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§1 Examples of Dynamical Systems
Roughly speaking, a dynamical system is a system that evolves in time, with common

examples being a differential equation, in the continuous case, or a map, in the discrete case.

⊛ Example 1.1 (The Logistic Map):

§2 Existence-Uniqueness Theory

↪Definition 2.1 (Lipschitz) :  We say a function 𝑓 : ℝ𝑝 → ℝ𝑝 is Lipschitz on 𝐵 ⊆ ℝ𝑝 if there is
a constant 𝐿 > 0 such that ‖𝑓 (𝑥) − 𝑓 (𝑦)‖ ≤ 𝐿 ‖𝑥 − 𝑦‖ for every 𝑥, 𝑦 ∈ 𝐵. We call 𝐿 a “Lipschitz”
constant. It is certainly not unique in general.

We say 𝑓  globally Lipschitz if it is Lipschitz on 𝐵 = ℝ𝑝, and 𝑓  locally Lipschitz if 𝑓  Lipschitz on
every bounded domain 𝐵 ⊆ ℝ𝑝 (note: the 𝐿 will in general depend on the domain).

↪Theorem 2.1 : Let 𝑓 : ℝ𝑝 → ℝ𝑝 be a locally Lipschitz function. Then, there exists a unique
solution to the initial value problem ̇𝑢 = 𝑓 (𝑢), 𝑢(0) = 𝑢0 on some interval 𝑡 ∈
(−𝑇1(𝑢0), 𝑇2(0)), where −𝑇1(𝑢0) < 0 < 𝑇2(𝑢0) and
• either 𝑇2(𝑢0) = +∞ or ‖𝑢(𝑡)‖ → ∞ as 𝑡 → 𝑇2(𝑢0), and
• either 𝑇1(𝑢0) = ∞ or ‖𝑢(𝑡)‖ → −∞ as 𝑡 → −𝑇1(𝑢0).

Heuristically, this first condition states that either our solution exists for all (forward) time
after −𝑇1(𝑢0), or it blows up in finite time, with a similar interpretation for the second, going
backwards.

↪Proposition 2.1 : Let ̇𝑢 = 𝑓 (𝑢) where 𝑓  locally Lipschitz. Let 𝐵 ⊆ ℝ𝑝 be a bounded subset
such that initial conditions 𝑢0, 𝑣0 ∈ 𝐵 define solutions 𝑢(𝑡), 𝑣(𝑡) with 𝑢(𝑡), 𝑣(𝑡) ∈ 𝐵 for all 𝑡 ∈
[0, 𝑇]. Let 𝐿 be a Lipschitz constant for 𝑓  on 𝐵. Then,

𝑒−𝐿𝑡 ‖𝑢0 − 𝑣0‖ ≤ ‖𝑢(𝑡) − 𝑣(𝑡)‖ ≤ 𝑒𝐿𝑡 ‖𝑢0 − 𝑣0‖ ∀ 𝑡 ∈ [0, 𝑇].

This provides a bound on how quickly solutions grow, decay in 𝐵.

↪Corollary 2.1 : Let 𝑓  locally Lipschitz and 𝑢0 ≠ 𝑣0. Then, 𝑢(𝑡) ≠ 𝑣(𝑡) for all time such that the
solutions both exist.

§3 Limit Sets and the Evolution Operator
We state definitions in this section first for ODEs, but they generalize.
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↪Definition 3.1 (Evolution Operator) :  Given ̇𝑢 = 𝑓 (𝑢), the evolution operator is the map

𝑆(𝑡) : ℝ𝑝 → ℝ𝑝, 𝑡 ≥ 0

such that 𝑢(𝑡) = 𝑆(𝑡)𝑢0.

Such a map also defines a semi-group {𝑆(𝑡) : 𝑡 ≥ 0} under composition, namely it is closed
under repeated composition and this operator is associative.

For 𝐵 ⊆ ℝ𝑝 define

𝑆(𝑡)𝐵 ≔ ⋃
𝑢∈𝐵

𝑆(𝑡)𝑢 = {𝑢(𝑡) = 𝑆(𝑡)𝑢0 : 𝑢0 ∈ 𝐵}.

↪Definition 3.2 (Forward/Positive Orbit) :  We define the forward orbit of a point 𝑢0 as

Γ+(𝑢0) ≔ ⋃
𝑡≥0

𝑆(𝑡)𝑢0,

i.e. the set of all points 𝑢0 may “visit” as time increases.

↪Definition 3.3 (Backwards/Negative Orbit) :  Similarly, define a backwards orbit (if one exists)

Γ−(𝑢0) ≔ {𝑢(𝑡) : 𝑡 ≤ 0},

s.t. ∀ 𝑡 ≤ 𝑠 ≤ 0, 𝑆(−𝑡)𝑢(𝑡) = 𝑢0 and 𝑆(𝑠 − 𝑡)𝑢(𝑡) = 𝑢(𝑠).

Note that a negative orbit won’t be unique in general, eg in maps, periodic points may multiple
preimages.

↪Definition 3.4 (Complete Orbit) :  If a negative orbit for 𝑢0 exists, define the complete orbit
through 𝑢0 as

Γ(𝑢0) ≔ Γ+(𝑢0) ∪ Γ−(𝑢0).

Notice that if 𝑣 ∈ Γ(𝑢0), then Γ(𝑣) = Γ(𝑢0); namely a complete orbit through 𝑣 exists.

