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Course Summary:

Covers classical mechanic topics including applying Newton’s Laws, the Work-Energy Theorem, conservation of

momentum, oscillations, frames of reference, centres of mass, orbits, Kepler’s Laws, Lagrangian mechanics. Large

Calculus focus, representing situations functionally with differential equations, graphical analysis of trends.
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1 Introduction & Notations

Content in this section provides a brief overview of the course, as well as basic problem solving, vector algebra, etc. It is
safe to skip without loss of continuity.

1.1 Vectors

This course deals mainly with scalars (magnitude) and vectors (magnitude and direction). We define algebra on
vectors, briefly:

• A+B = B+A (commutativity of addition)

• A+ (B+C) = (A+B) +C (associativity of addition)

• c(dA) = (cd)A (associativity of scalar multiplication)

• (c+ d)A = cA+ dA (Distributivity of scalar multiplication)

• c(A+B) = cA+ cB (Distributivity of scalar multiplication)

and the operators:

• A ×B = C s.t. |C| = |A||B| sin θ, where θ is the angle between A and B, and C is perpendicular to both

A and B. This is equivalent to computing det


i j k

Ax Ay Az

Bx By Bz

. This cross product is anti-commutative,

meaning A×B = −B×A. Additionally, note thatA×A = 0.

• A ·B = C = |A||B| cos θ, whereC is a scalar. Note thatC = 0when θ = π/2, ieA andB are perpendicular.

1.2 Law of Cosines

Consider a (planar) triangle constructed of sides C = A+B.We can write

C2 = C2
x +C2

y

= (|A| − |B| cos θ)2 + (|B| sin θ)2

= |A|2 + |B|2 − 2|A||B| cos θ
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1.3 Perspectives on the Cross Product

A⃗× B⃗ = (Axi+ Ayj+ Azk)× (Bxi+Byj+Bzk)

= AxBy(i× j) + · · ·

= (AyBz − AzBy)i+ · · ·

≡ (A×B)k =
3∑

i=1

∑
j = 13EijkAiBj

Where Eijk =


1; ijk even permutation of 123

−1; ijk odd permutation of 123

0; otherwise

1.4 Describing a Particle in Space in Polar Coordinates

Consider a particle moving through space with a constant angular velocity dθ
dt

= ω. We can describe this movement
in terms of planar coordinates as r(t) = r0 cos(ωt)i + r0 sin(ωt)j. Differentiating with respect to time, we obtain
v(t) = −r0ω(sin(ωt)i − cos(ωt)j). Notice that r · v = 0∀t; this should be familiar, as the velocity vector is
always perpendicular to the position vector in purely circular motion. Differentiating again, we obtain a(t) =
−r0ω

2(cos(ωt)i + sin(ωt)j) = −ω2r(t). In other words, the acceleration is always opposing the position vector
(given the negative sign), and is proportional to the square of the angular velocity.

Assume now, instead, that the particle moves arbitrarily, described by a function r(t). In polar coordinates,
this position vector is always travelling along the vector r̂, with magnitude r, and we can write r(t) = r · r̂.
Differentiating:

v(t) =
dr

dt
=

d

dt
(r · r̂)

=
dr

dt
r̂+ r

dr̂

dt

= ṙr̂+ r
d

dt
(cos θi+ sin θj)

= ṙr̂+ r (− sin θi+ cos θj) θ̇

= ṙr̂+ rθ̇θ̂
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Recalling that

r̂ = cos θi+ sin θj

θ̂ = − sin θi+ cos θj

. Differentiating again:

a(t) =
dv

dt
=

d

dt

(
ṙr̂+ rθ̇θ̂

)
= r̈r̂+ ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ + rθ̇(−r̂)

=

 r̈︸︷︷︸
radial

− rθ̇2︸︷︷︸
centripetal

 r̂+

 2ṙθ̇︸︷︷︸
coriolis

+ rθ̈︸︷︷︸
tangential

 θ̂

we obtain a decomposition of the acceleration vector into radial (̂r) and tangential (θ̂) components, labelled
accordingly. Note that the centripetal acceleration, labelled, is the same as the acceleration in circular motion
mentioned previously.12

1.5 Newton’s Laws of Motion

N1: “in absence of external force, a body at rest remains at rest, and a body in motion remains in motion, with the
same speed & same direction”

This law defines intertial frames, ie ones in which the law holds.

N2: F⃗ = ma⃗

N3: “if a body b applies a force on body a, then a applies a force on b such that F⃗a = −F⃗b (equal and opposite)” 3

Example 1.1. Consider two blocks A, B where A lies atop B which all lie upon “the earth”.

A experiences the forceWA due to gravity and the force F1 back from B.

B experiences the normal force N from the table, the force of gravityWB , and finally the force F2 due to A.

We can write (from N2)
F⃗1 + W⃗A = mAa⃗A

and similarly
N⃗ + W⃗B + F⃗2 = mBa⃗B

Static situation =⇒ a⃗A = a⃗B = 0. We can further simplify writing F1 = mAg (N2), and finally

N = WA +WB = (mA +mB)g.

Example 1.2. Consider a massm1 laying on a table, connected via a string to a massm2 hanging off the table, where
the string is of small mass and is under a tension T . (Looking at a functionally massless stirng, we can consider there

1None of the other “components” of acceleration are present in the constant angular velocity case because (1) r̈ = 0, ie no radial
acceleration, so the radial and coriolis components are zero, and (2) θ̇ = ω =⇒ θ̈ = 0, so the tangential acceleration is zero, leaving only
the centripetal acceleration.

