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§1 Some Review

We will work in ℝ𝑛, usually with 𝑛 = 2, 3. For vectors 𝑣 = (𝑣1, …, 𝑣𝑛), 𝑤 = (𝑤1, …, 𝑤𝑛) ∈ ℝ𝑛, 

we denote the dot product

𝑣 ⋅ 𝑤 = ∑
𝑛

𝑖=1
𝑣𝑖𝑤𝑖.

More generally, an inner product on ℝ𝑛 is any function 𝑏 : ℝ𝑛 × ℝ𝑛 → ℝ that is symmetric, 

bilinear and positive definite. For instance, if 𝑇 : ℝ𝑛 → ℝ𝑛 is linear and invertible 𝑏𝑇(𝑣, 𝑤) ≔
𝑇(𝑣) ⋅ 𝑇(𝑤) a new inner product. In fact, it turns out every inner product on ℝ𝑛 is of this form; 

this implies that every inner product is just a coordinate-change away from the dot product.

We will say a linear transformation 𝑇 : ℝ𝑛 → ℝ𝑛 is orthogonal if it is inner product preserving, 

i.e. 𝑇(𝑣) ⋅ 𝑇(𝑤) = 𝑣 ⋅ 𝑤 for every 𝑣, 𝑤 ∈ ℝ𝑛.

Exercise 1.1 : Show that 𝑇 is inner product preserving iff it is norm preserving (‖𝑇𝑣‖ = ‖𝑣‖) iff 

it is distance preserving (‖𝑇(𝑣 − 𝑤)‖ = ‖𝑣 − 𝑤‖).

Exercise 1.2 :  Show that if 𝑇 orthogonal, it is a bijection with determinant ±1.

We say 𝑇 : ℝ𝑛 → ℝ𝑛, linear, is orientation preserving if det(𝑇) > 0.

↪︎Definition 1.1 (Rigid Motion):  A function 𝑀 : ℝ𝑛 → ℝ𝑛 is called a rigid motion if there 

exists an 𝑎 ∈ ℝ𝑛 and 𝑇 : ℝ𝑛 → ℝ𝑛 orthogonal and orientation preserving such that

𝑀(𝑣) = 𝑎 + 𝑇𝑣, ∀𝑣 ∈ ℝ𝑛.

We view the space 𝔼𝑛 as ℝ𝑛 equipped with the Euclidean distance, which we’ll denote 𝑑𝔼 or 𝑑 if 

no confusion arises, up to rigid motions. In practice, this means working in 𝔼𝑛 has no 

distinguished origin point or coordinate axes. However, also in practice, we will make the 

identification 𝔼𝑛 ≃ ℝ𝑛 by picking an origin and axes, as we will see.

However, working in 𝔼𝑛, abstractly, still preserves orientation and distance, since these are 

both preserved under rigid motions.

For 𝑟 > 0 and 𝜌 ∈ 𝔼𝑛, we write 𝔻𝑟(𝜌) for the open unit disk, and 𝔻𝑛 ≔ 𝔻1(0) ⊂ ℝ𝑛.

↪︎Theorem 1.1 (Heine-Borel) :  𝐶 ⊂ 𝔼𝑛 compact iff closed and bounded.

Exercise 1.3 : Let 𝑟′ > 𝑟 > 0 and 𝜌 ∈ 𝔼𝑛. Let 𝑓 : 𝔻𝑟′(𝜌) → 𝔼𝑛 be continuous. Show that 𝑓 |𝔻𝑟(𝜌) 

uniformly continuous.

We’ll denote the derivative of a function 𝑓 : 𝒰︀ ⊂ ℝ𝑛 → ℝ𝑚 at a point 𝑎 by 𝐷𝑎𝑓 : ℝ𝑛 → ℝ𝑚, 

which is represented by the Jacobian 𝑚 × 𝑛 matrix 𝐽(𝑓 )𝑎 = ( 𝜕𝑓
𝜕𝑥1

|𝑎, …, 𝜕𝑓
𝜕𝑥𝑛

|𝑎).