↪Definition 3.5 (Invariance) : The set 𝐵 is said to be positively invariant if 𝑆(𝑡)𝐵 ⊆ 𝐵 for all 𝑡 ≥
0. Similarly, 𝐵 is said to be negatively invariant if 𝐵 ⊆ 𝑆(𝑡)𝐵 for all 𝑡 ≥ 0.
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↪Definition 3.6 (𝜔-limit sets) :  A point 𝑥 ∈ ℝ𝑝 is called an 𝜔-limit point of 𝑢0 if there exists a
sequence {𝑡𝑛} with 𝑡𝑛 → ∞ such that 𝑆(𝑡𝑛)𝑢0 → 𝑥 as 𝑛 → ∞. The set of all such points for an
initial condition 𝑢0 is denoted 𝜔(𝑢0), and called the 𝜔-limit set of 𝑢0.

Given a bounded set 𝐵, the 𝜔-limit set of 𝐵 is defined as

𝜔(𝐵) ≔ {𝑥 ∈ ℝ𝑝 : ∃ 𝑡𝑛 → ∞, 𝑦𝑛 ∈ 𝐵 s.t. 𝑆(𝑡𝑛)𝑦𝑛 → 𝑥}.

Remark 3.1 :  In general, 𝜔(𝐵) is not the union of 𝜔-limit sets of points in 𝐵.

↪Theorem 3.1 :  For any 𝑢0 ∈ ℝ𝑝,

𝜔(𝑢0) = ⋂
𝑠≥0

⋃
𝑡≥𝑠

{𝑆(𝑡)𝑢0},

and similarly for any bounded 𝐵 ⊆ ℝ𝑝,

𝜔(𝐵) = ⋂
𝑠≥0

⋃
𝑡≥𝑠

𝑆(𝑡)𝐵.

↪Definition 3.7 (𝛼-limit set) :  A point 𝑥 ∈ ℝ𝑝 is called an 𝛼-limit point for 𝑢0 ∈ ℝ𝑝 if there
exists a negative orbit through 𝑢0 and a sequence {𝑡𝑛} with 𝑡𝑛 → −∞ such that 𝑢(𝑡𝑛) → 𝑥. The
set of all such points for 𝑢0 is denoted 𝛼(𝑢0).

↪Theorem 3.2 :  If Γ+(𝑢0) bounded, then 𝜔(𝑢0) is a non-empty, compact, invariant, connected
set.

↪Definition 3.8 (Attraction):  We say a set 𝐴 attracts 𝐵 if for every 𝜀 > 0, there is a 𝑡∗ =
𝑡∗(𝜀, 𝐴, 𝐵) such that 𝑆(𝑡)𝐵 ⊆ 𝑁(𝐴, 𝜀) for every 𝑡 ≥ 𝑡∗, where 𝑁(𝐴, 𝜀) denotes the 𝜀-
neighborhood of 𝐴.

A compact, invariant set 𝐴 is called an attractor if it attracts an open neighborhood of itself,
i.e. ∃ 𝜀 > 0 such that 𝐴 attracts 𝑁(𝐴, 𝜀).

A global attractor is an attractor that attracts every bounded subset of ℝ𝑝.

↪Theorem 3.3 (Continuous Gronwall Lemma):  Let 𝑧(𝑡) be such that ̇𝑧 ≤ 𝑎𝑧 + 𝑏 for some 𝑎 ≠
0, 𝑔 ∈ ℝ and 𝑧(𝑡) ∈ ℝ. Then, ∀ 𝑡 ≥ 0,

𝑧(𝑡) ≤ 𝑒𝑎𝑡𝑧(0) +
𝑏
𝑎(𝑒𝑎𝑡 − 1).
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↪Theorem 3.4 (𝜔-limit sets as attractors) :  Assume 𝐵 ⊆ ℝ𝑝 is a bounded, open set such that 
𝑆(𝑡)𝐵 ⊆ 𝐵 ∀ 𝑡 > 0. Then, 𝜔(𝐵) ⊆ 𝐵, and 𝜔(𝐵) is an attractor, which attracts 𝐵. Furthermore,

𝜔(𝐵) = ⋂
𝑡≥0

𝑆(𝑡)𝐵.

↪Definition 3.9 (Dissipative) :  A dynamical system is called dissipative if there exists a
bounded set 𝐵 such ∀ 𝐴 bounded, there exists a 𝑡∗ = 𝑡∗(𝐴) > 0 such that 𝑆(𝑡)𝐴 ⊆ 𝐵 ∀ 𝑡 ≥ 𝑡∗.
We then call such a 𝐵 an absorbing set.

Remark 3.2 :  𝐵 absorbing ⇒ 𝜔(𝐴) ⊆ 𝜔(𝐵). Moreover, 𝜔(𝐵) attracts 𝐴 for every bounded set 
𝐴. I.e., 𝜔(𝐵) is a global attractor.

§4 Stability Theory

↪Definition 4.1 (Stable/Unstable Manifolds) :  If 𝑢∗ a steady state of a dynamical system, the
stable manifold of 𝑢∗ is defined as the set

{𝑢 ∈ ℝ𝑝 : 𝜔(𝑢) = 𝑢∗},

and similarly, the unstable manifold is defined

{𝑢 ∈ ℝ𝑝 : Γ−(𝑢) ∃ and 𝛼(𝑢) = 𝑢∗}.

↪Definition 4.2 (Lyapunov Stability) :  A steady state 𝑢∗ is called Lyapunov stable if ∀ 𝜀 > 0,
there exists a 𝛿 > 0 such that if ‖𝑢∗ − 𝑣‖ < 𝛿, then ‖𝑆(𝑡)𝑣 − 𝑢∗‖ < 𝜀 for all time 𝑡 ≥ 0.

