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§1 Complex Numbers

The complex numbers are the set

ℂ ≔ {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ ℝ},

where 𝑖2 = −1. This set is readily equipped with operations of addition, subtraction, 

multiplication and division; given two complex numbers 𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖, these operations are 

determined by the rules

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 + 𝑏𝑐)𝑖

1
𝑎 + 𝑏𝑖 =

𝑎 − 𝑏𝑖
𝑎2 + 𝑏2

,

assuming in the final line that 𝑎2 + 𝑏2 ≠ 0, i.e. that 𝑎 + 𝑏𝑖 ≠ 0 in ℂ. In particular, in the division 

line, we obtain the result by multiplying the top and bottom by the conjugate of 𝑧 ≔ 𝑎 + 𝑏𝑖; we 

denote

𝑧 = 𝑎 − 𝑏𝑖,

noting that in particular,

𝑧𝑧 = 𝑎2 + 𝑏2 = |𝑧|2.

Any complex number 𝑧 = 𝑎 + 𝑏𝑖 may be written in so-called polar form

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃), 𝑟 ≔ √𝑎2 + 𝑏2 = |𝑧|, 𝜃 ≔ arg(𝑧) = arctan(𝑏/𝑎),

with the 𝜃 read modulo 2𝜋. This is a useful representation for the sake of multiplication; given 

𝑧𝑖 = 𝑟𝑖(cos(𝜃𝑖) + 𝑖 sin(𝜃𝑖)), 𝑖 = 1, 2, we have

𝑧1𝑧2 = ⋯ = 𝑟1𝑟2[cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)].

In particular,

|𝑧1𝑧2| = |𝑧1||𝑧2|, arg(𝑧1𝑧2) = arg(𝑧1) + arg(𝑧2).

↪︎Theorem 1.1 :  cos(𝜃) + 𝑖 sin(𝜃) = exp(𝑖𝜃)

Proof. Taylor expand both sides. ■

In particular, this theorem gives a clear way to define the exponential of a complex number

𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(cos(𝑦) + 𝑖 sin(𝑦)),

so that in particular, for any 𝑧 ∈ ℂ,

|𝑒𝑧| = 𝑒Re(𝑧), arg(𝑒𝑧) = Im(𝑧).

§1.1 Fundamental Theorem of Algebra
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↪︎Theorem 1.2 (Fundamental Theorem of Algebra) :  If 𝑓 (𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0 

is a polynomial with complex coefficients 𝑎0, 𝑎1, …, 𝑎𝑛−1, 𝑎𝑛, then there exists a 𝑧 ∈ ℂ such that 

𝑓 (𝑧) = 0.

Proof. (A First Proof) Remark that if |𝑧| = 𝑅 ≫ 1 (much larger than zero), then we have

|𝑎𝑛𝑧𝑛| = |𝑎𝑛|𝑅𝑛,

|𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0| ≤ |𝑎𝑛−1|𝑅𝑛−1 + ⋯ + |𝑎1|𝑅 + |𝑎0|

≤ (|𝑎𝑛−1| + |𝑎𝑛−2| + ⋯ + |𝑎1| + |𝑎0|)𝑅𝑛−1.

Let 𝑧0 ∈ ℂ be a point for which |𝑓 (𝑧0)| is a minimum; this must exist for |𝑓 | must be 

very large outside of the disc of radius 𝑅 centered at the origin. Namely, |𝑧0| < 𝑅. We 

claim 𝑧0 a root of 𝑓 . We may assume without loss of generality that 𝑧0 = 0, by replacing 

𝑓 (𝑧) with 𝑓 (𝑧 − 𝑧0). We write

𝑓 (𝑧) = 𝑎0 + ⋯ + 𝑎𝑘𝑧𝑘 + ⋯ + 𝑎𝑛𝑧𝑛,

= 𝑎0 + 𝑎𝑘𝑧𝑘(1 +
𝑎𝑘+1
𝑎𝑘

𝑧 + ⋯ +
𝑎𝑛
𝑎𝑘

𝑧𝑛−𝑘).

where 𝑎𝑘 ≠ 0 the first nonzero coefficient with 𝑘 ≥ 1. If we can show 𝑎0 = 0, we are 

done. Assume otherwise. Let

𝑧 ≔ (−
𝑎0
𝑎𝑘

)
1
𝑘
𝜀, 𝜀 > 0.

