converges. Thus, we simply
define the Fourier transform of f as the limit of these, namely,

< Definition 3.4 (Fourier Transform on L%(R)): Let f € L?(R) and {f,} € C2°(R) such that
fr. = fin L?*(R). Then, we define the Fourier transform of f to be

£(¢) = lim £,(¢),

j—o00

with the limit taken in L?(R).
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It’s not obvious that this is well-defined a priori. Let f, f;. be two sequences in C2°(R)

converging to f in L?(R), and suppose fk = f, f,’c — f'in L?(R). We need to show that f=Fin

L?(R). Since fy, f;, — fin L*(R),
|fx = Fil, = 0,

so also by Plancherel’s,

lis 7ol 1771, =0

Denote by Cy(R) := { f € C(R) |limy,| ., |f(z)| = 0}.

—Proposition 3.4:

1. Ifzf(2) € L'(R), f € C"(R) and 8. f(¢) = (—2mi()) £() ()

2. If f € CY(R) N Cy(R) and 8, f € L*(R), then d, f(¢) = (2mi¢) £(¢)
3. If f € L'(R), then f € Cy(R) (“Riemann-Lebesgue” type result)

Proor. We prove only 3. If f € L'(R), let {g,} C C*(R) N C.(R) such that g,, — f in
L'(R). Then, g, are compactly supported and continuous so g;, € L'(R). Thus, g €
L*=(R). By 2,, g7 (¢) = (2mi¢)g, (¢) € L*°(R). Thus is only possible if §,, € Cy(R).

Since g, — fl, =0,

v~ 1

/@A@—f@DK%Wﬂw

= sup
o0 ¢
so g, — fin L, Finally, for any n,

Jim [FOf < Jim 19,1+ £~ 9,

=0

oo

Sending then n — oo, we know that || f— Jn H — 0, completing the proof.

Remark 3.10: Properties 1., 2. here can be extended to f € L?(R) and 9, f € L(R), but require

more delicate mollifying arguments. 3., however, does not extend.

Remark 3.11: Why is it important to extend f(¢) to f € L?(¢)? One reason is the analysis of

Sobolev Spaces.

The final topic we’ll cover is how we can relate Fourier Series to the Fourier Transform.
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—Theorem 3.6: If f € L'(R), then there exists Pf : T — C defined by

= nf(@) =) flz—k)

keZ kEZ

(that is, we tacitly claim this summation converges pointwise a.e. and in L*(T)), and
1251 < 1o
Also, for every k € Z,
f(k) = Pf(k),

where the first - is the Fourier transform on R and the second on T.

PROOF. LetQ = [—1,1)soR = |_|jeZ Q + j. Then,

2
/R LCLEEDY /Q @)
JEZ/ fz—j)|da

Thus,

/ S rf (@) da / St — )l da = £l g
Q jez Q jeZ

So, Pf as defined above has
1PAl ey < 1l

and also Pf{ is finite a.e.. Hence, the sum in question defining P f(z) converges a.e..

Moreover,

/ S fo — f)e ik da

Q jEZ
—————
€LY (Q)
(By Fubini) =) / flz — j)e 2mike dg
JEZ
_ Z/ 727mk(x+j) dx
Z — 6727r7,kz

since e~27iki = 1

— [ st az = fi).
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This series Pf is called the periodization of f.

<Theorem 3.7 (Poisson Summation Formula): Let f € C(R) such that there are C,e > 0 such

that | f(z)] < C(1+ |z[)”"** (so namely f € L(R)) and similarly |F(¢)| < C(1+|¢)~"+.
Then,

Zf(x + k Zf 271'zk:c

keZ kEZ

where both series converge absolutely and uniformly on T. In particular, if z = 0,

Y fk) =" f(k)

kEZ kEZ

Remark 3.12: By the last remark, f(k) = Pf (k). So, this theorem says “periodized f” = Pf =

“Fourier series of Pf”.

Proor. Fix z € R then

> fl@+k)

keZ

gE]ﬂx+@\
€L

IA

f(z +y)|dy

C
(14 |z +y]
C
—
1+ |y
_cC
(T+1y)°

)1+E dy

A
F— 5 5 — &

o0

<,

y=—00

hence the series absolutely converges, and since our bound is independent of z, it also

converges uniformly. Since Sy () := ij:_ ~ (@ + k) is continuous for each N and

Sy — Pf uniformly, Pf itself is continuous, in C(T) so thus also in L?(T). Thus, by
Hilbert space theory,

_ Z ﬁ}'(k)GQﬂ'ikw ’

keZ

in L2(T). By the last result, Pf(k) = f(k), thus

_ Z f(k)e%rikm'

keZ

Finally, by the same computation as before, -, f(k)e?™k= will also converge

absolutely and uniformly as well, call it Pf(z). Thus, we claim Pf = Pf. Indeed, Pf is

continuous, and Pf = limy_, ZkN:_ N f(k)e?™k= so P f also continuous. So,
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Sn(@) — Pf(z),

uniform

and Pf, Pf are both continuous hence Pf = Pf. Thus, indeed Pf = 3 f(k)e?™*% as

we aimed to show.
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