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§1 Introduction

§1.1 Some Linear Algebra

1.1.1 Inverting Block Matrices

Let

𝑀 ≔ (𝐴
𝐶

𝐵
𝐷) ∈ ℝ(𝑝+𝑞)×(𝑝+𝑞),

i.e. 𝐴 ∈ ℝ𝑝×𝑝, 𝐵 ∈ ℝ𝑝×𝑞, 𝐶 ∈ ℝ𝑞×𝑝 and 𝐷 ∈ ℝ𝑞×𝑞 (where we use the convention that if 𝐴 ∈
ℝ𝑚×𝑛, then 𝐴 has 𝑚 rows and 𝑛 columns, so in particular maps ℝ𝑛 → ℝ𝑚). If 𝐴 is invertible, let

𝑀 \ 𝐴 ≔ 𝐷 − 𝐶𝐴−1𝐵 ≕ Schur Complement (of 𝐴 with respect to 𝑀).

Then,

𝑀−1 = (𝐴−1 + 𝐴−1𝐵(𝑀 \ 𝐴)−1𝐶𝐴−1

−(𝑀 \ 𝐴)−1𝐶𝐴−1
−𝐴−1𝐵(𝑀 \ 𝐴)−1

(𝑀 \ 𝐴)−1 ).

Similarly, if 𝐷 invertible and 𝑀 \ 𝐷 ≔ 𝐴 − 𝐵𝐷−1𝐶, then

𝑀−1 = ( (𝑀 \ 𝐷)−1

−𝐷−1𝐶(𝑀 \ 𝐷)−1
−(𝑀 \ 𝐷)−1𝐵𝐷−1

𝐷−1 + 𝐷−1𝐶(𝑀 \ 𝐷)−1𝐵𝐷−1).

1.1.2 Eigenvalues and Singular Values

Given 𝐴 ∈ ℝ𝑛×𝑛 symmetric, there exists 𝑈 ∈ ℝ𝑛×𝑛 orthogonal (i.e., 𝑈𝑇 = 𝑈−1) such that

𝐴 = 𝑈 diag(𝜆)𝑈𝑇,

where 𝜆 = (𝜆1, …, 𝜆𝑛) for 𝜆𝑖’s the eigenvectors of 𝐴. In particular, if 𝑈(𝑖) enumerate the columns 

of 𝑈, we have

𝐴𝑈(𝑖) = 𝜆𝑖𝑈(𝑖),

i.e. the 𝑈(𝑖)’s are the eigenvectors of 𝐴.

Given 𝑋 ∈ ℝ𝑛×𝑑, 𝑛 ≥ 𝑑, then there exists an orthogonal matrix 𝑉 ∈ ℝ𝑑×𝑑 and 𝑈 ∈ ℝ𝑛×𝑑 with 

orthogonal columns, and a matrix of singular values 𝑠 ∈ ℝ𝑑
+ = {(𝑣1, …, 𝑣𝑑) ∈ ℝ𝑑 | 𝑣𝑖 ≥ 0∀𝑖 =

1, …, 𝑑} such that

𝑋 = 𝑈 Diag(𝑠)𝑉𝑇.

Remark 1.1 :

1. if 𝑢𝑖 ∈ ℝ𝑛, 𝑣𝑗 ∈ ℝ𝑑 are the columns of 𝑈, 𝑉 resp., then 𝑋 = ∑𝑑
𝑖=1 𝑠𝑖𝑢𝑖𝑣𝑇

𝑖
2. if 𝑠𝑖 a singular value of 𝑋, then 𝑠2

𝑖  an eigenvalue of 𝑋𝑋𝑇 and 𝑋𝑇𝑋.

§1.2 Concentration Inequalities

Here we study the question of how the magnitude of the average of 𝑛 independent, mean 0 

random variables behaves compared to their average magnitude, specifically with respect to 𝑛.

We know that the central-limit theorem states that for 𝑧𝑖 iid with variance 𝜎2, √𝑛( 1
𝑛 ∑ 𝑧𝑖 −

𝔼[𝑧]) converges in distribution to a 𝒩︀(0, 𝜎2); this is an asymptotic result, which gives no 
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information about the rate of this converge with respect to 𝑛, which is what we care about in our 

study.

↪︎Proposition 1.1 (Markov's) :  Let 𝑌 be a nonnegative r.v. with finite mean. Then,

ℙ(𝑌 ≥ 𝜀) ≤
1
𝜀 𝔼[𝑌], ∀𝜀 > 0.

↪︎Proposition 1.2 (Chebyshev's) :  Let 𝑋 be a r.v. with finite mean and variance, then

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝜀) ≤
Var[𝑋]

𝜀2 , ∀𝜀 > 0.

↪︎Corollary 1.1 :  If 𝑧𝑖, 𝑖 = 1, …, 𝑛 are iid with variance 𝜎2, then

ℙ
(


|
 1
𝑛 ∑

𝑛

𝑖=1
𝑧𝑖 − 𝔼[𝑧]

|
 ≥ 𝜀

)
 ≤

𝜎2

𝑛𝜀2 .