↪︎Definition 1.2 : We will say 𝑓 : 𝒰︀ → ℝ𝑚 is 𝐶𝑘 on 𝒰︀  if all the 𝑘th order partial derivatives of 

all of the component functions of 𝑓  are continuous. We say 𝑓  in 𝐶∞ if it is in 𝐶𝑘 for every 𝑘 ≥ 1. 

We write 𝐶0 for the space of continuous functions.
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Remark 1.1 :  𝐶𝑘+1 ⇒ 𝐶𝑘

§2 Curves

↪︎Definition 2.1 (Parametrized curve/path):  A parametrized curve/path in 𝔼𝑛 is a continuous 

function

𝛾 : 𝐼 → 𝔼𝑛,

where 𝐼 ⊂ ℝ an interval. We say 𝛾 compact if 𝐼 is compact.

↪︎Definition 2.2 ((Regular) 𝐶𝑘 parametrized curve) :  Fix coordinates in 𝔼𝑛. Then, a (regular) 

𝐶𝑘 parametrized curve is a parametrized curve in which 𝛾 ∈ 𝐶𝑘(𝐼) (and for which 
d𝛾
d𝑡 (𝑡) ≠

0∀𝑡 ∈ 𝐼).

Exercise 2.1 : Regularity and differentiability is preserved under rigid motion, i.e. if 𝛾 a 

(regular) 𝐶𝑘 parametrized curve and 𝑀 a rigid motion on ℝ𝑛, then 𝛾̃ ≔ 𝑀 ∘ 𝛾 also (regular) 

𝐶𝑘.

↪︎Definition 2.3 :  Given a curve 𝛾, we define

• the velocity, 𝜈 = d𝛾
d𝑡 : 𝐼 → ℝ𝑛

• the acceleration, 𝛼 = d2𝛾
d𝑡2 : 𝐼 → ℝ𝑛

• the speed, 𝜎 = ‖𝜈‖ = ‖d𝛾
d𝑡 ‖ : 𝐼 → ℝ,

whenever each of these quantities all exist.

Exercise 2.2 :  Speed is preserved by rigid motions.

↪︎Definition 2.4 :  Let 𝛾 be a 𝐶1 curve. The arclength of 𝛾 is defined by

ℓ(𝛾) ≔ ∫
𝐼

𝜎(𝑡) d𝑡.

⊛ Example 2.1 :  Let 𝑝, 𝑞 ∈ 𝔼2 with 𝑑𝔼(𝑝, 𝑞) = 3. Suppose 𝛾 : [𝑎, 𝑏] → 𝔼2 is a 𝐶1-path with 

𝛾(𝑎) = 𝑝, 𝛾(𝑏) = 𝑞. Prove that ℓ(𝛾) ≥ 3, with equality holding iff 𝛾(𝐼) is a line segment, with 

no change of direction.

(Hint: pick coordinates so that 𝑝 = 0 and the 𝑥-axis passes through 𝑞 to simplify computations.)

↪︎Definition 2.5 (Curve) :  A set 𝒞︀ ⊂ 𝔼𝑛 is a curve if it is connected, and for every 𝑝 ∈ 𝒞︀ , there 

exists a compact neighborhood 𝑁𝑝 of 𝑝 and a one-to-one, compact, parametrized curve 𝛾 : 𝐼 →
𝔼𝑛 such that 𝛾(𝐼) = 𝒞︀ ∩ 𝑁𝑝.

A curve is called 𝐶𝑘 if there exists 𝛾 as in the definition which are now required to be 𝐶𝑘.

I.e., a general curve is everywhere locally a compact parametrized curve.
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Remark 2.1 :  One can relax the one-to-one/compact conditions to obtain either a global 

compact parametrization (which may not be one-to-one) or a parametrized curve with 𝐼 = ℝ 

with 𝛾(𝐼) = 𝒞︀  and 𝛾 is periodic.

