Louis Meunier

Classical Mechanics

Course Summary:

Covers classical mechanic topics including applying Newton's Laws, the Work-Energy Theorem, conservation of momentum, oscillations, frames of reference, centres of mass, orbits, Kepler's Laws, Lagrangian mechanics. Large

Calculus focus, representing situations functionally with differential equations, graphical analysis of trends.

Contents

1 Introduction \& Notations 3
1.1 Vectors 3
1.2 Law of Cosines 3
1.3 Perspectives on the Cross Product 4
1.4 Describing a Particle in Space in Polar Coordinates 4
1.5 Newton's Laws of Motion 5
1.6 Projectile Motion 7
1.7 Forces 8
2 Statics 8
3 Non-Zero Forces 9
3.1 Trends of Common Forces 9
3.2 Generalizing Forces as Functions 9
3.3 Viscous Resistance 10
4 Oscillations 11
4.1 Simple Springs 12
4.1.1 Series vs Parallel 12
4.2 Simple Harmonic Motion 13
4.3 Damping Forces 13
4.4 Driven Oscillators and Resonance 15
4.4.1 With Damping 15
4.5 Coupled Oscillators 16
5 Momentum 16
5.1 Some Derivations 16
5.2 Center of Mass 17
5.3 Variable Mass Problems 17
5.3.1 Rocket Motion 18
6 Work \& Energy 19
6.1 Introduction: 1 Dimension 19
6.2 Extension to Higher Dimensions 19
6.3 Force Fields 21
7 Collisions \& Conservation Laws 22
7.1 2D 22
7.2 Centre of Mass Frame 22
7.2.1 Angles 23
7.2.2 Conservation of Energy in CM 23
8 Rotational Motion 24
8.1 Angular Momentum 24
8.2 Torque 24
8.2.1 Central Forces 25
8.2.2 Torque on Extended Objects 25
8.3 Moments of Inertia 25
8.4 Conservation of Angular Momentum 26
8.5 Rotational \& Translational Motion 26
8.6 Slipping \& Rolling 26
9 Lagrangian Mechanics 26
9.1 Introduction to Calculus of Variations 27
10 More on Angular Motion - Generalizations 27
11 Central Forces 27
11.1 Conic Sections 27
11.2 Kepler's Laws 27

1 Introduction \& Notations

Content in this section provides a brief overview of the course, as well as basic problem solving, vector algebra, etc. It is safe to skip without loss of continuity.

1.1 Vectors

This course deals mainly with scalars (magnitude) and vectors (magnitude and direction). We define algebra on vectors, briefly:

- $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$ (commutativity of addition)
- $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$ (associativity of addition)
- $c(d \mathbf{A})=(c d) \mathbf{A}$ (associativity of scalar multiplication)
- $(c+d) \mathbf{A}=c \mathbf{A}+d \mathbf{A}$ (Distributivity of scalar multiplication)
- $c(\mathbf{A}+\mathbf{B})=c \mathbf{A}+c \mathbf{B}$ (Distributivity of scalar multiplication)
and the operators:
- $\mathbf{A} \times \mathbf{B}=\mathbf{C}$ s.t. $|\mathbf{C}|=|\mathbf{A}||\mathbf{B}| \sin \theta$, where θ is the angle between \mathbf{A} and \mathbf{B}, and \mathbf{C} is perpendicular to both A and B. This is equivalent to computing $\operatorname{det}\left[\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right]$. This cross product is anti-commutative, meaning $\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$. Additionally, note that $\mathbf{A} \times \mathbf{A}=0$.
- $\mathbf{A} \cdot \mathbf{B}=C=|\mathbf{A}||\mathbf{B}| \cos \theta$, where C is a scalar. Note that $C=0$ when $\theta=\pi / 2$, ie \mathbf{A} and \mathbf{B} are perpendicular.

1.2 Law of Cosines

Consider a (planar) triangle constructed of sides $\mathbf{C}=\mathbf{A}+\mathbf{B}$. We can write

$$
\begin{aligned}
\mathbf{C}^{2} & =\mathbf{C}_{x}^{2}+\mathbf{C}_{y}^{2} \\
& =(|\mathbf{A}|-|\mathbf{B}| \cos \theta)^{2}+(|\mathbf{B}| \sin \theta)^{2} \\
& =|\mathbf{A}|^{2}+|\mathbf{B}|^{2}-2|\mathbf{A}||\mathbf{B}| \cos \theta
\end{aligned}
$$

1.3 Perspectives on the Cross Product

$$
\begin{aligned}
\vec{A} \times \vec{B} & =\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \times\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right) \\
& =A_{x} B_{y}(\mathbf{i} \times \mathbf{j})+\cdots \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}+\cdots \\
& \equiv(\mathbf{A} \times \mathbf{B})_{k}=\sum_{i=1}^{3} \sum j=1^{3} \mathcal{E}_{i j k} A_{i} B_{j}
\end{aligned}
$$

Where $\mathcal{E}_{i j k}= \begin{cases}1 ; & \text { ijk even permutation of } 123 \\ -1 ; & \text { ijk odd permutation of } 123 \\ 0 ; & \text { otherwise }\end{cases}$

1.4 Describing a Particle in Space in Polar Coordinates

Consider a particle moving through space with a constant angular velocity $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\omega$. We can describe this movement in terms of planar coordinates as $\mathbf{r}(t)=r_{0} \cos (\omega t) \mathbf{i}+r_{0} \sin (\omega t) \mathbf{j}$. Differentiating with respect to time, we obtain $\mathbf{v}(t)=-r_{0} \omega(\sin (\omega t) \mathbf{i}-\cos (\omega t) \mathbf{j})$. Notice that $\mathbf{r} \cdot \mathbf{v}=0 \forall t$; this should be familiar, as the velocity vector is always perpendicular to the position vector in purely circular motion. Differentiating again, we obtain $\mathbf{a}(t)=$ $-r_{0} \omega^{2}(\cos (\omega t) \mathbf{i}+\sin (\omega t) \mathbf{j})=-\omega^{2} \mathbf{r}(t)$. In other words, the acceleration is always opposing the position vector (given the negative sign), and is proportional to the square of the angular velocity.

Assume now, instead, that the particle moves arbitrarily, described by a function $\mathbf{r}(t)$. In polar coordinates, this position vector is always travelling along the vector $\hat{\mathbf{r}}$, with magnitude r, and we can write $\mathbf{r}(t)=r \cdot \hat{\mathbf{r}}$. Differentiating:

$$
\begin{aligned}
\mathbf{v}(t)=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}(r \cdot \hat{\mathbf{r}}) \\
& =\frac{\mathrm{d} r}{\mathrm{~d} t} \hat{\mathbf{r}}+r \frac{\mathrm{~d} \hat{\mathbf{r}}}{\mathrm{~d} t} \\
& =\dot{r} \hat{\mathbf{r}}+r \frac{\mathrm{~d}}{\mathrm{~d} t}(\cos \theta \mathbf{i}+\sin \theta \mathbf{j}) \\
& =\dot{r} \hat{\mathbf{r}}+r(-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}) \dot{\theta} \\
& =\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\theta}
\end{aligned}
$$

Recalling that $\left\{\begin{array}{l}\hat{\mathbf{r}}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j} \\ \hat{\theta}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}\end{array}\right.$. Differentiating again:

$$
\begin{aligned}
\mathbf{a}(t)=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}(\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\theta}) \\
& =\ddot{r} \hat{\mathbf{r}}+\dot{r} \dot{\theta} \hat{\theta}+\dot{r} \dot{\theta} \hat{\theta}+r \ddot{\theta} \hat{\theta}+r \dot{\theta}(-\hat{\mathbf{r}}) \\
& =(\underbrace{\ddot{r}}_{\text {radial }}-\underbrace{r \dot{\theta}^{2}}_{\text {centripetal }}) \hat{\mathbf{r}}+(\underbrace{2 \dot{r} \dot{\theta}}_{\text {coriolis }}+\underbrace{r \ddot{\theta}}_{\text {tangential }}) \hat{\theta}
\end{aligned}
$$

we obtain a decomposition of the acceleration vector into radial ($\hat{\mathbf{r}}$) and tangential ($\hat{\theta}$) components, labelled accordingly. Note that the centripetal acceleration, labelled, is the same as the acceleration in circular motion mentioned previously. ${ }^{12}$