↪︎Proposition 1.3 (Union Bound, Max/Tail Bound):

1. ℙ(⋃𝑓 ∈ℱ︀ 𝐴𝑓 ) ≤ ∑𝑓 ∈ℱ︀ ℙ(𝐴𝑓 )
2. ℙ(sup𝑓 ∈ℱ︀ 𝑍𝑓 ≥ 𝑡) ≤ ∑𝑓 ∈ℱ︀ ℙ(𝑍𝑓 ≥ 𝑡)

↪︎Proposition 1.4 (Jensen's Inequality) :  If 𝐹 : ℝ → ℝ convex and 𝑋 an r.v. with finite mean,

𝐹(𝔼[𝑋]) ≤ 𝔼[𝐹(𝑋)].

1.2.1 Hoeffding Inequality

↪︎Proposition 1.5 (Hoeffding Inequality) :  Let 𝑧1, …, 𝑧𝑛 be independent r.v.s with 𝑧𝑖 ∈ [0, 1] 

a.s.. Then, for any 𝑡 ≥ 0,

ℙ
(
 1

𝑛 ∑
𝑛

𝑖=1
𝑧𝑖 −

1
𝑛 ∑

𝑛

𝑖=1
𝔼[𝑧𝑖] ≥ 𝑡

)
 ≤ exp(−2𝑛𝑡2).

Remark 1.2 : Read this result as a fast (exponential) convergence of the empirical mean to the 

true mean as the sample size 𝑛 grows.

Proof. First we claim that

𝑧 ∈ [0, 1] a.s. ⇒ 𝔼[exp(𝑠(𝑧 − 𝔼[𝑧]))] ≤ exp
(
𝑠2

8 )
. (†)

We’ll assume 𝑧 is centered for the sake of notation. Let 𝜑(𝑠) ≔ log(𝔼[exp(𝑠𝑧)]). 

Remark that
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𝜑(0) = 0

𝜑′(𝑠) =
𝔼[𝑧 exp(𝑠𝑧)]
𝔼[exp(𝑠𝑧)]

𝜑″(𝑠) =
𝔼[𝑧2 exp(𝑠𝑧)]

𝔼[exp(𝑠𝑧)] − (
𝔼[𝑧 exp(𝑠𝑧)]
𝔼[exp(𝑠𝑧)] )

2
.

In particular, if we define a new probability density

̃𝑧 ↦
𝑒𝑠 ̃𝑧

𝔼[𝑒𝑠𝑧]

with respect to that of 𝑧, and let ̃𝑧 be distributed with respect to this distibution, then

Var( ̃𝑧) = 𝜑″(𝑠).

Note that ̃𝑧 ∈ [0, 1] a.s.. In addition, we have that

Var( ̃𝑧) = inf𝑣∈[0,1]𝔼[( ̃𝑧 − 𝑣)2]

≤ 𝔼
[
( ̃𝑧 −

1
2)

2

]
 =

1
4𝔼

[



(

 2 ̃𝑧 − 1⏟

≤1 a.s. )



2

]



≤
1
4,

so that 𝜑″(𝑠) ≤ 1
4  for all 𝑠. Thus, by Taylor expanding 𝜑, we find

𝜑(𝑠) ≤ 𝜑(0) + 𝜑′(0)𝑠 +
𝑠2

2
1
4 =

𝑠2

8 ,

using the bound above and the fact 𝜑′(0) = 0 (checking the above formula). Thus,

𝜑(𝑠) = log(𝔼[exp(𝑠𝑧)]) ≤
𝑠2

8 ,

from which the claim (†) follows by taking exp of both sides.

Next, let 𝑡 ≥ 0 and put 𝑧 = 1
𝑛 ∑ 𝑧𝑖. Then,

ℙ(𝑧 − 𝔼[𝑧] ≥ 𝑡) = ℙ(exp(𝑠(𝑧 − 𝔼[𝑧])) ≥ exp(𝑠𝑡))

(Markov's) ≤ 𝑒−𝑠𝑡𝔼[exp(𝑠(𝑧 − 𝔼[𝑧]))]

(Indep.) = 𝑒−𝑠𝑡 ∏
𝑛

𝑖=1
𝔼[exp(

𝑠
𝑛(𝑧𝑖 − 𝔼[𝑧𝑖]))]

(†) ≤ 𝑒−𝑠𝑡 ∏
𝑛

𝑖=1
exp

(
 𝑠2

8𝑛2 )
 = exp

(
−𝑠𝑡 +

𝑠2

8𝑛)
.

This bound held for all 𝑠, so in particular holds at 𝑠 = argmin{−𝑠𝑡 + 𝑠2

8𝑛} = 4𝑛𝑡. 
Plugging in this value for 𝑠 gives the result. ■
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↪︎Corollary 1.2 (2-sided Hoeffding):  With the same hypotheses as the previous proposition, 

we have

ℙ(|
1
𝑛 ∑ 𝑧𝑖 −

1
𝑛 ∑ 𝔼[𝑧𝑖]| ≥ 𝑡) ≤ 2 exp(−2𝑛𝑡2), ∀𝑡 ≥ 0.