§2.1 Classification Theorem for Curves

↪︎Theorem 2.1 (Classification Theorem for Curves) :  Let 𝒞︀ ⊂ 𝔼𝑛 a connected subset. Then, 𝒞︀  

is a (regular) [𝐶𝑘] curve iff it is the image of a (regular) [𝐶𝑘] path 𝛾 : 𝐼 → 𝔼𝑛 satisfying either

1. 𝛾 is one-to-one with [𝐶𝑘] continuous inverse

2. 𝐼 = ℝ and 𝛾 is periodic, and the restriction of 𝛾 to any interval 𝐼′ shorter than the period is 

one-to-one.

If 𝛾 satisfies 1. or 2., we’ll call it a global parametrization of 𝒞︀ .

Remark 2.2 :  This means we just need one path to describe a curve; but it may, in 2., loop back 

onto itself.

§2.2 Reparametrizations of Curves

↪︎Definition 2.6 (Reparametrization):  Let 𝐼, ̃𝐼 ⊂ ℝ be intervals and 𝑡 : ̃𝐼 → 𝐼 a continuous 

bijection (we’ll call it a change of parameters). Then, the reparametrization of 𝛾 : 𝐼 → 𝔼𝑛 using 𝑡 is 

the composition 𝛾̃ ≔ 𝛾 ∘ 𝑡 : ̃𝐼 → 𝔼𝑛.

Suppose 𝛾 a regular 𝐶𝑘 path and 𝑡 : ̃𝐼 → 𝐼 a 𝐶𝑘 bijection with a 𝐶𝑘 inverse. Then 𝛾̃ is a 𝐶𝑘-

reparametrization of 𝛾.

We say 𝑡 is orientation-preserving (-reversing) if it is monotone increasing (decreasing).

Remark 2.3 :  𝛾 also a reparametrization of 𝛾̃ using the inverse 𝑠 ≔ 𝑡−1.

↪︎Theorem 2.2 :  Suppose 𝛾 : 𝐼 → ℝ𝑛 is 𝐶1 and 𝛾̃ : ̃𝐼 → ℝ𝑛 a 𝐶1 reparametrization of 𝛾. Then 

ℓ(𝛾) = ℓ(𝛾̃), that is, arclength is invariant under change of parameters.

↪︎Theorem 2.3 (Arc-Length Parametrization):  Let 𝛾 : 𝐼 → 𝔼𝑛 be a regular 𝐶𝑘 path. Then, 

there exists an orientation-preserving 𝐶𝑘 reparametrization of 𝛾, 𝛾̃ : ̃𝐼 → 𝔼𝑛, with unit speed, 

i.e. ‖ ̇𝛾̃‖ ≡ 1.

Proof. Pick 𝑡0 ∈ 𝐼 and definte

𝑠 : 𝐼 → ℝ, 𝑠(𝑡) ≔ ∫
𝑡

𝑡0
‖𝛾̇(𝑟)‖ d𝑟.

This integral exists and is bounded, and moreover,

d𝑠
d𝑡 = ‖𝛾̇(𝑡)‖ > 0,

since 𝛾 regular. In particular, we see that 𝑠 is invertible on its image ̃𝐼 ≔ 𝑠(𝐼), and 

increasing. Then, 𝑠 : 𝐼 → ̃𝐼 an orientation-preserving, 𝐶1 bijection with 𝑠′ > 0. By the 
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inverse function theorem, 𝑡 ≔ 𝑠−1 : ̃𝐼 → 𝐼 exists and has the same desired properties. 

Moreover,

𝑡′(𝑠) =
1

𝑠′(𝑡(𝑠)) =
1

‖𝛾̇(𝑡(𝑠))‖ .

Letting 𝛾̃ ≔ 𝛾 ∘ 𝑡, then we see that

‖ ̇𝛾̃(𝑠)‖ = ‖𝛾̇ ∘ 𝑡(𝑠) ⋅ 𝑡′(𝑠)‖ =
1

‖𝛾̇(𝑡(𝑠))‖‖𝛾̇(𝑡(𝑠))‖ ≡ 1.