1.5 Newton's Laws of Motion

N1: "in absence of external force, a body at rest remains at rest, and a body in motion remains in motion, with the same speed \& same direction"
This law defines intertial frames, ie ones in which the law holds.
$\mathrm{N} 2: \vec{F}=m \vec{a}$
N3: "if a body bapplies a force on body \boldsymbol{a}, then \boldsymbol{a} applies a force on \boldsymbol{b} such that $\vec{F}_{a}=-\vec{F}_{b}$ (equal and opposite)"3
Example 1.1. Consider two blocks A, B where A lies atop B which all lie upon "the earth".
\boldsymbol{A} experiences the force W_{A} due to gravity and the force F_{1} back from \boldsymbol{B}.
\boldsymbol{B} experiences the normal force N from the table, the force of gravity W_{B}, and finally the force F_{2} due to \boldsymbol{A}.
We can write (from N2)

$$
\vec{F}_{1}+\vec{W}_{A}=m_{A} \vec{a}_{A}
$$

and similarly

$$
\vec{N}+\vec{W}_{B}+\vec{F}_{2}=m_{B} \vec{a}_{B}
$$

Static situation $\Longrightarrow \vec{a}_{A}=\vec{a}_{B}=0$. We can further simplify writing $F_{1}=m_{A} g(N 2)$, and finally

$$
N=W_{A}+W_{B}=\left(m_{A}+m_{B}\right) g .
$$

Example 1.2. Consider a mass m_{1} laying on a table, connected via a string to a mass m_{2} hanging off the table, where the string is of small mass and is under a tension T. (Looking at a functionally massless stirng, we can consider there

[^0]to be a constant tension as we can say $T-T^{\prime}=\delta m a \Longrightarrow T-T^{\prime}=0 \Longrightarrow T=T^{\prime}$, where T, T^{\prime} is the tension on a particular segment of the string in opposing directions).

On m_{1}, we have the normal force N, tension T, and weight $m_{1} \cdot g$.
On m_{2}, we have the weight $m_{2} \cdot g$, the tension T (equal throughout string as explained above).
Together, we can write (N2; taking x to represent a motion "left" and z to represent a motion "down")

$$
-T=m_{1} \ddot{x}
$$

and

$$
m_{2} g-T=m_{2} \ddot{z} .
$$

Noting that the string must "retain" its length we can write

$$
l(t)=x(t)+z(t)
$$

where x and z represent the length of the string in the x / z axes. However, as l must stay constant, we can differentiate twice wrt time to obtain

$$
0=\ddot{x}+\ddot{z} .
$$

All together, then we have

$$
\ddot{x}=\frac{-m_{2} g}{m_{1}+m_{2}} .
$$

Integrating twice, we have

$$
x(t)=\frac{-m_{2} g}{m_{1}+m_{2}} \cdot \frac{t^{2}}{2} .
$$

Example 1.3. Consider a mass m_{1} connected to a string which lies along a pulley P_{1}, which then attaches to the center of pulley P_{2}, which has a string whicch, on one end, is attached to a mass m_{2}, and is grounded in the other.

On m_{1}, we have tension T and the weight $m_{1} \cdot g$.
On m_{2}, we have the weight $m_{2} \cdot g$ and the tension T^{\prime} (no reason for $T=T^{\prime}$; strings aren't connected).
Consider P_{1} - it is nailed to the wall at its center, and experiences some F ("up") from the nail, as well as the tension T_{1} down (twice).

On P_{2}, we have the tension T_{1} ("up") and the tension T_{2} ("down", "twice").
We can write

$$
\begin{aligned}
& T_{1}-W_{1}=m_{1} a_{1} \\
& T_{2}-W_{2}=m_{2} a_{2} \\
& T_{1}-2 T_{2}=m_{P_{2}} a_{P_{2}^{\prime}} \Longrightarrow T_{1}=2 T_{2}
\end{aligned}
$$

As last time, we can use the fact that the strings cannot stretch. Consider m_{1} to be at height y_{1}, P_{1} to be at height $y_{P_{1}}$, P_{2} to be at height $y_{P_{2}}$, and m_{2} to be at height y_{2}.

We can then take the length l_{1} of the string about P_{1} as

$$
l_{1}=\left(y_{P_{1}}-y_{1}\right)+\left(y_{P_{2}}-y_{2}\right)+\pi R_{P_{1}}
$$

$$
0=a_{1}+a_{P_{2}} \Longrightarrow a_{1}=-a_{P_{2}} .
$$

Analyzing P_{2} similarly, we will obtain

$$
a_{2}=2 a_{P_{2}} .
$$

All together, we have

$$
a_{1}=\left(\frac{2 m_{2}-m_{1}}{4 m_{2}+m_{1}}\right) g .
$$

Consider a collection of particles. The force on any particular particle, say 1 , we can denote

$$
\vec{F}_{1}=\vec{F}_{12}+\vec{F}_{13}+\cdots+\vec{F}_{1 n}+\vec{F}_{1}^{\text {ext }}
$$

Notice that any force $\vec{F}_{n m}=-\vec{F}_{m n}$, by N3. Thus, if we add all the forces on all the particles in the bag, we will always have a "pairing" of forces such that each $\vec{F}_{m n}$ is "canceled" by another, leaving behind only the external forces, ie

$$
\vec{F}^{\mathrm{ext}}=\sum_{i} \vec{F}_{i}^{\mathrm{ext}} .
$$

Say there are no external forces; then, we have

$$
\begin{aligned}
\sum_{i} m_{i} \vec{a}_{i} & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \sum_{i} m_{i} \vec{v}_{i} & =0 .
\end{aligned}
$$

And thus, we have conservation of momentum.

1.6 Projectile Motion

Say we have a particle with an initial velocity v_{0} launched at an angle θ. This particle experiences just one force, $m g$, and by N 2 we have

$$
m \ddot{y}=-m g .
$$

Integrating, we have

$$
y(t)=y(t=0)+\underbrace{v_{0} \sin \theta}_{\text {vertical component of } v_{0}} t-\frac{g t^{2}}{2} .
$$

In the x, we have $m \ddot{x}=0, x(t)=v_{0} \cos \theta t$. From here, we can rewrite $x(t)$ as t as a function of x and substitute into y for a function $y=f(x)$. This gives

$$
y=\frac{v_{0} \sin \theta x}{v_{0} \cos \theta}-\frac{g}{2} \frac{x^{2}}{v_{0}^{2} \cos ^{2} \theta}\left(=a x-b x^{2}\right)
$$

1.7 Forces

We (generally) have:

- 2 "protons" @ 1 fermi ($\mathrm{fm}=10^{-15} \mathrm{~m}$)
- Nuclear strong, $2 \times 10^{3} \mathrm{~N}$
- E-M, $2 \times 10^{2} N$
- Weak force, $2 \times 10^{-11} N$
- Gravity, $2 \times 10^{-34} N$

We have the force between two point masses, m_{a}, m_{b}, at a distance $r_{a b}$:

$$
\vec{F}=\frac{-G m_{a} m_{b}}{r_{a b}^{2}}
$$

noting that the negative sign \Longrightarrow gravity attractive, and where the gravitational constant $G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$.
We consider some "extended object", a spherical shell of mass M a distance r (center) from a "smaller" object m. We can subdivide this shell into infinitesimal pieces, then sum (integrate) their respective forces using the formula above to find the total force.

Say the distance between a particular "subsection" of the sphere is s from m, and the change in angle in the shell section we have $\frac{\mathrm{d}}{\mathrm{d} \theta}$, with θ the angle from the shell section to r, and φ is the angle between s and r.