If instead 𝑧𝑖 ∈ [𝑎, 𝑏] a.s., we can replace the rhs with

≤ 2 exp
(
 −2𝑛𝑡2

(𝑎 − 𝑏)2 )
.

Remark 1.3 :

1. How is Hoeffding used? Start with a probability, then derive the necessary 𝑡 (usually, as a 

function of 𝑛) to achieve that bound. e.g., if 𝑧𝑖 ∈ [𝑎, 𝑏]𝑎.𝑠. and for any 𝛿 ∈ (0, 1), then with 

probability 1 − 𝛿,

|
1
𝑛 ∑ 𝑧𝑖 −

1
𝑛 ∑ 𝔼[𝑧𝑖]| <

|𝑎 − 𝑏|
√2𝑛

√log(
2
𝛿 )

2. An extension exists for martingales. If 𝑍𝑖, 𝑖 = 1, …, 𝑛 martingales with respect to a filtration 

{ℱ︀𝑖} and |𝑍𝑖| ≤ 𝑐𝑖 a.s., then

ℙ
(
 1

𝑛 ∑
𝑛

𝑖=1
𝑍𝑖 ≥ 𝑡

)
 ≤ exp

(
−

𝑛2𝑡2

2‖𝑐‖2 )
, 𝑐 ≔ (𝑐1, …, 𝑐𝑛).

↪︎Definition 1.1 (Sub-Gaussian):  We say an r.v. 𝑋 is sub-Gaussian if there exists 𝜏 ∈ ℝ+ such 

that

𝔼[exp(𝑠(𝑋 − 𝔼[𝑋]))] ≤ exp
(
𝜏2

2 𝑠2

)
, ∀𝑠 ∈ ℝ.

We define the sub-Gaussian norm by

‖𝑋‖𝜓2
≔ inf

{

𝑘 ≥ 0 : 𝔼

[
exp

(
𝑋2

𝑘2 )


]
 ≤ 2

}

,

i.e. the “best” sub-Gaussian parameter for 𝑋.

Remark 1.4 :  Interpretation: 𝑋 has tails decaying as fast (or faster) than a Gaussian.

Remark 1.5 :  Different texts may define this differently, i.e. with/without a 2 factor under the 𝜏2. The 

notational advantage of this definition is that a Gaussian random variable with variance 𝜎2 has sub-

Gaussian parameter 𝜎 .

↪︎Proposition 1.6 :  𝑋 is sub-Gaussian iff there exists a 𝑘 ∈ ℝ+ such that

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝑡) ≤ 2 exp
(
−

𝑡2

𝑘2 )
, ∀𝑡 ∈ ℝ.
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↪︎Definition 1.2 (Sub-Exponential) :  We say 𝑋 sub-exponential if

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝑡) ≤ 2 exp(−
𝑡
𝑘 ),

for some 𝑘 and for all 𝑡 ≥ 0. We define the sub-Gaussian norm by

‖𝑋‖𝜓1
≔ inf{𝑘 ≥ 0 : 𝔼[exp(

|𝑋|
𝑘2 )] ≤ 2},

i.e. the “best” sub-Gaussian parameter for 𝑋.

Remark 1.6 : This is a similar, but slower, tail bound than sub-Gaussian.

1.2.2 McDiamarid’s Inequality

For a measure space 𝑍 and nonnegative integer 𝑛, we say 𝑓 : 𝑍𝑛 → ℝ is a function of bounded 

variation with constant 𝑐 if for all 𝑖 ∈ [𝑛] ≔ {1, …, 𝑛} and points 𝑧1, …, 𝑧𝑛, 𝑧′
𝑖 ∈ 𝑍, then

|𝑓 (𝑧1, …, 𝑧𝑖, …, 𝑧𝑛) − 𝑓 (𝑧1, …, 𝑧′
𝑖, …, 𝑧𝑛)| ≤ 𝑐.

↪︎Proposition 1.7 (McDiamarid's Inequality) :  Let 𝑧1, …, 𝑧𝑛 be independent r.v.s on some 

measure space 𝑍 and 𝑓 : 𝑍𝑛 → ℝ be a function of bounded variation with constant 𝑐. Then,

ℙ(|𝑓 (𝑧1, …, 𝑧𝑛) − 𝔼[𝑓 (𝑧1, …, 𝑧𝑛)]| ≥ 𝑡) ≤ 2 exp
(
−

2𝑡2

𝑛𝑐2 )
, ∀𝑡 ≥ 0.

Remark 1.7 :  We can extend this to 𝑧𝑖 ∈ ℝ𝑑; if ‖𝑧𝑖‖2 ≤ 𝑐 a.s., then ‖ 1
𝑛 ∑ 𝑧𝑖‖2

≤ 𝑐
√𝑛

(1 +

√2 log(1
𝛿 )) with probability ≥ 1 − 𝛿.