2See https://notes.louismeunier.net/Calculus%20A%2C%20B/calculus.pdf#page=85for a different perspective on this topic.
3 =⇒ conservation of momentum . . .
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to be a constant tension as we can say T − T ′ = δma =⇒ T − T ′ = 0 =⇒ T = T ′, where T, T ′ is the tension on
a particular segment of the string in opposing directions).

Onm1, we have the normal force N , tension T , and weightm1 · g.

Onm2, we have the weightm2 · g, the tension T (equal throughout string as explained above).

Together, we can write (N2; taking x to represent a motion “left” and z to represent a motion “down”)

−T = m1ẍ

and
m2g − T = m2z̈.

Noting that the string must “retain” its length we can write

l(t) = x(t) + z(t),

where x and z represent the length of the string in the x/z axes. However, as l must stay constant, we can differentiate
twice wrt time to obtain

0 = ẍ+ z̈.

All together, then we have

ẍ =
−m2g

m1 +m2

.

Integrating twice, we have

x(t) =
−m2g

m1 +m2

· t
2

2
.

Example 1.3. Consider a massm1 connected to a string which lies along a pulley P1, which then attaches to the center
of pulley P2, which has a string whicch, on one end, is attached to a massm2, and is grounded in the other.

Onm1, we have tension T and the weightm1 · g.

Onm2, we have the weightm2 · g and the tension T ′ (no reason for T = T ′; strings aren’t connected).

Consider P1 - it is nailed to the wall at its center, and experiences some F (“up”) from the nail, as well as the tension
T1 down (twice).

On P2, we have the tension T1 (“up”) and the tension T2 (“down”, “twice”).

We can write

T1 −W1 = m1a1

T2 −W2 = m2a2

T1 − 2T2 = mP2��aP2 =⇒ T1 = 2T2

As last time, we can use the fact that the strings cannot stretch. Considerm1 to be at height y1, P1 to be at height yP1 ,
P2 to be at height yP2 , andm2 to be at height y2.

We can then take the length l1 of the string about P1 as

l1 = (yP1 − y1) + (yP2 − y2) + πRP1
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Differentiating twice wrt time, we have

0 = a1 + aP2 =⇒ a1 = −aP2 .

Analyzing P2 similarly, we will obtain
a2 = 2aP2 .

All together, we have

a1 =

(
2m2 −m1

4m2 +m1

)
g.

Consider a collection of particles. The force on any particular particle, say 1, we can denote

F⃗1 = F⃗12 + F⃗13 + · · ·+ F⃗1n + F⃗ ext
1 .

Notice that any force F⃗nm = −F⃗mn, by N3. Thus, if we add all the forces on all the particles in the bag, we will
always have a “pairing” of forces such that each F⃗mn is “canceled” by another, leaving behind only the external
forces, ie

F⃗ ext =
∑
i

F⃗ ext
i .

Say there are no external forces; then, we have

∑
i

mia⃗i = 0

d

dt

∑
i

miv⃗i = 0.

And thus, we have conservation of momentum.

1.6 Projectile Motion

Say we have a particle with an initial velocity v0 launched at an angle θ. This particle experiences just one force,
mg, and by N2 we have

��mÿ = −��mg.

Integrating, we have

y(t) = y(t = 0) + v0 sin θ︸ ︷︷ ︸
vertical component of v0

t− gt2

2
.

In the x, we havemẍ = 0, x(t) = v0 cos θt. From here, we can rewrite x(t) as t as a function of x and substitute
into y for a function y = f(x). This gives

y =
v0 sin θx

v0 cos θ
− g

2

x2

v20 cos
2 θ

(= ax− bx2)
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1.7 Forces

We (generally) have:

• 2 “protons” @ 1 fermi (fm = 10−15m)

• Nuclear strong, 2× 103N

• E-M, 2× 102N

• Weak force, 2× 10−11N

• Gravity, 2× 10−34N

We have the force between two point masses,ma, mb, at a distance rab:

F⃗ =
−Gmamb

r2ab
,

noting that the negative sign =⇒ gravity attractive, and where the gravitational constant G = 6.67× 10−11 N·m2

kg2 .

We consider some “extended object”, a spherical shell of massM a distance r (center) from a “smaller” objectm.
We can subdivide this shell into infinitesimal pieces, then sum (integrate) their respective forces using the formula
above to find the total force.

Say the distance between a particular “subsection” of the sphere is s from m, and the change in angle in the
shell section we have d

dθ
, with θ the angle from the shell section to r, and φ is the angle between s and r.

We have

F =
−GmdM

s2
· cosφ.

. . .

2 Statics

We have static motion when the net external force is 0. Clearly, then,

∑
Fext = m��⃗a = 0 ⇐⇒ a⃗ = 0.

When analyzing a system we thus need to balance:

• Forces, include

– Tension;
– Normal (⊥ to surface, N3);
– Friction (opposing direction of motion; Fk = µkN,Fs ≤ µsN , kinetic vs static frictions resp.);
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– Gravity (Fg =
GMm
R2 =⇒ Fg = mg, on earth);

– Spring (Hooke’s Law, F⃗s = −kr⃗ )

• Torques, τ⃗ = r⃗ × F⃗ . When dealing with rotational motion, sums of torques must be 0 as well to conserve
stasis.

