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Course Outline:
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1 Introduction, Motivations, Overview

Definition 1.1 (Dynamical Systems). Systems which evolve over time. We can categorize them

as

• continuous, which define ODEs, eg. u̇(t) = f(u), where u(t) is define over some interval

t;

• discrete, which are defined by a map, S : Rn −→ Rn, u 7−→ Su, where u1 = Su0 ,

u2 = Su1 , etc., where n ∈ Z.

1.1 Examples of continuous dynamical systems

1.1.1 Exponential growth/decay

Consider u̇ = λu, where u ∈ R, u̇ = du
dt

(u = f(t)), and λ is a constant parameter. This is a
linear, separable ODE;

du

dt
= λu∫

du

u
=

∫
λ dt

=⇒ u(t) = u0e
λt, where u(0) = u0

Assuming λ ̸= 0 (otherwise u(t) = u0), we can analyze the behavior of u as t −→ ∞ and
t −→ −∞.

• Clearly, if u0 = 0, then u(t) = 0∀t. This is called a steady state.

• Else, (under the assumption u0 > 0), we can consider the cases λ > 0 and λ < 0.

– λ > 0 =⇒ limt→∞ u(t) =∞
– λ < 0 =⇒ limt→−∞ u(t) = 0

Using this fairly simple analysis, we can draw phase diagrams describing how the system
changes based on initial conditions, for instance, given λ > 0:

Figure 1: Exponential growth/decay, λ > 0
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Note that the phase diagram is independent of the value of λ; naturally, a larger λwill result
in a “faster” (so to speak) growth/decay, but the “asymptotic” behavior is identical. We can say
that the dynamics of the system are independent of the constant λ.

In this case, at u0 = 0, all other u0 greater than or less than 0 diverge away from u0; this
would be called a unstable equilibrium. If λ < 0, we would see all u0 converging to 0, which
would be an asymptotically stable equilibrium.

1.1.2 Logistic ODE

Consider the logistic ode ẋ = λx(1 − x), x(t) ∈ R. Normally, we would solve this ode (us-
ing separation of variables, resulting in a messy fraction decomposition, and lots of algebraic
manipulation 1) This will give the final explicit solution 1Note that this is

also a Bernoulli ODE,
ie one of the form
y′ + p(x)y = q(x)yn;
you can solve it by
dividing by yn and
making the substitution
u = y1−n to get a far
nicer (though obviously
equivalent) linear equa-
tion which you can solve
using an integrating
factor.

x(t) =
1

( 1
x0
− 1)e−λt + 1

,

where x(0) = x0. We can then analyze x(t) similar to the previous example. Due to the
complexity (the “embedded” exponential, etc), however, this is quite difficult.

Alternatively, we can consider the original ode

ẋ = f(x) = λx(1− x),

without the exact solutions. Assuming λ > 0 (similar “methodology” for λ < 0), we can
analyze the behavior:

• Steady states will occur when ẋ = 0 =⇒ λx(1− x) = 0 =⇒ x = 0 or x = 1.

• Next, we can consider the behavior of x in the intervals (−∞, 0), (0, 1), and (1,∞).

– (−∞, 0): as x→ −∞, ẋ→ −∞ ((+)× (−)× (+) ∼ (−))
– (0, 1): as x→ 1, ẋ increases.
– (1,∞): as x→∞, ẋ→ −∞ ((+)× (+)× (−) ∼ (−))

This means that x0 = 0 and x0 = 1 are unstable and stable, respectively. We can then draw
the phase diagram:

We can compare the logistic ODE to the seemingly unrelated2 ẋ = x − x3. Factoring, we 2Also a Bernoulli
write ẋ = x(1−x)(1+x), indicating steady states at x = −1, 0, 1. This results in a very similar
phase diagram:

As is clear from the diagram, the two equations have very similar dynamics; however, at
no initial condition does the second ODE tend to positive/negative infinity.
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1.2 Analyzing the Lorenz Equations

The Lorenz equation is defined by 
ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

,

where solutions u(t) =


x(t)

y(t)

z(t)

 ∈ R3. A trivial steady state exists at (x, y, z) = (0, 0, 0),∀r >

0, and two more exist3 (x, y, z) = (±
√

b(r − 1),±
√
b(r − 1), r−1),∀r > 1. Notice that when 3These are fairly

easy to find by consid-
ering different possible
cases that would cause
each of ẋ, ẏ, ż = 0.

r = 1, the two non-trivial steady states collapse into the trivial steady state. This is what we
call a bifurcation, or in this case specifically, a pitchfork bifurcation. This can make sense
if we plot 4 (x, y, z) of the steady points as a function of r:

4This is an odd way
to look at the system (as
the parameter r is sud-
denly becoming the in-
dependent variable), but
it is helpful to analyze
how exactly the steady
states behave due to the
parameters.

Further analyzing the dynamics of the system is a little trickier - we can’t exactly use the
same approaches as before in the R2 space. The system is clearly not linear because of the
xz and xy terms. However, if we assume that x, y, z are small and remain small, then we can
approximate the system as linear by dropping these terms 5. Thus, we can approximate the 5xy and xz would be

“very small” if x, y, z are
small, as they are fun-
tionally quadratic terms.
Intuitively, α × β ≪ 1
given α, β < 1.

system as ẋ = σ(y − x), ẏ = rx− y, ż = −bz, or, equivalently,


ẋ

ẏ

ż

 =


−σ σ 0

r −1 0

0 0 −b

 ·

x

y

z

 .