With this value of 𝑧, we have

𝑓 (𝑧) = 𝑎0 − 𝑎0𝜀𝑘
(
1 + ⋯⏟

=ℴ︀(𝜀))
 ≈ 𝑎0(1 − 𝜀𝑘).

By choosing 𝜀 sufficiently small, this implies

|𝑓 (𝑧)| < |𝑎0| = |𝑓 (0)|,

which contradicts the assumed minimality of 𝑧0 = 0, unless of course 𝑎0 = 𝑓 (𝑧0) = 0, 

providing the claim. ■

Proof. (A Second Proof) We want to view 𝑓 (𝑧) as a mapping ℂ → ℂ. Assume 𝑓 (𝑧) =
𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0. When |𝑧| large, we know

|𝑓 (𝑧) − 𝑧𝑛| < 𝐶|𝑧|𝑛−1,

for some constant 𝐶 independent of 𝑧. Remark that the map 𝜑 : 𝑧 ↦ 𝑧𝑛 maps a circle of 

radius 𝑅 to a circle of radius 𝑅𝑛; in particular, if we take a point 𝑧 = 𝑅𝑒𝑖𝜃 on the circle 

of radius 𝑅 of angle 𝜃 with the origin, and let 𝜃 vary from 0 to 2𝜋, one “rotation” in the 

pre-image world will lead to 𝑛 “rotations” in the image world. Similarly, for 𝑧 ↦ 𝑓 (𝑧), 

the image of the 𝑅-radius circle may not be a circle, but a “fudged” circle; the curve of 

the image will still be some periodic curve. As we let 𝑅 → 0, though, the image will go 
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to the singular point 𝑎0. Thus, at some value of 𝑅, the image of the 𝑅-radius circle 

would have to pass through the origin, and thus this point must be a root of 𝑓 (𝑧). ■

Proof. (A Third Proof) We use a result that we will prove later in the class, Liouville’s 

Theorem, which states that any bounded differentiable function 𝑓 : ℂ → ℂ must be 

constant.

Suppose 𝑝(𝑧) a polynomial with no roots in ℂ. Let 𝑓 (𝑧) = 1
𝑝(𝑧)  (this is well-defined, 

since by assumption 𝑝 has no roots); this is bounded on ℂ, and has derivative d
d𝑧 𝑓 (𝑧) =

−𝑝′(𝑧)
𝑝(𝑧) . By Liouville’s, 𝑓  must be a constant and thus 𝑝 must be a constant. ■

§1.2 Analytic, Holomorphic Functions

↪︎Definition 1.1 (Holomorphic/Analytic) :  A function 𝑓 : ℂ → ℂ is said to be holomorphic is it 

has a well-defined derivative, i.e. if the limit

lim
ℎ→0

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

exists and is well-defined (in the sense that it is independent of the “path” ℎ takes to 0).

We may write 𝑓 : ℂ → ℂ as

𝑓 (𝑧) = 𝑓 (𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),

where 𝑢, 𝑣 : ℝ2 → ℝ. We can calculate 𝑓 ′(𝑧) in two different ways.