■

Exercise 2.3 :  Any two arc-length parametrizations differ by some shifting in the domain, i.e. 

if 𝛾𝑖 : 𝐼𝑖 → ℝ are two arc-length reparametrizations of a regular path 𝛾 : 𝐼 → ℝ𝑛 using a 

change of parameters 𝑡𝑖 : 𝐼𝑖 → 𝐼 for 𝑖 = 1, 2, then ℎ ≔ 𝑡−1
2 ∘ 𝑡2 : 𝐼2 → 𝐼1 is a restriction of a rigid 

motion of ℝ; specifically ℎ′ ≡ 1.

With this, we can try to define the length of a general curve 𝒞︀ . Suppose 𝒞︀ ⊂ 𝔼𝑛 a compact curve 

with boundary {𝑝, 𝑞} (so satisfies the first point of the classification theorem).

1. If 𝒞︀  a line segment, then we just define

ℒ︀1(𝒞︀) ≔ 𝑑𝔼(𝑝, 𝑞).

2. If 𝒞︀  regular, then we define

ℒ︀2(𝒞︀) ≔ ℓ(𝛾),

where 𝛾 is any parametrization of 𝒞︀ .

Exercise 2.4 :  This definition of ℒ︀2 is well-defined, i.e. independent of choice of 

parametrization.

↪︎Definition 2.7 (Rectifiable) :  Let 𝒞︀  be a compact curve with boundary {𝑝, 𝑞}. An inscribed 

polygon in 𝒞︀  is a finite increasing sequence of points 𝒫︀ = {𝑝𝑖}
𝑁
𝑖=0 of points in 𝒞︀  with endpoints 

𝑝0 = 𝑝, 𝑝𝑁 = 𝑞. We write

𝐿(𝒫︀) ≔ ∑
𝑁−1

𝑖=0
𝑑𝔼(𝑝𝑖, 𝑝𝑖+1)

for the length of 𝒫︀ , and

|𝒫︀| ≔ max𝑁−1
𝑖=0

𝑑𝔼(𝑝𝑖, 𝑝𝑖+1)

for the size of 𝒫︀ .

A curve 𝒞︀  is said to be rectifiable if there exists a real number ℒ︀3(𝒞︀) ≥ 0 such that for all 

sequence {𝒫︀𝑚} of inscribed polygons in 𝒞︀  with |𝒫︀𝑚| →𝑚→∞ 0, we have

lim𝑚→∞ 𝐿(𝒫︀𝑚) = ℒ︀3(𝒞︀).
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↪︎Proposition 2.1 :  A unit-speed reparametrization is essentially unique, up to a shift in the 

domain 𝐼.

Exercise 2.5 :  Compute the arc-length parametrization of 𝛾(𝑡) ≔ (𝑡, 𝑡2).

↪︎Lemma 2.1 :  Let 𝛾̃ : ̃𝐼 → ℝ𝑛 be a regular 𝐶2 path with constant speed. Then, ̈𝛾̃ will always 

be orthogonal to ̇𝛾̃.

Proof. Suppose ‖ ̇𝛾̃‖ ≡ 𝑐. We apply the product rule for dot products, to obtain

0 =
d
d𝑡(𝑐2) =

d
d𝑡‖ ̇𝛾̃‖2

=
d
d𝑡

̇𝛾̃ ⋅ ̇𝛾̃

= 2 ̈𝛾̃ ⋅ ( ̇𝛾̃),

which gives the proof. ■

§2.3 Curvature

Let 𝛾 be a regular 𝐶2-path 𝛾 : 𝐼 → ℝ𝑛, there exists an orientation-preserving change of 

parameters 𝑡 : ̃𝐼 → 𝐼 such that 𝛾̃ ≔ 𝛾 ∘ 𝑡 : ̃𝐼 → ℝ has unit speed. Let 𝑠 ≔ 𝑡−1 : 𝐼 → ̃𝐼.

↪︎Definition 2.8 (Curvature of a parametrized curve) :  Define the curvature of 𝛾 as above at 

some time 𝑡 ∈ 𝐼 to be

𝜅𝛾 : 𝐼 → ℝ+, 𝜅𝛾(𝑡) ≔ ‖( ̈𝛾̃ ∘ 𝑠)(𝑡)‖.

