MATH562 - Theory of Machine Learning

Based on lectures from Winter 2026 by Prof. Courtney Paquette.
Notes by Louis Meunier
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§1 INTRODUCTION

§1.1 Some Linear Algebra
1.1.1 Inverting Block Matrices
Let

_[(AB (p+4)x(p+4q)
M := (c D) e R ,

ie.Ae RPP,Be RPY,C € R7P and D € R7*7 (where we use the convention thatif A €

R™", then A has m rows and n columns, so in particular maps R"” — R").If A is invertible, let
M\ A := D — CA~!B =: Schur Complement (of A with respect to M).

Then,

M-1 = AL+ A-1IB(IM\ A)-1CA-1  —A-1BM\ A)-1
N —(M\ A)"1CA-1 (M\ A)-1 '

Similarly, if D invertibleand M \ D := A — BD1C, then

M-1 = (M\D)~! —(M\ D)~'BD~!
-D-1ICM\D)-! D-!'+D-CM\D)-1BD-! )’
1.1.2 Eigenvalues and Singular Values

Given A € R"™" symmetric, there exists U € R™" orthogonal (i.e., UT = U~!) such that
A = U diagi\HUT,
where A = (A4, ..., A,,) for A;’s the eigenvectors of A. In particular, if U enumerate the columns
of U, we have
AUD = Aiu(i),
i.e. the U"’s are the eigenvectors of A.

Given X € R™4 5 > d, then there exists an orthogonal matrix V € R4 and U € R™ with
orthogonal columns, and a matrix of singular values s € RY = {(vl, .y 0y) € R v, > 0Vi =
1,..., d} such that

X = U Diag(s)VT.

Remark 1.1:
L ifu; € R v; € R4 are the columns of U, V resp., then X = Z?Zl siu;0)
2. if 5; a singular value of X, then s? an eigenvalue of XX” and XTX.

§1.2 Concentration Inequalities

Here we study the question of how the magnitude of the average of n independent, mean 0

random variables behaves compared to their average magnitude, specifically with respect to n.

We know that the central-limit theorem states that for z; iid with variance ¢2, vn (% Yz —

E [z]) converges in distribution to a N'(0, 0?); this is an asymptotic result, which gives no
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information about the rate of this converge with respect to n, which is what we care about in our

study.

< Proposition 1.1 (Markov's): Let Y be a nonnegative r.v. with finite mean. Then,

1
P(Y >¢) < EIEZ[Y], Ve > 0.

= Proposition 1.2 (Chebyshev's): Let X be a r.v. with finite mean and variance, then

Var[X]

P(X — E[X]| 2 &) < ——,
S

Ve > 0.

—Corollary 1.1: If z;,i = 1, ..., n are iid with variance o2, then

1 & o2
P| |- — > < —,
(150

ne?

< Proposition 1.3 (Union Bound, Max/Tail Bound):

L P(Urer4r) < Syer P(4f)
2. P(suprerZs 2t) < Yper P(Zf 2 1)

< Proposition 1.4 (Jensen's Inequality): If F : R — R convex and X an r.v. with finite mean,

F(E[X]) < E[F(X)].
1.2.1 Hoeffding Inequality

= Proposition 1.5 (Hoeffding Inequality): Let z4, ..., z,, be independent r.v.s with z; € [0, 1]
a.s.. Then, forany t > 0,
n

P(% Z;zi ! E[z] > t) < exp(—2nt?).

=

Remark 1.2: Read this result as a fast (exponential) convergence of the empirical mean to the

true mean as the sample size n grows.

Proor. First we claim that
2
z€[0,1] as. = E[exp(s(z— E[z]))] < exp(g). ()

We'll assume z is centered for the sake of notation. Let ¢(s) := log(E[exp(sz)]).
Remark that
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¢(0) =0
E[zexp(sz)]
E[exp(sz)]

E[z? exp(sz) | E[zexp(sz)] 2
Elexp(sz)] _( E[exp(sz)] ) .