Now, if x(0) = y(0) = 0, then ẋ = ẏ = 0 =⇒ x(t) = y(t) = 0∀t, and thus the solution
evolves solely on the z-axis; ie ż = −bz =⇒ z = z(0)e−bt, which→ 0 as t→∞, supporting
our assumption that x, y, z remain small.

On the other hand, let’s assume6 |x(t), y(t), z(t)| ≪ 1; again, this results in x, y, z remain- 6In this context, ≪
means “much less”.ing small, and thus “allows” us to study the dynamics approximately near (x, y, z) = (0, 0, 0).

§1.2 Introduction, Motivations, Overview: Analyzing the Lorenz Equations p. 5



Solving the matrix formulation of the system, we get

u(t) =


x(t)

y(t)

z(t)

 = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3,

where λi are eigenvalues and vi are corresponding eigenvectors.

Clearly7, v3 =


0

0

1

 with a corresponding λ3 = −b. Thus, v1 and v2 must lie in the 7Note the −b in the
bottom right of the ma-
trix, surround by 0’s;
the only component of
the “position” vector that
will multiply to that −b
is z, thus, any vector
with only a z component
will remain unchanged,0
0
1

 being the “unit” of

these.

xy-plane, and similarly, are eigenvectors of the top left,

−σ σ

r −1

 (with 0 z-component, of

course). Solving for these by standard methods, we write

0 = det

−σ σ

r −1

− λI


=

∣∣∣∣∣∣−σ − λ σ

r −1− λ

∣∣∣∣∣∣ = (σ + λ)(1 + λ)− rσ

= λ2 + (1 + σ)λ− (r − 1)

=⇒ λ1,2 =
−(1 + σ)±

√
(1 + σ)2 + 4(r − 1)σ

2

Notice that if r ∈ (0, 1), then8 (1 + σ)2 + 4(r − 1)σ < (1 + σ)2. Assuming 9 the lhs of this 8As the (r-1) term is
thus negative.

9Allowing us to op-
erate in Rn, as this is the
part under the radical.

inequality is greater than 0, we can further say that
∣∣∣√(1 + σ)2 + 4(r − 1)σ

∣∣∣ < |1 + σ|. Thus,
both λ1 and λ2 are< 0, as taking either the positive or negative sign in the quadratic necessarily
yields a negative10. We could work out a full solution, but this is unncessary; clearly, as all λi <

10Based on the
reasoning “above”, we
are essentially saying
(in “pseudomath”)
−α + (α − ϵ) < 0, as
does −α − (α − ϵ),
taking α to represent the
“terms” of the quadratic
and ϵ the undetermined-
but-clearly-there
difference.

0 when r < 1, (x, y, z)→ 0 as t→∞, which supports our original assumption in simpifying

the system that (x, y, z) remain “small”.11 Thus, in all, u(t) =


x(t)

y(t)

z(t)

 =
∑3

j=1

[
cje

λjt vj

]
→ 0

11NB: just because
the assumption “held”
sts does not mean that
it is always true; it
simply validates the
approximation we made
in the particular scenario
where r < 1.

as t→∞, =⇒ (|x(t)| , |y(t)| , |z(t)|) “small” ∀t > 0.12

12Note that we did
not need to find the
eigenvectors, or even the
values (albeit, the matrix
was in a quite nice form
to allow this).

Again, this is all under r > 1; when r > 1, 4(r − 1)σ > 0 =⇒
√

(1 + σ)2 + 4(r − 1)σ >

0 =⇒ −(1 + σ) +
√

(1 + σ)2 + 4(r − 1)σ > 0, ie the root of the characteristic polynomial
when we take the positive is now greater than one. In practical terms, this indicates a positive
eigenvalue (we will take this to be λ1 and v1), and thus one of our terms will grow as t→∞;
however, the other two eigenvalues remain < 1 and will continue to shrink with time.

Remember that, this whole time, we are working with a linearized version of the origi-
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nal Lorenz equations, and thus these diagrams are not fully reflective of reality. As shown, for
instance, the Lorenz equations have two other steady states (unless bifurcation. . . ), which influ-
ence trajectories in the original system. However, this linearization is still useful in analyzing
the dynamics of the system near the steady state (0, 0, 0).

The other two steady states influence the dynamics of the system such that, at certain initial
conditions, the trajectories will tend to spiral towards one of the two steady states, as well as
(in chaotic systems) jump “randomly” from one steady state to the other, hence the “attractor”
name.

1.3 Motivations of Maps

While aforementioned dynamical systems were defined via ordinary differential equations, we
can also define them viamaps, which are discrete dynamical systems. These can be defined:

1. Taking the maxima of a function in a system plotted against the previous maxima (for
instance, in the Lorenz map, taking the maxima of z(t) as zn and plotting zn against zn+1

for natural n).

2. “Redefining” ODE’s as maps. For instance, the logistic map defined

xn+1 = f(xn) = λxn(1− xn)
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Part I

One-Dimensional Flows

2 Flows on the Line

2.1 Introduction to Flows on the Line

Consider ẋ = f(x) or ẋ = f(x, µ) where µ some parameter. Solutions will be x(t) ∈ R, and
will either have f : R→ R(f(x)) or f : R2 → R(f(x, µ)).

We may consider initial conditions x(t = 0) = x0 ∈ R; different x0 lead to different
solutions. Typically, we do not plot x(t) against t, rather, we show the dynamics in R on a
phase plot.