↪Definition 4.3 (Quasi-Asymptotically Stable) :  A steady state 𝑢∗ is called Quasi-
asymptotically stable (qas) if there exists a 𝛿 > 0 such that if ‖𝑢 − 𝑢∗‖ < 𝛿, lim𝑡→∞‖𝑆(𝑡)𝑢 − 𝑢∗‖ =
0.

↪Definition 4.4 (Asymptotically Stable) :  A steady state 𝑢∗ is called asymptotically stable if it
is both Lyapunov stable and qas.
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↪Definition 4.5 (Linearization):  Consider a dynamical system ̇𝑢 = 𝑓 (𝑢), where 𝑓 (𝑢∗) = 0. Let
𝑣(𝑡) = 𝑢(𝑡) − 𝑢∗, then, ̇𝑣 = 𝑓 (𝑢∗ + 𝑣), and 𝑣∗ = 0 corresponds to a fixed point. Taylor
expanding ̇𝑣, we find

̇𝑣 = 𝑓 (𝑢∗ + 𝑣)

= 𝑓 (𝑢∗) + 𝐽𝑓 (𝑢∗)𝑣 + 𝒪(‖𝑣‖2)

= 𝐽𝑓 (𝑢∗) ⋅ 𝑣 + 𝒪(‖𝑣‖2),

where 𝐽𝑓 (𝑢∗) the Jacobian matrix of 𝑓  evaluated at 𝑢∗. The linear system

̇𝑣 = 𝐽𝑓 (𝑢∗)𝑣

is called the linearization of ̇𝑢 = 𝑓 (𝑢) at 𝑢∗.

↪Proposition 4.1 :  The general solution to the linearized system

̇𝑣 = 𝐽𝑣, 𝑣(0) = 𝑣0,

is

𝑣(𝑡) = 𝑒𝑡𝐽 ⋅ 𝑣0,

where 𝑒⋅ the matrix exponential defined by the (always convergent) series

𝑒𝑀 = ∑
∞

𝑗=0

𝑀𝑗

𝑗! .

Suppose ̇𝑣 = 𝐽𝑣 and 𝐽 complex diagonlizable with eigenvalues 𝜆1, …, 𝜆𝑛. Then, 𝐽 conjugate to the
diagonal matrix Λ with diagonal entries equal to the eigenvalues, namely

𝐽 = 𝑃Λ𝑃−1.

It follows that

𝑣(𝑡) = 𝑃𝑒𝑡Λ𝑃−1𝑣0.

Equivalently (changing coordinates), letting 𝑤(𝑡) = 𝑃−1𝑣(𝑡), we find

𝑤(𝑡) = 𝑒𝑡Λ𝑤(0),

noting that now, since Λ diagonal,

𝑒𝑡Λ =
⎝
⎜⎜⎜
⎜⎛𝑒𝑡𝜆1

⋱
𝑒𝑡𝜆𝑛⎠

⎟⎟⎟
⎟⎞.
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↪Definition 4.6 (Linear Stable, Unstable, Centre Manifolds) :  Supposing 0 a steady state and 
𝐽𝑓 (0) complex diagonalizable, define respectively the linear stable, unstable, and centre
manifolds:

𝐸𝑠(0) ≔ {𝑢 | 𝑢 spanned by eigenvectors with ℜ(𝜆) < 0}

𝐸𝑢(0) ≔ {𝑢 | 𝑢 spanned by eigenvectors with ℜ(𝜆) > 0}

𝐸𝑐(0) ≔ {𝑢 | 𝑢 spanned by eigenvectors with ℜ(𝜆) = 0}.

Notice that if 𝑢0 ∈ 𝐸𝑠(0), then the corresponding solution with initial condition 𝑢0, 𝑢(𝑡),
converges to 0 as 𝑡 → ∞, with similar conditions for 𝑢0 ∈ 𝐸𝑢(0).

↪Definition 4.7 (Hyperbolic) :  A steady state 𝑢∗ is called hyperbolic if 𝐽𝑓 (𝑢∗) has no
eigenvalues with ℜ(𝜆) = 0, i.e. dim(𝐸𝑐(𝑢∗)) = 0.

↪Theorem 4.1 :  If 𝑢∗ a hyperbolic steady state of ̇𝑢 = 𝑓 (𝑢), and all of the eigenvalues of 𝐽𝑓 (𝑢∗)
have strictly negative real part, then 𝑢∗ is asymptotically stable.

↪Theorem 4.2 :  If 𝑢∗ a steady state and 𝐽𝑓 (𝑢∗) has a steady state with eigenvalue having real
part strictly positive real part, then 𝑢∗ unstable (namely not Lyapunov stable).

Remark 4.1 :  These theorems describe cases in which the linearization is correct in predicting
the nonlinear behaviour.

Remark 4.2 :  The second theorem can only guarantee non-Lyapunov stability because
linearization is a local process - quasi-asymptotic stability is “more global”, and not picked up
by the linearization necessarily.