1.2.3 Bernstein’s Inequality

↪︎Proposition 1.8 (Bernstein's) :  Let 𝑧𝑖, 𝑖 = 1, …, 𝑛 be independent with |𝑧𝑖| ≤ 𝑐 a.s. and mean 

zero. Then for all 𝑡 ≥ 0,

ℙ
(
 1

𝑛|
∑

𝑖
𝑧𝑖

|
 ≥ 𝑡

)
 ≤ 2 exp

(
−

𝑛𝑡2

2𝜎2 + 2𝑐𝑡/3)
, 𝜎2 ≔

1
𝑛 ∑

𝑖
Var(𝑧𝑖).

In particular, for 𝛿 ∈ (0, 1), then with probability ≥ 1 − 𝛿,

|
1
𝑛 ∑ 𝑧𝑖| ≤ √2𝜎2 log(2

𝛿 )
𝑛 +

2𝑐 log(2
𝛿 )

3𝑛 .

↪︎Proposition 1.9 (Extension of Bernstein's, sub-exponential) :  Let 𝑥1, …, 𝑥𝑛 be mean zero, 

independent, sub-exponential r.v.s with constants 𝑘𝑖, and let 𝑎 ∈ ℝ𝑛. Then, for all 𝑡 ≥ 0,

ℙ(|∑ 𝑎𝑖𝑥𝑖| ≥ 𝑡) ≤ 2 exp
(
−𝑐 min

{

 𝑡2

𝑘2‖𝑎‖2
2

,
1

𝑘‖𝑎‖∞ }



)
.
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↪︎Proposition 1.10 (Extension of Bernstein's, non-zero means) :  With the same hypothesis as 

Bernstein’s but without the zero means, we have

ℙ(|
1
𝑛 ∑ 𝑧𝑖 −

1
𝑛 ∑ 𝔼[𝑧𝑖]| ≥ 𝑡) ≤ 2 exp

(

−

𝑛𝑡2

2𝜎2 + 2𝑐 𝑡
3 )


.

1.2.4 Expectation of the Maximum

↪︎Proposition 1.11 :  Let 𝑧𝑖 be (possible dependent) mean-zero, ℝ-values r.v.s which are all 

sub-Gaussian with constant 𝜏2. Then,

𝔼[max{𝑧1, …, 𝑧𝑛}] ≤ √2𝜏2 log(𝑛).

Proof. For all 𝑡 > 0,

𝔼[max{𝑧1, …, 𝑧𝑛}] ≤
1
𝑡 log)𝔼[exp(𝑡 max(𝑍𝑖))] (Jensen's)

=
1
𝑡 log(𝔼[max{exp(𝑡𝑍𝑖)}]) (exp increasing)

≤
1
𝑡 log(𝔼[∑ exp(𝑡𝑍𝑖)]) (max leq sum)

≤
1
𝑡 log

(
𝑛 exp

(
𝜏2 𝑡2

2 )


)
 (sub-Gaussian)

=
log(𝑛)

𝑡 +
𝜏2𝑡
2 .

The proof follows by taking 𝑡 ≔ 𝜏−1√2 log(𝑛). ■

§2 Introduction to Supervised Learning

§2.1 Training Data Predictions

The goal of supervised learning is to take a series of observations (𝑥𝑖, 𝑦𝑖) ∈ 𝒳︀ × 𝒴︀  for 𝑖 ∈ [𝑛] 

(called training data) and to predict a new 𝑦 ∈ 𝒴︀  given a (previously unseen) 𝑥 ∈ 𝒳︀  (testing data).

We write

• 𝒳︀  for our space of inputs, typically embedded in ℝ𝑑 (where 𝑑 tends to be very large; think 

images encoded as large matrices of pixels, text, videos, etc)

• 𝒴︀  for our space of outputs or labels for the data

The challenges in supervised learning are twofold:

1. 𝑦 ∈ 𝒴︀  may not be a deterministic function of 𝑥 ∈ 𝒳︀
2. inputs may live a high-dimensional space, hence it is computationally expensive to work with 

them

We make two primary blanket assumptions of our problem:

1. we aim to maximize the expectation of some measure of performance with respect to some 

testing distribution we put on our data

2.1 Training Data Predictions 7



2. we assume (𝑥𝑖, 𝑦𝑖) are iid, with the training data having the same distribution as the testing 

data

↪︎Definition 2.1 (Machine Learning (ML) Algorithm):  An ML algorithm is a function from the 

data set, (𝒳︀ × 𝒴︀)
𝑛

 to a function 𝒳︀ → 𝒴︀ .

§2.2 Decision Theory

The question we aim to answer here is, what is the optimal performance of an algorithm, 

regardless of the finiteness of the data? I.e., if we havd perfect knowledge of the underlying 

probability distribution of our data, how should we design our algorithm?

We assume for now a fixed (testing) distribution 𝑃𝑥,𝑦 on 𝒳︀ × 𝒴︀  with 𝑃𝑥 marginal distribution 

on 𝒳︀ .

2.2.1 Supervised Learning and Loss Functions

↪︎Definition 2.2 (Loss Function):  A loss function is a mapping ℓ : 𝒴︀ × 𝒴︀ → ℝ where ℓ(𝑦, 𝑧) 

some measure of how close a true label 𝑦 is to a predicted label 𝑧.