1. Restrict ℎ to ℝ:

𝑓 ′(𝑧) = lim
ℎ→0,
ℎ∈ℝ

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ = lim

ℎ→0,
ℎ∈ℝ

𝑢(𝑥 + ℎ, 𝑦) + 𝑖𝑣(𝑥 + ℎ, 𝑦) − 𝑢(𝑥, 𝑦) − 𝑖𝑣(𝑥, 𝑦)
ℎ

= lim
ℎ→0,
ℎ∈ℝ

𝑢(𝑥 + ℎ, 𝑦) − 𝑢(𝑥, 𝑦)
ℎ + 𝑖 lim

ℎ→0,
ℎ∈ℝ

𝑣(𝑥 + ℎ, 𝑦) − 𝑣(𝑥, 𝑦)
ℎ

=
𝜕𝑢
𝜕𝑥(𝑥, 𝑦) + 𝑖

𝜕𝑣
𝜕𝑥(𝑥, 𝑦).

2. Rescrict to ℎ purely imaginary values:

𝑓 ′(𝑧) = lim
ℎ→0,
ℎ∈ℝ

𝑓 (𝑧 + 𝑖ℎ) − 𝑓 (𝑧)
𝑖ℎ = lim

ℎ→0,
ℎ∈ℝ

𝑢(𝑥, 𝑦 + ℎ) + 𝑖𝑣(𝑥, 𝑦 + ℎ) − 𝑢(𝑥, 𝑦) − 𝑖𝑣(𝑥, 𝑦)
𝑖ℎ

=
1
𝑖
𝜕𝑢
𝜕𝑦(𝑥, 𝑦) +

𝜕𝑣
𝜕𝑦(𝑥, 𝑦)

=
𝜕𝑣
𝜕𝑦(𝑥, 𝑦) − 𝑖

𝜕𝑢
𝜕𝑦(𝑥, 𝑦)

These two computations must of course agree, which imply (equating real, imaginary 

parts)

𝜕𝑢
𝜕𝑥 =

𝜕𝑣
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 = −

𝜕𝑢
𝜕𝑦 .
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These are the Cauchy-Riemann equations. Viewing the pair 𝑓 = (𝑢, 𝑣) as a mapping ℝ2 →
ℝ2, the Cauchy-Riemann equations imply that the Jacobian of 𝑓  is given in the form

𝐽𝑓 (𝑥, 𝑦) = ( 𝑎
−𝑏

𝑏
𝑎), 𝑎, 𝑏 ∈ ℝ.

↪︎Proposition 1.1 :

• If 𝑓 , 𝑔 are holomorphic and 𝑎, 𝑏 ∈ ℂ, then 𝑎𝑓 + 𝑏𝑔 are also holomorphic, and moreover 

(𝑎𝑓 + 𝑏𝑔)′ = 𝑎𝑓 ′ + 𝑏𝑔′

• With 𝑓 (𝑧) ≔ 𝑧𝑛, 𝑓 ′(𝑧) = 𝑛𝑧𝑛−1

• As a result, any polynomial on ℂ is holomorphic

↪︎Theorem 1.3 :  If 𝑓  satisfies the Cauchy-Riemann equations, then 𝑓  is holomorphic.

Proof. Write 𝑓 = 𝑢 + 𝑖𝑣 as before. Let ℎ = ℎ1 + 𝑖ℎ2. Then,

𝑢(𝑥 + ℎ1, 𝑦 + ℎ2) = 𝑢(𝑥, 𝑦) + ℎ1𝜕𝑥𝑢 + ℎ2𝜕𝑦𝑢 + |ℎ|𝜓1(ℎ), 𝜓1(ℎ) → 0 as ℎ → 0,

with similar for 𝑣 with a remainder 𝜓2. Then, by Cauchy-Riemann,

𝑓 (𝑧 + ℎ) = 𝑓 (𝑧) + (𝜕𝑥𝑣 − 𝑖𝜕𝑦𝑢)(ℎ1 + 𝑖ℎ2) + 𝜓(ℎ)|ℎ|, 𝜓(ℎ) = ℴ︀(|ℎ|).