Example 2.1. Consider a ladder of length l and massm leaning against a frictionless wall with another end on a floor
with coefficient of friction µ. Assuming the center of gravity is at the geometric center of the ladder ( l

2
), we can analyze

the system as follows.
Take N1, N2 to represent the normal forces on the ladder from the floor and the wall resp, and Ff as the friction force
of the floor. We summarize the forces in the [x] and [y], and the torques:

[y] 0 = N1 −mg =⇒ N1 = mg (1)

[x] 0 = N2 − Ff =⇒ N2 = Ff (2)

[τ ] 0 = F⃗ × r⃗
1D
= F · r = mg · l

2
· cos θ︸ ︷︷ ︸

rotation about c.o.m.

− N2 · l sin θ︸ ︷︷ ︸
about ”floor point”

=⇒ N2 =
mg

2 tan θ
(3)

From (1),(2),(3), we can find that the angle required for the ladder to not slip (ie, net forces and net torques sum to zero;
will not slip nor rotate and fall), we require that

tan θ ≥ 1

2µ
.

3 Non-Zero Forces

3.1 Trends of Common Forces

3.2 Generalizing Forces as Functions

Consider the general form of Newton’s Second Law:

F⃗ = ma⃗.

This F⃗ can take a number of forms, depending on its dependence on different variables. Consider;

• Time: F (t) = md2x
dt2

= mdv
dt
. This is separable ODE:

∫
dv = v(t) =

∫
dt

F (t)

m

=⇒ x(t) =

∫
dt v =

∫∫
dt

F (t)

m
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• Position: F (x) = mdv
dt
. We can rewrite our acceleration by the chain rule as dv

dt
= dv

dx
· dx

dt
= dv

dx
v (NB: this

“trick” is very helpful in evaluating physical ODE problems such as this, where the reliance on a particular
function of time is unknown, but can be obtained from physical properties…). We can then write:

m
dv

dx
v = F (x)

m

∫
dv v =

∫
F (x) dx

1

2
mv2

∣∣∣∣
D

=

∫
D

dxF (x) NB: Work-Energy Thm

• Velocity: mdv
dt

= F (v) =⇒ m
∫
dv 1

F (v)
=
∫
dt; we will see this more later.

3.3 Viscous Resistance

Consider some force that is dependent on velocity, F (v) (friction, air resistance for instance, is often approximately
modeled this way). Let’s approximate this force function at small velocities by writing its Taylor Series expansion
about v = 0 (note that higher order termsO(vn) can be consider negligible assuming 0 ≤ v < 1, a typical approach
to this type of small-perturbation analysis):

F (v) = F (0) + v
∂F

∂v

∣∣∣∣
v=0

+
v2

2!
· ∂

2F

∂v2

∣∣∣∣
v=0

+ · · ·+O(vn)

Note that v = 0 =⇒ a = 0 =⇒ F (0) = 0, and thus the first term can be disregarded. Under a further
assumption that v ≪ 1 and remains so, we can eliminate O(n2) terms, and would be left with

F (v) = −v
∂F

∂v

∣∣∣∣
v=0

= −cv,

with c := ∂F
∂v

∣∣
v=0

, a constant. This can be rewritten and solved as a simple ODE;

F (v) = m
dv

dt
= −cv

m

v
dv = −c dt

m ln v = −ct+ k

v(0) = v0 =⇒ k = m ln v0

=⇒ v(t) = v0e
− ct

m

τ :=
m

c
, v(t) = v0e

− t
τ

=⇒ x(t) = x0 + v0τ(1− e−
t
τ )

Example 3.1 (Air resistance ∝ v). Consider a sky diver falling, with some initial velocity v0, under the influence of
gravity Fg downwards (positive) and air resistance Fv upwards (negative). Assuming that air resistance is proportional
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and opposing to velocity, we can write Fv = −cv where c a constant. From Newton’s Second:

∑
F = ma = m

dv

dt
= Fg + Fv = mg − cv∫ v

v0

dv∗
m

mg − ct
=

∫ t

0

dt∗

−m

c
ln

(
mg − cv

mg − cv0

)
= t

v(t) = gτ(1− e−
t
τ ) + v0e

− t
τ , τ :=

m

c

A common follow-up to this analysis is to compute the terminal velocity vt. We will consider two methods to compute
it in this situation.
First, consider the equation we found for v(t). Taking the limit of t → ∞, we have

vt = lim
t→∞

v(t) = lim
t→∞

[
gτ(1−�

��>
0

e−
t
τ ) +��

��*
0

v0e
− t

τ

]
= gτ =

gm

c

Alteratively, consider our original formula,
ma = mg − cv.

Terminal velocity is reached when a = 0; more physically, when the forces in opposing directions completely cancel
each other. Thus, we can solve for v directly;

m · 0 = mg − cv =⇒ mg = cvt =⇒ vt =
gm

c
,

equivalent to our previous computation.

Example 3.2 (Air resistance ∝ v2). Consider the previous example with Fv = −cv2. We can write

∑
F = m

dv

dt
= mg − cv2 =⇒ vt =

√
mg

c
.

A closed form of the position of the trajectory is possible, but difficult.

