

MATH249 - Complex Variables

Based on lectures from Winter 2026 by Prof. Henri Darmon.
Notes by Louis Meunier

Contents

1 Complex Numbers	2
1.1 Fundamental Theorem of Algebra	2
1.2 Analytic, Holomorphic Functions	4
1.3 Power Series	5
1.4 Integration Along Curves	7
1.5 Cauchy's Theorem	8

§1 COMPLEX NUMBERS

The complex numbers are the set

$$\mathbb{C} := \{a + bi : a, b \in \mathbb{R}\},$$

where $i^2 = -1$. This set is readily equipped with operations of addition, subtraction, multiplication and division; given two complex numbers $a + bi, c + di$, these operations are determined by the rules

$$\begin{aligned}(a + bi) + (c + di) &= (a + c) + (b + d)i \\ (a + bi)(c + di) &= ac - bd + (ad + bc)i \\ \frac{1}{a + bi} &= \frac{a - bi}{a^2 + b^2},\end{aligned}$$

assuming in the final line that $a^2 + b^2 \neq 0$, i.e. that $a + bi \neq 0$ in \mathbb{C} . In particular, in the division line, we obtain the result by multiplying the top and bottom by the *conjugate* of $z := a + bi$; we denote

$$\bar{z} = a - bi,$$

noting that in particular,

$$z\bar{z} = a^2 + b^2 = |z|^2.$$

Any complex number $z = a + bi$ may be written in so-called *polar form*

$$z = r(\cos \theta + i \sin \theta), \quad r := \sqrt{a^2 + b^2} = |z|, \quad \theta := \arg(z) = \arctan(b/a),$$

with the θ read modulo 2π . This is a useful representation for the sake of multiplication; given $z_i = r_i(\cos(\theta_i) + i \sin(\theta_i))$, $i = 1, 2$, we have

$$z_1 z_2 = \dots = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$$

In particular,

$$|z_1 z_2| = |z_1| |z_2|, \quad \arg(z_1 z_2) = \arg(z_1) + \arg(z_2).$$

↪**Theorem 1.1:** $\cos(\theta) + i \sin(\theta) = \exp(i\theta)$

PROOF. Taylor expand both sides. ■

In particular, this theorem gives a clear way to define the exponential of a complex number

$$e^{x+iy} = e^x e^{iy} = e^x (\cos(y) + i \sin(y)),$$

so that in particular, for any $z \in \mathbb{C}$,

$$|e^z| = e^{\operatorname{Re}(z)}, \quad \arg(e^z) = \operatorname{Im}(z).$$

§1.1 Fundamental Theorem of Algebra

→ **Theorem 1.2** (Fundamental Theorem of Algebra): If $f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ is a polynomial with complex coefficients $a_0, a_1, \dots, a_{n-1}, a_n$, then there exists a $z \in \mathbb{C}$ such that $f(z) = 0$.

PROOF. (A First Proof) Remark that if $|z| = R \gg 1$ (much larger than zero), then we have

$$\begin{aligned} |a_n z^n| &= |a_n| R^n, \\ |a_{n-1} z^{n-1} + \dots + a_1 z + a_0| &\leq |a_{n-1}| R^{n-1} + \dots + |a_1| R + |a_0| \\ &\leq (|a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0|) R^{n-1}. \end{aligned}$$

Let $z_0 \in \mathbb{C}$ be a point for which $|f(z_0)|$ is a minimum; this must exist for $|f|$ must be very large outside of the disc of radius R centered at the origin. Namely, $|z_0| < R$. We claim z_0 a root of f . We may assume without loss of generality that $z_0 = 0$, by replacing $f(z)$ with $f(z - z_0)$. We write

$$\begin{aligned} f(z) &= a_0 + \dots + a_k z^k + \dots + a_n z^n, \\ &= a_0 + a_k z^k \left(1 + \frac{a_{k+1}}{a_k} z + \dots + \frac{a_n}{a_k} z^{n-k} \right). \end{aligned}$$

where $a_k \neq 0$ the first nonzero coefficient with $k \geq 1$. If we can show $a_0 = 0$, we are done. Assume otherwise. Let

$$z := \left(-\frac{a_0}{a_k} \right)^{\frac{1}{k}} \varepsilon, \quad \varepsilon > 0.$$

With this value of z , we have

$$f(z) = a_0 - a_0 \varepsilon^k \left(1 + \underbrace{\dots}_{=o(\varepsilon)} \right) \approx a_0 (1 - \varepsilon^k).$$

By choosing ε sufficiently small, this implies

$$|f(z)| < |a_0| = |f(0)|,$$

which contradicts the assumed minimality of $z_0 = 0$, unless of course $a_0 = f(z_0) = 0$, providing the claim. ■