Exercise 2.6 :  Show that this definition is well-defined, i.e. independent of choice of unit-

speed parametrization.

↪︎Definition 2.9 (Curvature of a curve) :  Given a regular 𝐶2 curve 𝒞︀ ⊂ ℝ𝑛, there exists (by the 

classification theorem) a global, regular, 𝐶2 parametrization of 𝒞︀ , 𝛾 : 𝐼 → ℝ𝑛. For a point 𝑝 ∈
𝒞︀ , then, there exists some 𝑡 ∈ 𝐼 such that 𝛾(𝑡) = 𝑝. Define, then, the curvature of 𝒞︀  at 𝑝, then, 

to be the curvature of 𝛾 at time 𝑡.

Exercise 2.7 :  Show that this definition is well-defined, i.e., independent of choice of regular 

global parametrization. One will need to appeal to the inverse function theorem, to show that 

any two such parametrizations differ by an orientation-preserving change of parameters.

Exercise 2.8 :  Show that curvature of preserved by rigid motions of ℝ𝑛, i.e. given 𝑀 a rigid 

motion of ℝ𝑛 and a regular 𝐶2 curve 𝛾, then

𝜅𝑀∘𝛾 = 𝜅𝛾.
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Remark 2.4 :  In particular, this exercise gives the curvature is an inherit property of curves in 

𝔼𝑛, not just in ℝ𝑛.

Remark 2.5 :  The definition of 𝜅𝛾 is a little bothersome in the sense that it requires computing 

an arc-length parametrization. The follow result shows how we can compute it regardless.

↪︎Proposition 2.2 :

𝜅𝛾 =
1

‖𝛾̇‖2 ‖𝛾̈ −
𝛾̈ ⋅ 𝛾̇
𝛾̇ ⋅ 𝛾̇ 𝛾̇‖ =

‖𝛾̈⟂‖
‖𝛾̇‖2 ,

where we use the “⟂” notation to indicate the orthogonal complement of 𝛾̈ with respect to 𝛾̇.

Proof. I’ll add it later. It’s just repeated application of the chain rule and product rule.

■

Exercise 2.9 :  Compute the curvature of parabola 𝒞︀ ≔ {(𝑥, 𝑦) | 𝑦 = 𝑥2} ⊂ ℝ2 at any point.

↪︎Theorem 2.4 :  The quantity 
‖𝛾̈⟂‖
‖𝛾̇‖2  is preserved under reparametrization.

Remark 2.6 :  This is really more of a corollary of the previous proposition. Moreover, this 

implies that our definition of curvature is “correct” as a property of curves in 𝔼𝑛 rather than 

just ℝ𝑛.

↪︎Definition 2.10 :  Let 𝛾 : 𝐼 → ℝ𝑛 a regular path. We define

• 𝑇(𝑡) ≔ 𝛾̇(𝑡)
‖ ̇𝛾(𝑡)‖ , then unit tangent at time 𝑡

If 𝛾 ∈ 𝐶2,

• 𝑁(𝑡) ≔ 𝛾̈(𝑡)⟂

‖𝛾̈(𝑡)⟂‖ , the unit normal at time 𝑡
• the osculating plane at time is the plane in ℝ𝑛 that contains the point 𝛾(𝑡) and is spanned by 

{𝛾̇(𝑡), 𝛾̈(𝑡)} (supposing 𝜅𝛾 ≠ 0)

• the osculating circle at time 𝑡 as the circle laying in the osculating plane of radius 1
𝜅(𝑡)  and 

centered at 𝛾(𝑡) + 𝑁(𝑡)
𝜅(𝑡)

• the evolute of 𝛾 is the map

𝑡 ∈ 𝐼 ↦ 𝛾(𝑡) +
𝑁(𝑡)
𝜅(𝑡) = center of oscualting circle at 𝑡

Remark 2.7 : 𝛾̈⟂ ≠ 0 ⇔ 𝜅𝛾 ≠ 0 ⇔ {𝛾̇, 𝛾̈} a linearly independent set.