4 Oscillations

Many natural systems experience oscillations, characterized by some type of force that leads to repetitive motion.
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4.1 Simple Springs

Hooke’s Law states that Fs = −kx, where k is a constant spring coefficient (typically 0 < k < 1), and x is the
displacement from equilibrium. In general, we can write

Fs = m
dv

dt
= m

dv

dx
v = −kx

m

∫
dv v = −k

∫
dx x

m
v2

2
= −k

x2

2

mv = −kx =⇒ v = − k

m
x

Often, we write ω2 := k
m
, the phase of the oscillator.

4.1.1 Series vs Parallel

Consider a spring of coefficient k1 connected end-to-end to a spring of k2, and let x1, x2 represent the equilibrium
points of the spring system resp (where x2 = x1+ equilibrium of spring k2). Consider the springs as massless (or
of being of infinitesimal, negligible mass), so the only forces in question are due to the spring force(s).
At the endpoint of spring 1, we have

F1 : k1x1 = (x2 − x1)k2 =⇒ x2 =

(
k1 + k2

k2

)
x1.

If we consider a mass on the end point of the system, we can write

F = −k2 (x2 − x1)︸ ︷︷ ︸
displacement

= −
(

k1k2
k1 + k2

)
x2

= −keffx2

Note that 1
keff

= 1
k1

+ 1
k2
; this is the relationship between any number of springs connected in series.

Next, consider two springs of k1, k2 each connecting a mass to a wall. We can write the force on the mass,
taking x to represent the displacement of the mass from equilibrium, as

F = −k1x− k2x = −(k1 + k2)x = −keffx,

where keff = k1 + k2; these springs are in parallel.
(Naturally, all of these analyses are under the assumption of no torsion, no gravity, etc (no other external forces))
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4.2 Simple Harmonic Motion

Consider again a spring (k). From N2, we can write:

m
d2v

dt2
= −kx =⇒ mẍ+ kx = 0

=⇒ ẍ+ ω2
0x = 0

This is a (fairly straightforward) second order linear homogenous equation (we will see non-homogenous ver-
sions of this later, when we introduce external forcing, etc.). The typical means of solving these is to assume x(t)
is of the form Aeαt, plug in, and solve for the relevant constants (noting that α ∈ C):

(Aeαt)′′ + ω2Aeαt = 0

��Aα
2
��eαt+ ω2

�
��Aeαt = 0

=⇒ α2 = −ω2 =⇒ α = ±iω, i =
√
−1

Note that all dependence on time cancelled, as desired, as well as A; we are working with a second-order ODE, so
we must have two “free” constants dependent on initial conditions, represented by this A.
Now, we have solutions of the form x(t) = Ae±iωt. This form doesn’t help us much physically, but we can simplify
using Euler’s formula, or, since we are dealing with purely a sign change in our parameters, the definition of
cos(ix) = coshx = ex+e−x

2
=⇒ eiωt+e−iωt

2
= cos(ωt). Generally, then, we can write

x(t) = A cos(ωt+ φ),

where A,φ are constants, typically defined by IVs.
Note that, equivalently, we could have written

x(t) = B sinωt+ C cosωt,

but chose to rewrite in terms of φ for a more intuitive, physical meaning. Specifically, we have

A cosφ = C,A sinφ = −B, tanφ = −B

C
.

Graphically, this means that spring motion is a constant-amplitude sinusoidal wave that will oscillate forever.
Realistically, forces such as friction, gravity, etc would cause a damping force over time and eventually slow the
mass to a halt.

4.3 Damping Forces

Consider a massm connected to a spring k, but now add some form of resistance (typically described as a piston),
where force opposes the motion of the mass and is proportional to velocity. We write Fr = −bv where b a constant.
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Writing the equation of motion:

mẍ = −kx− bv

ẍ+
b

m
ẋ+

k

m
x = 0

≡ ẍ+ γẋ+ ω2x = 0

We now have a second order linear homogenous ode, but with an added ẋ. We can try the same approach, with a
trial solution x(t) = Aeαt:

(Aeαt)′′ + γ(Aeαt)′ + ω2Aeαt = 0

α2 + αγ + ω2︸ ︷︷ ︸
characteristic polynomial

= 0

=⇒ α = −γ

2
±
√

γ2

4
− ω2

We thus have a number of cases based on the discriminant. Let γ̃ = γ
2
.

• underdamped; γ̃2 < ω2 =⇒ discriminant ∈ C, thus α = −γ
2
± i
√

ω2 − γ2

4
.We then have a solution

x(t) = e−γ̃t = A1e
iω̃t + A2e

−iω̃t

=⇒ x(t) = Ae−γ̃t︸ ︷︷ ︸
damping, →0

cos(ω̃t+ φ)︸ ︷︷ ︸
oscillating

As t → ∞, x(t) → 0 because of the damping term. The inverse exponential goes to zero, functionally
diminishing the amplitude of the cosine with time.

• overdamped; γ̃2 > ω2 =⇒ discriminant ∈ R, thus α = −γ̃ ±
√

γ̃2 − ω2 =⇒ α ≤ 0. This yields a purely
exponential solution,

x(t) = Ae−α−t +Be−α+t

since the oscillating term comes from an imaginary number in the exponential. Thus, there is no oscillation,
and the solution tends to zero.

