MATH458 - Differential Geometry

Based on lectures from Winter 2026 by Prof. Jean-Pierre Mutanguha.
Notes by Louis Meunier
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§1 SomE REviEw

We will work in R"”, usually with n = 2, 3. For vectors v = (v, ...,v,),w = (wq,...,w,) € R",
we denote the dot product

More generally, an inner product on R” is any function b : R” x R” — R that is symmetric,
bilinear and positive definite. For instance, if T : R"” — R" is linear and invertible by (v, w) :=
T(v) - T(w) a new inner product. In fact, it turns out every inner product on R” is of this form;
this implies that every inner product is just a coordinate-change away from the dot product.

We will say a linear transformation T : R" — R" is orthogonal if it is inner product preserving,

ie. T(v) -T(w) =v-wforeveryv,w € R".

Exercise 1.1: Show that T is inner product preserving iff it is norm preserving (|Tv|l = |[v||) iff
it is distance preserving (|T(v — w)| = llv — wl)).

Exercise 1.2: Show that if T orthogonal, it is a bijection with determinant +1.
Wesay T : R"” — R", linear, is orientation preserving if det(T) > 0.

= Definition 1.1 (Rigid Motion): A function M : R"” — R" is called a rigid motion if there

existsana € R” and T : R” — R" orthogonal and orientation preserving such that

M@) =a+Tv, Vve R"

We view the space E” as R" equipped with the Euclidean distance, which we’ll denote d or 4 if
no confusion arises, up to rigid motions. In practice, this means working in E” has no
distinguished origin point or coordinate axes. However, also in practice, we will make the

identification E” ~ R" by picking an origin and axes, as we will see.

However, working in E”, abstractly, still preserves orientation and distance, since these are

both preserved under rigid motions.

Forr > 0 and p € E”, we write D, (p) for the open unit disk, and D" := D, (0) C R".

—Theorem 1.1 (Heine-Borel): C C E” compact iff closed and bounded.

Exercise 1.3: Letr’ >r>0and p € E". Letf : D,.(p) — E" be continuous. Show that f|p

uniformly continuous.

We'll denote the derivative of a function f : Ul C R"” - R™ ata pointaby D,f : R" - R™,

which is represented by the Jacobian m x n matrix J(f), = (aa_yilﬂ’ e %b)-

< Definition 1.2: We will say f : U/ — R is CK on U if all the kth order partial derivatives of
all of the component functions of f are continuous. We say f in C* if it is in C¥ for every k > 1.
We write CY for the space of continuous functions.
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Remark 1.1: Ck+1 = Ck

§2 CURVES

< Definition 2.1 (Parametrized curve/path): A parametrized curve/path in E" is a continuous

function
v:1 - E",

where I C R an interval. We say -y compact if I is compact.

< Definition 2.2 ((Regular) ck parametrized curve): Fix coordinates in E”. Then, a (regular)
ck parametrized curve is a parametrized curve in which y € ck (and for whlch (t) +
ovt e I).

Exercise 2.1: Regularity and differentiability is preserved under rigid motion, i.e. if y a
(regular) C* parametrized curve and M a rigid motion on R", then 4 := M o 7 also (regular)
k.

< Definition 2.3: Given a curve 7, we define

* the velocity, v = E 1 - R”

2
e the acceleration, & = d— - R”
e the speed, o = |v|| = ﬂl H

whenever each of these quantities all exist.
Exercise 2.2: Speed is preserved by rigid motions.

< Definition 2.4: Lety be a C! curve. The arclength of -y is defined by

0(y) = La(t) dt.

® Example 2.1: Let p,q € E? with dg(p,q) = 3. Suppose 7 : [4,b] — E? is a C!-path with
y(a) = p,v(b) = q. Prove that {(7y) > 3, with equality holding iff y(I) is a line segment, with

no change of direction.

(Hint: pick coordinates so that p = 0 and the x-axis passes through q to simplify computations.)

< Definition 2.5 (Curve): A set C C E" is a curve if it is connected, and for every p € C, there
exists a compact neighborhood N, of p and a one-to-one, compact, parametrized curve y : [ —
E” such that y(I) = CnN N,.

A curve is called CF if there exists 7y as in the definition which are now required to be C*.

Le., a general curve is everywhere locally a compact parametrized curve.
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Remark 2.1: One can relax the one-to-one/compact conditions to obtain either a global
compact parametrization (which may not be one-to-one) or a parametrized curve withI = R
with y(I) = C and 1 is periodic.