We have

$$
F=\frac{-G m \mathrm{~d} M}{s^{2}} \cdot \cos \varphi
$$

2 Statics

We have static motion when the net external force is 0 . Clearly, then,

$$
\sum F_{\mathrm{ext}}=m \vec{a}=0 \Longleftrightarrow \vec{a}=0 .
$$

When analyzing a system we thus need to balance:

- Forces, include
- Tension;
- Normal (\perp to surface, N3);
- Friction (opposing direction of motion; $F_{k}=\mu_{k} N, F_{s} \leq \mu_{s} N$, kinetic vs static frictions resp.);
- Gravity $\left(F_{g}=\frac{G M m}{R^{2}} \Longrightarrow F_{g}=m g\right.$, on earth $)$;
- Spring (Hooke's Law, $\vec{F}_{s}=-k \vec{r}$)
- Torques, $\vec{\tau}=\vec{r} \times \vec{F}$. When dealing with rotational motion, sums of torques must be 0 as well to conserve stasis.

Example 2.1. Consider a ladder of length l and mass m leaning against a frictionless wall with another end on a floor with coefficient of friction μ. Assuming the center of gravity is at the geometric center of the ladder ($\frac{l}{2}$), we can analyze the system as follows.
Take N_{1}, N_{2} to represent the normal forces on the ladder from the floor and the wall resp, and F_{f} as the friction force of the floor. We summarize the forces in the $[x]$ and $[y]$, and the torques:

$$
\begin{array}{ll}
{[y]} & 0=N_{1}-m g \Longrightarrow N_{1}=m g \quad \text { (1) } \\
{[x]} & 0=N_{2}-F_{f} \Longrightarrow N_{2}=F_{f} \quad \text { (2) } \\
{[\tau]} & 0=\vec{F} \times \vec{r} \stackrel{I D}{=} F \cdot r=\underbrace{m g \cdot \frac{l}{2} \cdot \cos \theta}_{\text {rotation about c.o.m. }}-\underbrace{N_{2} \cdot l \sin \theta}_{\text {about "floor point" }} \Longrightarrow N_{2}=\frac{m g}{2 \tan \theta} \tag{3}
\end{array}
$$

From (1),(2),(3), we can find that the angle required for the ladder to not slip (ie, net forces and net torques sum to zero; will not slip nor rotate and fall), we require that

$$
\tan \theta \geq \frac{1}{2 \mu}
$$

3 Non-Zero Forces

3.1 Trends of Common Forces

3.2 Generalizing Forces as Functions

Consider the general form of Newton's Second Law:

$$
\vec{F}=m \vec{a} .
$$

This \vec{F} can take a number of forms, depending on its dependence on different variables. Consider;

- Time: $F(t)=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=m \frac{\mathrm{~d} v}{\mathrm{~d} t}$. This is separable ODE:

$$
\begin{aligned}
\int \mathrm{d} v=v(t) & =\int \mathrm{d} t \frac{F(t)}{m} \\
\Longrightarrow x(t) & =\int \mathrm{d} t v=\iint \mathrm{d} t \frac{F(t)}{m}
\end{aligned}
$$

- Position: $F(x)=m \frac{\mathrm{~d} v}{\mathrm{~d} t}$. We can rewrite our acceleration by the chain rule as $\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} x} v$ (NB: this "trick" is very helpful in evaluating physical ODE problems such as this, where the reliance on a particular function of time is unknown, but can be obtained from physical properties...). We can then write:

$$
\begin{aligned}
m \frac{\mathrm{~d} v}{\mathrm{~d} x} v & =F(x) \\
m \int \mathrm{~d} v v & =\int F(x) \mathrm{d} x \\
\left.\frac{1}{2} m v^{2}\right|_{D} & =\int_{D} \mathrm{~d} x F(x) \quad \text { NB: Work-Energy Thm }
\end{aligned}
$$

- Velocity: $m \frac{\mathrm{~d} v}{\mathrm{~d} t}=F(v) \Longrightarrow m \int \mathrm{~d} v \frac{1}{F(v)}=\int \mathrm{d} t$; we will see this more later.

3.3 Viscous Resistance

Consider some force that is dependent on velocity, $F(v)$ (friction, air resistance for instance, is often approximately modeled this way). Let's approximate this force function at small velocities by writing its Taylor Series expansion about $v=0$ (note that higher order terms $O\left(v^{n}\right)$ can be consider negligible assuming $0 \leq v<1$, a typical approach to this type of small-perturbation analysis):

$$
F(v)=F(0)+\left.v \frac{\partial F}{\partial v}\right|_{v=0}+\left.\frac{v^{2}}{2!} \cdot \frac{\partial^{2} F}{\partial v^{2}}\right|_{v=0}+\cdots+O\left(v^{n}\right)
$$

Note that $v=0 \Longrightarrow a=0 \Longrightarrow F(0)=0$, and thus the first term can be disregarded. Under a further assumption that $v \ll 1$ and remains so, we can eliminate $O\left(n^{2}\right)$ terms, and would be left with

$$
F(v)=-\left.v \frac{\partial F}{\partial v}\right|_{v=0}=-c v,
$$

with $c:=\left.\frac{\partial F}{\partial v}\right|_{v=0}$, a constant. This can be rewritten and solved as a simple ODE;

$$
\begin{aligned}
& F(v)=m \frac{\mathrm{~d} v}{\mathrm{~d} t}=-c v \\
& \frac{m}{v} \mathrm{~d} v=-c \mathrm{~d} t \\
& m \ln v=-c t+k \\
& v(0)=v 0 \Longrightarrow k=m \ln v_{0} \\
& \Longrightarrow v(t)=v_{0} e^{-\frac{c t}{m}} \\
& \tau:=\frac{m}{c}, \quad v(t)=v_{0} e^{-\frac{t}{\tau}} \\
& \Longrightarrow x(t)=x_{0}+v_{0} \tau\left(1-e^{-\frac{t}{\tau}}\right)
\end{aligned}
$$

Example 3.1 (Air resistance $\propto v$). Consider a sky diver falling, with some initial velocity v_{0}, under the influence of gravity F_{g} downwards (positive) and air resistance F_{v} upwards (negative). Assuming that air resistance is proportional
and opposing to velocity, we can write $F_{v}=-c v$ where c a constant. From Newton's Second:

$$
\begin{aligned}
\sum F=m a=m \frac{\mathrm{~d} v}{\mathrm{~d} t}=F_{g}+F_{v} & =m g-c v \\
\int_{v_{0}}^{v} \mathrm{~d} v^{*} \frac{m}{m g-c t} & =\int_{0}^{t} \mathrm{~d} t^{*} \\
-\frac{m}{c} \ln \left(\frac{m g-c v}{m g-c v_{0}}\right) & =t \\
v(t) & =g \tau\left(1-e^{-\frac{t}{\tau}}\right)+v_{0} e^{-\frac{t}{\tau}}, \quad \tau:=\frac{m}{c}
\end{aligned}
$$

A common follow-up to this analysis is to compute the terminal velocity v_{t}. We will consider two methods to compute it in this situation.
First, consider the equation we found for $v(t)$. Taking the limit of $t \rightarrow \infty$, we have

$$
\begin{aligned}
v_{t}=\lim _{t \rightarrow \infty} v(t) & =\lim _{t \rightarrow \infty}\left[g \tau\left(1-e^{-\frac{K^{2}}{\tau}}\right)^{0}+v_{0} e^{-\frac{t}{\tau}}\right]^{0} \\
& =g \tau=\frac{g m}{c}
\end{aligned}
$$

Alteratively, consider our original formula,

$$
m a=m g-c v .
$$

Terminal velocity is reached when $a=0$; more physically, when the forces in opposing directions completely cancel each other. Thus, we can solve for v directly;

$$
m \cdot 0=m g-c v \Longrightarrow m g=c v_{t} \Longrightarrow v_{t}=\frac{g m}{c}
$$

equivalent to our previous computation.
Example 3.2 (Air resistance $\propto v^{2}$). Consider the previous example with $F_{v}=-c v^{2}$. We can write

$$
\sum F=m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g-c v^{2} \Longrightarrow v_{t}=\sqrt{\frac{m g}{c}} .
$$

A closed form of the position of the trajectory is possible, but difficult.

4 Oscillations

Many natural systems experience oscillations, characterized by some type of force that leads to repetitive motion.