We could, in principle solve ODEs exactly; eg ẋ = f(x), t ≥ 0, x(0) = x0. We have

dx

dt
= f(x)∫

dx

f(x)
=

∫
dt∫ x(t)

x(0)

dx

f(x)
=

∫ t

0

dt∫ x(t)

x(0)

dx

f(x)
= t

From here, we would have to solve the integral on the left and solve for x(t).

However, we will approach this by determining the dynamics graphically. We do the fol-
lowing:

1. Graph f(x)

2. Draw steady states when ẋ = f(x) = 0

3. For f(x) ̸= 0 we have either ẋ = f(x) > 0, x(t) increasing, or ẋ = f(x) < 0, x(t)
decreasing

Remark 2.1. If f(x) = 0 and f ′(x) < 0, then x is a stable steady state. If f(x) = 0 and
f ′(x) > 0, then x is an unstable steady state.

If f(x) = f ′(x) = 0, we have a steady state which is “half-stable”, eg ẋ = f(x) = x2.
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Example 2.1. ẋ = f(x, µ) = x2 + µ. If µ = 0, we have a “half-stable” point.

If µ > 0, we have f(x, µ) ≥ µ > 0∀x, and we have no steady state.

If µ < 0, we have two stable steady states (on stable, one unstable).

There is a bifurcation at x = 0 when µ = 0; the number of steady states changes.

In short; sign(f ′(x)) determines the stability of the steady state, given f ′(x) ̸= 0, in which
case we need to study further.

In particular, cases where f(x) = f ′(x) = 0 are “delicate”, and small parameter changes
can cause large changes in the dynamics.

2.2 Linear Stability Analysis

ẋ = f(x), let x∗ ∈ R be a s.s., ie f(x∗) = 0; what does the dynamics look like near x∗?

First, change variables such that the s.s. is at the origin; let v(t) = x(t)− x∗, then

v̇ =
d

dt
(x(t)− x∗) =

dx

dt
− 0

= f(x(t)) = f(x∗ + v(t)) = g(v(t))

Note that this “new” system has a steady state at v = 0; g(0) = f(x∗) = 0. Here, we can
Taylor expand v̇:

v̇ =
∞∑
j=0

vjf j(x∗)

j!

= f(x∗) + vf ′(x∗) +
v2

2
f ′′(x∗) + . . .

f(x∗) = 0 =⇒ v̇ = f ′(x∗)v +
1

2
f ′′(x∗)v2 +O(v3)

For x(t) ≈ x∗, we have |v(t)| = |x(t) − x∗| ≪ 1, then 1 ≫ |v(t)| ≫ |v(t)|2 ≫ |v(t)|3 ≫
· · · > 0. Provided f ′(x∗) ̸= 0 for |v| sufficiently small the f ′(x∗)v term will dominate others
and we can write

v̇ ≈ f(x∗)v.
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Let λ = f(x∗) (just a constant), then we say

v̇ = λv

=⇒ dv

dt
= λv

=⇒
∫ v(t)

v0

dv

v
=

∫ t

0

λdt

=⇒ [ln |v|]v(t)v0
= λt

=⇒ ln
v(t)

v0
= λt

We can drop the absolute value bars as v(t) and v0 must have the same sign.

v(t) = v0e
λt

Thus, if λ < 0, v(t)→ 0 as t→∞, then v(t) = x− x∗ =⇒ x(t)→ x∗ as t→∞. Else, if
λ > 0, then |v0eλt| grows with t and |v(t)| → ∞ as t→∞. Importantly, |v(t)| becomes large
before it becomes unbounded, meaning that our initial assumption doesn’t work as the O(v2)
term becomes significant. However, we can still make conclusions about the (in)stability local
to x∗, and we can’t draw conclusions for dynanmics t→∞.

Example 2.2. ẋ = f(x) = x − x3 = x(1 − x2) = x(1 − x)(1 + x). We have steady states at

x = −1, 0, 1.

f(x) = x − x3 =⇒ f ′(x) = 1 − 3x2, so f(0) = 1 =⇒ 0 unstable, f ′(±1) = 1 − 3 =

−2 =⇒ ±1 stable.

Alternatively, graph f(x) and the steady states are visually obvious.

This is called linear stability analysis, as are reducing the nonlinear differential equation
ẋ = f(x) to a linear ODE v̇ = λv (we’ll see in higher dimensions that we replace λ with some
Jacobian).

2.3 Existence & Uniqueness

We are studying the qualitative behavior of solutions, which onlymakes sense if these solutions
exist. Usually we require that the IVP ẋ = f(x), x(0) = x0 to have a unique solution x(t)∀t ≥
0, for every x0 ∈ R. If they were not unique, they have multiple solutions starting at some
point or worse, at points x0 where multiple solutions are possible orbits will cross each other.
The very aspect that this doesn’t happen is what makes phase plots useful.

This is also why only autonomous ODEs are considered; in nonautonomous ODES ẋ =
f(t, x), the value of ẋ(t) at a particular value of x will depend of t. For instance, consider
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ẋ = −x+t; without a t, this has very straightforward dynamics, but with the t parameter, there
are no fixed points and can’t be analyzed as easily without solving exactly. Time-dependent
problemswill not be considered in this course, but they can be dealt with; esp, consider periodic
forcing, eg ẋ = x− x3 + cos t. To study system such as this, we define a map.