↪Theorem 4.3 (Hartman-Grobman Theorem):  If 𝑓  continuously differentiable and ̇𝑢 = 𝑓 (𝑢)
has a hyperbolic steady state 𝑢∗, then there exists an open ball 𝐵(𝑢∗, 𝛿) ⊆ ℝ𝑝, an open set 0 ∈
𝑁 and a homeomorphism

𝐻 : 𝐵(𝑢∗, 𝛿) → 𝑁

such that while 𝑢(𝑡) ∈ 𝐵(𝑢∗, 𝛿) a solution to ̇𝑢 = 𝑓 (𝑢), then 𝑣(𝑡) = 𝐻(𝑢(𝑡)) a solution of ̇𝑣 =
𝐽𝑓 (𝑢∗)𝑣.
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↪Definition 4.8 (Stable, Unstable Manifold) :  The stable, unstable manifolds of a steady state 
𝑢∗ are defined

𝑊𝑠(𝑢∗) ≔ {𝑢 ∈ ℝ𝑝 | 𝑆(𝑡)𝑢 → 𝑢∗ as 𝑡 → ∞}

𝑊𝑢(𝑢∗) ≔ {𝑢 ∈ ℝ𝑝 | Γ−(𝑢) ∃ and 𝑆(𝑡)𝑢 → 𝑢∗ as 𝑡 → −∞}.

§5 Delay Differential Equations
A delay differential equation (DDE) is, broadly speaking, an ODE that depends on the state of

the system in the past. We’ll focus on DDEs of the form

̇𝑢(𝑡) = 𝑓 (𝑢(𝑡), 𝑢(𝑡 − 𝜏)),

where 𝑢 ∈ ℝ𝑝, 𝑓 : ℝ𝑝 × ℝ𝑝 → ℝ𝑝, and 𝜏 > 0 a fixed time delay.

The “canonical” first example of a DDE is ̇𝑢(𝑡) = 𝑢(𝑡 − 𝜏) for 𝑡 ≥ 0. Notice that for any time 
𝑡 ∈ [0, 𝜏], then, ̇𝑢(𝑡) depends on 𝑢 for times that are not given by the DDE directly. In short,
then, we need to supply not just an initial value to the DDE, but a whole initial data, namely 
𝑢(𝑡) = 𝜑(𝑡) for 𝑡 ∈ [−𝜏, 0].

Suppose for now we take 𝜑 ≡ 1, so we wish to solve the DDE with initial data

{ ̇𝑢(𝑡) = 𝑢(𝑡 − 𝜏) 𝑡 > 0
𝑢(𝑡) = 1 −𝜏 ≤ 𝑡 ≤ 0.

One method of solution is called the “method of steps”. Note that the initial data implies

̇𝑢(𝑡) = 1 for 𝑡 ∈ [0, 𝜏],

hence 𝑢(𝑡) = 𝑡 + 1 on [0, 𝜏]. Then, for 𝑡 ∈ [𝜏, 2𝜏],

̇𝑢(𝑡) = 𝑢
⎝
⎜⎜⎜
⎛ 𝑡 − 𝜏⏟

∈[0,𝜏] ⎠
⎟⎟⎟
⎞ = (𝑡 − 𝜏) + 1,

so 𝑢(𝑡) = 1 + 𝜏 + (𝑡 − 𝜏)(1 − 𝜏) + 1
2(𝑡2 − 𝜏2) for 𝑡 ∈ [𝜏, 2𝜏]. Repeating this procedure

arbitrarily results in a a piecewise solution defined on each interval of the form [𝑛𝜏, (𝑛 + 1)𝜏]
for 𝑛 ∈ ℕ. This method can be applied for more general DDEs, and will, in general, result in
continuous solutions, differentiable everywhere except, in general, at the endpoints 𝑛𝜏.

Another method, specifically for linear DDEs, which more related to the ODE theory, is to
derive a characteristic equation. Suppose a solution of the form 𝑢(𝑡) = 𝑘𝑒𝜆𝑡 to the DDE ̇𝑢(𝑡) =
𝛽𝑢(𝑡 − 𝜏). Plugging this into the equation gives

𝑘𝜆𝑒𝜆𝑡 = 𝛽𝑘𝑒𝜆(𝑡−𝜏) ⇒ Δ(𝜆) ≔ 𝜆 − 𝛽𝑒−𝜆𝜏 = 0.

Solving for 𝜆 such that Δ(𝜆) = 0 is, in general, difficult. However, one notices that if 𝛽 > 0,

lim
𝜆→−∞

Δ(𝜆) = +∞, 𝛿(0) = −𝛽 < 0,

so by the intermediate value theorem, there exists at least one solution to the characteristic
equation, and moreover, 𝜆 ∈ (0, ∞). Similar applies for 𝛽 < 0.
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§5.1 DDE Linearization
Suppose we have a DDE

̇𝑢(𝑡) = 𝑓 (𝑢(𝑡), 𝑢(𝑡 − 𝜏)),

where 𝑢 ∈ ℝ𝑑 (so 𝑓 : ℝ𝑑 × ℝ𝑑 → ℝ𝑑), with a steady-state solution 𝑢∗. Then, the linearization of
the DDE about 𝑢∗ is given by

̇𝑣(𝑡) = 𝐴𝑣(𝑡) + 𝐵𝑣(𝑡 − 𝜏), 𝑣(𝑡) ≔ 𝑢(𝑡) − 𝑢∗,

where 𝐴, 𝐵 are 𝑑 × 𝑑 matrices given by

𝐴 ≔
𝜕𝑓
𝜕𝑢

|𝑢=𝑢∗, 𝐵 ≔
𝜕𝑓
𝜕𝑣

|𝑢=𝑢∗.

The characteristic equation of the linearization is given

Δ(𝜆) = 𝜆𝐼𝑑 − 𝐴 − 𝐵𝑒−𝜆𝜏 = 0.