⊛ Example 2.1 :

1. (Binary classification) Let 𝒴︀ = {0, 1}, or even 𝒴︀ = {0, …, 9}. A typical loss on such labels is 

the “0-1 loss”, ℓ(𝑦, 𝑧) ≔ 𝟙{𝑦≠𝑧}.

2. (Regression) Let 𝒴︀ = ℝ, then two typical loss functions are the mean-square loss

𝓁︀(𝑦, 𝑧) ≔ (𝑦 − 𝑧)2

or absolute loss

ℓ(𝑦, 𝑧) ≔ |𝑦 − 𝑧|.

2.2.2 Risks

↪︎Definition 2.3 (Expected Risk) :  Given a prediction function 𝑓 : 𝒳︀ → 𝒴︀ , a loss function ℓ :
𝒴︀ × 𝒴︀ → ℝ and a probability distribution 𝑃 on 𝒳︀ × 𝒴︀ , the expected risk of 𝑓  is defined by

ℛ︀(𝑓 ) ≔ 𝔼𝑥,𝑦[ℓ(𝑦, 𝑓 (𝑥))] = ∫
𝒳︀×𝒴︀

ℓ(𝑦, 𝑓 (𝑥)) d𝑃(𝑥, 𝑦).

↪︎Definition 2.4 (Empirical Risk) :  Given a prediction function 𝑓 : 𝒳︀ → 𝒴︀ , a loss function ℓ :
𝒴︀ × 𝒴︀ → ℝ and (𝑥𝑖, 𝑦𝑖)

𝑛
𝑖=1 ∈ 𝒳︀ × 𝒴︀ , the empirical risk is given by

ℛ̂︀(𝑓 ) ≔
1
𝑛 ∑

𝑛

𝑖=1
ℓ(𝑦𝑖, 𝑓 (𝑥𝑖))

= ∫
𝒳︀×𝒴︀

ℓ(𝑦, 𝑓 (𝑥)) d𝜇(𝑥, 𝑦), 𝜇(𝑥, 𝑦) ≔
1
𝑛 ∑

𝑛

𝑖=1
𝛿{(𝑥𝑖,𝑦𝑖)}.

Remark 2.1 : Heuristically, ℛ̂︀(𝑓 ) should approach ℛ︀(𝑓 ) as 𝑛 → ∞.
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⊛ Example 2.2 :

1. If 𝒴︀ = {0, 1}, ℓ(𝑦, 𝑧) = 𝟙{𝑦≠𝑧}, then

ℛ︀(𝑓 ) = 𝔼[𝟙{𝑦≠𝑓 (𝑧)}] = ℙ(𝑦 ≠ 𝑓 (𝑥)) = probability of missclassifying

2. 𝒴︀ = ℝ, ℓ(𝑦, 𝑧) = (𝑦 − 𝑧)2,

ℛ︀(𝑓 ) = 𝔼[(𝑦 − 𝑓 (𝑥))2], mean-square error (MSE)

2.2.3 Baye’s Risk, Predictor

Here, we answer the question: what’s the best predictor 𝑓  we could find, assuming we knew 

everything about the underlying distibution on 𝒳︀ × 𝒴︀?

We can write, by law of total expectation,

ℛ︀(𝑓 ) = 𝔼[ℓ(𝑦, 𝑓 (𝑥))]

= 𝔼[𝔼[ℓ(𝑦, 𝑓 (𝑥))|𝑥]]

= 𝔼𝑥′∼𝑝[𝔼[ℓ(𝑦, 𝑓 (𝑥′)) | 𝑥 = 𝑥′]]

= ∫
𝒳︀

𝔼[ℓ(𝑦, 𝑓 (𝑥′)) | 𝑥 = 𝑥′] d𝑝(𝑥′).

Define the conditional risk given 𝑥′ ∈ 𝒳︀  by

𝑟(𝑧|𝑥′) ≔ 𝔼𝑦[ℓ(𝑦, 𝑧) | 𝑥 = 𝑥′],

so that we can write

ℛ︀(𝑓 ) = ∫
𝒳︀

𝑟(𝑓 (𝑥′)|𝑥) d𝑝(𝑥′) =𝒳︀ finite ∑
𝑥′∈𝒳︀

𝑟(𝑓 (𝑥′)|𝑥′)ℙ(𝑥 = 𝑥′).

In particular, in the finite case, we can see that to minimize the risk ℛ︀(𝑓 ), we can minimize the 

individual conditional risks 𝑟(𝑓 (𝑥′)|𝑥′) for each 𝑥′ ∈ 𝒳︀ . The so-called Baye’s predictor is a 

function 𝑓∗ which for each 𝑥′ minimizes 𝑟(𝑓 (𝑥′)|𝑥′). Formally,

↪︎Proposition 2.1 (Baye's Predictor/Risk) :  The expected risk is minimized at a Baye’s predictor 

𝑓∗ : 𝒳︀ → 𝒴︀  such that, for all 𝑥′ ∈ 𝒳︀ ,

𝑓∗(𝑥′) ∈ argmin𝑧∈𝒴︀𝔼[ℓ(𝑦, 𝑧) | 𝑥 = 𝑥′].