§2.1 Classification Theorem for Curves
—Theorem 2.1 (Classification Theorem for Curves): Let C C E"” a connected subset. Then, C
is a (regular) [CK] curve iff it is the image of a (regular) [C¥] path 7 : I — E" satisfying either
1. v is one-to-one with [C¥] continuous inverse

2. I = R and v is periodic, and the restriction of -y to any interval I’ shorter than the period is

one-to-one.

If -y satisfies 1. or 2., we’ll call it a global parametrization of C.

Remark 2.2: This means we just need one path to describe a curve; but it may, in 2., loop back

onto itself.

§2.2 Reparametrizations of Curves

< Definition 2.6 (Reparametrization): LetI,I C R beintervalsand t: I — I a continuous
bijection (we’ll call it a change of parameters). Then, the reparametrization of 7y : I — E" using t is
the composition 4 := y ot : I - E",

Suppose 7 a regular CK path and ¢ : [ — I a C¥ bijection with a C¥ inverse. Then 7 is a C-

reparametrization of 1.

We say t is orientation-preserving (-reversing) if it is monotone increasing (decreasing).
Remark 2.3: 7 also a reparametrization of ¥ using the inverse s := + 1.

<Theorem 2.2: Supposey : [ - R"is Cl and 4 : I » R" a C! reparametrization of . Then

L(y) = (%), that is, arclength is invariant under change of parameters.

<Theorem 2.3 (Arc-Length Parametrization): Lety : | — E" be a regular C* path. Then,
there exists an orientation-preserving C* reparametrization of ,  : I - E", with unit speed,

ie. 7] = 1.
Proor. Pick ty € I and definte
t .
s: 1> R, s(t):= f v ()| dr.
to
This integral exists and is bounded, and moreover,
& ol >0

since 7y regular. In particular, we see that s is invertible on its image I:=s(), and
increasing. Then, s : [ — I an orientation-preserving, C! bijection with s’ > 0. By the
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inverse function theorem, t := s~! : I — [ exists and has the same desired properties.

Moreover,

11
s'(Es)) I eI

t'(s) =
Letting 7 := -y o t, then we see that

17| = I o t(s) -t (8)]| = =17 (t(s))]| = 1.

1
1yt
u
Exercise 2.3: Any two arc-length parametrizations differ by some shifting in the domain, i.e.
if ; : I; - R are two arc-length reparametrizations of a regular path y : I — R" using a

change of parameters t; : I; — I fori = 1,2, then i := t; ! o t, : I, — I; is a restriction of a rigid

motion of R; specifically " = 1.
With this, we can try to define the length of a general curve C. Suppose C C E" a compact curve
with boundary {p, 4} (so satisfies the first point of the classification theorem).
1. If C a line segment, then we just define
L4(C) =dg(p,q)-

2. If C regular, then we define

L,(C) = U(y),

where 7y is any parametrization of C.

Exercise 2.4: This definition of .(, is well-defined, i.e. independent of choice of

parametrization.

< Definition 2.7 (Rectifiable): Let C be a compact curve with boundary {p, q}. An inscribed
polygon in C is a finite increasing sequence of points P = {pi}io of points in C with endpoints
Po = P, PN = q- We write

L(@ Z dIE(pz/pz+1)

for the length of £, and
|Q| m%XdlE (pzrpz—i-l)

for the size of P.

A curve C is said to be rectifiable if there exists a real number L3(C) > 0 such that for all
ol =2 0, We have

lim L(P,,) = L3(C).

sequence { P
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= Proposition 2.1: A unit-speed reparametrization is essentially unique, up to a shift in the

domain I.
Exercise 2.5: Compute the arc-length parametrization of y(t) := (t,12).

—Lemma 2.1: Let¥ : [ - R" be a regular C? path with constant speed. Then, ¥ will always
be orthogonal to 7.

Proor. Suppose ||[7]| = ¢. We apply the product rule for dot products, to obtain

d d .2
0=S() = S
_ d 2 &
=qr
=27- (),
which gives the proof. [

§2.3 Curvature

Let 7 be a regular C?-path 7 : I — R", there exists an orientation-preserving change of
parameters t : [ — [ such that% := yot:I — R has unit speed. Lets:=t~1:1 - I.

< Definition 2.8 (Curvature of a parametrized curve): Define the curvature of 7y as above at

some time t € I to be

Ky I = Ry, () :=[(Yes)®)

Exercise 2.6: Show that this definition is well-defined, i.e. independent of choice of unit-

speed parametrization.