Exercise 2.10 :  A circle of radius 𝑟, i.e. the curve defined implicitly by {𝑥2 + 𝑦2 = 𝑟2}, has 

curvature 1
𝑟 .

This exercise shows that the osculating circle at a point on a curve has the same curvature as the 

curve at that point.
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Exercise 2.11 :  Suppose 𝑛 = 2 and a curve is given explicitly by 𝑦 = 𝑓 (𝑥) where 𝑓 : ℝ → ℝ 

sufficiently differentiable. Compute the curvature in terms of 𝑓  and its derivatives. Do the 

same if the curve is given implicitly as the set of (𝑥, 𝑦) ∈ ℝ2 such that 𝑔(𝑥, 𝑦) = 0 where 𝑔 :
ℝ2 → ℝ sufficiently differentiable.

Fix now 𝑛 = 2. Let 𝛾 : 𝐼 → ℝ2 be a regular 𝐶2 curve and fix 𝑡 ∈ 𝐼. Let us assume (by changing 

coordinates if necessary) that 𝛾(𝑡) = 0 and the 𝑥-axis is parallel to 𝑇(𝑡), i.e. 𝑇(𝑡) = (1, 0). Then, 

we see that we may write

𝛾̈(𝑡)⟂

‖𝛾̇(𝑡)‖2 = constant × (0, 1).

Specifically, the “constant” here is what we call the signed curvature of 𝛾 at time 𝑡, and is 

computed as :

↪︎Definition 2.11 (Signed curvature) : Let 𝛾 as in the above, then the signed curvature is the 

quantity

𝜅±
𝛾 (𝑡) =

1
‖𝛾̇(𝑡)‖2

𝛾̈(𝑡) ⋅ 𝛾̇(𝑡)∗

‖𝛾̇(𝑡)‖ ,

where we use the notation 𝑣∗ as a rotation of 𝑣 = (𝑣1, 𝑣2) by an angle of 𝜋
2 , counter-clockwise, 

i.e. 𝑣∗ = (−𝑣2, 𝑣1).

Exercise 2.12 :  𝜅±
𝛾 (−𝑡) = −𝜅±

𝛾 (𝑡).

Exercise 2.13 :  Suppose 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)), then show

𝜅𝛾 =
̇𝑥 ̈𝑦 − ̈𝑥 ̇𝑦

( ̇𝑥2 + ̇𝑦2)3/2 .

↪︎Definition 2.12 (Angle function):  Let 𝛾 : 𝐼 → ℝ2 be a regular 𝐶2 curve parametrized by arc 

length with basepoint 𝑠0 ∈ 𝐼. We assume wlog 𝑠0 = 0 (by translating if necessary) and that 

𝛾̇(0) = (1, 0) (by changing coordinates). We define the angle function of 𝛾 by

𝜃 : 𝐼 → ℝ, 𝜃(0) = 0, 𝜃(𝑠) ≔ ∫
𝑠

0
𝜅±

𝛾 (𝑢) d𝑢.

In particular, d𝜃
d𝑠 = 𝜅±

𝛾 (𝑠).
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Remark 2.8 :  We can view 𝑠 ↦ 𝛾̇(𝑠) as a new 𝐶1-parametrized curve, in which case its arc 

length is given by

∫
𝑠

0
‖𝛾̈(𝑢)‖ d𝑢 = ∫

𝑠

0
𝜅𝛾(𝑢) d𝑢.

So, in a sense, the 𝜃 angle function is the “signed arc-length” of 𝛾̇, i.e. it accounts for 

backtracking.

Moreover, since we have an arc length parametrization, we know 𝛾̇ a unit vector, hence we 

can view the map 𝑡 ↦ 𝛾̇(𝑡) as a map from 𝐼 to the unit circle in ℝ2. Hence, 𝜃 is meant to 

capture the angle of this unit vector for any 𝑡, i.e. 𝛾̇ = (cos, sin) ∘ 𝜃.