@'(s) =

QH(S) —

In particular, if we define a new probability density
e5Z

zZP E[esz]

with respect to that of z, and let Z be distributed with respect to this distibution, then
Var(2) = ¢"(s).
Note that Z € [0,1] a.s.. In addition, we have that

Var(fZ) = infve[oll]E[(Z - U)z]

3] |

so that ¢”(s) < % for all s. Thus, by Taylor expanding ¢, we find

2 2
2(5) < 9(0) + ' Qs + r =2,
24 8

using the bound above and the fact ¢’ (0) = 0 (checking the above formula). Thus,
§2
@(s) =log(E[exp(sz)]) < 3
from which the claim (1) follows by taking exp of both sides.
Next, lett > 0 and putz = % > z;. Then,
Pz — E[z] > t) = P(exp(s(z — E[Z])) = exp(st))

(Markov's) < e S'E[exp(s(z — E[Z]))]

(Indep.) = Stl—[ [exp( z; — E[z ]))]
o n g2 52
(t) <e gexp(gﬁ) :exp(—st+8—n).

This bound held for all s, so in particular holds at 5 = argmin{—st + %} = 4nt.

Plugging in this value for s gives the result.

1.2.1 Hoeffding Inequality



= Corollary 1.2 (2-sided Hoeffding): With the same hypotheses as the previous proposition,

]P’( %Zzi—%ZIE[zi]

If instead z; € [4,b] a.s., we can replace the rhs with

—2nt?
<2exp @02 )

we have

> t) < 2exp(—2nt?), vVt > 0.

Remark 1.3:
1. How is Hoeffding used? Start with a probability, then derive the necessary t (usually, as a
function of n) to achieve that bound. e.g., if z; € [4,b]a.s. and for any 6 € (0, 1), then with

1 1 la — b 2
Ezzi - EZE[ZI'] < E log(g)

2. An extension exists for martingales. If Z;,i = 1, ..., n martingales with respect to a filtration
{F;} and |Z;] < ¢; a.s., then

1& n2t2
Pl-) Z;>t| <exp| — , C€:=(Cq1,..,Cpy).

probability 1 — 4,

< Definition 1.1 (Sub-Gaussian): We say an r.v. X is sub-Gaussian if there exists T € R, such
that

2
E[lexp(s(X — E[X]))] < exp(%sz), Vs € R.

We define the sub-Gaussian norm by

XZ
||X||4,2 = inf{k >0: E[exp(k—z)] < 2},

i.e. the “best” sub-Gaussian parameter for X.

Remark 1.4: Interpretation: X has tails decaying as fast (or faster) than a Gaussian.

Remark 1.5: Different texts may define this differently, i.e. with/without a 2 factor under the t2. The
notational advantage of this definition is that a Gaussian random variable with variance o has sub-
Gaussian parameter o.

= Proposition 1.6: X is sub-Gaussian iff there exists a k € R such that

2

t
), VvVt e R.

P(X - E[X] >t) < Zexp(—k—2

1.2.1 Hoeffding Inequality



< Definition 1.2 (Sub-Exponential): We say X sub-exponential if
t
P(X-E[X]I >t < 2eXp(—E>,

for some k and for all t > 0. We define the sub-Gaussian norm by

X
I1Xlly, = inf{k >0: Elexp(lk—;)] < 2},

i.e. the “best” sub-Gaussian parameter for X.

Remark 1.6: This is a similar, but slower, tail bound than sub-Gaussian.

1.2.2 McDiamarid’s Inequality

For a measure space Z and nonnegative integer 7, we say f : Z" — R is a function of bounded
variation with constant c if for all i € [n] := {1, ...,n} and points zq, ..., z,, z; € Z, then

f(z1, . Zis s 2) — (21, s 28, 0o 20)| S .