• critically damped; γ̃2 = ω2 =⇒ discriminant = 0, we have only one root, and we thus are missing a
solution case. One can use a new trial solution x(t) = Bte−γ̃t, and after some computation, we have

x(t) = Ae−γ̃t +Bte−γ̃t

Note the linear t term in one of the exponentials. This will persist when looking at x′(t), and will thus
dominate the inverse exponential as t → 0, hence the term “critically damped”, as this type of damping will
bring x(t) to zero the fastest given the same initial conditions and spring constant.
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4.4 Driven Oscillators and Resonance

Consider a spring (k) connected to a massm on one end and to a wall which is moving as a function of time, where
xw(t) represents the location of the wall from equilibrium. We write

xw(t) = x0 cosωt,

ie the wall oscillates. From N2:

mẍ = −kx+ kxw = −kx+ kx0︸︷︷︸
:=F0

cosωt

ẍ+ ω2
0x =

F0

m
cosωt

Solving for x(t):

x(t) = B cos(ω0t+ φ) +
F0

m

(
1

w2
0 − ω2

)
cos(ωt).

This is the general equation for a driven oscillator.
Note too that

lim
ω→ω−

0

= ∞; lim
ω→ω+

0

= −∞,

an effect we call resonance. In reality, of course, some sort of damping (eg friction) makes these not go to infinity,
but grow large/small regardless.

4.4.1 With Damping

Consider
ẍ+ γẋ+ ω2

0x =
F0

m
cosωt,

an equation for a damped, driven oscillator. This can be solved similarly to the previous, and also gives different
damped cases. Consider the underdamped case:

Ae−γ̃t cos(ω̃t+ φ1) +
F0

m
· cos(ωt+ φ2)

[(ω2
0 − ω2)2 + ω2γ2]

1
2

.

When we are near resonance, ω ≈ ω0 =⇒ ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) ≈ 2ω0, so we can approximate the

denominator of the driven part as

[· · · ]
1
2 ≈

[
(ω0 − ω)2 +

(γ
2

)2]
.

This
(
γ
2

)2 term serves as a “regulator” to the resonance effect.
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4.5 Coupled Oscillators

Consider a series of three springs and two equal masses of m between a wall. Let x1 be the displacement of the
leftmost mass, and x2 the displacement of the rightmost. We can write

(i) mẍ1 = −kx1 + k(x2 − x1); (ii) mẍ2 = −k(x2 − x1)− kx2

Adding and subtracting (i),(ii):

ẍ1 + ẍ2 + ω2
0(x1 + x2) = 0; (ẍ1 − ẍ2) + 3ω2

0(x1 − x2) = 0.

We can let y1(t) = x1+x2 and y2(t) = x1−x2, and solve these separately as two homogenous second order ODEs,
then add them back together. These y1, y2 are called the normal modes. This will yields

x1(t) = B+ cos(ω0t+ φ+) +B− cos
(√

3ω0t+ φ−

)
x2(t) = B+ cos(ω0t+ φ+)−B− cos

(√
3ω0t+ φ−

)

We dub ω0,
√
3ω0 the normal frequencies. If both masses are given the same initial displacements, they will

both oscillate at ω0; if they are given the same initial displacement but with opposite signs, they will oscillate at√
3 · ω0.
Note that, while this is being applied in the context of springs, similar ideas can be used in other forces propor-

tional to displacement.

Example 4.1. Take a “coupled” system of pendulums attached to a ceiling, with point masses at their ends and a spring
connecting the two masses. Find their equations of motion and their normal frequencies.

5 Momentum

5.1 Some Derivations

We can write
F⃗ ext =

∑
i

mir̈i = M
¨⃗
R,

where R⃗ is the “center of mass coordinate”., ie

R⃗− 1

M

∑
i

mir⃗i.
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5.2 Center of Mass

Example 5.1 (Linear density). Consider a rod with linear density (the density at a given point is proportional to the
distance along the rod), λ;

λ(s) = λ0

(
S

L

)
=

dm

dx
,

where S is the point along the length. The total mass:

M =

∫
rod

dm =

∫ L

0

dm =

∫ L

0

λ dx =
x2

2
· λ0

L

∣∣∣∣L
0

=
Lλ0

2
.

We can now compute the center of mass X:

X =
1

M

∑
i

ximi
continuous

=
1

M

∫ L

0

dmx =
2

Lλ0

∫ L

0

λ dx =
2

Lλ0

∫ L

0

λ0
x2

L
dx =

2

Lλ0

· λ0L
3

3L
=

2

3
L.

Note that there is no dependence on λ!

Example 5.2 (Triangular sheet). Consider a triangular sheet of height h and base b, of uniform density ρ. We write

R⃗ =
1

M
·
∫

ρ dV︸︷︷︸
dM

r⃗.

We have that dV = dxdydz. We will assume that it is negligibly thin, so let dz = 0. This means we can write mass as
M = ρ dx dy := ρA, where A is the area of the sheet. We can now compute its center of mass:

Xc =
1

A

∫∫
dxdyx =

hb

2

∫
dx · x ·

∫ h
b
x

0

=
2

3
b

Yc = · · · = h

3

Thus, the center of mass is (Xc, Yc) = (2
3
b, h

3
).

5.3 Variable Mass Problems

We definemomentum as P (t) = M ·v, and d
dt
P (t) = F . A common technique to approaching problems involving

variable mass is to approach it first via infinitesimal changes in different variables over some∆t, then bring∆t → 0
to find F . Generally, though, we have that

d

dt
P =

d

dt
(Mv) =

dM

dt
v +M

dv

dt
M = Ṁv +Mv̇ = F.