4.1 Simple Springs

Hooke's Law states that $F_{s}=-k x$, where k is a constant spring coefficient (typically $0<k<1$), and x is the displacement from equilibrium. In general, we can write

$$
\begin{aligned}
F_{s}=m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m \frac{\mathrm{~d} v}{\mathrm{~d} x} v & =-k x \\
m \int \mathrm{~d} v v & =-k \int \mathrm{~d} x x \\
m \frac{v^{2}}{2} & =-k \frac{x^{2}}{2} \\
m v & =-k x \Longrightarrow v=-\frac{k}{m} x
\end{aligned}
$$

Often, we write $\omega^{2}:=\frac{k}{m}$, the phase of the oscillator.

4.1.1 Series vs Parallel

Consider a spring of coefficient k_{1} connected end-to-end to a spring of k_{2}, and let x_{1}, x_{2} represent the equilibrium points of the spring system resp (where $x_{2}=x_{1}+$ equilibrium of spring k_{2}). Consider the springs as massless (or of being of infinitesimal, negligible mass), so the only forces in question are due to the spring force(s).
At the endpoint of spring 1, we have

$$
F_{1}: k_{1} x_{1}=\left(x_{2}-x_{1}\right) k_{2} \Longrightarrow x_{2}=\left(\frac{k_{1}+k_{2}}{k_{2}}\right) x_{1}
$$

If we consider a mass on the end point of the system, we can write

$$
\begin{aligned}
F=-k_{2} \underbrace{\left(x_{2}-x_{1}\right)}_{\text {displacement }} & =-\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right) x_{2} \\
& =-k_{\text {eff }} x_{2}
\end{aligned}
$$

Note that $\frac{1}{k_{\text {eff }}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}$; this is the relationship between any number of springs connected in series.
Next, consider two springs of k_{1}, k_{2} each connecting a mass to a wall. We can write the force on the mass, taking x to represent the displacement of the mass from equilibrium, as

$$
F=-k_{1} x-k_{2} x=-\left(k_{1}+k_{2}\right) x=-k_{\mathrm{eff}} x,
$$

where $k_{\text {eff }}=k_{1}+k_{2}$; these springs are in parallel.
(Naturally, all of these analyses are under the assumption of no torsion, no gravity, etc (no other external forces))

4.2 Simple Harmonic Motion

Consider again a spring (k). From N2, we can write:

$$
\begin{aligned}
m \frac{\mathrm{~d}^{2} v}{\mathrm{~d} t^{2}}=-k x & \Longrightarrow m \ddot{x}+k x=0 \\
& \Longrightarrow \ddot{x}+\omega_{0}^{2} x=0
\end{aligned}
$$

This is a (fairly straightforward) second order linear homogenous equation (we will see non-homogenous versions of this later, when we introduce external forcing, etc.). The typical means of solving these is to assume $x(t)$ is of the form $A e^{\alpha t}$, plug in, and solve for the relevant constants (noting that $\alpha \in \mathbb{C}$):

$$
\begin{aligned}
\left(A e^{\alpha t}\right)^{\prime \prime}+\omega^{2} A e^{\alpha t} & =0 \\
A \alpha^{2} e^{\alpha} t+\omega^{2} A e^{\alpha t} & =0 \\
& \Longrightarrow \alpha^{2}=-\omega^{2} \Longrightarrow \alpha= \pm i \omega, i=\sqrt{-1}
\end{aligned}
$$

Note that all dependence on time cancelled, as desired, as well as A; we are working with a second-order ODE, so we must have two "free" constants dependent on initial conditions, represented by this A.
Now, we have solutions of the form $x(t)=A e^{ \pm i \omega t}$. This form doesn't help us much physically, but we can simplify using Euler's formula, or, since we are dealing with purely a sign change in our parameters, the definition of $\cos (i x)=\cosh x=\frac{e^{x}+e^{-x}}{2} \Longrightarrow \frac{e^{i \omega t}+e^{-i \omega t}}{2}=\cos (\omega t)$. Generally, then, we can write

$$
x(t)=A \cos (\omega t+\varphi),
$$

where A, φ are constants, typically defined by IVs.
Note that, equivalently, we could have written

$$
x(t)=B \sin \omega t+C \cos \omega t
$$

but chose to rewrite in terms of φ for a more intuitive, physical meaning. Specifically, we have

$$
A \cos \varphi=C, A \sin \varphi=-B, \tan \varphi=-\frac{B}{C}
$$

Graphically, this means that spring motion is a constant-amplitude sinusoidal wave that will oscillate forever. Realistically, forces such as friction, gravity, etc would cause a damping force over time and eventually slow the mass to a halt.

4.3 Damping Forces

Consider a mass m connected to a spring k, but now add some form of resistance (typically described as a piston), where force opposes the motion of the mass and is proportional to velocity. We write $F_{r}=-b v$ where b a constant.

Writing the equation of motion:

$$
\begin{array}{r}
m \ddot{x}=-k x-b v \\
\ddot{x}+\frac{b}{m} \dot{x}+\frac{k}{m} x=0 \\
\equiv \ddot{x}+\gamma \dot{x}+\omega^{2} x=0
\end{array}
$$

We now have a second order linear homogenous ode, but with an added \dot{x}. We can try the same approach, with a trial solution $x(t)=A e^{\alpha t}$:

$$
\begin{aligned}
\left(A e^{\alpha t}\right)^{\prime \prime}+\gamma\left(A e^{\alpha t}\right)^{\prime}+\omega^{2} A e^{\alpha t} & =0 \\
\underbrace{\alpha^{2}+\alpha \gamma+\omega^{2}}_{\text {characteristic polynomial }} & =0 \\
& \Longrightarrow \alpha=-\frac{\gamma}{2} \pm \sqrt{\frac{\gamma^{2}}{4}-\omega^{2}}
\end{aligned}
$$

We thus have a number of cases based on the discriminant. Let $\tilde{\gamma}=\frac{\gamma}{2}$.

- underdamped; $\tilde{\gamma}^{2}<\omega^{2} \Longrightarrow$ discriminant $\in \mathbb{C}$, thus $\alpha=-\frac{\gamma}{2} \pm i \sqrt{\omega^{2}-\frac{\gamma^{2}}{4}}$. We then have a solution

$$
\begin{aligned}
x(t) & =e^{-\tilde{\gamma} t}=A_{1} e^{i \tilde{\omega} t}+A_{2} e^{-i \tilde{\omega} t} \\
& \Longrightarrow x(t)=\underbrace{A e^{-\tilde{\gamma} t}}_{\text {damping, } \rightarrow 0} \underbrace{\cos (\tilde{\omega} t+\varphi)}_{\text {oscillating }}
\end{aligned}
$$

As $t \rightarrow \infty, x(t) \rightarrow 0$ because of the damping term. The inverse exponential goes to zero, functionally diminishing the amplitude of the cosine with time.

- overdamped; $\tilde{\gamma}^{2}>\omega^{2} \Longrightarrow$ discriminant $\in \mathbb{R}$, thus $\alpha=-\tilde{\gamma} \pm \sqrt{\tilde{\gamma}^{2}-\omega^{2}} \Longrightarrow \alpha \leq 0$. This yields a purely exponential solution,

$$
x(t)=A e^{-\alpha_{-} t}+B e^{-\alpha_{+} t}
$$

since the oscillating term comes from an imaginary number in the exponential. Thus, there is no oscillation, and the solution tends to zero.

- critically damped; $\tilde{\gamma}^{2}=\omega^{2} \Longrightarrow$ discriminant $=0$, we have only one root, and we thus are missing a solution case. One can use a new trial solution $x(t)=B t e^{-\hat{\gamma} t}$, and after some computation, we have

$$
x(t)=A e^{-\tilde{\gamma} t}+B t e^{-\tilde{\gamma} t}
$$

Note the linear t term in one of the exponentials. This will persist when looking at $x^{\prime}(t)$, and will thus dominate the inverse exponential as $t \rightarrow 0$, hence the term "critically damped", as this type of damping will bring $x(t)$ to zero the fastest given the same initial conditions and spring constant.