< Proposition 1.7 (McDiamarid's Inequality): Let z4, ..., z, be independent r.v.s on some
measure space Z and f : Z" — R be a function of bounded variation with constant c. Then,

t2

— |, Vt=0.
ncz>

P(f(z1,..r2n) — E[f (21, .-,24) ]I 2 1) < 2exp(—

Remark 1.7: We can extend this to z; € RY; if zill, < ca.s., then ||% > ziH2 < %(1 +

2 log(%)) with probability > 1 — 4.
1.2.3 Bernstein’s Inequality

= Proposition 1.8 (Bernstein's): Letz; i = 1,...,n be independent with |z;| < c a.s. and mean

zero. Then for all t > 0,
t2

1 n 1
- 1>t < - 2.- Y.
]P(n‘; z;| > t) < 2exp( 707 1 2ct/3>' o - ZVar(zl)

In particular, for 6 € (0, 1), then with probability > 1 — 4,

|- 20210g(%) . ZClog(%).
- n 3n

< Proposition 1.9 (Extension of Bernstein's, sub-exponential): Let x4, ..., x,, be mean zero,

independent, sub-exponential r.v.s with constants k;, and leta € R". Then, for all t > 0,

[ 1
P(|) ax|>1) < 2exp(_cmm{k2uau%’ Klall })

1.2.3 Bernstein’s Inequality



< Proposition 1.10 (Extension of Bernstein's, non-zero means): With the same hypothesis as
Bernstein’s but without the zero means, we have

p(’lzz 121{3[2] >t><2 nt?
— = = =t <2exp| — |.
n&=" n l 5 202 +2c4

1.2.4 Expectation of the Maximum

—Proposition 1.11: Let z; be (possible dependent) mean-zero, R-values r.v.s which are all
sub-Gaussian with constant 72. Then,

E[max{zy,...,z,}] < y2712log(n).

Proor. Forallt > 0,

1
E[max{zq,...,z,}] < ?log)IE[exp(tmax(Zi))] (Jensen's)

1

=7 log(E[max{exp(tZ;)}]) (expincreasing)
1

< 7 log(E[Z exp(tZi)]) (max leq sum)
1 , 12 :

< ?log nexp| 0o (sub-Gaussian)

_log(n) Tt

—_ t T.

The proof follows by taking t := T=1/2log(n). [

§2 INTRODUCTION TO SUPERVISED LEARNING
§2.1 Training Data Predictions

The goal of supervised learning is to take a series of observations (x;,y;) € X x | for i € [n]
(called training data) and to predict anew y € g given a (previously unseen) x € X (testing data).

We write

e X for our space of inputs, typically embedded in R (where d tends to be very large; think
images encoded as large matrices of pixels, text, videos, etc)

* U for our space of outputs or labels for the data

The challenges in supervised learning are twofold:
1. y € YY may not be a deterministic function of x € X

2. inputs may live a high-dimensional space, hence it is computationally expensive to work with
them

We make two primary blanket assumptions of our problem:
1. we aim to maximize the expectation of some measure of performance with respect to some
testing distribution we put on our data

2.1 Training Data Predictions 7



2. we assume (x;,y;) are iid, with the training data having the same distribution as the testing
data

< Definition 2.1 (Machine Learning (ML) Algorithm): An ML algorithm is a function from the
data set, (JC X g)n to a function X — g
§2.2 Decision Theory

The question we aim to answer here is, what is the optimal performance of an algorithm,
regardless of the finiteness of the data? Le., if we havd perfect knowledge of the underlying
probability distribution of our data, how should we design our algorithm?

We assume for now a fixed (testing) distribution P, , on X' x {f with P, marginal distribution

on X.

2.2.1 Supervised Learning and Loss Functions

< Definition 2.2 (Loss Function): A loss function is a mapping ¢ : {/ x {f - R where €(y, z)
some measure of how close a true label y is to a predicted label z.

® Example 2.1:

1. (Binary classification) Let g = {0,1}, or even g ={0,...,9}. A typical loss on such labels is
the “0-11oss”, {(y, z) = Lz

2. (Regression) Let {} = R, then two typical loss functions are the mean-square loss

L(y,2) = (y —2)?

or absolute loss

Uy, z) =y —zl
2.2.2 Risks

= Definition 2.3 (Expected Risk): Given a prediction function f : X — {/, a loss function ¢ :
Y x Y - R and a probability distribution P on X x J, the expected risk of f is defined by

RE) = Exy U feD] = [ @£ () dP(xy).