For an example, consider the Mackey-Glass Equation,

̇𝑢(𝑡) = −𝛾𝑢(𝑡) +
𝛽𝑢(𝑡 − 𝜏)

1 + 𝑢(𝑡 − 𝜏)𝑛 .

There are two steady states given by

𝑢1 = 0, 𝑢2 = (
𝛽
𝛾 − 1)

1
𝑛

,

the second only existing when 𝛾
𝛽 < 1. In our earlier notations, we find

𝑓 (𝑢, 𝑣) = −𝛾𝑢 +
𝛽𝑣

1 + 𝑣𝑛 .

Then, 𝑓𝑢 = −𝛾 and 𝑓𝑣 = 𝛽 [1+(1−𝑛)𝑣𝑛]
(1+𝑣𝑛)2 .

§6 Bifurcation Theory

↪Theorem 6.1 (Implicit Function Theorem):  Let 𝑓 : ℝ𝑝 × ℝ → ℝ𝑝 be a 𝐶1 function of (𝑢, 𝜇)
with 𝑓 (0, 0) = 0. If 𝐽𝑓 = 𝑓𝑢(0, 0) is invertible, then there exists 𝜀 > 0 and a smooth curve 𝑢 =
𝐺(𝜇) which is the unique solution of 𝑓 (𝐺(𝜇), 𝜇) = 0 for |𝜇| < 𝜀 and ‖𝑢‖ < 𝜀.

↪Corollary 6.1 :  If (𝑢∗, 𝜇∗) a hyperbolic steady state of ̇𝑢 = 𝑓 (𝑢, 𝜇), then for some 𝜀 > 0 there
is a smooth curve 𝑢 = 𝐺(𝜇) with 𝑢∗ = 𝐺(𝜇∗) whenever ‖𝑢 − 𝑢∗‖ < 𝜀 and |𝜇 − 𝜇∗| < 𝜀, such that
𝐺(𝜇) a steady state of ̇𝑢 = 𝑓 (𝑢, 𝜇), i.e. 𝑓 (𝐺(𝜇), 𝜇) = 0.
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Remark 6.1 :  Heuristically, this means that if 𝐽𝑓  invertible, there can be no change in the
number of steady states near 𝑢∗ while 𝜇 near 𝜇∗. Similarly, small perturbations of 𝐽𝑓  won’t
change the sign of the real part of the eigenvalues of 𝐽𝑓 , hence stability won’t change in this
case. Thus, to study scenarios in which changes in 𝜇 qualitatively change dynamics, we need
to study non-hyperbolic steady states. We call such a scenario a “bifurcation”.

§6.1 Canonical 1-Dimensional Bifurcations
Suppose

̇𝑢 = 𝑓 (𝑢, 𝜇), 𝑓 : ℝ × ℝ → ℝ

has a fixed point at (𝑢, 𝜇) = (0, 0) (if the fixed point is at a different point, we may simple change
coordinates to move it to the origin). The following table outlines the most common bifurcation
types, and conditions for the to occur, in the one-dimensional case.

In the “Conditions” column, all partial derivatives are evaluated at (0, 0). These conditions
arise naturally from a Taylor expansion of 𝑓  about the steady state, and considering different
combinations of quantities being zero or nonzero.

Name Normal Form Conditions∗ Description Graphs
Saddle Node ̇𝑢 = 𝜇 − 𝑢2 𝑓 = 𝑓𝑢 = 0, 𝑓𝜇 ≠ 0 Single s.s. branches

into 2
Figure 1

Transcritical ̇𝑢 = 𝜇𝑢 − 𝑢2 𝑓 = 𝑓𝑢 = 𝑓𝜇 = 0, 𝑓𝑢𝑢 ≠
0, 𝑓 2

𝑢𝜇 > 𝑓𝜇𝜇 ⋅ 𝑓𝑢𝑢

2 steady states pass
through each other
and change stability

Figure 2

Supercritical
Pitchfork

̇𝑢 = 𝜇𝑢 − 𝑢3 𝑓 = 𝑓𝑢 = 𝑓𝜇 = 𝑓𝑢𝑢 =
0, 𝑓𝑢𝑢𝑢 ≠ 0, 𝑓𝜇𝑢 ≠ 0

Single stable fixed
point becomes
unstable and two
new stable fixed
points are born
surrounding it

Figure 3

Subcritical Pitchfork ̇𝑢 = −𝜇𝑢 + 𝑢3 As above Same as above,
interchanging stable
and unstable

Remark 6.2 :  ∗ The first two conditions, 𝑓 = 𝑓𝑢 = 0, which appear in all the cases, are required
for a bifurcation (𝑓 = 0 gives a steady state, 𝑓𝑢 = 0 means the implicit function theorem
doesn’t apply). Then, 𝑓𝜇 ≠ 0 implies a saddle-node, so the requirement 𝑓𝜇 = 0 in the other
cases just rule out not being a saddle-node. The other conditions from there are just technical,
and arise from the Taylor expansion naturally.
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Figure 1: Vector fields for a saddle node bifurcation (above) and corresponding bifurcation
diagram (below).

Figure 2: Vector fields for a transcritical bifurcation (above) and corresponding bifurcation
diagram (below).
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Figure 3: Vector fields for a (supercritical) pitchfork bifurcation (above) and corresponding
bifurcation diagram (below).