↪︎Theorem 2.5 (Fundamental Theorem of Plane Paths) :  Let 𝑠0 ∈ 𝐼 be a given base point and 

let 𝜅 : 𝐼 → ℝ be a 𝐶𝑘−2 function (2 ≤ 𝑘 ≤ ∞). Then, for each 𝑝 ∈ ℝ2 and 𝜃0 ∈ ℝ, there is a 

unique regular 𝐶𝑘 path 𝛾 : 𝐼 → ℝ2, parametrized by arc-length, such that

1. 𝜅±
𝛾 = 𝜅,

2. 𝛾̇(𝑠0) = (cos(𝜃0), sin(𝜃0)),

3. 𝛾(𝑠0) = 𝑝.

Remark 2.9 :  The choice of 𝑝, 𝜃0 just correspond to a translation, rotation (resp.) of ℝ2 of our 

curve, i.e. this means our curve is uniquely determined up to rigid motion.

Remark 2.10 :  This essentially says that, given the curvature of a curve in the plane, we can 

reconstruct the curve.

Proof. We seek to find 𝛾 : 𝐼 → ℝ2 and 𝜃 : 𝐼 → ℝ such that

d𝛾
d𝑠 = (cos 𝜃, sin 𝜃), 𝛾(𝑠0) = 𝑝

and

d𝜃
d𝑠 = 𝜅, 𝜃(𝑠0) = 𝜃0.

By the fundamental theorem of calculus, we know

𝜃(𝑠) = ∫
𝑠

𝑠0
𝜅(𝑢) d𝑢 + 𝜃0

is the unique solution for 𝜃(𝑠) with the given properties, which in turn implies

𝛾(𝑠) = (∫
𝑠

𝑠0
cos(𝜃(𝑢)) d𝑢, ∫

𝑠

𝑠0
sin(𝜃(𝑢)) d𝑢) + 𝑝,

which is again unique by FTC. ■

Remark 2.11 :  This theorem essentially says that a curve is uniquely determined by its signed 

curvature. However, the same is not true if we just take the curvature. For instance, the curves 

given explicitly by 𝑦 = 𝑥3, 𝑦 = |𝑥|3 have the same curvature everywhere but clearly do not 

described the same curves.
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A more abstract manner of characterizing the angle function for a more general curve is as 

follows. If 𝛾 : 𝐼 → ℝ2 a regular, 𝐶2 curve, then the angle function 𝜃 : 𝐼 → 𝐼′ where 𝐼′ some other 

interval of ℝ, is such that

𝑇 = 𝜌 ∘ 𝜃,

where 𝜌 : 𝐼′ → ℝ2 is the standard parametrization of the circle given by 𝜌(𝜃) ≔ (cos(𝜃), sin(𝜃)) 

and 𝑇 the unit tangent vector viewed as a map 𝐼 → ℝ2.

Exercise 2.14 :  Show that the signed curvature of 𝛾 is preserved under rigid motion, hence is 

well-defined as a property of a curve in 𝔼𝑛. (Note that the signed curvature is the derivative 

of the 𝜃 function, hence it suffices to prove this property for 𝜃)

§2.4 3-Dimensional Space Paths

We wish to derive an analogous “fundamental” result for curves in ℝ3. However, we have no 

notion of “signed curvature” in this case. Moreover, as we’ll see, we actually need a second 

“intrinsic” (called torsion) of the curve to uniquely identify it.

Fix 𝛾 : 𝐼 → ℝ3 regular and 𝐶2 and with strictly positive curvature (turns out, there’s not much 

we can say when the curvature is 0).

Define as before

𝑇 ≔
𝛾̇

‖𝛾̇‖ , 𝑁 ≔
𝛾̈⟂

‖𝛾̈⟂‖

the unit tangent and normal vectors. Remark that 𝑇 ⋅ 𝑁 = 0. Since we are in ℝ3, there exists a 

unique third vector, which we denote 𝐵 and call it the binormal such that {𝑇, 𝑁, 𝐵} is an 

orthonormal, positively oriented basis (in the sense that the matrix consisting of columns 𝑇, 𝑁, 𝐵 

in that order is orthogonal with determinant 1) of ℝ3, i.e.