< Definition 2.4 (Empirical Risk): Given a prediction function f : X — l, a loss function ¢ :

x { - Rand (x;,y;)"_, € X x Y, the empirical risk is given b
Yy i=1 P 8 y

R = 5 Y U f(x)

1 n
=), by, fx)du(x,y), wpxy) ==—Z5{<xi,y,»>}-
<Y ni:l

Remark 2.1: Heuristically, JR (f) should approach R (f) as n — co.

2.2.2 Risks



® Example 2.2:
1. Ifg ={0,1},0(y,z) = Liyszy, then
R(f) = E[Liy4r2y} | = P(y # f(x)) = probability of missclassifying
2.4 =R,Uyz2) = (y-2)>
R(f) = E[(y —f(x))?], mean-square error (MSE)

2.2.3 Baye’s Risk, Predictor

Here, we answer the question: what'’s the best predictor f we could find, assuming we knew
everything about the underlying distibution on X x {/?

We can write, by law of total expectation,
R(f) = E[t(y,f(x))]
= E[E[C(y,f (x))lx]]
= Evp[E[t(y,f(x)) |x =x"]]

= [ E[.f()) 12 = 2] dp(x').
Define the conditional risk given x" € X by
rzlx") = E, [y, z) | x =x],

so that we can write
! A fo i ! A A
R(F) = [ r(FeH dp(x) TE YT r(F(RP(x = x).
x'eX
In particular, in the finite case, we can see that to minimize the risk R (f), we can minimize the

individual conditional risks 7(f (x")|x") for each x" € X. The so-called Baye’s predictor is a
function f, which for each x" minimizes r(f (x")Ix"). Formally,

= Proposition 2.1 (Baye's Predictor/Risk): The expected risk is minimized at a Baye’s predictor
fu: X - g such that, for all x’ € X,

f.(x") e argminzegIE[(Z(y,z) |x =x'].

The Baye’s risk is the risk of a (any) Baye’s predictor, written

R = By inf B{(y,2) 1¥ =] | = B[, ()

Remark 2.2:

1. Finding an f, is an impossible task in practice. Instead, we’ll usually assume f takes some
parametrized form, and optimize these parameters.

2. Baye’s predictor may not be unique, but all Baye’s predcitors have the same risk

3. Baye’s risk is usually nonzero, unless the dependency between x and y is deterministic.

2.2.3 Baye’s Risk, Predictor



< Definition 2.5 (Excess Risk): The excess risk of a predictor f is the value R (f) — R(f,) = 0.

Remark 2.3: Thus, if we knew the conditional distribution (y|x) for each x, the optimal
predictor is known. ML can be succinctly be described as dealing with the general case in

which we do not know (y|x) for all x, and can only work with given samples of data.

® Example 2.3:
1. (Binary classification) With g i={-1,1}and {(y,z) = 1 {y#2) the 0-1 loss, we can see that

fo(x') € argmine_y 1, P(y # 2| x = x')
= argmax,e_1 1, P(y =z|x =x")

1 Ply=1lx=x")
- -1P(y=1|x=x")

NI~ N[~

>
< 5 anything P(y =1|x=x") =
Putting L(x") := P(y = 1| x = x"), this implies

R* = E[min{L(x),1 — L(x)}].

2. (Regression) With {f = R, {(y,z) = (y — z)?, we see that

argmin, g E[ (y —z)? | x = x']| = argmin, E[(y —Elylx=x])*x= x’]

independent of z

+(z—E[ylx= x’])2

minimize this
=E[ylx=x"].