4.4 Driven Oscillators and Resonance

Consider a spring (k) connected to a mass m on one end and to a wall which is moving as a function of time, where $x_{w}(t)$ represents the location of the wall from equilibrium. We write

$$
x_{w}(t)=x_{0} \cos \omega t
$$

ie the wall oscillates. From N2:

$$
\begin{gathered}
m \ddot{x}=-k x+k x_{w}=-k x+\underbrace{k x_{0}}_{:=F_{0}} \cos \omega t \\
\ddot{x}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \omega t
\end{gathered}
$$

Solving for $x(t)$:

$$
x(t)=B \cos \left(\omega_{0} t+\varphi\right)+\frac{F_{0}}{m}\left(\frac{1}{w_{0}^{2}-\omega^{2}}\right) \cos (\omega t) .
$$

This is the general equation for a driven oscillator.
Note too that

$$
\lim _{\omega \rightarrow \omega_{0}^{-}}=\infty ; \quad \lim _{\omega \rightarrow \omega_{0}^{+}}=-\infty,
$$

an effect we call resonance. In reality, of course, some sort of damping (eg friction) makes these not go to infinity, but grow large/small regardless.

4.4.1 With Damping

Consider

$$
\ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \omega t,
$$

an equation for a damped, driven oscillator. This can be solved similarly to the previous, and also gives different damped cases. Consider the underdamped case:

$$
A e^{-\tilde{\gamma} t} \cos \left(\tilde{\omega} t+\varphi_{1}\right)+\frac{F_{0}}{m} \cdot \frac{\cos \left(\omega t+\varphi_{2}\right)}{\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}\right]^{\frac{1}{2}}}
$$

When we are near resonance, $\omega \approx \omega_{0} \Longrightarrow \omega_{0}^{2}-\omega^{2}=\left(\omega_{0}-\omega\right)\left(\omega_{0}+\omega\right) \approx 2 \omega_{0}$, so we can approximate the denominator of the driven part as

$$
[\cdots]^{\frac{1}{2}} \approx\left[\left(\omega_{0}-\omega\right)^{2}+\left(\frac{\gamma}{2}\right)^{2}\right]
$$

This $\left(\frac{\gamma}{2}\right)^{2}$ term serves as a "regulator" to the resonance effect.

4.5 Coupled Oscillators

Consider a series of three springs and two equal masses of m between a wall. Let x_{1} be the displacement of the leftmost mass, and x_{2} the displacement of the rightmost. We can write

$$
\text { (i) } m \ddot{x}_{1}=-k x_{1}+k\left(x_{2}-x_{1}\right) ; \quad \text { (ii) } \quad m \ddot{x}_{2}=-k\left(x_{2}-x_{1}\right)-k x_{2}
$$

Adding and subtracting (i),(ii):

$$
\ddot{x_{1}}+\ddot{x_{2}}+\omega_{0}^{2}\left(x_{1}+x_{2}\right)=0 ; \quad\left(\ddot{x_{1}}-\ddot{x_{2}}\right)+3 \omega_{0}^{2}\left(x_{1}-x_{2}\right)=0 .
$$

We can let $y_{1}(t)=x_{1}+x_{2}$ and $y_{2}(t)=x_{1}-x_{2}$, and solve these separately as two homogenous second order ODEs, then add them back together. These y_{1}, y_{2} are called the normal modes. This will yields

$$
\begin{aligned}
& x_{1}(t)=B_{+} \cos \left(\omega_{0} t+\varphi_{+}\right)+B_{-} \cos \left(\sqrt{3} \omega_{0} t+\varphi_{-}\right) \\
& x_{2}(t)=B_{+} \cos \left(\omega_{0} t+\varphi_{+}\right)-B_{-} \cos \left(\sqrt{3} \omega_{0} t+\varphi_{-}\right)
\end{aligned}
$$

We dub $\omega_{0}, \sqrt{3} \omega_{0}$ the normal frequencies. If both masses are given the same initial displacements, they will both oscillate at ω_{0}; if they are given the same initial displacement but with opposite signs, they will oscillate at $\sqrt{3} \cdot \omega_{0}$.

Note that, while this is being applied in the context of springs, similar ideas can be used in other forces proportional to displacement.

Example 4.1. Take a "coupled" system of pendulums attached to a ceiling, with point masses at their ends and a spring connecting the two masses. Find their equations of motion and their normal frequencies.

5 Momentum

5.1 Some Derivations

We can write

$$
\vec{F}^{\mathrm{ext}}=\sum_{i} m_{i} \ddot{r}_{i}=M \ddot{\vec{R}}
$$

where \vec{R} is the "center of mass coordinate"., ie

$$
\vec{R}-\frac{1}{M} \sum_{i} m_{i} \vec{r}_{i}
$$

5.2 Center of Mass

Example 5.1 (Linear density). Consider a rod with linear density (the density at a given point is proportional to the distance along the rod), λ;

$$
\lambda(s)=\lambda_{0}\left(\frac{S}{L}\right)=\frac{\mathrm{d} m}{\mathrm{~d} x}
$$

where S is the point along the length. The total mass:

$$
M=\int_{\text {rod }} \mathrm{d} m=\int_{0}^{L} \mathrm{~d} m=\int_{0}^{L} \lambda \mathrm{~d} x=\left.\frac{x^{2}}{2} \cdot \frac{\lambda_{0}}{L}\right|_{0} ^{L}=\frac{L \lambda_{0}}{2} .
$$

We can now compute the center of mass X :

$$
\mathrm{X}=\frac{1}{M} \sum_{i} x_{i} m_{i} \stackrel{\text { continuous }}{=} \frac{1}{M} \int_{0}^{L} \mathrm{~d} m x=\frac{2}{L \lambda_{0}} \int_{0}^{L} \lambda \mathrm{~d} x=\frac{2}{L \lambda_{0}} \int_{0}^{L} \lambda_{0} \frac{x^{2}}{L} \mathrm{~d} x=\frac{2}{L \lambda_{0}} \cdot \frac{\lambda_{0} L^{3}}{3 L}=\frac{2}{3} L .
$$

Note that there is no dependence on λ !
Example 5.2 (Triangular sheet). Consider a triangular sheet of height h and base b, of uniform density ρ. We write

$$
\vec{R}=\frac{1}{M} \cdot \int \underbrace{\rho \mathrm{~d} V}_{\mathrm{d} M} \vec{r} .
$$

We have that $\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$. We will assume that it is negligibly thin, so let $\mathrm{d} z=0$. This means we can write mass as $M=\rho \mathrm{d} x \mathrm{~d} y:=\rho A$, where A is the area of the sheet. We can now compute its center of mass:

$$
\begin{aligned}
X_{c} & =\frac{1}{A} \iint \mathrm{~d} x \mathrm{~d} y x=\frac{h b}{2} \int \mathrm{~d} x \cdot x \cdot \int_{0}^{\frac{h}{b} x}=\frac{2}{3} b \\
Y_{c} & =\cdots=\frac{h}{3}
\end{aligned}
$$

Thus, the center of mass is $\left(X_{c}, Y_{c}\right)=\left(\frac{2}{3} b, \frac{h}{3}\right)$.