§6.2 Bifurcations In ℝ𝑝

In higher dimensions than 1, we have slightly more complex behaviour. From the Implicit
Function Theorem, we know that if the Jacobian 𝐽𝑓  remains invertible as a parameter is varied, a
steady state 𝑢∗(𝜇) will vary continuously with 𝜇. So, the stability of the steady state may change
with 𝜇, but the number (locally) of steady states stays the same. For instance, this can happen in 
ℝ2 if a complex conjugate pair of eigenvalues has real part changing sign. In this case, the
steady state not hyperbolic, yet 𝐽𝑓  remains invertible (as long as the imaginary part of the
eigenvalues remain nonzero.) This is called a “Hopf bifurcation”, which we’ll see more of later.
Otherwise, bifurcations in ℝ2 occur when a single real eigenvalue changes sign. We’ll deal, first
off, with bifurcations that involve a single eigenvalue crossing 0 (changing sign) at a given time,
which generally occurs with one-parameter systems. More generally if there are > 1 parameters
in a dynamical system, it is possible to make 𝑘 eigenvalues simultaneously zero, in which case
we have a so-called “co-dimension 𝑘” bifurcation. We touch on these later.
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↪Theorem 6.2 (Center Manifold Theorem):  Consider ̇𝑢 = 𝑓 (𝑢) where 𝑓 ∈ 𝐶𝑟(ℝ𝑝, ℝ𝑝) and 
𝑓 (0) = 0. We classify the eigenvalues 𝜆 of the Jacobian of 𝑓  at 0 in the following:

𝜎𝑢 ≔ {𝜆 | Re(𝜆) > 0}

𝜎𝑠 ≔ {𝜆 | Re(𝜆) < 0}

𝜎𝑐 ≔ {𝜆 | Re(𝜆) = 0}.

Denote 𝐸𝑢, 𝐸𝑠, 𝐸𝑐 the corresponding subspaces of ℝ𝑝 (namely the spaces spanned by the
eigenvectors corresponding to eigenvalues in 𝜎𝑢, 𝜎𝑠, 𝜎𝑐 respectively). Then, there exist 𝐶𝑟-
smooth stable, unstable manifolds 𝑊𝑠, 𝑊𝑢 tangential to 𝐸𝑠, 𝐸𝑢 at 0, and a 𝐶𝑟−1-smooth
manifold 𝑊𝑐 tangential to 𝐸𝑐 at 0, with the propertie that all of these manifolds are invariant
for the dynamical system.

Remark 6.3 :  In this theorem, 𝑊𝑠, 𝑊𝑢 and 𝑊𝑐 are not the same as those discussed before,
defined using 𝜔-limit sets; now we require both Re(𝜆) ≠ 0 and stability/instability criteria.

We can often approximate the manifolds in the theorem by assuming that they can be written as
curves that are functions of one variable, then applying an appropriate series expansion to
determine coefficients. Globally, this may not work, but locally can give a good picture of the
nonlinear manifold.

⊛ Example 6.1 : In ℝ2, let

̇𝑥 = 𝑥𝑦, ̇𝑦 = −𝑦 − 𝑥2.

This system has a steady state at (0, 0), with

𝐽𝑓 (0, 0) = (0
0

0
−1),

so there are two eigenvalues, 0, −1. Moreover, this gives 𝐸𝑠 = span(0
1
) and 𝐸𝑐 = span(1

0).

If 𝑥(0) = 0, ̇𝑥 = 0 so 𝑥 = 0 for all time, hence 𝑊𝑠(0, 0) = 𝐸𝑠 in this case.

For the nonlinear center manifold, 𝑊𝑐, suppose that locally, 𝑊𝑐 is the graph of a smooth
function of 𝑥, 𝑦 = ℎ(𝑥), i.e.

𝑊𝑐 = {(𝑥, ℎ(𝑥)) | 𝑥 ∈ ℝ}.

To compute ℎ, suppose

𝑦 = ℎ(𝑥) = ∑
∞

𝑗=0
𝑐𝑗𝑥𝑗,

with the coefficients 𝑐𝑗 to be determined. By assumption, the dynamics are invariant on ℎ(𝑥), so
on the one hand

̇𝑦 = ℎ′(𝑥) ̇𝑥 = ℎ′(𝑥)(𝑥𝑦) = 𝑥ℎ′(𝑥)ℎ(𝑥)
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while also

̇𝑦 = −𝑦 − 𝑥2 = −ℎ(𝑥) − 𝑥2,

so setting these equal, we find the relation

𝑥ℎ′(𝑥)ℎ(𝑥) = −ℎ(𝑥) − 𝑥2.

Equating like terms, we find

𝑐0 = 𝑐1 = 0, 𝑐2 = −1, 𝑐3 = 0, 𝑐4 = −2, 𝑐5 = 0,

etc. (note that we could have found the first two sooner; we know the curve must pass through
the origin hence 𝑐0 = 0, and we know it must be tangential to 𝐸𝑐, the 𝑥-axis, so its first derivative
𝑐1 must also be zero). Plotting the first few terms of these curve against the actual vector field,
we find:

Locally, its clear this curve is invariant under the dynamics of the system, and as we move
further the approximation fails. This is because, away from the origin, the assumption that the
unstable manifold could be represented as a curve parametrized in one variable fails.

⊛ Example 6.2 :  More generally, let

̇𝑥 = 𝑥(𝜇 + 𝑦), ̇𝑦 = −𝑦 − 𝑥2,

for 𝜇 near 0. Repeat the analysis of the system in the previous example (which is just this
equation with 𝜇 = 0). (The algebra is a little more difficult, but doable.)