Hence, f, (x") = E[ylx = x'], and so

R* = Eyrny [Zlélﬂg E[(y—2z)?Ix= x’]] — ]Exr[(y — Efylx = x’])z] (conditional variance)

§2.3 Empirical Risk Minimization

We don’t know the underlying distributions we work with (of course, otherwise we’d be
done), and we need to work with samples, and need to simplify what kind of prediction
functions we consider (since we don’t know the underlying distribution, thus can’t find the

Baye’s predictor in general).
We'll assume a parametrized family of predictor functions (called our model),

fo: X =1, 6€0,

where © C R typically. Heuristically, as d increases, if we could find the best f, predictor for
8 € O, that predictor will approach the Baye’s predicotr.

2.3 Empirical Risk Minimization 10



— Definition 2.6 (Empirical risk with respect to a parameter): The empirical risk w.r.t 6 € © is

lzg yl/f(? x)

i=1

:

We consider the optimal parameter minimizing this empirical risk as
0 € argmingcoR(fy),

and so our “optimal” prediction function with respect to © is f,.

® Example 2.4: A typical linear least-squares problem takes this form,

min L i (i — 9T(P(xi))2,

—_Rd
0e®@=R ni:l

so that here, fy(x) = 7 ¢(x;) and our loss function is the square loss.

2.3.1 Risk Decomposition

Given a § € @ (not necessarily optimal w.r.t ®), we would like to break down the excess risk
of the predictor f; w.r.t the Baye’s predictor to see the difference in error coming from our choice
of model (we call this approximation error, i.e. how far our model is from approoximating our
true predictor function) versus from the choice of f; over the “true” best predictor with respect
to © (as defined in the previous section. This is called the estimation error, and should be thought
of as how well any underlying optimization algorithm used to find 8 performed compared to
the theoretical best).

Mathematically, we can write

R(fy) - R* = {R(fé)—mfﬁ(fg)} + {mfae(fg) }

fe® fe®

Excess Risk

- . Estimation Error Approximation Error
how good our estimatoris d our estimator is. d - )
. OW g00d our estimator 1s compare how good our model (theoretically) is
from the best possible he best th del d )
to the best the model can do compared to the best possible

Note that the approximation error is due to the modelling choice, and is independent of the
specific f5. Vaguely, “as ® grows, the approximation error should shrink”.

The estimation error can further be broken down into three parts; let 8" € © be the minimizer
of 6 — R(fy) (e.g., R(fy) = infgee R(fy)), then

2.3.1 Risk Decomposition 11



(R(fé) — R(fy) = {R(fé) _ JQ(fé)}  How good the model risk is

on data vs true risk of model

Estimation Error

Empirical O%timization Error
How bad our choice of predictor is ~ P’
compared true bestin terms —  + {R (fé) —R (fgr ) }
of performance on the data
(for 6)

~ How good the model risk is
+{R(f€’) - R(fe’ ) } < on data vs true risk of model
(for 6" )

SZZgglﬁ(fe) — R(fo)l + {R(f3) = R(fo)}

1 as O1
(© gets too large to optimize over)

should | as n?t

In brief, we expect that as the parameter space ® grows, the esimation error increases, but the
approximation error decreases. But as n (number of samples) increases, we expect the estimation
error to decrease (and there is no effect on the approximation error). Thus, there is a subtle
interplay between d := dim(®) and n.

§2.4 Statistical Learning Theory

“Statistical learning theory” asks how to provide guarantees of performance of an algorithm
on previously unseen data.

We assume we have data

Dn(P) = {(xllyl)r e (xn/yn)}

which are assumed to be iid from some unknown distribution p which is part of some family P
of distributions.

An algorithm then is a mapping A from D,,(p) to a prediction function A(D,,(p)) =f : X - .
Our goal is to find an algorithm such that the excess risk of the prediction function given by A is

“small”, in a sense we’ll define in the next section.

2.4.1 Measures of Performance

< Definition 2.7 (Expected Risk): The expected risk of an algorithm A on sample size n and
probability distribution p is the quantity

E[Ry(A(Dugp))) -

where the expected value is taken over all possible n-size subsets of the training data. We say
that an algorithm is consistent in expectation if the above quantity converges, with p fixed, to
R* asn — oo.

