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§1 ComrLEx NUMBERS

The complex numbers are the set
C:={a+bi:abe R},

where i2 = —1. This set is readily equipped with operations of addition, subtraction,
multiplication and division; given two complex numbers a + bi, ¢ + di, these operations are
determined by the rules
(a+bi)+ (c+di)=(@+c)+ (b+d)i
(a+ bi)(c+di) =ac—bd+ (ad + bc)i
1 a-bi
a+bi a2 4%

assuming in the final line that a2 +b% +0,ie thata+bi # 0in C.In particular, in the division
line, we obtain the result by multiplying the top and bottom by the conjugate of z := a + bi; we
denote

Z=a-bi,
noting that in particular,
2z = a% + b? = z)%.
Any complex number z = a + bi may be written in so-called polar form
z=r(cosB +isinf), r:= \/m = |z, 0 := arg(z) = arctan(b/a),

with the 0 read modulo 27t. This is a useful representation for the sake of multiplication; given
z; = r;(cos(6;) +isin(6;)),i = 1,2, we have

212y = -+ = I1tp[cos(6; + 05) +isin(6; + 65)].
In particular,
2122] = |z1llz2],  arg(z122) = arg(z;) + arg(z,).
—Theorem 1.1: cos(f) + isin(f) = exp(if)
Proor. Taylor expand both sides. n
In particular, this theorem gives a clear way to define the exponential of a complex number
et = e¥e¥ = ¢¥(cos(y) + isin(y)),
so that in particular, for any z € C,
Re(z)

le*| = e arg(e*) = Im(z).
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<Theorem 1.2 (Fundamental Theorem of Algebra): If f(z) = a,z" + a,,_12" "' + - + a1z + ag

is a polynomial with complex coefficients ag, a4, ...,a,,_1,a,, then there exists a z € C such that
f(z)=0.

Proor. (A First Proof) Remark that if [z] = R > 1 (much larger than zero), then we have

a,2"] = la,|R",
‘an_lz”_l + -+ a1z + ﬂ0| < |an_1|R"_1 + -+ |ﬂ1|R + |€lo|
< (lan-al + lag ol + -+ + lag] + lag R,
Let zy € C be a point for which [f (zg)| is a minimum; this must exist for |[f| must be
very large outside of the disc of radius R centered at the origin. Namely, |zo| < R. We

claim z; a root of f. We may assume without loss of generality that z; = 0, by replacing
f(z) with f(z — z). We write

f(z) =ag+ - + @2k + - +a,z",

a a
=ag + akzk(l + 2y —”z”_k>.
g g

where a;. # 0 the first nonzero coefficient with k > 1. If we can show a4y = 0, we are
done. Assume otherwise. Let

With this value of z, we have
f(z) =ag —aogk(l + oo ) ~ ag(1 = ).
=o(¢)

By choosing ¢ sufficiently small, this implies
If )] <lao| = |f(0)],

which contradicts the assumed minimality of zy = 0, unless of course ay = f(zy) =0,

providing the claim. [

Proor. (A Second Proof) We want to view f (z) as a mapping C — C. Assume f (z) =
Z" +a,_1z""' + - + a1z + ay. When [z| large, we know

If (z) — z"| < Clz|"1,

for some constant C independent of z. Remark that the map ¢ : z — z" maps a circle of
radius R to a circle of radius R"; in particular, if we take a point z = Re’? on the circle
of radius R of angle 6 with the origin, and let § vary from 0 to 277, one “rotation” in the
pre-image world will lead to n “rotations” in the image world. Similarly, for z — f(z),
the image of the R-radius circle may not be a circle, but a “fudged” circle; the curve of
the image will still be some periodic curve. As we let R — 0, though, the image will go
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to the singular point aj. Thus, at some value of R, the image of the R-radius circle

would have to pass through the origin, and thus this point must be a root of f (z). [ |

Proor. (A Third Proof) We use a result that we will prove later in the class, Liouville’s

Theorem, which states that any bounded differentiable function f : C — C must be
constant.