Example 5.3. Consider a cart of mass M , collecting rain at a rate dm
dt

= σ, and traveling at a constant velocity v.
What force must we apply for this constant velocity to persist, if any? Consider its momentum at some time t, and
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swiftly later at t+∆t:

P (t) = Mv

P (t+∆t) = (M +∆)v

lim
∆t

∆P

∆t
= lim

∆m

∆t
v =⇒ dP

dt
=

dm

dt
v = σv = F

Say, now, we let F = 0. We would then have, settingMc as the mass of the cart alone,

P (t) = (Mc + σt)v

P (t+∆t) = (Mc + σt+ σ∆t)(v +∆v)

=⇒ ∆P = σv∆t+ (Mc + σt)∆v = 0

=⇒
∫

dt
σ

Mc + σt
= −

∫
dv

1

v

=⇒ v = v0
Mc

Mc + σt

5.3.1 Rocket Motion

Consider a rocket of massm moving at velocity v⃗ and expelling fuel of mass∆m, which leaves the rocket at some
velocity ∆u. We can write:

P⃗ (t) = mv⃗; P⃗ (t+∆t) = (m−∆m)(v⃗ +∆v) + ∆m(u⃗+ v⃗ +∆v)

Working out the differentials, this yields the famous rocket equation

F⃗ = m
dv⃗

dt
− dm

dt
u⃗

Example 5.4 (Rocket Eqn: Free space). F⃗ = 0 =⇒ mdv⃗
dt

= dm
dt
u⃗ =⇒ dv⃗ = u⃗dm

m
=⇒ v⃗f = −u⃗ ln

(
m0

mf

)
.

Example 5.5 (Rocket Eqn: Force due to gravity). F = mg = mdv⃗
dt

− u⃗dm
dt

=⇒ v⃗f = gt− u⃗ ln
(

m0

mf

)
Example 5.6 (Rope falling on a scale). Consider4a rope of mass m that is held above a scale such that part of it is
resting on the scale. What does the scale read when the rope is left to fall?

4See this video
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6 Work & Energy

6.1 Introduction: 1 Dimension

Consider force as a function of position, F⃗ (r⃗) = mdv⃗
dt
. We can simplify, in one direction,

m
dv

dt
= m

dv

dx
·
�
�
���
v

dx

dt
= F (x)

=⇒
∫ v

v0

dv∗ v∗ =

∫ x

x0

dx∗ F (x∗)

1

2
mv2 − 1

2
mv20︸ ︷︷ ︸

∆KE

=

∫ x

x0

dx∗ F (x∗)︸ ︷︷ ︸
:=Work

This derives theWork-Energy Theorem, ie

∆KE = W.

Example 6.1 (Work due to gravity). Consider F = g⃗. We can write

1

2
mv21 −

1

2
mv20 =

∫ z1

z0

−mg dz = −mg(z1 − z2).

Assume we end at zero velocity v1 = 0 and define our “start” as zero displacement z0 = 0, then we have

z1 =
v20
2g

,

ie, the final position has no dependence on mass.

6.2 Extension to Higher Dimensions

Wewrote previously F⃗ (r⃗) = mdv⃗
dt
, a vector valued function with vector valued arguments. We can manipulate this

into a nicer form akin to the 1-dim case as follows;

F⃗ · dr⃗ = m
dv⃗

dt
· dr⃗

⋆
dr⃗

dt
= v⃗ =⇒ dr⃗ = dt v⃗⋆∮

R

F⃗ · dr⃗ = m

∫
R

dv⃗

d�t
· v⃗��dt
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Note that, we are “canceling” the differentials rather informally, but with an equivalent result as properly taking
a double integral over time as well as distance. Note that, as r⃗ is some arbitrary curve/trajectory in space, we are
“formally” taking a line integral, hence the

∮
. We call the trajectory we are integrating overR; say it has endpoints

a, b. We can then simplify ∮
R

F⃗ · dr⃗ = m

∫ b

a

dv⃗ v⃗ =
1

2
m
(
v2a − v2b

)
,

where our RHS is the familiar KE. Thus,

∮
R

F⃗ · dr⃗ = ∆KE = W.

Generally, the LHS can’t necessarily be integrated but we can make some simplifying observations. First dr⃗ is
always tangent to the trajectory R⃗, as should be familiar from the definition of a derivative. We can break down
the force components along a given trajectory as the parallel and perpendicular components to the trajectory at a
given point;

F⃗ = F∥ + F⊥ =⇒ F⃗ · dr = (F∥ + F⊥) · dr .

However, by definition, the dot product of a vector with a perpendicular is equal to zero, and thus dr ·F⊥ = 0, and
we thus need only be concerned with the parallel components of force.

Example 6.2 (Inverse Square Field). We have F (r)− GmM
r2

. We can write the work done on a particle to escape the
field as

W = lim
r→∞

∫ r

RE

dr∗
(
−GmM

r∗2

)
=

GmM

r

∣∣∣∣∞
RE

= −GmM

RE

We can use this to find the escape velocity ve, ie the initial velocity needed for a particle to just escape such a field;

W = ∆KE =
�
�
���

0
1

2
mv2f −

1

2
mv2e

=
GmM

RE

=⇒ ve =

√
2
GM

RE

=
√

2gRE

Recalling that g := GM
R2

E
.