5.3 Variable Mass Problems

We define momentum as $P(t)=M \cdot v$, and $\frac{\mathrm{d}}{\mathrm{d} t} P(t)=F$. A common technique to approaching problems involving variable mass is to approach it first via infinitesimal changes in different variables over some Δt, then bring $\Delta t \rightarrow 0$ to find F. Generally, though, we have that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} P=\frac{\mathrm{d}}{\mathrm{~d} t}(M v)=\frac{\mathrm{d} M}{\mathrm{~d} t} v+M \frac{\mathrm{~d} v}{\mathrm{~d} t} M=\dot{M} v+M \dot{v}=F
$$

Example 5.3. Consider a cart of mass M, collecting rain at a rate $\frac{\mathrm{d} m}{\mathrm{~d} t}=\sigma$, and traveling at a constant velocity v. What force must we apply for this constant velocity to persist, if any? Consider its momentum at some time t, and
swiftly later at $t+\Delta t$:

$$
\begin{aligned}
& P(t)=M v \\
& P(t+\Delta t)=(M+\Delta) v \\
& \lim _{\Delta t} \frac{\Delta P}{\Delta t}=\lim \frac{\Delta m}{\Delta t} v \Longrightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=\frac{\mathrm{d} m}{\mathrm{~d} t} v=\sigma v=F
\end{aligned}
$$

Say, now, we let $F=0$. We would then have, setting M_{c} as the mass of the cart alone,

$$
\begin{aligned}
P(t) & =\left(M_{c}+\sigma t\right) v \\
P(t+\Delta t) & =\left(M_{c}+\sigma t+\sigma \Delta t\right)(v+\Delta v) \\
& \Longrightarrow \Delta P=\sigma v \Delta t+\left(M_{c}+\sigma t\right) \Delta v=0 \\
& \Longrightarrow \int \mathrm{~d} t \frac{\sigma}{M_{c}+\sigma t}=-\int \mathrm{d} v \frac{1}{v} \\
& \Longrightarrow v=v_{0} \frac{M_{c}}{M_{c}+\sigma t}
\end{aligned}
$$

5.3.1 Rocket Motion

Consider a rocket of mass m moving at velocity \vec{v} and expelling fuel of mass Δm, which leaves the rocket at some velocity Δu. We can write:

$$
\vec{P}(t)=m \vec{v} ; \quad \vec{P}(t+\Delta t)=(m-\Delta m)(\vec{v}+\Delta v)+\Delta m(\vec{u}+\vec{v}+\Delta v)
$$

Working out the differentials, this yields the famous rocket equation

$$
\vec{F}=m \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t}-\frac{\mathrm{d} m}{\mathrm{~d} t} \vec{u}
$$

Example 5.4 (Rocket Eqn: Free space). $\vec{F}=0 \Longrightarrow m \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t}=\frac{\mathrm{d} m}{\mathrm{~d} t} \vec{u} \Longrightarrow \mathrm{~d} \vec{v}=\vec{u} \frac{\mathrm{~d} m}{m} \Longrightarrow \overrightarrow{v_{f}}=-\vec{u} \ln \left(\frac{m_{0}}{m_{f}}\right)$.
Example 5.5 (Rocket Eqn: Force due to gravity). $F=m g=m \frac{\mathrm{~d} \vec{u}}{\mathrm{~d} t}-\vec{u} \frac{\mathrm{~d} m}{\mathrm{~d} t} \Longrightarrow \overrightarrow{v_{f}}=g t-\vec{u} \ln \left(\frac{m_{0}}{m_{f}}\right)$
Example 5.6 (Rope falling on a scale). Consider ${ }^{4}$ a rope of mass m that is held above a scale such that part of it is resting on the scale. What does the scale read when the rope is left to fall?

[^1]
6 Work \& Energy

6.1 Introduction: 1 Dimension

Consider force as a function of position, $\vec{F}(\vec{r})=m \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t}$. We can simplify, in one direction,

$$
\begin{aligned}
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m \frac{\mathrm{~d} v}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x^{*}}{\mathrm{~d} t} & =F(x) \\
\Longrightarrow \int_{v_{0}}^{v} \mathrm{~d} v^{*} v^{*} & =\int_{x_{0}}^{x} \mathrm{~d} x^{*} F\left(x^{*}\right) \\
\underbrace{\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}}_{\Delta \mathrm{KE}} & =\underbrace{\int_{x_{0}}^{x} \mathrm{~d} x^{*} F\left(x^{*}\right)}_{:=\text {Work }}
\end{aligned}
$$

This derives the Work-Energy Theorem, ie

$$
\Delta \mathrm{KE}=W
$$

Example 6.1 (Work due to gravity). Consider $F=\vec{g}$. We can write

$$
\frac{1}{2} m v_{1}^{2}-\frac{1}{2} m v_{0}^{2}=\int_{z_{0}}^{z_{1}}-m g \mathrm{~d} z=-m g\left(z_{1}-z_{2}\right)
$$

Assume we end at zero velocity $v_{1}=0$ and define our "start" as zero displacement $z_{0}=0$, then we have

$$
z_{1}=\frac{v_{0}^{2}}{2 g}
$$

ie, the final position has no dependence on mass.

6.2 Extension to Higher Dimensions

We wrote previously $\vec{F}(\vec{r})=m \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t}$, a vector valued function with vector valued arguments. We can manipulate this into a nicer form akin to the 1-dim case as follows;

$$
\begin{array}{r}
\vec{F} \cdot \mathrm{~d} \vec{r}=m \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t} \cdot \mathrm{~d} \vec{r} \\
\star \frac{\mathrm{~d} \vec{r}}{\mathrm{~d} t}=\vec{v} \Longrightarrow \mathrm{~d} \vec{r}=\mathrm{d} t \vec{v} \star \\
\oint_{R} \vec{F} \cdot \mathrm{~d} \vec{r}=m \int_{R} \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t} \cdot \vec{v} \not d t
\end{array}
$$

Note that, we are "canceling" the differentials rather informally, but with an equivalent result as properly taking a double integral over time as well as distance. Note that, as \vec{r} is some arbitrary curve/trajectory in space, we are "formally" taking a line integral, hence the \oint. We call the trajectory we are integrating over R; say it has endpoints a, b. We can then simplify

$$
\oint_{R} \vec{F} \cdot \mathrm{~d} \vec{r}=m \int_{a}^{b} \mathrm{~d} \vec{v} \vec{v}=\frac{1}{2} m\left(v_{a}^{2}-v_{b}^{2}\right)
$$

where our RHS is the familiar KE. Thus,

$$
\oint_{R} \vec{F} \cdot \mathrm{~d} \vec{r}=\Delta \mathrm{KE}=W
$$

Generally, the LHS can't necessarily be integrated but we can make some simplifying observations. First $\mathrm{d} \vec{r}$ is always tangent to the trajectory \vec{R}, as should be familiar from the definition of a derivative. We can break down the force components along a given trajectory as the parallel and perpendicular components to the trajectory at a given point;

$$
\vec{F}=F_{\|}+F_{\perp} \Longrightarrow \vec{F} \cdot \mathrm{~d} r=\left(F_{\|}+F_{\perp}\right) \cdot \mathrm{d} r .
$$

However, by definition, the dot product of a vector with a perpendicular is equal to zero, and thus $\mathrm{d} r \cdot F_{\perp}=0$, and we thus need only be concerned with the parallel components of force.
Example 6.2 (Inverse Square Field). We have $F(r)-\frac{G m M}{r^{2}}$. We can write the work done on a particle to escape the field as

$$
\begin{aligned}
W & =\lim _{r \rightarrow \infty} \int_{R_{E}}^{r} \mathrm{~d} r^{*}\left(\frac{-G m M}{r^{* 2}}\right) \\
& =\left.\frac{G m M}{r}\right|_{R_{E}} ^{\infty}=-\frac{G m M}{R_{E}}
\end{aligned}
$$

We can use this to find the escape velocity v_{e}, ie the initial velocity needed for a particle to just escape such a field;

$$
\begin{aligned}
W=\Delta K E & =\frac{1}{2} n v_{f}^{2}-\frac{1}{2} m v_{e}^{2} \\
& =\frac{G m M}{R_{E}} \Longrightarrow v_{e}=\sqrt{2 \frac{G M}{R_{E}}}=\sqrt{2 g R_{E}}
\end{aligned}
$$

Recalling that $g:=\frac{G M}{R_{E}^{2}}$.
Example 6.3 (Inverted Pendulum). A string of length l is attached to a vertical wall with a mass m at its end. Given an initial angular displacement of φ_{0}, we can write:

$$
\vec{F} \cdot \mathrm{~d} \vec{r}=\underbrace{\vec{T} \cdot \mathrm{~d} \overrightarrow{\vec{r}}}_{\perp \text { motion }}+m \vec{g} \cdot \mathrm{~d} \vec{r}
$$