PROOF. (A Second Proof) We want to view $f(z)$ as a mapping $\mathbb{C} \rightarrow \mathbb{C}$. Assume $f(z) = z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$. When $|z|$ large, we know

$$|f(z) - z^n| < C|z|^{n-1},$$

for some constant C independent of z . Remark that the map $\varphi : z \mapsto z^n$ maps a circle of radius R to a circle of radius R^n ; in particular, if we take a point $z = Re^{i\theta}$ on the circle of radius R of angle θ with the origin, and let θ vary from 0 to 2π , one “rotation” in the pre-image world will lead to n “rotations” in the image world. Similarly, for $z \mapsto f(z)$, the image of the R -radius circle may not be a circle, but a “fudged” circle; the curve of the image will still be some periodic curve. As we let $R \rightarrow 0$, though, the image will go

to the singular point a_0 . Thus, at some value of R , the image of the R -radius circle would have to pass through the origin, and thus this point must be a root of $f(z)$. ■

PROOF. (A Third Proof) We use a result that we will prove later in the class, Liouville's Theorem, which states that any bounded differentiable function $f : \mathbb{C} \rightarrow \mathbb{C}$ must be constant.

Suppose $p(z)$ a polynomial with no roots in \mathbb{C} . Let $f(z) = \frac{1}{p(z)}$ (this is well-defined, since by assumption p has no roots); this is bounded on \mathbb{C} , and has derivative $\frac{d}{dz}f(z) = -\frac{p'(z)}{p(z)^2}$. By Liouville's, f must be a constant and thus p must be a constant. ■

§1.2 Analytic, Holomorphic Functions

→ **Definition 1.1** (Holomorphic/Analytic): A function $f : \mathbb{C} \rightarrow \mathbb{C}$ is said to be *holomorphic* if it has a well-defined derivative, i.e. if the limit

$$\lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h}$$

exists and is well-defined (in the sense that it is independent of the “path” h takes to 0).

We may write $f : \mathbb{C} \rightarrow \mathbb{C}$ as

$$f(z) = f(x + iy) = u(x, y) + iv(x, y),$$

where $u, v : \mathbb{R}^2 \rightarrow \mathbb{R}$. We can calculate $f'(z)$ in two different ways.

1. Restrict h to \mathbb{R} :

$$\begin{aligned} f'(z) &= \lim_{\substack{h \rightarrow 0, \\ h \in \mathbb{R}}} \frac{f(z + h) - f(z)}{h} = \lim_{\substack{h \rightarrow 0, \\ h \in \mathbb{R}}} \frac{u(x + h, y) + iv(x + h, y) - u(x, y) - iv(x, y)}{h} \\ &= \lim_{\substack{h \rightarrow 0, \\ h \in \mathbb{R}}} \frac{u(x + h, y) - u(x, y)}{h} + i \lim_{\substack{h \rightarrow 0, \\ h \in \mathbb{R}}} \frac{v(x + h, y) - v(x, y)}{h} \\ &= \frac{\partial u}{\partial x}(x, y) + i \frac{\partial v}{\partial x}(x, y). \end{aligned}$$

2. Restrict to h purely imaginary values:

$$\begin{aligned} f'(z) &= \lim_{\substack{h \rightarrow 0, \\ h \in \mathbb{R}}} \frac{f(z + ih) - f(z)}{ih} = \lim_{\substack{h \rightarrow 0, \\ h \in \mathbb{R}}} \frac{u(x, y + h) + iv(x, y + h) - u(x, y) - iv(x, y)}{ih} \\ &= \frac{1}{i} \frac{\partial u}{\partial y}(x, y) + \frac{\partial v}{\partial y}(x, y) \\ &= \frac{\partial v}{\partial y}(x, y) - i \frac{\partial u}{\partial y}(x, y) \end{aligned}$$

These two computations must of course agree, which imply (equating real, imaginary parts)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}.$$

These are the *Cauchy-Riemann equations*. Viewing the pair $f = (u, v)$ as a mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^2$, the Cauchy-Riemann equations imply that the Jacobian of f is given in the form

$$J_f(x, y) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \quad a, b \in \mathbb{R}.$$

↪ **Proposition 1.1:**

- If f, g are holomorphic and $a, b \in \mathbb{C}$, then $af + bg$ are also holomorphic, and moreover $(af + bg)' = af' + bg'$
- With $f(z) := z^n, f'(z) = nz^{n-1}$
- As a result, any polynomial on \mathbb{C} is holomorphic

↪ **Theorem 1.3:** If f satisfies the Cauchy-Riemann equations, then f is holomorphic.