Let T be the period of the forcing, T = 2π here. Define a map

ST : x0 7→ x(2π),

where x(2π) = x(T ) solves the ODE with initial x(0) = x0. Note that cos takes the same
values in [0, 2π] as in [2π, 4π], so we can use the same map ST to map from x(2π) to x(4π).

A fixed point of the map ST is a periodic orbit of the ODE of period T . In forced systems,
period orbits must have period nT , an integer multiple of the forcing period; we’ll stick with
ẋ = f(x) with f : R→ R.

Lets consider x(0) = x0; when is a solution x(t) unique? When does it exist? What can
“go wrong”/when?
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Example 2.3. u̇ = u
1
3 , u(0) = 0.

Clearly, if u(t) = 0∀t satisfies the ODE, and the initial condition (stays at 0). But we can also

solve it exactly:

du

dt
= u

1
3 =⇒

∫ u(t)

u(0)

du

u
1
3

=

∫ t

0

dt[
3

2
u

2
3

]u(t)
0

= t

u(t) =

(
2t

3

) 3
2

This is different to previously; is it still a valid solution? Clearly, satisfies u(0) = 0. And for

t ≥ 0, u(t) = (2t
3
)3/2 =⇒ du

dt
= 3

2

(
2t
3

)1/2 · 2
3
= u1/3, and thus also satisfies ODE.

Notice that this fails when t < 0, as we would have to take the square root of a negative

number. Thus, the solution only valid for t ≥ 0 and at t = 0 it has u(0) = u̇(0) = 0. “Appending”

our first solution, we write:

u(t) =

0 t < 0(
2t
3

) 3
2 t ≥ 0

,

which is defined for all t ∈ R, continuous for all t ∈ R, differentiable for all t ∈ R, u̇(t) is

continuous, and satisfies u(0) = 0.

However; we actually have two “new” solutions;

u(t) =

0 t < 0

+
(
2t
3

) 3
2 t ≥ 0

or

u(t) =

0 t < 0

−
(
2t
3

) 3
2 t ≥ 0

.

For any t0 ≥ 0, u(t) =

0 t ≤ 0(
2
3
(t− t0)

) 3
2 t ≥ t0

, ie staying at 0 for arbitrarily long time, then

“spitting” away at t = t0. Thus, this IVP has infinitely many solutions, and thus is not unique.

In u̇ = f(u) = u1/3, f(u) is continuous on R, and differential except at u = 0, causing the

non-uniqueness here; any other u(t0) would yield a unique solution.

In phase space, f(u) has an unsteady state at 0, and is increasing for u > 0 and decreasing for

u < 0.
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Example 2.4. u̇ = f(u) = u3. Now, f is continuous and differentiable on R. We have an

unsteady ss at 0 again. Solving:

u̇ = u3 =⇒
∫

du

u3
=

∫
dt

− 1

2u2
= t+ C

1

u2
= −2t− 2c = k − 2t

u2 =
1

k − 2t

u = ± 1

(k − 2t)
1
2

.

Let u(0) = u0 > 0 (symmetrical over u0 < 0). We need to take the positive square root for a

positive u0, so u = +1
(k−2t)1/2

.

u(0) = u0 =⇒ u0 =
1

(k − 0)1/2

· · · k =
1

u2
0

=⇒ u(t) =
1(

1
u2
0
− 2t

)1/2
For u0 > 0 this solution becomes unbounded in finite time. u(0) = u0 > 0, then as t →
1

2u2
0
, u(t)→ +∞.

“Purely” speaking, this is an issue, as the solution does not exist ∀ time. In “applications”, we

don’t worry about this since if u(t) getting “very large”, it is already outside of the reasonable

range of validity for the model.

Theorem 2.1. Consider the IVP ẋ = f(x), x(0) = x0 ∈ R. Suppose f(x), f ′(x) are both contin-

uous on an open interval I ⊂ R and x0 ∈ I . The, ∃T > 0 s.t. the problem has a solution x(t) for

t ∈ (−T, T ) with x(t) ∈ I for all t ∈ (−T, T ), and this solution is unique.

Remark 2.2. Won’t be proven.

Remark 2.3. For Example 2.3, f ′(x) not continuous at x = 0, and thus the theorem does not
apply. Notice that if we consider the same system with x(0) ̸= 0, we can choose some I which
contains x0 but not 0 and apply it there.

Corollary 2.1. If f(x), f ′(x) both continuous on all R, then the solution exists and is unique

∀(T−, T+), and either T− = −∞ or |x(t)| → ∞ as t→ T− (and similar for T+).
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In this course, we’ll always consider f as differentiable as we need it to be. f ∈ C1 (13)then 13once continuously
differentiablesolutions are unique while bounded; this is often sufficient, but we’ll needmore differentiability

for bifurcation theory, ie often take infinitely differentiable functions.

2.4 Impossibility of Oscillations

Suppose ẋ = f(x) has a periodic solution so x(t+ T ) = x(t)∀t ∈ R for some period T > 0.

For a given value of x, ẋ changes sign each time solution crosses x, so f(x) also changes
sign. But f(x) uniquely defined for any particular value of x, so this cannot happen, ie, ẋ =
f(x) cannot have periodic solutions.

The same argument shows that all solutions x(t) of ẋ = f(x) for x ∈ R are monotonic.