§6.3 Hopf Bifurcations
The Hopf Bifurcation is most readily described by example.
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⊛ Example 6.3 :  Consider the system

̇𝑥 = 𝜇𝑥 − 𝜔𝑦 − 𝑎𝑥(𝑥2 + 𝑦2), ̇𝑦 = 𝜔𝑥 + 𝜇𝑦 − 𝑎𝑦(𝑥2 + 𝑦2),

where 𝜔, 𝜇, 𝑎 are real parameters.

In polar coordinates, this system becomes

̇𝑟 = 𝜇𝑟 − 𝑎𝑟3, ̇𝜃 = 𝜔,

from which we see that there is a unique fixed point at the origin. Here, the Jacobian (in
Cartesian coordinates) is

𝐽(0, 0) = (
𝜇
𝜔

−𝜔
𝜇 ),

so eigenvalues are given by

𝜆± = 𝜇 ± 𝑖𝜔.

For 𝜔 > 0 (we’ll only consider this case; the case 𝜔 < 0 is symmetrical, as we are dealing with a
conjugate pair of eigenvalues), as 𝜇 is varied and crosses zero, we see that the stability of the
origin changes but the number of fixed points remains constant. Namely, when 𝜇 > 0 the origin
is unstable, and vice versa.

Returning to polar, we see that ̇𝑟 = 0 only if either 𝑟 = 0 or 𝑟 = √𝜇
𝑎 . ̇𝜃 is constant, so this

implies that there is a circular orbit of radius 𝑟 = √𝜇/𝑎 and period 2𝜋/𝜔, whenever 𝜇 and 𝑎 have
the same sign.

For 𝑎 < 0, this periodic orbit is unstable and the origin must be stable, so this is called a
subcritical Hopf; for 𝑎 > 0, the orbit is stable, the origin is unstable and we have a supercritical
Hopf; finally, for 𝑎 = 0, the origin is stable for 𝜇 < 0 and vice versa, and when 𝜇 = 0, everything
is periodic (the phase space consists only of concentric circles).

A subcritical Hopf bifurcation
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↪Theorem 6.3 (Conditions for a Hopf Bifurcation):  let ̇𝑥 = 𝑓 (𝑥, 𝑦, 𝜇) and ̇𝑦 = 𝑔(𝑥, 𝑦, 𝜇) with 
𝑓 (0, 0, 𝜇) = 0 = 𝑔(0, 0, 𝜇) for all 𝜇, and Jacobian at (0, 0) given by ( 0

𝜔
−𝜔

0 ), for some 𝜔 ≠ 0.
Then, if 𝑓𝜇𝑥 + 𝑔𝜇𝑦 ≠ 0 and 𝑎 ≠ 0, where

𝑎 ≔
1
16(𝑓𝑥𝑥𝑥 + 𝑔𝑥𝑥𝑦 + 𝑓𝑥𝑦𝑦 + 𝑔𝑦𝑦𝑦) +

1
16𝜔(𝑓𝑥𝑦(𝑓𝑥𝑥 + 𝑔𝑦𝑦) − 𝑔𝑥𝑦(𝑔𝑥𝑥 + 𝑔𝑦𝑦) − 𝑓𝑥𝑥𝑔𝑥𝑥 − 𝑓𝑦𝑦𝑔𝑦𝑦),

then a curve of periodic orbits bifurcates from the origin into 𝜇 < 0 if 𝑎(𝑓𝑥𝜇 + 𝑔𝑦𝜇) > 0 or into 
𝜇 < 0 if 𝑎(𝑓𝑥𝜇 + 𝑔𝑦𝜇) < 0.

• The steady state at the origin is stable for 𝜇 > 0 and unstable for 𝜇 < 0 if 𝑓𝜇𝑥 + 𝑔𝜇𝑦 < 0, and
the opposite for 𝑓𝜇𝑥 + 𝑔𝜇𝑦 > 0.

• The periodic orbit is stable/unstable if the origin is unstable/stable.
• The amplitude of the periodic orbit grows according to |𝜇|1/2, and need not in general be

circular. The period converges to 2 𝜋
|𝜔|  as |𝜇| → 0.

The bifurcation is called supercritical if the periodic orbit is stable, and subcritical if the
periodic orbit is unstable.

§6.4 Takens-Bogdonov Bifurcation
In the previous examples, we’ve dealt with bifurcations that have a single parameter being

varied. While this can lead to a wide range of dynamic changes in the system, there are certain
dynamics and in particular certain bifurcations that are only possible if we allow multiple
parameters to vary.

Consider the system

̇𝑥 = 𝑦, ̇𝑦 = 𝜇1 + 𝜇2𝑦 + 𝑥2 + 𝑥𝑦.

This has
• 0 steady states if 𝜇1 > 0;
• 1 steady state at the origin (0, 0) if 𝜇1 = 0;
• 2 steady states at (±√−𝜇1, 0) if 𝜇1 < 0,

which implies a fold bifurcation occurs when 𝜇1 changes sign.

We consider now different cases of 𝜇1.

[𝜇1 > 0]: here, we find
• 𝑦 > 0 ⇒ ̇𝑥 > 0;
• 𝑦 < 0 ⇒ ̇𝑥 < 0;
• 𝑦 = 0 ⇒ ̇𝑥 = 0 and ̇𝑦 > 0, from which we may conclude there are not only no steady states,

but also no periodic orbits.

In short, generally boring behaviour.