PROOF. Write $f = u + iv$ as before. Let $h = h_1 + ih_2$. Then,

$$u(x + h_1, y + h_2) = u(x, y) + h_1 \partial_x u + h_2 \partial_y u + |h|\psi_1(h), \quad \psi_1(h) \rightarrow 0 \text{ as } h \rightarrow 0,$$

with similar for v with a remainder ψ_2 . Then, by Cauchy-Riemann,

$$f(z + h) = f(z) + (\partial_x v - i\partial_y u)(h_1 + ih_2) + \psi(h)|h|, \quad \psi(h) = o(|h|).$$

Dividing both sides by h and sending $h \rightarrow 0$ gives the result. ■

§1.3 Power Series

We say a series $\sum_{n=0}^{\infty} a_n z^n$, where $a_n, z \in \mathbb{C}$, converges if $\lim_{N \rightarrow \infty} \sum_{n=0}^N a_n z^n$ exists as a complex number. We say it converges absolutely if $\lim_{N \rightarrow \infty} \sum_{n=0}^N |a_n| |z|^n$ exists.

↪ **Theorem 1.4:** Given $\sum_{n=0}^{\infty} a_n z^n$, there exists a number $0 \leq R \leq \infty$ for which

1. if $|z| < R$, then $\sum a_n z^n$ converges absolutely;
2. if $|z| > R$, then $\sum a_n z^n$ does not converge.

Furthermore,

$$\frac{1}{R} = \limsup_n |a_n|^{\frac{1}{n}}.$$

PROOF. Let $L = \frac{1}{R}$ and suppose $|z| < R$. There exists some $\varepsilon > 0$ such that

$$r := (L + \varepsilon)|z| < 1.$$

There exists some N such that $L + \varepsilon > |a_n|^{\frac{1}{n}}$ for all $n > N$ by definition of limsup's; thus

$$\begin{aligned} |z| |a_n|^{\frac{1}{n}} &< (L + \varepsilon) |z| = r < 1 \\ \Rightarrow |z|^n |a_n| &< r^n. \end{aligned}$$

But since $r < 1$, it follows that $\sum |a_n| |z|^n$ converges by comparing to the geometric series $\sum r^n$.

If $|z| > R$, there is an $\varepsilon > 0$ so that there are infinitely-many n 's for which $|a_n|^{\frac{1}{n}} > \frac{1}{R} - \varepsilon$, and so

$$|a_n|^{\frac{1}{n}}|z| > r > 1$$

hence $|a_n||z|^n > r^n$, so that $\sum|a_n||z|^n$ diverges by comparison. Moreover, we have shown that $|a_n||z|^n$ does not converge to zero, which implies the series does not even converge ("normally"). ■

⊕ **Example 1.1:**

1. $\sum_{n=0}^{\infty} n!z^n$ has $R = 0$
2. $\sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$ with $R = \infty$.
3. $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ has $R = 1$.

↪ **Theorem 1.5:** A power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ admits a derivative on its disc of convergence, and $f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$.

PROOF. Write $g(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$ as the "potential" derivative we aim to show, remarking that this series converges and moreover has the same radius of convergence as f since $\lim n^{\frac{1}{n}} = 1$ and thus $\limsup a_n^{\frac{1}{n}} = \limsup (n a_n)^{\frac{1}{n}}$. Write

$$f(z) = S_N(z) + E_N(z), \quad S_N(z) := \sum_{n=0}^N a_n z^n, \quad E_N(z) := \sum_{n=N+1}^{\infty} a_n z^n.$$

Fix $z_0 \in D_R(0)$. We show $\frac{f(z_0+h)-f(z_0)}{h} - g(z_0) \rightarrow 0$ as $h \rightarrow 0$. We can write

$$\begin{aligned} \frac{f(z_0+h)-f(z_0)}{h} - g(z_0) &= \frac{S_N(z_0+h)-S_N(z_0)}{h} - g(z_0) + \frac{E_N(z_0+h)-E_N(z_0)}{h} \\ &= \left\{ \frac{S_N(z_0+h)-S_N(z_0)}{h} - S'_N(z_0) \right\} + \{S'_N(z_0) - g(z_0)\} + \left\{ \frac{E_N(z_0+h)-E_N(z_0)}{h} \right\} \\ &= (A) + (B) + (C). \end{aligned}$$

For all $\varepsilon > 0$, there exists N_1 $|(B)| < \varepsilon$ for all $N > N_1$.

There exists N_2 such that $|(C)| < \varepsilon$ for all $N > N_2$, since we have

$$(C) = \sum_{n \geq N+1} a_n \frac{(z_0+h)^n - z_0^n}{h},$$

and

$$(z_0+h)^n - z_0^n = h \left((z_0+h)^{n-1} + (z_0+h)^{n-2} z_0 + \dots + (z_0+h)^{n-j} z_0^j + \dots + z_0^{n-1} \right).$$

Since $|z_0+h|, |z_0| < r < R$ for h sufficiently small, we know

$$|(z_0+h)^n - z_0^n| \leq |h| n r^{n-1},$$

so that

$$\left| \frac{(z_0+h)^n - z_0^n}{h} \right| \leq n r^{n-1}.$$

It follows that

$$|(C)| \leq \sum_{n=N+1}^{\infty} |a_n| n r^{n-1}.$$

This is the tail of an absolutely converging series, hence as $N \rightarrow \infty$, $|(C)| \rightarrow 0$, so we have the claimed bound.