2.5 Potential or Gradient Flows

Idea: potential flow, dynamics evolve only “down hill”. Stable steady states occur when V (u)
is at a minimum, and unstable steady states occur when V (u) a maximum.

Mathematically, we just have u̇ = f(u) = −dV
du
. Consider the evolution of V (u(t)) as a

function of t on a solution:

d

dt
[V (u(t))] =

dV

du
· du
dt

= −
(
dV

du

)2

So d
dt
[V (u(t))] strictly negative unless dV

du
= 0 when V is flat and u̇ = 0.

Note that any 1 dim. dynamical system can be thought of as a potential flow. Say u̇ = f(u);
for a potential flow, we need f(u) = −dV

du
, so let V (u) = −

∫
f(u) du.

Definition 2.1 (Double Well Potential). Defined by

V (u) = −1

2
u2 +

1

4
u4

=⇒ u̇ = u− u3

In higher dimensions, we may consider gradient flows. Consider u̇ = f(u), u ∈ Rd with
f(u) = −∇V (u) where V : Rd → R.
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3 BifurcationTheory

3.1 Implicit FunctionTheorem

A solution u(t) ∈ R for an ODE but suppose the ODE depends on a parameter µ and so
u̇ = f(u, µ), u(t), µ ∈ R. We always keep µ fixed when we solve the ODE; we are interested
in how this change when we resolve with different µ.

Take f(u, µ) : R2 → R, and we’ll always assume f is continuous of each variable and any
“necessary” derivatives exist. For “boring cases”, we can use the implicit function theorem.

Theorem 3.1 (Implicit Function Theorem). If f(u, µ) is a continuously differentiable function

of u and µ, and ∃(u∗, µ∗) ∈ R2 s.t. f(u∗, µ∗) = 014and ∂f
∂u
̸= 0, the ∃ a neighborhood of

(u∗, µ∗) ∈ R2 and a continuously differentiable function g : R → R s.t. g(µ∗) = u∗ and for µ

close to µ∗ we have

f(g(µ), µ) = 0

and, moreover, for each such µ close to µ∗, g(µ) is a unique value of u close to u∗ s.t. f(u, µ) = 0.15

15f(u∗, µ∗) = 0 =⇒
µ = u∗ there is a s.s. at
u∗

15Where a “neighbor-
hood” refers to an open
set containing the point
(as long as point not on
boundary).

Note that the theorem states that f(u, µ) ̸= 0 at all points in the neighborhood not on the
curve u = g(µ).

In short, the theorem is stating that u∗ is a ss when µ = µ∗ and ∂f
∂u
̸= 0, then if we “change

µ slightly”, then µ∗ will no longer be a ss, but at µ = g(µ) close to µ∗, there is a ss. So, the
steady state gets perturbed slightly when µ changes, and moreover, the assumption ∂f

∂u
̸= 0

means we have cases where linearization determines stability.

∂f

∂u
> 0 =⇒ u∗ is unstable
∂f

∂u
< 0 =⇒ u∗ is stable

For small enough perturbation µ from µ∗, ∂f
∂u

will have the same sign as ∂f
∂u

so the stability
of the perturbed fixed point will also have the same stability as the original fixed point.

Remark 3.1. Since 0 = f(g(µ), µ), differentiate using chain rule:

0 =
d

dµ
f(g(µ), µ)

= g′(µ)
∂f

∂u
(g(µ), µ) +

∂f

∂µ
(g(µ), µ)

=⇒ g′(µ) = − ∂f/∂µ (g(µ), µ)

∂f/∂u (g(µ), µ)
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Since ∂f
∂u

(g(µ∗), µ∗) ̸= 0, we have

g′(µ∗) =
−∂f

∂µ
(g(µ∗), µ∗)

∂f
∂u

(g(µ∗), µ∗)

.

We (could) similarly find g′′(µ∗).

Remark 3.2. Theorem 3.1 is only defined on a neighborhood because its possible for ∂f
∂u

= 0 or
u = g(µ) can break down if we try to push the result “too far” from the initial point.

Example 3.1. Let u̇ = f(u, µ) = u − µ. If µ = µ∗ = 0, then u̇ = u =⇒ u̇ = 0 is a ss; no

matter how we vary µ, we have identical dynamics, with just the exact location of the ss varying,

and there are no qualitative changes with varying µ. This is because f(u, µ) = u − µ =⇒
∂f
∂u

(u, µ) = 1 − 0 > 0. To obtain qualitative changes in dynamics, we need Theorem 3.1 to not

apply (ie f(u∗, µ∗) = 0 & ∂f
∂u

(u∗, µ∗) = 0, equiv. f(u∗, µ∗) = fu(u
∗, µ∗) = 0).

3.2 Saddle-Node/Fold Bifurcation

Example 3.2. Consider u̇ = f(u, µ) = µ + u2. Notice that f(0, 0) = 0 so u = 0 is a ss when

µ = 0. fu(u, µ) = 2u = 0 for u = 0, so Theorem 3.1 does not apply. We can solve directly for the

dynamics.

When µ < 0 we have two steady states; as µ approaches 0, these combine and we have a

half-stable steady state and µ = 0, and finally when µ > 0 we have no steady states.

Notice that varying µ without changing its sign does not change the dynamics qualitatively.

We can also show this algebraically; 0 = µ + u2 =⇒ u = ±
√
−µ, µ < 0, and u = 0 when

µ = 0.

fu = 2u, so fu(+
√
−µ, µ) = 2

√
−µ > 0 and fu(−

√
−µ, µ) = −2

√
−µ < 0. So, the positive

root is unstable and the negative is stable. The bifurcation will occur when f(±
√
−µmµ) = 0 =⇒

u = µ = 0.