< Definition 2.9 (Curvature of a curve): Given a regular C? curve C C R”, there exists (by the
classification theorem) a global, regular, C> parametrization of C, y : I - R". For a point p €
C, then, there exists some t € I such that y(t) = p. Define, then, the curvature of C at p, then,
to be the curvature of y at time ¢.

Exercise 2.7: Show that this definition is well-defined, i.e., independent of choice of regular
global parametrization. One will need to appeal to the inverse function theorem, to show that
any two such parametrizations differ by an orientation-preserving change of parameters.

Exercise 2.8: Show that curvature of preserved by rigid motions of R", i.e. given M a rigid

motion of R” and a regular C? curve 1, then

KMO,), = K,)/.
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Remark 2.4: In particular, this exercise gives the curvature is an inherit property of curves in
E”, not just in R".

Remark 2.5: The definition of ., is a little bothersome in the sense that it requires computing

an arc-length parametrization. The follow result shows how we can compute it regardless.

<Proposition 2.2:

il

o1 .._7'77H:H7
E o (o]

where we use the “_L” notation to indicate the orthogonal complement of % with respect to 4.

Proor. I'll add it later. It’s just repeated application of the chain rule and product rule.

Exercise 2.9: Compute the curvature of parabola C := {(x,y) | y = x>} C R? at any point.

[l

1712

—Theorem 2.4: The quantity is preserved under reparametrization.

Remark 2.6: This is really more of a corollary of the previous proposition. Moreover, this
implies that our definition of curvature is “correct” as a property of curves in E” rather than
just R,

< Definition 2.10: Let ¢ : I — R"” a regular path. We define

(t) := %, then unit tangent at time ¢
If y € C?,
. l
e N(t):= ”%&”, the unit normal at time t

* the osculating plane at time is the plane in R"” that contains the point (t) and is spanned by
{7Y(),7(t)} (supposing «., # 0)

* the osculating circle at time t as the circle laying in the osculating plane of radius % and
N()

Kx(t)

* the evolute of 7y is the map

centered at y(t) +

N (t) . .
tel-y(t) + Wt) = center of oscualting circle at ¢

Remark 2.7: 7+ # 0 & «, # 0 & {7, %} a linearly independent set.

Exercise 2.10: A circle of radius 7, i.e. the curve defined implicitly by {x* + y* = 2}, has

curvature %

This exercise shows that the osculating circle at a point on a curve has the same curvature as the

curve at that point.
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Exercise 2.11: Suppose n = 2 and a curve is given explicitly by y = f (x) wheref : R - R
sufficiently differentiable. Compute the curvature in terms of f and its derivatives. Do the
same if the curve is given implicitly as the set of (x,y) € R? such that g(x,y) = 0 where g :
R? — R sufficiently differentiable.

Fix now 1 = 2. Let 7 : I » R? be a regular C? curve and fix ¢ € I. Let us assume (by changing
coordinates if necessary) that 7y (t) = 0 and the x-axis is parallel to T(t),i.e. T(t) = (1,0). Then,

we see that we may write

y*
I (12

= constant x (0, 1).

Specifically, the “constant” here is what we call the signed curvature of <y at time t, and is

computed as :

< Definition 2.11 (Signed curvature): Let y as in the above, then the signed curvature is the
quantity
T 4@ -y®*
kI(t) = — : ,
TR ol

where we use the notation v* as a rotation of v = (vq,v,) by an angle of %, counter-clockwise,

ie. v* = (—vy,0q).
Exercise 2.12: i (—t) = —xE(1).

Exercise 2.13: Suppose y(t) = (x(t),y(t)), then show
xij — &y

T @)

< Definition 2.12 (Angle function): Let <y : I — R? be a regular C? curve parametrized by arc
length with basepoint s, € I. We assume wlog s, = 0 (by translating if necessary) and that
¥(0) = (1,0) (by changing coordinates). We define the angle function of y by

0:1>R, 6(0)=0,6(:= [ xtw)du.

In particular, % = xE(s).
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Remark 2.8: We can view s — ¥(s) as a new C 1—parame’crized curve, in which case its arc
length is given by

[ Iraondu = | x, o du.

So, in a sense, the 8 angle function is the “signed arc-length” of ¥, i.e. it accounts for
backtracking.