< Definition 2.8 (Probability Approximately Correct *): We say an algorithm A is Probability

Approximately Correct (PAC) if for any given § € (0,1) and & > 0, there exists N € N such
that foralln > N,

P(R,(A(D,(p))) —R* <) >1-04.
2.4.2 Notions of Consistency over Classes of Probability distributions

2.4.2 Notions of Consistency over Classes of Probability distributions 12



Remark that our definition of consistency in expectation gave no guarantee over rate of

convergence, especially not with respect to the specific distribution.

< Definition 2.9: An algorithm is uniformly consistent if for all probability distributions on

(x,y), the algorithm is consistent.

< Definition 2.10 (Minimax risk): The minimax risk is defined to be, given X x g,

nf sup {E[R,(A(D,(p)))] = R*}.
per:

i
A: algorithm
class of dists.

Remark 2.4: This is hard to evaluate in general, but is easy to upper bound (just fix any A and
evaluate the inner supremum, i.e., look at the worst-case performance of the algorithm).
Lower bounds are much harder to compute, since they need to hold for any possible

algorithm.

§2.5 “No Free Lunch”
No, this section is not about SSMU shutting down Midnight Kitchen...

Here, we make clearer the remarks of the previous section in terms of performance of
algorithms for arbitrarily distributed data. Namely, we show that, for a specific loss function and
input/output space, for any size of data 1, we can construct a distribution on our data such that
any algorithm we can come up with will perform “poorly” (i.e. it’s excess risk is bounded away
from 0). Hence, there is no “free lunch”, i.e no “easy algorithm” that will work without further

assumptions on what our possible probability distributions could be

= Proposition 2.2 (No Free Lunch): Consider a binary classification with 0 — 1 loss and with
X infinite. Let 2 be the class of all probability distributions on X x {0,1}. Then, for all # and
for all algorithms A,

sug{m[ﬁp(A(Dn(p)))] —R*} >
pep

N —

Remark 2.5: As we’ll see in the proof, the bounds we obtain will not give any rate in n,
asymptotic or not. Indeed, the probability distribution for each n will crucially depend on a
certain parameter n being much larger than n. Indeed, we can state (but will not prove) the

much stronger statement as follows.

—Theorem 2.1 (Devroye, '96): Consider the same setup as . Then, for any decreasing
sequence a,, — 0 witha; < L

< 1¢, then for any algorithm A, there exists a p € P such that for all
n>1,

E[Rp(A(Dn(p)))] — R* > y.

Le., the supremum over P has excess risk going to zero arbitrarily slowly.

2.5 “No Free Lunch” 13



Proor. (of ) Fix n € N and assume wlog N C X (by relabelling otherwise).
Letk € Z,, and, given a k-length vector r = (4, ..., 1) € {0, 1}%, define a joint
probability distribution p on (x,y) such that

1
]P(x =jy= r]-) = j=1,..k

In particular, in this case, y is a deterministic function of x; givenx = j, y = r;. In

particular, this means R* = 0.

Denote fDn := A(D,,(p)) as the classifier under p given by algorithm A, and write
S(r):=E [J%p (fDn )] as the expectation of the expected risk under this given
probability distribution of the classifier given by the algorithm A for the given vector
r € {0,1}. We aim to pick r such that we maximize this quantity; if we can pick r such
that this quantity is larger than %, we’ll be done (why?).

This is hard to do directly, so we’ll instead lower bound the max probabilistically;
given any distribution g on {0, 1}¥, we certainly have

S(r) = E,_,[S(T)].
,nax, (r) 2 E,.4[5(r)]

Thus, we'll design some g so that this quantity on the right is large. Specifically, let g be
uniform on {0, 1}, i.e. each r = (11, ..., 1) a vector of r]-’s each independent, unbiased,
Bernoulli r.v.’s. Then,

E,g[S] = P(fp, 1) #y) = P(fp, () # 1,

2.5 “No Free Lunch”
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