Definition 3.1 (Bifurcation Point). Any point (u∗, µ∗) ∈ R2 where qualitative dynamics change

is called a bifurcation point.

NB: a bifurcation point requires both a particular µ and u.

In dynamical system, it is useful to foliate the phase space and plot phase portraits for the
whole family of dynamical systems together (ie, plot “against” µ). This is called a bifurcation
diagram. Solid lines represent stable steady states, and dashed lines represent unstable steady
states.
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In our example, we have what is called a fold bifurcation, named as such for the shape
that occurs in the bifurcation graph.

Note that u̇ = −µ+u2, u̇ = −µ−u2, and u̇ = µ−u2 are share similar bifurcation diagrams,
but with different dynamics.
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Example 3.3. u̇ = f(u, µ) = µ− u− e−u. Solving this exactly is either hard or impossible (and

in any case annoying), but no need.

Steady states are defined by 0 = f(u, µ) = µ−u−e−u. This can be solved with the Lambert-W

function (but don’t bother).

We can write µ = u+ e−u, then plot µ as a function of u and swap the axes to see the steady

states u for each µ.

Finally, we can approach this graphically. Let g1(u, µ) = µ − u, g2(u, µ) = e−u, then

f(u, µ) = g1(u, µ)− g2(u, µ) so steady states occur when g1(u, µ) = g2(u, µ).

Graphically, we have either no, one, or two steady states depending on µ.

For µ≪ 0 no s.s.; for µ≫ 0 two; we infer that there is one s.s at some µ, which will be at the

fold bifurcation. Call u, µ at this point (u∗, µ∗).

If µ > µ∗: For u between steady states, g1 > g2 so f(u, µ) > 0. For u ≫ 0 or u ≪ 0, then

g2 > g1 and f < 0. Thus, we have the following dynamics:

If µ < µ∗, f < 0;

and for µ = µ∗:

All together, we have the following bifurcation diagram:

To find the bifurcation point, there are two approaches; either from the graphs, solve for a point

(u∗, µ∗) where g1, g2 touch. Think of g1, g2 as functions of u with µ as a parameters;

g1 = µ− u =⇒ ∂g1
∂u

= −1

g2 = e−1 =⇒ ∂g2
∂u

=
∂g1
∂u

= −1

=⇒ −e−u = −1

=⇒ log
(
e−u
)
= log(1) = 0 =⇒ u = 0

But g1(u, µ) = µ when u = 0, and g2(u, µ) = e−1 = 1 when u = 0, so for the graphs to

touch, µ = 1. Then, g1, g2 have the same values and slope when u = 0. The bifurcation point is

(u∗, µ∗) = (0, 1).

Alternatively, at bifn point, we have that f(u∗, µ∗) = fu(u
∗, µ∗) = 0, so 0 = µ∗ − u∗ − e−u∗

and 0 = fu = −1+e−u∗ , which give the exact same equations (and, naturally, answers) as above.

Note: We used g1 > g2 or g1 < g2 to find the stability; alternatively, we can differentiate f wrt

u, and find fu = −1 + e−u.

If u > 0, e−u < 1 and fu(u, µ) < 0, so we have stable ss. If u < 0, e−u > 0 and fu(u, µ) > 0,

so we have unstable ss. Then, we again have the bifurcation at u = 0.
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Remark 3.3. Notice that this example’s bifurcation diagram is very similar to the last; notice that

u̇ = µ− u− e−u

= µ− u− [1− u+
1

2
u2 − 1

6
u3 + . . . ]

= (µ− 1)− 1

2
u2 +

1

6
u3 − . . .

Let w = µ− 1, then

u̇ = w − 1

2
u2 +

1

6
u3 − . . .

. Let v = u
2
; then

v̇ =
u̇

2
=

1

2

(
w − 1

2
u2 +

1

6
u3 + . . .

)
.

Let λ = w
2
then λ = 1

2
(λ− 1). Then

v̇ = λ− v2︸ ︷︷ ︸
as in first example

+
2

3
v3 +O(v4)︸ ︷︷ ︸

very small when v ≈ 0

Remark 3.4 (aside). There exist so-called “near identity transformations” to remove these addi-
tional terms. Let ∼ v = v+(something small), so ˙̃v = λ − ṽ2 + O(ṽ4), then we can make the
higher order terms “as high” as we want (again, this is all “valid” near the bifurcation point).

Overall, we can explain the similarities in the past two examples by changing variables effec-
tively.

To recognize saddle-node/fold bifurcations in a system, either:

• observe a change in the number/stability of steady states;

• observe something like u̇ = µ− u2 −O(u3) in a differential equation;

• check rigorous conditions. There are four conditions.

Definition 3.2 (Saddle-Node Conditions). The following must hold for a saddle-node bifurcation

to exist at (u∗, µ∗):

i) f(u∗, µ∗) = 0

ii) fu(u
∗, µ∗) = 0

iii) fuu(u
∗, µ∗) ̸= 0

iv) fµ(u
∗, µ∗) ̸= 0

Remark 3.5. u̇ = µ − u2 is called the normal form for the saddle-node bifurcation. Other
examples of fold bfn can be rewritten as a perturbation of the normal form by change of variables
(as shown above).
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If one or the other of condition (iii), (iv) fail, then we have a different bifurcation.