Moreover, since we have an arc length parametrization, we know - a unit vector, hence we
can view the map t — ¥ (t) as a map from I to the unit circle in R2. Hence, 6 is meant to

capture the angle of this unit vector for any ¢, i.e. 4 = (cos,sin) o

—Theorem 2.5 (Fundamental Theorem of Plane Paths): Let sy € I be a given base point and
let x : I - R be a Ck=2 function (2 < k < o). Then, for each pE R2 and 6y € R, there is a
unique regular CF path 7y : I —» R?, parametrized by arc-length, such that

1. xf =

0z
(So) ( 0s(6p), sin(6p)),
v(s9) = p-

Remark 2.9: The choice of p, §, just correspond to a translation, rotation (resp.) of R? of our
curve, i.e. this means our curve is uniquely determined up to rigid motion.

Remark 2.10: This essentially says that, given the curvature of a curve in the plane, we can

reconstruct the curve.

Proor. We seek to find y : I - R? and 6 : [ - R such that

Y :
i (cos §,sinB),y(sy) =p
and

dé
E = K,G(SO) = 90.

By the fundamental theorem of calculus, we know

0(s) = f: k() du + 6,

0
is the unique solution for 8(s) with the given properties, which in turn implies

v(s) = (j: cos(B(u)) du, j:

0

sin(6(u)) du) +p,

which is again unique by FTC. [ ]

Remark 2.11: This theorem essentially says that a curve is uniquely determined by its signed
curvature. However, the same is not true if we just take the curvature. For instance, the curves
given explicitly by y = x3, y = |x|*> have the same curvature everywhere but clearly do not

described the same curves.
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A more abstract manner of characterizing the angle function for a more general curve is as
follows. If y: I - R?a regular, C2 curve, then the angle function 6 : I — I’ where I’ some other
interval of R, is such that

T:'OOGI

wherep:I' —» R2 is the standard parametrization of the circle given by p(6) := (cos(8), sin(8))

and T the unit tangent vector viewed as a map I —» R2.

Exercise 2.14: Show that the signed curvature of -y is preserved under rigid motion, hence is
well-defined as a property of a curve in E”. (Note that the signed curvature is the derivative

of the 6 function, hence it suffices to prove this property for 0)

§2.4 3-Dimensional Space Paths

We wish to derive an analogous “fundamental” result for curves in R3. However, we have no
notion of “signed curvature” in this case. Moreover, as we’ll see, we actually need a second
“intrinsic” (called torsion) of the curve to uniquely identify it.

Fix 7 : I - R3 regular and C? and with strictly positive curvature (turns out, there’s not much
we can say when the curvature is 0).

Define as before

. L
T = l/ N = ,)/—J_
ol [oaall

the unit tangent and normal vectors. Remark that T - N = 0. Since we are in R3, there exists a
unique third vector, which we denote B and call it the binormal such that {T, N, B} is an
orthonormal, positively oriented basis (in the sense that the matrix consisting of columns T, N, B
in that order is orthogonal with determinant 1) of R3, i.e.

B:=T x N.
The basis {T, N, B} ¢ R3 is called the Frenet frame associated to .

We’ll be interested in the dynamics of this frame, i.e. how T, N, B resp. change in time. We
need to additionally assume y € C® for this, so that we may take derivatives of N. We'll also

assume 7y is parametrized by arc-length for convenience. We find that with these assumptions,
T=7
=T =%=|%IN = «N.
In addition,
IBl=1=B-B=0
and

B=TxN=B=TxN+TxN=xNxN+TxN=B-T=0,

[ —

=0

hence B is simultaneously orthogonal to B and T, hence
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B = const(—N).
We call this constant the torsion T of 7y at time s, which is given by
T:=-B-N.
Finally, to compute N, we have that
INI=1=N-N=0
T'N=0=0=T-N+T-N=x|IN> +T-N=T -N=—x«
=1
B-N=0=0=B-N+BN=-71+B-N=B-N=r1.

This implies
N = —«T + 7B.

In summary, we can succinctly write

T 0 x 0\(T
N|=|-x 0 T||N (The Frenet equations).
B 0 -t 0/\B

—Theorem 2.6 (Fundamental Theorem of Space Paths): Let I C R be an interval with
basepoint s, € I. Suppose T : I - R is a C*=3 function and x : I - R is a C~2 function
(where 3 < k < o). Then, for any initial point p, € R3, initial velocity v, € R3, and initial
normal direction 1, € R3 such that ||vy|| = [[no]| = 1 and v - 1y = 1, there is a unique regular
CF path 7y : I » R3 parametrized by arc length and satisfying:

1. %,

2. Ty

3. ¥(s0) = Pos
4. y(sg) = vy,

a0 SO —
S Vo = o

:K,

:T,

Remark 2.12: The last three requirements say that this curve is uniquely defined up to rigid
motion, hence unique in E3; translations will simply change the initial point p,, and rotations

will change the angles of v, 1.
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