Dividng both sides by ℎ and sending ℎ → 0 gives the result. ■

§1.3 Power Series

We say a series ∑∞
𝑛=0 𝑎𝑛𝑧𝑛, where 𝑎𝑛, 𝑧 ∈ ℂ, converges if lim𝑁→∞ ∑𝑁

𝑛=0 𝑎𝑛𝑧𝑛 exists as a complex 

number. We say it a converges absolutely if lim𝑁→∞ ∑𝑁
𝑛=0|𝑎𝑛||𝑧|

𝑛 exists.

↪︎Theorem 1.4 :  Given ∑∞
𝑛=0 𝑎𝑛𝑧𝑛, there exists a number 0 ≤ 𝑅 ≤ ∞ for which

1. if |𝑧| < 𝑅, then ∑𝑎𝑛𝑧𝑛 converges absolutely;

2. if |𝑧| > 𝑅, then ∑𝑎𝑛𝑧𝑛 does not converge.

Furthermore,

1
𝑅 = lim sup

𝑛
|𝑎𝑛|

1
𝑛 .

Proof. Let 𝐿 = 1
𝑅  and suppose |𝑧| < 𝑅. There exists some 𝜀 > 0 such that

𝑟 ≔ (𝐿 + 𝜀)|𝑧| < 1.

There exists some 𝑁 such that 𝐿 + 𝜀 > |𝑎𝑛|
1
𝑛  for all 𝑛 > 𝑁 by definition of limsup’s; thus

|𝑧||𝑎𝑛|
1
𝑛 < (𝐿 + 𝜀)|𝑧| = 𝑟 < 1

⇒ |𝑧|𝑛|𝑎𝑛| < 𝑟𝑛.

But since 𝑟 < 1, it follows that ∑|𝑎𝑛||𝑧|𝑛 converges by comparing to the geometric series 

∑𝑟𝑛.

If |𝑧| > 𝑅, there is an 𝜀 > 0 so that there are infinitely-many 𝑛’s for which |𝑎𝑛|
1
𝑛 > 1

𝑅 −
𝜀, and so
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|𝑎𝑛|
1
𝑛 |𝑧| > 𝑟 > 1

hence |𝑎𝑛||𝑧|𝑛 > 𝑟𝑛, so that ∑|𝑎𝑛||𝑧|𝑛 diverges by comparison. Moreover, we have shown 

that |𝑎𝑛||𝑧|𝑛 does not converge to zero, which implies the series does not even converge 

(“normally”). ■

⊛ Example 1.1 :

1. ∑∞
𝑛=0 𝑛!𝑧𝑛 has 𝑅 = 0

2. ∑∞
𝑛=0

𝑧𝑛

𝑛! = 𝑒𝑧 with 𝑅 = ∞.

3. ∑∞
𝑛=0 𝑧𝑛 = 1

1−𝑧  has 𝑅 = 1.

↪︎Theorem 1.5 :  A power series 𝑓 (𝑧) = ∑𝑛
𝑛=0 𝑎𝑛𝑧𝑛 admits a derivative on its disc of 

convergence, and 𝑓 ′(𝑧) = ∑∞
𝑛=0 𝑛𝑎𝑛𝑧𝑛−1.

Proof. Write 𝑔(𝑧) = ∑∞
𝑛=0 𝑛𝑎𝑛𝑧𝑛−1 as the “potential” derivative we aim to show, 

remarking that this seires converges and moreover has the same radius of convergence 

as 𝑓  since lim𝑛
1
𝑛 = 1 and thus lim sup 𝑎

1
𝑛
𝑛 = lim sup (𝑛𝑎𝑛)

1
𝑛 . Write

𝑓 (𝑧) = 𝑆𝑁(𝑧) + 𝐸𝑁(𝑧), 𝑆𝑁(𝑧) ≔ ∑
𝑁

𝑛=0
𝑎𝑛𝑧𝑛, 𝐸𝑁(𝑧) ≔ ∑

∞

𝑛=𝑁+1
𝑎𝑛𝑧𝑛.