The \|| component of $m \vec{g}$, the only relevant component on the RHS, is simplymg $\sin \varphi$. We can also rewrite $\mathrm{d} \vec{r}$ to have a solvable integral by noting the relationship between arc length and radius, $s=l \varphi \Longrightarrow \mathrm{~d} \vec{r}=l \mathrm{~d} \varphi$. Substituting this in:

$$
\begin{aligned}
\oint \mathrm{d} \vec{r} \cdot \vec{F} & =\int_{\varphi_{0}}^{\varphi} \mathrm{d} \varphi^{\prime} m g l \sin \varphi^{\prime} \\
& =\left.m g l\left(-\cos \varphi^{\prime}\right)\right|_{\varphi_{0}} ^{\varphi} \\
& =m g l\left(\cos \varphi_{0}-\cos \varphi\right)
\end{aligned}
$$

Example 6.4 (Constant Uniform Force).

$$
\begin{aligned}
\vec{F}=F_{0} \hat{m} \Longrightarrow \oint \vec{F} \cdot \mathrm{~d} \vec{r} & =F_{0} \oint \mathrm{~d} \vec{r} \cdot \hat{m} \\
& =F_{0} \cdot \hat{m} \cdot \oint_{a}^{b}[\hat{i} \mathrm{~d} x+\hat{j} \mathrm{~d} y+\hat{k} \mathrm{~d} z] \\
& =F_{0} \hat{m}\left[\left(x_{b}-x_{a}\right) \hat{i}+\left(y_{b}-y_{a}\right) \hat{j}+\left(z_{b}-z_{a}\right) \hat{k}\right] \\
& =F_{0} \hat{m}\left(\mathbf{r}_{\mathbf{b}}-\mathbf{r}_{\mathbf{a}}\right)
\end{aligned}
$$

6.3 Force Fields

In many of the examples of the previous section, the work done over an area depending solely on the force at the starting and ending points; this begs the question, in what situations is the work done independent of the path taken? This is equivalent to asking how can we tell if a force is conservative?
Consider some path \vec{r} from a point \vec{r}_{a} to \vec{r}_{b}. If we consider a and b to be the same point (ie, we are in a loop), then we can write

$$
\oint_{a}^{b} \vec{F} \cdot \mathrm{~d} \vec{r}=f\left(\vec{r}_{b}\right)-f\left(\vec{r}_{a}\right)=0
$$

Consider the following theorem:
Theorem 6.1 (Stoke's Theorem).

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\iint(\nabla \times \vec{F}) \mathrm{d} \vec{s}
$$

(read: the line integral of a vector field over a loop is equal to the integral of the perpendicular components of the curl of that field over the surface enclosed by the loop in question.)

We define curl $\vec{F}:=\nabla \times \vec{F}$. From Stoke's Thm, then, if we require the LHS to be zero, then $\boldsymbol{\nabla} \times \vec{F}=0$.

7 Collisions \& Conservation Laws

7.1 2D

Consider two balls of mass m_{1}, m_{2} initially traveling at velocities of v_{1}, v_{2} respectively, in the x-direction solely. Conservation of momentum states that momentum, that is, $\vec{P}=m \vec{v}$ must be conserved following a collision. Note the vector notation: this is not accidental. Momentum must be conserved vectorially, that is, direction-wise. In our standard example, we would write

$$
\begin{aligned}
& {[x] \quad m_{1} v_{1}=m_{1} v_{1}^{\prime} \cos \theta+m_{2} v_{2}^{\prime} \cos \phi} \\
& {[y] \quad 0=m_{1} v_{1}^{\prime} \sin \theta-m_{2} v_{2}^{\prime} \sin \phi}
\end{aligned}
$$

Where θ, ϕ are the angles of reflection from the horizontal the balls experience respectively. Note that we have four unknowns in this case, $v_{1}^{\prime}, v_{2}^{\prime}, \theta, \phi$, but only 2 equations relating them. Under certain assumptions of lack of friction, etc, we can also assume that kinetic energy is conserved; this would then be called a elastic collision (think that the balls "bounce"; they don't stick together, as this would require some other force to keep them together). This allows us to derive another equation:

$$
\frac{v_{1}^{\prime}}{v_{1}}=\frac{m_{1}}{m_{1}+m_{2}}\left(\cos \theta \pm \sqrt{\cos ^{2} \theta-\left(\frac{m_{1}^{2}-m_{2}^{2}}{m_{1}^{2}}\right)}\right)
$$

which follows directly form the equation for kinetic energy applied to the before/after collision velocities. The square root in this equation gives us a few different cases:

1. $m_{1}>m_{2} \Longrightarrow \cos ^{2} \theta \geq 1-\frac{m_{2}^{2}}{m_{1}^{2}}$, indicating that θ must be restricted to relatively small angles.
2. $m_{1}<m_{2} \Longrightarrow \sqrt{\cdots} \in \mathbb{R}$, that is, there is no restriction on θ.
3. $m_{1}=m_{2} \Longrightarrow v_{1}^{\prime}=v_{1} \cos \theta=v_{1}^{\prime}+v_{2}^{\prime} \cos (\theta+\phi) \Longrightarrow v_{2}^{\prime} \cos (\theta+\phi)=0 \Longrightarrow \theta+\phi=\frac{\pi}{2}$.

7.2 Centre of Mass Frame

Often, it is inconvenient to do the analysis above, even with only two bodies, since we have to worry about constantly tracking several measurements over time. Instead, it is often helpful to consider the movement of the centre of mass of a system. The center of mass coordinate, generally, of n bodies is calculated

$$
\mathbf{R}=\frac{\sum_{i}^{n} m_{i} \mathbf{r}_{i}}{\sum_{i}^{n} m_{i}}
$$

where \mathbf{P}, M are measurements of the entire system now, rather than individual quantities. From here, we can consider the velocity of the center of mass by computing

$$
\mathbf{P}=M \mathbf{V} \Longrightarrow \mathbf{V}=\frac{\mathbf{P}}{M}
$$

Consider this the velocity of the center of mass; the other particles move at a given lab velocity relative to the so-called lab frame, and have another velocity relative to the moving center of mass, that is,

$$
\mathbf{v}_{i}=\mathbf{v}_{i}^{c}+\mathbf{V}
$$

where we use ${ }^{c}$ to denote quantities in the center of mass frame. Note, here, that masses initially at rest will appear to move at $-\mathbf{V}$ in the c.o.m. We can also consider other quantities in c.o.m.:

$$
m_{i} \mathbf{v}_{i}^{c} \equiv \mathbf{P}_{1}^{c}=m_{i}\left(\mathbf{v}_{i}-\mathbf{V}\right)=m_{i}\left(\mathbf{v}_{i}-\frac{\mathbf{P}}{M}\right)=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \equiv \underbrace{\mu}_{\text {reduced mass }}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)
$$

7.2.1 Angles

Recall that in the lab frame, we had two angles to worry about, θ, ϕ. Now, we have only 1 , and thus reduced cases to worry about; the angle that the velocity of the center of mass \mathbf{V} travels post-collision, θ_{c}, can be derived

$$
\tan \theta=\frac{\sin \theta_{c}}{\cos \theta_{c}+\frac{m_{1}}{m_{2}}}
$$

giving us the cases

1. $m_{1}<m_{2}: \frac{V}{v_{1}^{c^{\prime}}}=\frac{V}{\frac{m_{2} v_{1}}{m_{1}+m_{2}}}=\frac{m_{1}}{m_{2}}<1 \Longrightarrow V<v_{1}^{c^{\prime}}$, hence no restriction on θ.
2. $m_{1}>m_{2}: \frac{m_{1}}{m_{2}}>1 \Longrightarrow V>v_{1}^{c^{\prime}}$, hence we have a restriction on θ

7.2.2 Conservation of Energy in CM

Consider a two-body elastic collision. In the CM frame:

$$
\begin{array}{rr}
\frac{1}{2} m_{1}\left(v_{1}^{c}\right)^{2}+\frac{1}{2} m_{2}\left(v_{2}^{c}\right)^{2}=\frac{1}{2} m_{2}\left(v_{1}^{c^{\prime}}\right)^{2}+\frac{1}{2} m_{2}\left(v_{2}^{c^{\prime}}\right)^{2} & \text { (Energy Conservation) } \\
\left|m_{1} \mathbf{v}_{1}^{c}\right| & =\left|m_{2} \mathbf{v}_{2}^{c}\right| \quad \text { (Magnitudes, pre-collision) } \\
\left|m_{1} \mathbf{v}_{1}^{c^{\prime}}\right|=\left|m_{2} \mathbf{v}_{2}^{c^{\prime}}\right| \quad \text { (Magnitudes, post-collisions) }
\end{array}
$$

Now, we can rewrite this in terms of the original velocities given the conservation of energy in the lab frame:

$$
\begin{aligned}
K^{\mathrm{lab}} & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} \\
& =\underbrace{\frac{1}{2} m_{1}\left(v_{1}^{c}\right)^{2}+\frac{1}{2}\left(v_{2}^{c}\right)^{2}}_{K^{\mathrm{cm}}}+\underbrace{\frac{1}{2}\left(m_{1}+m_{2}\right)(V)^{2}}_{\text {"Energy" of CM moving }}+\frac{1}{2}\left(m_{1} v_{1}^{c}+m_{2} v_{2}^{c}\right) V \\
\Longrightarrow K^{\mathrm{lab}}=K^{\mathrm{cm}}+\frac{1}{2} \mathbf{M} \mathbf{V}^{\mathbf{2}} &
\end{aligned}
$$

That is, we can consider that there is always some energy, $\frac{1}{2} \mathrm{MV}^{2}$, which we note is constant, that is locked in the motion of the center of mass.