Example 6.3 (Inverted Pendulum). A string of length l is attached to a vertical wall with a massm at its end. Given
an initial angular displacement of φ0, we can write:

F⃗ · dr⃗ =����:0
T⃗ · dr⃗︸ ︷︷ ︸
⊥ motion

+mg⃗ · dr⃗
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The ∥ component ofmg⃗, the only relevant component on the RHS, is simplymg sinφ. We can also rewrite dr⃗ to have a
solvable integral by noting the relationship between arc length and radius, s = lφ =⇒ dr⃗ = l dφ. Substituting this
in: ∮

dr⃗ · F⃗ =

∫ φ

φ0

dφ′mgl sinφ′

= mgl (− cosφ′)

∣∣∣∣φ
φ0

= mgl(cosφ0 − cosφ)

Example 6.4 (Constant Uniform Force).

F⃗ = F0m̂ =⇒
∮

F⃗ · dr⃗ = F0

∮
dr⃗ · m̂

= F0 · m̂ ·
∮ b

a

[̂
i dx+ ĵ dy + k̂ dz

]
= F0m̂

[
(xb − xa)̂i+ (yb − ya)ĵ + (zb − za)k̂

]
= F0m̂(rb − ra)

6.3 Force Fields

In many of the examples of the previous section, the work done over an area depending solely on the force at the
starting and ending points; this begs the question, in what situations is the work done independent of the path
taken? This is equivalent to asking how can we tell if a force is conservative?
Consider some path r⃗ from a point r⃗a to r⃗b. If we consider a and b to be the same point (ie, we are in a loop), then
we can write ∮ b

a

F⃗ · dr⃗ = f(r⃗b)− f(r⃗a) = 0.

Consider the following theorem:

Theorem 6.1 (Stoke’s Theorem). ∫
C

F⃗ · dr⃗ =
∫∫

(∇× F⃗ ) ds⃗

(read: the line integral of a vector field over a loop is equal to the integral of the perpendicular components of the curl
of that field over the surface enclosed by the loop in question.)

We define curlF⃗ := ∇× F⃗ . From Stoke’s Thm, then, if we require the LHS to be zero, then∇× F⃗ = 0.
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7 Collisions & Conservation Laws

7.1 2D

Consider two balls of mass m1, m2 initially traveling at velocities of v1, v2 respectively, in the x-direction solely.
Conservation of momentum states that momentum, that is, P⃗ = mv⃗ must be conserved following a collision. Note
the vector notation: this is not accidental. Momentum must be conserved vectorially, that is, direction-wise. In our
standard example, we would write

[x] m1v1 = m1v
′
1 cos θ +m2v

′
2 cosϕ

[y] 0 = m1v
′
1 sin θ −m2v

′
2 sinϕ

Where θ, ϕ are the angles of reflection from the horizontal the balls experience respectively. Note that we have four
unknowns in this case, v′1, v′2, θ, ϕ, but only 2 equations relating them. Under certain assumptions of lack of friction,
etc, we can also assume that kinetic energy is conserved; this would then be called a elastic collision (think that
the balls “bounce”; they don’t stick together, as this would require some other force to keep them together). This
allows us to derive another equation:

v′1
v1

=
m1

m1 +m2

(
cos θ ±

√
cos2 θ −

(
m2

1 −m2
2

m2
1

))

which follows directly form the equation for kinetic energy applied to the before/after collision velocities. The
square root in this equation gives us a few different cases:

1. m1 > m2 =⇒ cos2 θ ≥ 1− m2
2

m2
1
, indicating that θ must be restricted to relatively small angles.

2. m1 < m2 =⇒
√
· · · ∈ R, that is, there is no restriction on θ.

3. m1 = m2 =⇒ v′1 = v1 cos θ = v′1 + v′2 cos(θ + ϕ) =⇒ v′2 cos(θ + ϕ) = 0 =⇒ θ + ϕ = π
2
.

7.2 Centre of Mass Frame

Often, it is inconvenient to do the analysis above, even with only two bodies, since we have to worry about con-
stantly tracking several measurements over time. Instead, it is often helpful to consider the movement of the centre
of mass of a system. The center of mass coordinate, generally, of n bodies is calculated

R =

∑n
i miri∑n
i mi

where P,M are measurements of the entire system now, rather than individual quantities. From here, we can
consider the velocity of the center of mass by computing

P = MV =⇒ V =
P

M
.

§7.2 Collisions & Conservation Laws: Centre of Mass Frame p. 22



Consider this the velocity of the center of mass; the other particles move at a given lab velocity relative to the
so-called lab frame, and have another velocity relative to the moving center of mass, that is,

vi = vc
i +V

where we use c to denote quantities in the center of mass frame. Note, here, that masses initially at rest will
appear to move at −V in the c.o.m. We can also consider other quantities in c.o.m.:

miv
c
i ≡ Pc

1 = mi(vi −V) = mi(vi −
P

M
) =

m1m2

m1 +m2

(v1 − v2) ≡ µ︸︷︷︸
reduced mass

(v1 − v2)

7.2.1 Angles

Recall that in the lab frame, we had two angles to worry about, θ, ϕ. Now, we have only 1, and thus reduced cases
to worry about; the angle that the velocity of the center of massV travels post-collision, θc, can be derived

tan θ =
sin θc

cos θc +
m1

m2

;

giving us the cases

1. m1 < m2: V

vc
′

1

= V
m2v1

m1+m2

= m1

m2
< 1 =⇒ V < vc

′
1 , hence no restriction on θ.