The Baye’s risk is the risk of a (any) Baye’s predictor, written

ℛ︀∗ ≔ 𝔼𝑥′∼𝑝[ inf
𝑧∈𝒴︀

𝔼[ℓ(𝑦, 𝑧) | 𝑥 = 𝑥′]] = 𝔼[ℓ(𝑦, 𝑓∗(𝑥′))].

Remark 2.2 :

1. Finding an 𝑓∗ is an impossible task in practice. Instead, we’ll usually assume 𝑓  takes some 

parametrized form, and optimize these parameters.

2. Baye’s predictor may not be unique, but all Baye’s predcitors have the same risk

3. Baye’s risk is usually nonzero, unless the dependency between 𝑥 and 𝑦 is deterministic.
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↪︎Definition 2.5 (Excess Risk) :  The excess risk of a predictor 𝑓  is the value ℛ︀(𝑓 ) − ℛ︀(𝑓∗) ≥ 0.

Remark 2.3 :  Thus, if we knew the conditional distribution (𝑦|𝑥) for each 𝑥, the optimal 

predictor is known. ML can be succinctly be described as dealing with the general case in 

which we do not know (𝑦|𝑥) for all 𝑥, and can only work with given samples of data.

⊛ Example 2.3 :

1. (Binary classification) With 𝒴︀ ≔ {−1, 1} and ℓ(𝑦, 𝑧) = 𝟙{𝑦≠𝑧} the 0-1 loss, we can see that

𝑓∗(𝑥′) ∈ argmin𝑧′∈{−1,1}𝑃(𝑦 ≠ 𝑧 | 𝑥 = 𝑥′)

= argmax𝑧∈{−1,1}ℙ(𝑦 = 𝑧 | 𝑥 = 𝑥′)

=
{

1 ℙ(𝑦 = 1 | 𝑥 = 𝑥′) > 1

2
−1 ℙ(𝑦 = 1 | 𝑥 = 𝑥′) < 1

2 anything ℙ(𝑦 = 1 | 𝑥 = 𝑥′) = 1
2

.

Putting ℒ︀(𝑥′) ≔ ℙ(𝑦 = 1 | 𝑥 = 𝑥′), this implies

ℛ︀∗ = 𝔼[min{ℒ︀(𝑥), 1 − ℒ︀(𝑥)}].

2. (Regression) With 𝒴︀ = ℝ, ℓ(𝑦, 𝑧) = (𝑦 − 𝑧)2, we see that

argmin𝑧∈ℝ𝔼[(𝑦 − 𝑧)2 | 𝑥 = 𝑥′] = argmin𝑧∈ℝ

{





𝔼[(𝑦 − 𝔼[𝑦 | 𝑥 = 𝑥′])2 | 𝑥 = 𝑥′]
⏟

independent of 𝑧

+(𝑧 − 𝔼[𝑦 | 𝑥 = 𝑥′])2
⏟

minimize this }





= 𝔼[𝑦 | 𝑥 = 𝑥′].

Hence, 𝑓∗(𝑥′) = 𝔼[𝑦|𝑥 = 𝑥′], and so

ℛ︀∗ = 𝔼𝑥′∼𝑝[ inf
𝑧∈ℝ

𝔼[(𝑦 − 𝑧)2 | 𝑥 = 𝑥′]] = 𝔼𝑥′[(𝑦 − 𝔼[𝑦|𝑥 = 𝑥′])2] (conditional variance)

§2.3 Empirical Risk Minimization

We don’t know the underlying distributions we work with (of course, otherwise we’d be 

done), and we need to work with samples, and need to simplify what kind of prediction 

functions we consider (since we don’t know the underlying distribution, thus can’t find the 

Baye’s predictor in general).

We’ll assume a parametrized family of predictor functions (called our model),

𝑓𝜃 : 𝒳︀ → 𝒴︀, 𝜃 ∈ Θ,

where Θ ⊂ ℝ𝑑 typically. Heuristically, as 𝑑 increases, if we could find the best 𝑓𝜃 predictor for 

𝜃 ∈ Θ, that predictor will approach the Baye’s predicotr.
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↪︎Definition 2.6 (Empirical risk with respect to a parameter) :  The empirical risk w.r.t 𝜃 ∈ Θ is

𝑅̂(𝑓𝜃) ≔
1
𝑛 ∑

𝑛

𝑖=1
ℓ(𝑦𝑖, 𝑓𝜃(𝑥𝑖)).

We consider the optimal parameter minimizing this empirical risk as

̂𝜃 ∈ argmin𝜃∈Θ𝑅̂(𝑓𝜃),

and so our “optimal” prediction function with respect to Θ is 𝑓 ̂𝜃.

⊛ Example 2.4 :  A typical linear least-squares problem takes this form,

min
𝜃∈Θ=ℝ𝑑

1
𝑛 ∑

𝑛

𝑖=1
(𝑦𝑖 − 𝜃𝑇𝜑(𝑥𝑖))2,

so that here, 𝑓𝜃(𝑥) = 𝜃𝑇𝜑(𝑥𝑖) and our loss function is the square loss.