[𝜇1 < 0] We find

𝐽𝑓 (±√−𝜇1, 0) =
⎝
⎜⎛

0
±2√−𝜇1

1
𝜇2 ± √−𝜇1⎠

⎟⎞,
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which has eigenvalues satisfying

−𝜆(𝜇2 + 𝑥 − 𝜆) − 2𝑥 = 0

⇒ 𝜆2 − (𝜇2 + 𝑥)𝜆 − 2𝑥 = 0.

For a steady state bifurcation, we’d need 𝜇2 = 0 and thus 𝜇1 = 0, so not possible; thus no other
bifurcations can occur then the one we already have. Hence, we have

𝜆± =
(𝜇2 + 𝑥) ± √(𝜇2 + 𝑥)2 + 8𝑥

2 .

For the point 𝑥 = (√−𝜇1, 0), 𝑥 > 0 so 𝜆+ > 0 > 𝜆−, so we the steady state is a saddle point for
every 𝜇2.

For 𝑥 = (−√−𝜇1, 0), if 𝜇2 = √−𝜇1 then 𝜇2 + 𝑥 = 0, so 𝜆± = ±𝑖√2(−𝜇1)1/4, so we have a pair
of complex conjugate eigenvalues.

For 𝜇2 ≈ √−𝜇1, then (𝜇2 + 𝑥)2 + 8𝑥 ≈ 8𝑥 < 0, so again a pair of complex conjugate
eigenvalues, with

Re(𝜆±) ≈
𝜇2 + 𝑥

2 =
1
2(√𝜇2 − √−𝜇1),

which is negative if 𝜇2 < √−𝜇1 (hence stable) and positive if 𝜇2 > √−𝜇1 (hence unstable). So in
particular, Re(𝜆±) changes sign when 𝜇2 = √−𝜇1, at which point we see we have a Hopf
bifurcation.

§7 Maps
Given a function 𝑓 : 𝑈 → 𝑈 for some subset 𝑈 ⊆ ℝ𝑛, a map is defined by the iteration 𝑥𝑛+1 =

𝑓 (𝑥𝑛) for 𝑛 ∈ ℕ, with some initial condition 𝑥0 ∈ 𝑈.

§7.1 Linearization
A fixed point of a map satisfies 𝑓 (𝑥∗) = 𝑥∗; so in particular, 𝑓 𝑛(𝑥∗) = 𝑥∗ for every 𝑛 ≥ 1. Let 

𝑦𝑛 = 𝑥𝑛 − 𝑥∗ so
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𝑦𝑛+1 = 𝑓 (𝑥∗ + 𝑦𝑛) − 𝑥∗

= [𝑓 (𝑥∗) + 𝐽𝑓 (𝑥∗)𝑦𝑛 + 𝒪(2)] − 𝑥∗

= 𝐽𝑓 (𝑥∗)𝑦𝑛 + 𝒪(2),

hence, the linearization of the map is given by 𝑦𝑛+1 = 𝐽𝑓 (𝑥∗)𝑦𝑛. Suppose (𝜆, 𝑣) an eigenpair of 
𝐽𝑓 (𝑥∗). Then, let 𝑦0 = 𝑣; then,

𝑦1 = 𝐽𝑓 𝑣 = 𝜆𝑣 ⇒ 𝑦2 = 𝜆2𝑣 ⇒ ⋯ ⇒ 𝑦𝑛 = 𝜆𝑛𝑣.

In particular, then, we see that if |𝜆| > 1, |𝑦𝑛| → ∞, while if |𝜆| < 1, |𝑦𝑛| → 0. With this in mind,
then, we say that 𝑥∗ unstable if |𝜆| > 1 for any eigenvalue 𝜆 of the Jacobian at 𝑥∗, and stable if 
|𝜆| < 1 for every eigenvalue 𝜆. Remark this is quite different than the stability requirements for a
linear ODE, which looks at whether at an eigenvalue is positive or negative. In particular, this
analysis works for both real and complex eigenvalues, where we take in the latter case |⋅| to be
the modulus of the eigenvalue.

↪Definition 7.1 (Hyperbolic) :  A fixed point 𝑥∗ of a map is hyperbolic if |𝜆| ≠ 1 for every
eigenvalue 𝜆 of the Jacobian 𝐽𝑓 (𝑥∗).

We have then analogous definitions of the linear stable, unstable, and centre manifolds for maps
as in the ODE case, as well as:

𝑊𝑠(𝑥∗) ≔ {𝑥 | 𝑓 𝑛(𝑥) → 𝑥∗}, 𝑊𝑢(𝑥∗) ≔ {𝑥 | Γ−(𝑥) ∃ , 𝑓 𝑛(𝑥) → 𝑥∗}.

↪Theorem 7.1 (Stable Manifold) :  Suppose 𝑥∗ = 0 a hyperbolic fixed point for the map 
𝑥𝑛+1 = 𝑓 (𝑥𝑛) where 𝑓  a diffeomorphism. Then, 𝑦𝑛+1 = 𝐽𝑓 (0)𝑦𝑛 has stable, unstable manifolds 
𝐸𝑠, 𝐸𝑢 which are tangential to the stable, unstable nonlinear manifolds 𝑊𝑠, 𝑊𝑢 of 𝑥∗ = 0.

§7.2 Bifurcations

↪Theorem 7.2 (Centre Manifold Theorem):

§7.3 Period Doubling Bifurcation

§7.4 Naimark-Sacker Bifurcation

§7.5 Sharkovski’s Theorem

§7.6 Shilnikov/Homoclinic Bifurcation
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