Fix 𝑧0 ∈ 𝐷𝑅(0). We show 
𝑓 (𝑧0+ℎ)−𝑓 (𝑧0)

ℎ − 𝑔(𝑧0) → 0 as ℎ → 0. We can write

𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0)
ℎ − 𝑔(𝑧0) =

𝑆𝑁(𝑧0 + ℎ) − 𝑆𝑁(𝑧0)
ℎ − 𝑔(𝑧0) +

𝐸𝑁(𝑧0 + ℎ) − 𝐸𝑁(𝑧0)
ℎ

= {
𝑆𝑁(𝑧0 + ℎ) − 𝑆𝑁(𝑧0)

ℎ − 𝑆′
𝑁(𝑧0)} + {𝑆′

𝑁(𝑧0) − 𝑔(𝑧0)} + {
𝐸𝑁(𝑧0 + ℎ) − 𝐸𝑁(𝑧0)

ℎ }

= (𝐴) + (𝐵) + (𝐶).

For all 𝜀 > 0, there exists 𝑁1 |(𝐵)| < 𝜀 for all 𝑁 > 𝑁1.

There exists 𝑁2 such that |(𝐶)| < 𝜀 for all 𝑁 > 𝑁2, since we have

(𝐶) = ∑
𝑛≥𝑁+1

𝑎𝑛
(𝑧0 + ℎ)𝑛 − 𝑧𝑛0

ℎ ,

and

(𝑧0 + ℎ)𝑛 − 𝑧𝑛0 = ℎ((𝑧0 + ℎ)𝑛−1 + (𝑧0 + ℎ)𝑛−2𝑧0 + ⋯ + (𝑧0 + ℎ)𝑛−𝑗𝑧𝑗0 + ⋯ + 𝑧𝑛−1
0 ).

Since |𝑧0 + ℎ|, |𝑧0| < 𝑟 < 𝑅 for ℎ sufficiently small, we know

|(𝑧0 + ℎ)𝑛 − 𝑧𝑛0 | ≤ |ℎ|𝑛𝑟𝑛−1,

so that

|
(𝑧0 + ℎ)𝑛 − 𝑧𝑛0

ℎ |
 ≤ 𝑛𝑟𝑛−1.

It follows that

1.3 Power Series 6



|(𝐶)| ≤ ∑
∞

𝑛=𝑁+1
|𝑎𝑛|𝑛𝑟𝑛−1.

This is the tail of an absolutely converging series, hence as 𝑁 → ∞, |(𝐶)| → 0, so we 

have the claimed bound.

Finally, let 𝑁 ≔ max(𝑁1, 𝑁2). We see that for any fixed 𝑁, (𝐴) → 0 as ℎ → 0 by the 

definition of the derivative, and thus we can take ℎ = ℎ(𝑁) sufficiently small so that 

|(𝐴)| < 𝜀. Combining all these bounds gives the proof. ■

↪︎Corollary 1.1 :  𝑓 (𝑧) = ∑𝑎𝑛𝑧𝑛 is infinitely differentiable in its radius of convergence.

↪︎Definition 1.2 :  A function 𝑓 : Ω → ℂ is called analytic if it is equal to a power series on 

𝐷𝜀(𝑧0) for all 𝑧0 ∈ Ω, for some 𝜀 > 0.

↪︎Corollary 1.2 :  𝑓  analytic ⇒ 𝑓  holomorphic

Remark 1.1 : We’ll see later that these are actually equivalent notions.

§1.4 Integration Along Curves

↪︎Definition 1.3 :  A parametrized curve is a function 𝛾 : [0, 1] → ℂ where 𝛾 is differentiable 

with continuous derivative, with 𝛾′(𝑡) ≠ 0 for all 𝑡 ∈ [0, 1].