2.3.1 Risk Decomposition

Given a ̂𝜃 ∈ Θ (not necessarily optimal w.r.t Θ), we would like to break down the excess risk 

of the predictor 𝑓 ̂𝜃 w.r.t the Baye’s predictor to see the difference in error coming from our choice 

of model (we call this approximation error, i.e. how far our model is from approoximating our 

true predictor function) versus from the choice of 𝑓 ̂𝜃 over the “true” best predictor with respect 

to Θ (as defined in the previous section. This is called the estimation error, and should be thought 

of as how well any underlying optimization algorithm used to find ̂𝜃 performed compared to 

the theoretical best).

Mathematically, we can write

ℛ︀(𝑓 ̂𝜃) − ℛ︀∗
⏟

Excess Risk
how good our estimator is

from the best possible

= {ℛ︀(𝑓 ̂𝜃) − inf
𝜃∈Θ

ℛ︀(𝑓𝜃)}
⏟

Estimation Error
how good our estimator is compared

to the best the model can do

+ { inf
𝜃∈Θ

ℛ︀(𝑓𝜃) − ℛ︀∗}
⏟

Approximation Error
how good our model (theoretically) is

compared to the best possible

.

Note that the approximation error is due to the modelling choice, and is independent of the 

specific 𝑓 ̂𝜃. Vaguely, “as Θ grows, the approximation error should shrink”.

The estimation error can further be broken down into three parts; let 𝜃′ ∈ Θ be the minimizer 

of 𝜃 ↦ ℛ︀(𝑓𝜃′) (e.g., ℛ︀(𝑓𝜃′) = inf𝜃∈Θ ℛ︀(𝑓𝜃)), then
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ℛ︀(𝑓 ̂𝜃) − ℛ︀(𝑓𝜃′)⏟
Estimation Error

= {ℛ︀(𝑓 ̂𝜃) − ℛ̂︀(𝑓 ̂𝜃)} ← How good the model risk is
on data vs true risk of model

Empirical Optimization Error
How bad our choice of predictor is

compared true best in terms
of performance on the data

(for ̂𝜃 )

→ +{𝑅̂(𝑓 ̂𝜃) − 𝑅̂(𝑓𝜃′)}

+{𝑅̂(𝑓𝜃′) − ℛ︀(𝑓𝜃′)} ←
How good the model risk is
on data vs true risk of model

(for 𝜃′ )

≤ 2sup
𝜃∈Θ

|ℛ︀(𝑓𝜃) − ℛ̂︀(𝑓𝜃)|
⏟

should ↓ as 𝑛↑

+ {𝑅̂(𝑓 ̂𝜃) − 𝑅̂(𝑓𝜃′)}⏟
↑ as Θ↑

(Θ gets too large to optimize over)

.

In brief, we expect that as the parameter space Θ grows, the esimation error increases, but the 

approximation error decreases. But as 𝑛 (number of samples) increases, we expect the estimation 

error to decrease (and there is no effect on the approximation error). Thus, there is a subtle 

interplay between 𝑑 ≔ dim(Θ) and 𝑛.

§2.4 Statistical Learning Theory

“Statistical learning theory” asks how to provide guarantees of performance of an algorithm 

on previously unseen data.

We assume we have data

𝐷𝑛(𝑝) ≔ {(𝑥1, 𝑦1), …, (𝑥𝑛, 𝑦𝑛)}

which are assumed to be iid from some unknown distribution 𝑝 which is part of some family 𝑃 

of distributions.

An algorithm then is a mapping 𝐴 from 𝐷𝑛(𝑝) to a prediction function 𝐴(𝐷𝑛(𝑝)) = 𝑓 : 𝒳︀ → 𝒴︀ . 

Our goal is to find an algorithm such that the excess risk of the prediction function given by 𝐴 is 

“small”, in a sense we’ll define in the next section.

2.4.1 Measures of Performance

↪︎Definition 2.7 (Expected Risk) :  The expected risk of an algorithm 𝐴 on sample size 𝑛 and 

probability distribution 𝑝 is the quantity

𝔼[ℛ︀𝑝(𝐴(𝐷𝑛(𝑝)))],

where the expected value is taken over all possible 𝑛-size subsets of the training data. We say 

that an algorithm is consistent in expectation if the above quantity converges, with 𝑝 fixed, to 

ℛ︀∗ as 𝑛 → ∞.

↪︎Definition 2.8 (Probability Approximately Correct ∗) :  We say an algorithm 𝐴 is Probability 

Approximately Correct (PAC) if for any given 𝛿 ∈ (0, 1) and 𝜀 > 0, there exists 𝑁 ∈ ℕ such 

that for all 𝑛 ≥ 𝑁,

ℙ(ℛ︀𝑝(𝐴(𝐷𝑛(𝑝))) − ℛ︀∗ ≤ 𝜀) ≥ 1 − 𝛿.

2.4.2 Notions of Consistency over Classes of Probability distributions
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Remark that our definition of consistency in expectation gave no guarantee over rate of 

convergence, especially not with respect to the specific distribution.