Suppose p(z) a polynomial with no roots in C. Let f (z) = ﬁ (this is well-defined,

since by assumption p has no roots); this is bounded on C, and has derivative %f (z) =
—l; ((Zz)). By Liouville’s, f must be a constant and thus p must be a constant. ]

§1.2 Analytic, Holomorphic Functions

= Definition 1.1 (Holomorphic/Analytic): A functionf : C - C is said to be holomorphic is it
has a well-defined derivative, i.e. if the limit

1imf(z+h) —f(2)
h—0 h

exists and is well-defined (in the sense that it is independent of the “path” h takes to 0).
We may writef : C - C as
f@) =f(x+iy) = u(x,y) +iv(x,y),

where u,v : R? - R. We can calculate f'(z) in two different ways.

1. Restrict hto R:

flz) = ,li’%‘f(z + h}i —f(@ _ lim u(x+hy) +iv(x+hy) —u(x,y) —iv(x,y)

h-0, h
heR heR
= lim ux+hy) —ulxy) +ilim v(x +hy) —v(xy)
h=0, h ) ?
heR heR

Ju dv
= a(xry) +1a—x(x/y)~

2. Rescrict to h purely imaginary values:

£y = lig LEFI ZF@ gy, wloy 1) + oGy +h) —ulxy) — vl y)

h—0, ih h—0, ih
heR heR
10u v

= 7a—y(x/y) + a_y(x’y)

dv

ou
= a_y(x’y) —za—y(x,y)

These two computations must of course agree, which imply (equating real, imaginary
parts)

ou Jdv Jdu ou

n oy oy
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These are the Cauchy-Riemann equations. Viewing the pair f = (1,v) as a mapping R? —

R?2, the Cauchy-Riemann equations imply that the Jacobian of f is given in the form

]f(x,y) = (—ab Z), a,beR.

<Proposition 1.1:

* Iff,g are holomorphic and 4,b € C, then af + bg are also holomorphic, and moreover
(af +bg) =af" +bg'

o Withf(z) := 2", f'(z) = nz"7!

* As aresult, any polynomial on C is holomorphic

—Theorem 1.3: If f satisfies the Cauchy-Riemann equations, then f is holomorphic.

Proor. Write f = u + iv as before. Let h = hy + ih,. Then,
u(x+hy,y+hy) =u(x,y) +hiou+hyo,u + g (h), ¢1(h) > 0ash -0,
with similar for v with a remainder ,. Then, by Cauchy-Riemann,
flz+h) =f(2) + (00 —id,u)(hy + ihy) + (W, (k) = o(|h]).
Dividng both sides by I and sending h — 0 gives the result. |
§1.3 Power Series
We say a series )~ a,2", where a,,z € C, converges if limy,_, ZZ::O a,z" exists as a complex

number. We say it a converges absolutely if limy;_, ., ZZ::OWHHZI" exists.

<Theorem 1.4: Given ) > a,2", there exists a number 0 < R < oo for which
1. if |z| < R, then )’ a,,z" converges absolutely;
2. if |z| > R, then ) a,,z"" does not converge.

Furthermore,

1
— =limsupla,|".
R " p| ﬂl

Proor. LetL = % and suppose |z| < R. There exists some ¢ > 0 such that
r:=(L+e)lz|<1.

1
There exists some N such that L + ¢ > |a,,|" for all n > N by definition of limsup’s; thus
1
zlla,|" < (L+e)lzl=r<1
= |z"|a,| < ™.

But since r < 1, it follows that ) |a,,|1zI" converges by comparing to the geometric series
>,
1
If |z| > R, there is an € > 0 so that there are infinitely-many n’s for which |a,,|* > % —
¢, and so
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1
la, |71zl >r > 1

hence |a,,||zI" > 1", so that ) |a,|lzI" diverges by comparison. Moreover, we have shown
that |a, ||zI"" does not converge to zero, which implies the series does not even converge

(“normally”). [ ]

® Example 1.1:

L Y o nz"hasR =0

2. Y 5 = e* withR = co.
oo 1

3. anozn = 12 hasR =1.

—Theorem 1.5: A power series f (z) = ZZ:O a,z" admits a derivative on its disc of
n—1

convergence, and f'(z) = )" 14,z

Proor. Write g(z) = Y~ na,z""! as the “potential” derivative we aim to show,
remarking that thls seires converges and moreover has the same radius of convergence

as f since lim n# =1 and thus lim sup a” = lim sup (nan) . Write

N o
f2) =Sy +En(2), Sn(@) =Y a,2"En(z)i= ) a,z".
n=0 n=N+1

Fix z5 € D (0). We showw —9(zg) » 0ash — 0. We can write

f(zo +h})l —f(20) —o(z0) = Sn(2g +hZZ_SN(ZO) ~o(zo) + En(zo +h})l_EN(ZO)

h) — h) —
_ {SN(ZO+ ]i Sn(20) —Sf\r(zo)}‘F{Sf\r(Zo) —g(zo)}+{EN(ZO+ })1 EN(ZO)}

= (A) + (B) + (O).