↪︎Definition 1.4 :  We’ll say two parametrized curves 𝛾, 𝛾̃ are equivalent if there exists a 

smooth function 𝑠 : [0, 1] → [0, 1] smooth with 𝑠′(𝑡) > 0 and such that 𝛾̃ = 𝛾 ∘ 𝑠.

We will consider curves as defined up to equivalency in this way.

↪︎Definition 1.5 :  If 𝛾 is a parametrized curve, define

∫
𝛾
𝑓 (𝑧) d𝑧 ≔ ∫

1

0
𝑓 (𝛾(𝑡))𝛾′(𝑡) d𝑡.

If 𝛾 a piecewise smooth curve, i.e. 𝛾 can locally be written as 𝑡 ↦ 𝑧(𝑡) ∈ ℂ for 𝑡 ∈ [𝑎𝑘, 𝑎𝑘+1) for 

𝑘 = 0,…, 𝑛 − 1 for some sequence 𝑎𝑘 < 𝑎𝑘+1, then

∫
𝛾
𝑓 (𝑧) d𝑧 ≔ ∑

𝑛+1

𝑘=0
∫

𝑎𝑘+1

𝑎𝑘
𝑓 (𝑧(𝑡))𝑧′(𝑡) d𝑡.

An obvious generalization holds for integration along more general intervals.

↪︎Proposition 1.2 :  Path integrals are independent of choice of parametrization.

↪︎Definition 1.6 (Length of a curve) :  Define, for 𝛾 given by 𝑧 : 𝐼 → ℂ,

length(𝛾) ≔ ∫
𝛾
| d𝑧| = ∫

𝐼
|𝑧′(𝑡)| d𝑡.

1.4 Integration Along Curves 7



↪︎Proposition 1.3 :  Let 𝑓 , 𝑔 continuous and 𝛼, 𝛽 ∈ ℂ. Then we have

1. Linearity:

∫
𝛾
(𝛼𝑓 + 𝛽𝑔) d𝑧 = 𝛼∫

𝛾
𝑓 d𝑧 + 𝛽∫

𝛾
𝑔 d𝑧.

2. ∫
𝛾
𝑓 (𝑧) d𝑧 = −∫

𝛾−
𝑓 (𝑧) d𝑧,

where 𝛾− is the reverse path of 𝛾.

3. |∫𝛾 𝑓 (𝑧) d𝑧| ≤ sup𝑧∈𝛾 |𝑓 (𝑧)| length(𝛾).

↪︎Definition 1.7 (Primitive) :  A primitive of a continuous function 𝑓  on a domain Ω is a 

function 𝐹 such that 𝐹′ = 𝑓  on Ω.

↪︎Proposition 1.4 :  If 𝑓 , continuous, has a primitive 𝐹 on Ω and 𝛾 is a curve in Ω beginning at 

𝑤1 and ending at 𝑤2, then

∫
𝛾
𝑓 d𝑧 = 𝐹(𝑤2) − 𝐹(𝑤1).

§1.5 Cauchy’s Theorem

↪︎Theorem 1.6 (Cauchy):  If 𝛾 is a closed path contained in a region Ω ⊂ ℂ and its interior, 

and 𝑓  is holomorphic in Ω, then ∫𝛾 𝑓 (𝑧) d𝑧 = 0.

It will take us some building to get here. In a simple case, though, we have a positive result:

↪︎Corollary 1.3 :  If 𝑓  has a primitive 𝐹 on Ω, then Cauchy’s theorem holds for 𝑓  for any 𝛾 a 

closed path in int(Ω)

Proof. Apply the last proposition; now, 𝐹(𝑤2) = 𝐹(𝑤1), so we have the result. ■

With some more work, we can also establish the proof for 𝛾 some simple contour.

↪︎Proposition 1.5 (Gorsut's Lemma):  Let 𝛾 be a closed triangle in Ω and 𝑓  a holomorphic 

function on Ω. Then ∫𝛾 𝑓 (𝑧) d𝑧 = 0.

Proof. I’ll add it later. ■
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