𝐵 ≔ 𝑇 × 𝑁.

The basis {𝑇, 𝑁, 𝐵} ⊂ ℝ3 is called the Frenet frame associated to 𝛾.

We’ll be interested in the dynamics of this frame, i.e. how 𝑇, 𝑁, 𝐵 resp. change in time. We 

need to additionally assume 𝛾 ∈ 𝐶3 for this, so that we may take derivatives of 𝑁. We’ll also 

assume 𝛾 is parametrized by arc-length for convenience. We find that with these assumptions,

𝑇 = 𝛾̇

⇒ 𝑇̇ = 𝛾̈ = ‖𝛾̈‖𝑁 = 𝜅𝑁.

In addition,

‖𝐵‖ = 1 ⇒ 𝐵̇ ⋅ 𝐵 = 0

and

𝐵 = 𝑇 × 𝑁 ⇒ 𝐵̇ = 𝑇̇ × 𝑁 + 𝑇 × 𝑁̇ = 𝜅 𝑁 × 𝑁⏟
=0

+ 𝑇 × 𝑁̇ ⇒ 𝐵̇ ⋅ 𝑇 = 0,

hence 𝐵̇ is simultaneously orthogonal to 𝐵 and 𝑇, hence
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𝐵̇ = const(−𝑁).

We call this constant the torsion 𝜏 of 𝛾 at time 𝑠, which is given by

𝜏 ≔ −𝐵̇ ⋅ 𝑁.

Finally, to compute 𝑁̇, we have that

‖𝑁‖ = 1 ⇒ 𝑁̇ ⋅ 𝑁 = 0

𝑇 ⋅ 𝑁 = 0 ⇒ 0 = 𝑇̇ ⋅ 𝑁 + 𝑇 ⋅ 𝑁̇ = 𝜅 ‖𝑁‖2⏟
=1

+ 𝑇 ⋅ 𝑁̇ ⇒ 𝑇 ⋅ 𝑁̇ = −𝜅

𝐵 ⋅ 𝑁 = 0 ⇒ 0 = 𝐵̇ ⋅ 𝑁 + 𝐵𝑁̇ = −𝜏 + 𝐵 ⋅ 𝑁̇ ⇒ 𝐵 ⋅ 𝑁̇ = 𝜏.

This implies

𝑁̇ = −𝜅𝑇 + 𝜏𝐵.

In summary, we can succinctly write

(


𝑇̇

𝑁̇
𝐵̇)





=
(

 0

−𝜅
0

𝜅
0

−𝜏

0
𝜏
0)




(

𝑇

𝑁
𝐵)


 (The Frenet equations).

↪︎Theorem 2.6 (Fundamental Theorem of Space Paths) :  Let 𝐼 ⊂ ℝ be an interval with 

basepoint 𝑠0 ∈ 𝐼. Suppose 𝜏 : 𝐼 → ℝ is a 𝐶𝑘−3 function and 𝜅 : 𝐼 → ℝ>0 is a 𝐶𝑘−2 function 

(where 3 ≤ 𝑘 ≤ ∞). Then, for any initial point 𝑝0 ∈ ℝ3, initial velocity 𝑣0 ∈ ℝ3, and initial 

normal direction 𝑛0 ∈ ℝ3 such that ‖𝑣0‖ = ‖𝑛0‖ = 1 and 𝑣0 ⋅ 𝑛0 = 1, there is a unique regular 

𝐶𝑘 path 𝛾 : 𝐼 → ℝ3 parametrized by arc length and satisfying:

1. 𝜅𝛾 = 𝜅,

2. 𝜏𝛾 = 𝜏,

3. 𝛾(𝑠0) = 𝑝0,

4. 𝛾̇(𝑠0) = 𝑣0,

5. 𝛾̈ 𝑠0
‖𝛾̈(𝑠0)‖ = 𝑛0.

Remark 2.12 :  The last three requirements say that this curve is uniquely defined up to rigid 

motion, hence unique in 𝔼3; translations will simply change the initial point 𝑝0, and rotations 

will change the angles of 𝑣0, 𝑛0.
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