3.3 Transcritical Bifurcations

Consider u̇ = f(u, µ) = µu− u2; this is the normal form of a transcritical bifurcation.

Notice that f(0, 0) = 0, and fu(0, 0) = 0, so we expect a bifurcation at (0, 0). fuu(u, µ) =
−2 ̸= 0, and fµ(µ, u) = u =⇒ fµ(0, 0) = 0. So, (iv) of the saddle-node conditions fails.

By inspection, we have a steady state for u = 0 or u = µ. So we have two steady states,
unless µ = 0, then they collide at u = 0.

3.3.1 Analyzing Stability

fu(u, µ) = µ− 2u, so when u = 0, fu = µ. fu = µ > 0 for µ > 0, so unstable, and fu < 0 for
µ < 0, so u = 0 stable.

For u = µ, fu(µ, µ) = µ−2µ = −µ, so steady state u = µ has opposite stability of the s.s.s
at u = 0. So, we have the following bifurcation diagram:
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Example 3.4. ẋ = f(x) = x(1 − x2) − a(1 − e−bx). e0 = 1 =⇒ f(0) = 0∀t, so x = 0 is a

steady state for all parameters.

We first check stability of this steady state: fx(x) = (1−x2)−2x2−abe−bx = 1−3x2−abe−bx.

fx(0) = 1 − ab, so for ab < 1 =⇒ fx > 0 =⇒ x = 0 unstable, and for ab > 1 =⇒ fx <

0 =⇒ x = 0 stable. Thus, we can expect a bifurcation when ab = 1, as the stability would

change here.

Since we are interested in x ≈ 0, lets expand:

e−bx = 1− bx+
1

2
b2x2 − · · · ,

then

ẋ = x(1− x2)− a(1− [1− bx+
1

2
b2x2 + · · · ])

= (1− ab)︸ ︷︷ ︸
µ

x+
1

2
ab2x2 + O(x3)︸ ︷︷ ︸

contains factor of x3

≈ µx+ (
1

2
ab2)x2

which is very similar to the normal form of the trans-critical bifurcation.

Since the bifurcation occurs at ab = 1, then ab2

2
≈ b

2
near bifn, and so

ẋ ≈ x[µ+
b

2
x] +O(x3).

For b < 0, similar to previous example.

The extra fixed ss is then given by µ+ b
2
x ≈ 0 =⇒ x ≈ −2µ

b
= −2(1−ab)

b
.

Definition 3.3 (Conditions for Transcritical). Let u̇ = f(u, µ). The following are required for a

transcritical bifurcation:

i) f(0, 0) = 0 (steady state)

ii) fu(0, 0) = 0 (bifurcation exists)

iii) fuu(0, 0) ̸= 0

iv) fµ(0, 0) = 0 (not a fold bifurcation)

v) [fuµ(0, 0)]
2 > fuu(0, 0)fµµ(0, 0)
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Remark 3.6. (iv) required, otherwise we would have a fold bifurcation. (v) insures a transcritical
bifurcation. In the normal form, u̇ = f(u, µ) = µu− u2, we have fµµ = 0, and so for (v) to hold,
everything simplifies to require that fu,µ ̸= 0.

3.4 Pitchfork Bifurcations

There are two types of pitchfork bifurcartions.

3.4.1 Supercritical Pitchfork

Normal form:
u̇ = µu− u3 = f(u, µ)

Notice that f is an odd function of u. These bifurcations are often seen with this type of
(anti)symmetry, thought not exclusively.
u = 0 is a ss ∀µ ∈ R. For stability,

fu = µ− 3u2

=⇒ fu(0, µ) = µ,

so u = 0 stable for µ < 0, unstable for µ > 0.
However, fuu = −6u =⇒ fuu(0, 0) = 0, so not a transcritical bifurcartion.
Solving algebraically:

0 = f(u, µ) = u[µ− u2]

so u = 0, or u2 = µ =⇒ u = ±√µ when µ > 0. Thus, new steady states are “born” at u = 0
when µ = 0, so this is the bifn.
For stability,

fu = (±√µ, µ) = µ− 3(±√µ)2 = −2µ,

so both u = +
√
µ and u = −√µ have opposite stability to u = 0, when they exist.

3.4.2 Subcritical Pitchfork

u̇ = f(u, µ) = µu+ u3.

As before, f(0, µ) = 0∀µ ∈ R, so u = 0 always ss. For stability

fu = µ+ 3u2,
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and fu(0, µ) = µ and u0 stable when µ < 0 and unstable when µ > 0.
For �0 ss, solve exactly

0 = f(u, µ) = µu+ u3 = u(µ+ u2)

=⇒ u2 = −µ, =⇒ u = ±
√
−µ, µ < 0

For stability,
fu(+

√
−µ, µ) = µ+ 3(−µ) = −2µ > 0 (since µ < 0)

This is unstable, and similarly is −
√
−µ. We essentially have an inverted pitchfork compared

to the previous.
This is called subcritical because when the persistent steady state is unstable, there is no nearby
stable steady state, not because of the direction of the pitchfork.