Finally, let $N := \max(N_1, N_2)$. We see that for any fixed N , $(A) \rightarrow 0$ as $h \rightarrow 0$ by the definition of the derivative, and thus we can take $h = h(N)$ sufficiently small so that $|(A)| < \varepsilon$. Combining all these bounds gives the proof. \blacksquare

→ **Corollary 1.1:** $f(z) = \sum a_n z_n$ is infinitely differentiable in its radius of convergence.

→ **Definition 1.2:** A function $f : \Omega \rightarrow \mathbb{C}$ is called *analytic* if it is equal to a power series on $D_\varepsilon(z_0)$ for all $z_0 \in \Omega$, for some $\varepsilon > 0$.

→ **Corollary 1.2:** f analytic $\Rightarrow f$ holomorphic

Remark 1.1: We'll see later that these are actually equivalent notions.

§1.4 Integration Along Curves

→ **Definition 1.3:** A parametrized curve is a function $\gamma : [0, 1] \rightarrow \mathbb{C}$ where γ is differentiable with continuous derivative, with $\gamma'(t) \neq 0$ for all $t \in [0, 1]$.

→ **Definition 1.4:** We'll say two parametrized curves $\gamma, \tilde{\gamma}$ are equivalent if there exists a smooth function $s : [0, 1] \rightarrow [0, 1]$ smooth with $s'(t) > 0$ and such that $\tilde{\gamma} = \gamma \circ s$.

We will consider curves as defined up to equivalency in this way.

→ **Definition 1.5:** If γ is a parametrized curve, define

$$\int_{\gamma} f(z) dz := \int_0^1 f(\gamma(t)) \gamma'(t) dt.$$

If γ a piecewise smooth curve, i.e. γ can locally be written as $t \mapsto z(t) \in \mathbb{C}$ for $t \in [a_k, a_{k+1}]$ for $k = 0, \dots, n-1$ for some sequence $a_k < a_{k+1}$, then

$$\int_{\gamma} f(z) dz := \sum_{k=0}^{n+1} \int_{a_k}^{a_{k+1}} f(z(t)) z'(t) dt.$$

An obvious generalization holds for integration along more general intervals.

→ **Proposition 1.2:** Path integrals are independent of choice of parametrization.

→ **Definition 1.6** (Length of a curve): Define, for γ given by $z : I \rightarrow \mathbb{C}$,

$$\text{length}(\gamma) := \int_{\gamma} |dz| = \int_I |z'(t)| dt.$$

→ **Proposition 1.3:** Let f, g continuous and $\alpha, \beta \in \mathbb{C}$. Then we have

1. Linearity:

$$\int_{\gamma} (\alpha f + \beta g) dz = \alpha \int_{\gamma} f dz + \beta \int_{\gamma} g dz.$$

2. $\int_{\gamma} f(z) dz = - \int_{\gamma^-} f(z) dz,$

where γ^- is the *reverse path* of γ .

3. $\left| \int_{\gamma} f(z) dz \right| \leq \sup_{z \in \gamma} |f(z)| \text{length}(\gamma).$

→ **Definition 1.7 (Primitive):** A *primitive* of a continuous function f on a domain Ω is a function F such that $F' = f$ on Ω .

→ **Proposition 1.4:** If f , continuous, has a primitive F on Ω and γ is a curve in Ω beginning at w_1 and ending at w_2 , then

$$\int_{\gamma} f dz = F(w_2) - F(w_1).$$

§1.5 Cauchy's Theorem

→ **Theorem 1.6 (Cauchy):** If γ is a closed path contained in a region $\Omega \subset \mathbb{C}$ and its interior, and f is holomorphic in Ω , then $\int_{\gamma} f(z) dz = 0$.

It will take us some building to get here. In a simple case, though, we have a positive result:

→ **Corollary 1.3:** If f has a primitive F on Ω , then Cauchy's theorem holds for f for any γ a closed path in $\text{int}(\Omega)$

PROOF. Apply the last proposition; now, $F(w_2) = F(w_1)$, so we have the result. ■

With some more work, we can also establish the proof for γ some simple contour.

→ **Proposition 1.5 (Goursat's Lemma):** Let γ be a closed triangle in Ω and f a holomorphic function on Ω . Then $\int_{\gamma} f(z) dz = 0$.

PROOF. I'll add it later. ■