2. m1 > m2: m1

m2
> 1 =⇒ V > vc

′
1 , hence we have a restriction on θ

7.2.2 Conservation of Energy in CM

Consider a two-body elastic collision. In the CM frame:

1

2
m1(v

c
1)

2 +
1

2
m2(v

c
2)

2 =
1

2
m2(v

c′

1 )
2 +

1

2
m2(v

c′

2 )
2 (Energy Conservation)

|m1v
c
1| = |m2v

c
2| (Magnitudes, pre-collision)

|m1v
c′

1 | = |m2v
c′

2 | (Magnitudes, post-collisions)

Now, we can rewrite this in terms of the original velocities given the conservation of energy in the lab frame:

K lab =
1

2
m1v

2
1 +

1

2
m2v

2
2

=
1

2
m1(v

c
1)

2 +
1

2
(vc2)

2︸ ︷︷ ︸
Kcm

+
1

2
(m1 +m2)(V )2︸ ︷︷ ︸

”Energy” of CM moving

+
����������:Pc = 0
1

2
(m1v

c
1 +m2v

c
2)V

=⇒ K lab = Kcm +
1

2
MV2
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That is, we can consider that there is always some energy, 1
2
MV2, which we note is constant, that is locked in

the motion of the center of mass.

8 Rotational Motion

8.1 Angular Momentum

Definition 8.1 (Angular Momentum). The angular momentum of a point mass is defined by

L = r× p,

where r is the position of the vector to a given origin and p is the momentum of the mass. Equivalently,

|L| = |r||p| sin θ,

where θ is the angle between the r and p vectors.

8.2 Torque

Definition 8.2 (Torque). Torque is defined on a point mass

τ = r× F,

that is, a force F acts on a particle at a distance r.

Make note of the following:

L = r× p

=⇒ dL

dt
=

d

dt
(r× p)

=
dr

dt
× p+ r× dp

dt

=�����v ×mv + r× F

= r× F ≡ τ

That is, the time derivative of angular momentum is torque.
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8.2.1 Central Forces

Definition 8.3 (Central Force). A central force is one of the form

F = f(r)r̂,

that is, a function of the distance from a particular radius, which acts radially.

Consider the torque done by an arbitrary central force:

τ = r× F = r× f(r)r̂ = 0.

This implies, then, that dL
dt

= 0 as well, that is, angular momentum is a constant and thus we are restricted to purely
planar, 2D movement.

8.2.2 Torque on Extended Objects

Consider an arbitrary rigid body and consider an infinitesimal portion of its mass. We can write

τ⃗ =
∑
i

τ⃗i =
∑
i

r⃗i ×mig⃗

≡ R⃗×Mg⃗,

where R⃗ = 1
M

∑
imir⃗i and M =

∑
i mi.

8.3 Moments of Inertia

Now suppose said body rotates about the z-axis at a constant ω. We can write the angular momentum of the object
as

Li
z = r⃗imi × v⃗ = rimiv cosϕ = ρimiv = ρ2imiω

=⇒ Lz =

(∑
i

miρ
2
i

)
ω ≡ Izω,

where we define, more precisely, the moment of inertia of the body about the z axis as

Iz =
∑
i

miρ
2
i =

∫
η dV (x2 + y2),

noting that the final equal defines η as the density of the object, η = dm
dV

. Note too that this final equation was
rewritten explicitly in cartesian coordinates which may not always be the most convenient coordinate system.

Abstractly, the moment of inertia of a body can be thought of as a rotational analog of mass, or its ability to
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“resist” rotations by an external torque.

Example 8.1 (Moment of Inertia of a Thin Hoop). As with most of these computations, we must rewrite dV in the
integral in appropriate coordinates; cylindrical work best here, and we have

dV = ρ dρ dφ dz .

Taking the density to be some constant η, the radius of the hoop to beR, the “radial width” to be∆R, and the thickness
to be t, we can write

Iz =

∫
η dV (x2 + y2) = η

∫ R+∆R

R

dρ ρ3
∫ t

0

dz

∫ 2π

0

dφ

= η

[
(R +∆R)4 −R4

4

]
· t · 2π

Substituting in η = M
V
, and taking ∆R and t to be negligible in relation to R, this simplifies to

Iz = MR2 .

Remark 8.1. This general method of find moments of inertia is widely applicable; it can be generalized:

1. Write dV in context-appropriate coordinates.

2. Write (x2 + y2) (or whatever your notion of “distance” is in your context) in your new coordinates.

3. Integrate; if η constant, you can substitute and simplify afterwards using η = M
V
. If η not-constant, you will

have to make sure you also convert it to your chose coordinate system before evaluating.

Theorem 8.1 (Parallel Axis Theorem). Given the moment of inertia of a body about its center Ic and about, say, the
z-axis, the moment of inertia of the body about an axis z′, such that z′ parallel to z and z′ is a distance h from z, is
given by

I ′ = Ic +Mh2.

Theorem 8.2 (Perpendicular Axis Theorem).

8.4 Conservation of Angular Momentum

8.5 Rotational & Translational Motion

8.6 Slipping & Rolling

9 Lagrangian Mechanics

The previous sections have all taken a Newtonian approach to mechanics, centered on laws relating forces in a
system. This section will “derive” and review a different perspective on mechanics, called LagrangianMechanics,
centered on the concept of minimization of energies; forces “no longer exist”.
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9.1 Introduction to Calculus of Variations

10 More on Angular Motion - Generalizations

11 Central Forces

11.1 Conic Sections

11.2 Kepler’s Laws
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