8 Rotational Motion

8.1 Angular Momentum

Definition 8.1 (Angular Momentum). The angular momentum of a point mass is defined by

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}
$$

where \mathbf{r} is the position of the vector to a given origin and \mathbf{p} is the momentum of the mass. Equivalently,

$$
|\mathbf{L}|=|\mathbf{r}||\mathbf{p}| \sin \theta
$$

where θ is the angle between the \mathbf{r} and \mathbf{p} vectors.

8.2 Torque

Definition 8.2 (Torque). Torque is defined on a point mass

$$
\tau=\mathbf{r} \times \mathbf{F}
$$

that is, a force \mathbf{F} acts on a particle at a distance \mathbf{r}.

Make note of the following:

$$
\begin{aligned}
\mathbf{L} & =\mathbf{r} \times \mathbf{p} \\
\Longrightarrow \frac{\mathrm{d} \mathbf{L}}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{r} \times \mathbf{p}) \\
& =\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t} \times \mathbf{p}+\mathbf{r} \times \frac{\mathrm{d} \mathbf{p}}{\mathrm{~d} t} \\
& =\mathbf{v} \times m \mathbf{v}+\mathbf{r} \times \mathbf{F} \\
& =\mathbf{r} \times \mathbf{F} \equiv \tau
\end{aligned}
$$

That is, the time derivative of angular momentum is torque.

8.2.1 Central Forces

Definition 8.3 (Central Force). A central force is one of the form

$$
\mathbf{F}=f(r) \hat{r}
$$

that is, a function of the distance from a particular radius, which acts radially.
Consider the torque done by an arbitrary central force:

$$
\tau=\mathbf{r} \times \mathbf{F}=\mathbf{r} \times f(r) \hat{r}=0
$$

This implies, then, that $\frac{\mathrm{d} \mathbf{L}}{\mathrm{d} t}=0$ as well, that is, angular momentum is a constant and thus we are restricted to purely planar, 2D movement.

8.2.2 Torque on Extended Objects

Consider an arbitrary rigid body and consider an infinitesimal portion of its mass. We can write

$$
\begin{array}{r}
\vec{\tau}=\sum_{i} \overrightarrow{\tau_{i}}=\sum_{i} \overrightarrow{r_{i}} \times m_{i} \vec{g} \\
\equiv \vec{R} \times M \vec{g}
\end{array}
$$

where $\vec{R}=\frac{1}{M} \sum_{i} m_{i} \vec{r}_{i}$ and $M=\sum_{i} m_{i}$.

8.3 Moments of Inertia

Now suppose said body rotates about the z-axis at a constant ω. We can write the angular momentum of the object as

$$
\begin{aligned}
L_{z}^{i}=\overrightarrow{r_{i}} m_{i} \times \vec{v} & =r_{i} m_{i} v \cos \phi=\rho_{i} m_{i} v=\rho_{i}^{2} m_{i} \omega \\
& \Longrightarrow L_{z}=\left(\sum_{i} m_{i} \rho_{i}^{2}\right) \omega \equiv I_{z} \omega
\end{aligned}
$$

where we define, more precisely, the moment of inertia of the body about the z axis as

$$
I_{z}=\sum_{i} m_{i} \rho_{i}^{2}=\int \eta \mathrm{d} V\left(x^{2}+y^{2}\right)
$$

noting that the final equal defines η as the density of the object, $\eta=\frac{\mathrm{d} m}{\mathrm{~d} V}$. Note too that this final equation was rewritten explicitly in cartesian coordinates which may not always be the most convenient coordinate system.

Abstractly, the moment of inertia of a body can be thought of as a rotational analog of mass, or its ability to
"resist" rotations by an external torque.
Example 8.1 (Moment of Inertia of a Thin Hoop). As with most of these computations, we must rewrite $\mathrm{d} V$ in the integral in appropriate coordinates; cylindrical work best here, and we have

$$
\mathrm{d} V=\rho \mathrm{d} \rho \mathrm{~d} \varphi \mathrm{~d} z
$$

Taking the density to be some constant η, the radius of the hoop to be R, the "radial width" to be ΔR, and the thickness to be t, we can write

$$
\begin{aligned}
I_{z}=\int \eta \mathrm{d} V\left(x^{2}+y^{2}\right) & =\eta \int_{R}^{R+\Delta R} \mathrm{~d} \rho \rho^{3} \int_{0}^{t} \mathrm{~d} z \int_{0}^{2 \pi} \mathrm{~d} \varphi \\
& =\eta\left[\frac{(R+\Delta R)^{4}-R^{4}}{4}\right] \cdot t \cdot 2 \pi
\end{aligned}
$$

Substituting in $\eta=\frac{M}{V}$, and taking ΔR and to be negligible in relation to R, this simplifies to

$$
I_{z}=M R^{2} .
$$

Remark 8.1. This general method of find moments of inertia is widely applicable; it can be generalized:

1. Write $\mathrm{d} V$ in context-appropriate coordinates.
2. Write $\left(x^{2}+y^{2}\right)$ (or whatever your notion of "distance" is in your context) in your new coordinates.
3. Integrate; if η constant, you can substitute and simplify afterwards using $\eta=\frac{M}{V}$. If η not-constant, you will have to make sure you also convert it to your chose coordinate system before evaluating.

Theorem 8.1 (Parallel Axis Theorem). Given the moment of inertia of a body about its center I_{c} and about, say, the z-axis, the moment of inertia of the body about an axis z^{\prime}, such that z^{\prime} parallel to z and z^{\prime} is a distance h from z, is given by

$$
I^{\prime}=I_{c}+M h^{2}
$$

Theorem 8.2 (Perpendicular Axis Theorem).

8.4 Conservation of Angular Momentum

8.5 Rotational \& Translational Motion

8.6 Slipping \& Rolling

9 Lagrangian Mechanics

The previous sections have all taken a Newtonian approach to mechanics, centered on laws relating forces in a system. This section will "derive" and review a different perspective on mechanics, called Lagrangian Mechanics, centered on the concept of minimization of energies; forces "no longer exist".

9.1 Introduction to Calculus of Variations

10 More on Angular Motion - Generalizations

11 Central Forces

11.1 Conic Sections

11.2 Kepler's Laws

[^0]: ${ }^{1}$ None of the other "components" of acceleration are present in the constant angular velocity case because (1) $\ddot{r}=0$, ie no radial acceleration, so the radial and coriolis components are zero, and (2) $\dot{\theta}=\omega \Longrightarrow \ddot{\theta}=0$, so the tangential acceleration is zero, leaving only the centripetal acceleration.
 ${ }^{2}$ See https://notes.louismeunier.net/Calculus $\% 20 \mathrm{~A} \% 2 \mathrm{C} \% 20 \mathrm{~B} /$ calculus.pdf\#page $=85$ for a different perspective on this topic.
 ${ }^{3} \Longrightarrow$ conservation of momentum ...

[^1]: ${ }^{4}$ See this video