↪︎Definition 2.9 :  An algorithm is uniformly consistent if for all probability distributions on 

(𝑥, 𝑦), the algorithm is consistent.

↪︎Definition 2.10 (Minimax risk) :  The minimax risk is defined to be, given 𝒳︀ × 𝒴︀ ,

inf
𝐴: algorithm

sup
𝑝∈𝑃:

class of dists.

{𝔼[ℛ︀𝑝(𝐴(𝐷𝑛(𝑝)))] − ℛ︀∗}.

Remark 2.4 :  This is hard to evaluate in general, but is easy to upper bound (just fix any 𝐴 and 

evaluate the inner supremum, i.e., look at the worst-case performance of the algorithm). 

Lower bounds are much harder to compute, since they need to hold for any possible 

algorithm.

§2.5 “No Free Lunch”

No, this section is not about SSMU shutting down Midnight Kitchen…

Here, we make clearer the remarks of the previous section in terms of performance of 

algorithms for arbitrarily distributed data. Namely, we show that, for a specific loss function and 

input/output space, for any size of data 𝑛, we can construct a distribution on our data such that 

any algorithm we can come up with will perform “poorly” (i.e. it’s excess risk is bounded away 

from 0). Hence, there is no “free lunch”, i.e no “easy algorithm” that will work without further 

assumptions on what our possible probability distributions could be

↪︎Proposition 2.2 (No Free Lunch): Consider a binary classification with 0 − 1 loss and with 

𝒳︀  infinite. Let 𝒫︀  be the class of all probability distributions on 𝒳︀ × {0, 1}. Then, for all 𝑛 and 

for all algorithms 𝐴,

sup
𝑝∈𝒫︀

{𝔼[ℛ︀𝑝(𝐴(𝐷𝑛(𝑝)))] − ℛ︀∗} ≥
1
2.

Remark 2.5 :  As we’ll see in the proof, the bounds we obtain will not give any rate in 𝑛, 

asymptotic or not. Indeed, the probability distribution for each 𝑛 will crucially depend on a 

certain parameter 𝑛 being much larger than 𝑛. Indeed, we can state (but will not prove) the 

much stronger statement as follows.

↪︎Theorem 2.1 (Devroye, '96) :  Consider the same setup as Prop. 2.2. Then, for any decreasing 

sequence 𝑎𝑛 → 0 with 𝑎1 ≤ 1
16 , then for any algorithm 𝐴, there exists a 𝑝 ∈ 𝒫︀  such that for all 

𝑛 ≥ 1,

𝔼[ℛ︀𝑝(𝐴(𝐷𝑛(𝑝)))] − ℛ︀∗ ≥ 𝑎𝑛.

I.e., the supremum over 𝒫︀  has excess risk going to zero arbitrarily slowly.
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Proof. (of Prop. 2.2) Fix 𝑛 ∈ ℕ and assume wlog ℕ ⊂ 𝒳︀  (by relabelling otherwise). 

Let 𝑘 ∈ ℤ+, and, given a 𝑘-length vector 𝑟 = (𝑟1, …, 𝑟𝑘) ∈ {0, 1}𝑘, define a joint 

probability distribution 𝑝 on (𝑥, 𝑦) such that

ℙ(𝑥 = 𝑗, 𝑦 = 𝑟𝑗) =
1
𝑘 , 𝑗 = 1, …, 𝑘.

In particular, in this case, 𝑦 is a deterministic function of 𝑥; given 𝑥 = 𝑗, 𝑦 = 𝑟𝑗. In 

particular, this means ℛ︀∗ = 0.

Denote ̂𝑓𝐷𝑛
≔ 𝐴(𝐷𝑛(𝑝)) as the classifier under 𝑝 given by algorithm 𝐴, and write 

𝑆(𝑟) ≔ 𝔼[ℛ︀𝑝( ̂𝑓𝐷𝑛
)] as the expectation of the expected risk under this given 

probability distribution of the classifier given by the algorithm 𝐴 for the given vector 

𝑟 ∈ {0, 1}𝑘. We aim to pick 𝑟 such that we maximize this quantity; if we can pick 𝑟 such 

that this quantity is larger than 1
2 , we’ll be done (why?).

This is hard to do directly, so we’ll instead lower bound the max probabilistically; 

given any distribution 𝑞 on {0, 1}𝑘, we certainly have

max
𝑟∈{0,1}𝑘

𝑆(𝑟) ≥ 𝔼𝑟∼𝑞[𝑆(𝑟)].

Thus, we’ll design some 𝑞 so that this quantity on the right is large. Specifically, let 𝑞 be 

uniform on {0, 1}𝑘, i.e. each 𝑟 = (𝑟1, …, 𝑟𝑘) a vector of 𝑟𝑗’s each independent, unbiased, 

Bernoulli r.v.‘s. Then,

𝔼𝑟∼𝑞[𝑆(𝑟)] = ℙ( ̂𝑓𝐷𝑛
(𝑥) ≠ 𝑦) = ℙ( ̂𝑓𝐷𝑛

(𝑥) ≠ 𝑟𝑥)

■
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