For all € > 0, there exists Ny |(B)| < € for all N > Nj.

There exists N, such that |(C)| < € for all N > N,, since we have

©= Y aftW =%

n=N+1 h

and
(zo +h)" —zf = h((zo + 1) 4 (2 + 1) P2y 4 e 4 (2 + 1) T 4+ z’g‘l).
Since |zg + |, |zg| < r < R for h sufficiently small, we know
|(zg + h)" = z§| < |h|nr" 1,
so that

(20 + )" = 2§
h

< nr*-1,

It follows that
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o0

(O < > laylnrL.

n=N+1

This is the tail of an absolutely converging series, hence as N — oo, |(C)| — 0, so we

have the claimed bound.

Finally, let N := max(Nq, N,). We see that for any fixed N, (A) — 0 as h — 0 by the
definition of the derivative, and thus we can take 1 = h(IN) sufficiently small so that
|(A)| < e. Combining all these bounds gives the proof. [

—Corollary 1.1: f(z) = ) a,z, is infinitely differentiable in its radius of convergence.

< Definition 1.2: A function f : () — C is called analytic if it is equal to a power series on
D,(zp) for all z; € Q), for some ¢ > 0.

< Corollary 1.2: f analytic = f holomorphic
Remark 1.1: We'll see later that these are actually equivalent notions.
§1.4 Integration Along Curves

< Definition 1.3: A parametrized curve is a function 7 : [0, 1] — C where 7 is differentiable
with continuous derivative, with 7' (t) # 0 for all t € [0, 1].

< Definition 1.4: We’ll say two parametrized curves 7, % are equivalent if there exists a
smooth function s : [0,1] — [0, 1] smooth with s’ (t) > 0 and such that ¥ = 7y o s.

We will consider curves as defined up to equivalency in this way.
< Definition 1.5: If 7y is a parametrized curve, define

1
ff(z)dz ::f Fr(H)y (1) dt.
0% 0

If v a piecewise smooth curve, i.e. y can locally be written as t — z(t) € C for t € [ay, 1) for
k =0,...,n — 1 for some sequence a; < a;,1, then

n+1 A ’
Lf(Z) dz := k;, Lk f(z()z'(¢) dt.

An obvious generalization holds for integration along more general intervals.

< Proposition 1.2: Path integrals are independent of choice of parametrization.

< Definition 1.6 (Length of a curve): Define, for 7y givenby z:1 — C,

length(7) := J:y|dz| = J‘Ilz’(t)ldt.
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—Proposition 1.3: Let f, g continuous and &, B € C. Then we have

1. Linearity:
[af +pg)dz=a | fdz+p| gdz
v v v
2.
dz = — dz,
Lf(z) z L_f(z) z

where ™ is the reverse path of 7.
3. |f7f(z) dz| < sup,c, [f (z)| length(7).

< Definition 1.7 (Primitive): A primitive of a continuous function f on a domain Q) is a
function F such that F’ = f on Q).

< Proposition 1.4: If f, continuous, has a primitive F on () and -y is a curve in () beginning at

w; and ending at w,, then

Lfdz:F@@)—F@m)

§1.5 Cauchy’s Theorem

< Theorem 1.6 (Cauchy): If vy is a closed path contained in a region () C C and its interior,
and f is holomorphic in (), then f7 f(z)dz = 0.

It will take us some building to get here. In a simple case, though, we have a positive result:

= Corollary 1.3: If f has a primitive F on (), then Cauchy’s theorem holds for f for any y a
closed path in int(Q2)

Proor. Apply the last proposition; now, F(w,) = F(w;), so we have the result. [ |

With some more work, we can also establish the proof for y some simple contour.

= Proposition 1.5 (Gorsut's Lemma): Let y be a closed triangle in (2 and f a holomorphic
function on Q). Then f7 f(z)ydz = 0.

Proor. I'll add it later. [ ]
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