Definition 3.4 (Conditions for Pitchfork Bifurcations). Normal form, u̇ = f(u, µ) = µu± u3.

i) f(u∗, µ∗) = 0

ii) fu(u
∗, µ∗) = 0

iii) fuu(u
∗, µ∗) = 0

iv) fµ(u
∗, µ∗) = 0

v) fuuu(u
∗, µ∗) ̸= 0

vi) fuµ(u
∗, µ∗) ̸= 0

Other conditions exist to determine whether sub/super. Not practical to use.
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Example 3.5 (3.4.1). u̇ = u− β tanhu = f(u, β)16

tanh(0) = 0 =⇒ f(0, β) = 0∀β, u = 0 always a ss. Stability; fu(u, β) = 1 − β sech2 u =⇒

fu(0, β) = 1− β sech2(0) = 1− β.

β > 1 =⇒ fu(0, β) < 0 =⇒ u = 0 stable.

β < 1 =⇒ fu(0, β) > 0 =⇒ u = 0 unstable.

This indicates to existence of a bfn at β = 1. To find what type, we need to solve u = β tanhu.

Let g1 = u, g2 = β tanhu =⇒ 0 = f(u, β) = g1 − g2 =⇒ g1 = g2 at ss.

If β < 0, u = 0 is the only steady state, and we have that f = g1 − g2 =

> 0 u > 0

< 0 u < 0

=⇒

u = 0 unstable.

If β ≫ 1 there will be three intersections of g1, g2. For β ≫ 0, g1 = u intersects g2 = β tanhu on

part of the graph where the function is very flat, ie near tanhu ≈ ±1 so the extra fixed points are

near u = ±β.

We know that u = 0 changes stability when β = 1, so a bfn will occur when u = 0 and β = 1.

g′(u) = 1 and g′2(0) = β, so when β = 1 g2, g2 intersect tangentially at u = 0.
16See book, pg 58

Remark 3.7. Its easy to plot exact solutions for steady states on a computer.
Solve for β = u

tanhu
.

3.5 Normal Forms (Summary)

• u̇ = µ± u2 : saddle-node

• u̇ = µu− u2 : transcritical

• u̇ = µu± u3 : pitchfork

For other, non-normal forms, we canmake a change of variables so that near the bifurcation
point the dynamical system looks like one of these. These normal forms are all polynomials;
Taylor Series.
Consider u̇ = f(u, µ) with a bifurcation at (u∗, µ∗) so

f(u∗, µ∗) = fu(u
∗, µ∗) = 0.

By Taylor’s Theorem, SS close to bfn satisfy

0 = f(u, µ) = f(u∗, µ∗) + (u− u∗)fu(u
∗, µ∗)

+ (µ− µ∗)fµ(u
∗, µ∗) +

1

2
(u− u∗)2fuu(u

∗, µ∗)

+
1

2
(µ− µ∗)2fµµ(u

∗, µ∗) + (u− u∗)(µ− µ∗)fµu(u
∗, µ∗) + h.o.t.
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(or just use Taylor series in one variable multiple times). Since f(u∗, µ∗) = fu(u
∗, µ∗) = 0,

we can rewrite (using Greek letters for constants:)

0 = α(µ− µ∗) + β(u− µ∗)2 + γ(u− u∗)(µ− µ∗) + δ(µ− µ∗)2 + h.o.t.

This defines the steady states; letting u̇ = f(u, µ) =RHS, different combinations ofα, β, γ, δ
above yield the standard bifns above.

3.6 “Real Examples”

In the normal forms, there exactly one bifurcation at (u∗, µ∗) = (0, 0). Often, there are multiple
bfns occurring at different values of u, µ.

Example 3.6. Let u̇ = µu− u3 + u5.

u = 0 is always a ss. We expect a pitchfork bifurcation at (0, 0) because |u5| ≪ |u3| ≪ |u| when

u ≈ 0, so we are “near” the normal form.

Solving 0 = u(µ − u2 + u4). Additional steady states will satisfy µ = u2 − u4. We have that

fu = µ− 3u2 + 5u4 =⇒ fu(0, µ) = µ

> 0 µ > 0, stable

< 0 µ < 0 unstable

3.7 Imperfect Bifurcations

Example 3.7. Consider ẋ = h+rx−x3 with two parameters h and r. If h = 0 =⇒ ẋ = rx−x3,

and thus we have a pitchfork bfn at (x, r) = (0, 0) if r is varied with h = 0 fixed.

Else, h ̸= 0, f(x) no longer symmetrical (stops begin odd) bfn changes. h is often called the

imperfection parameter; harder to analyze analytically, but possible graphically.

Take g1(x) = rx− x3, g2(x) = −h, ṙ = g1(x)− g2(x) =⇒ ss at g1 = g2

r < 0, r or h varied s.t. r < 0 always holds, there is a unique steady state, varies with parameters,

and thus no bfns.

r > 0, there can be either 1,2, or 3 ss; fixed r and changing h, we don’t see a pitchfork; the case of

two steady states will occur between 1 and 3, and we thus only have a pitchfork when h = 0; we

see a saddle-node. This occurs when g1 is at a min/max, ie g′1 = r − 3x2 =⇒ x = ±
√

r
3

=⇒

g1(+) = r3/2

31/2
(1 − 1/3) = 2r3/2

33/2
, so h = −2r

3

√
r
3
at a bfn. Similar behavior occurs for negative

root.

Definition 3.5 (Cusp Point). Point where the two curves of saddle-node bifurcations come to-

gether; an example of a co-dimension two bfn.
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In the earlier example; h > hc, h < −hc implies a unique, stable ss. For h ∈ (−hc, hc),
there are three steady states, two of which are stable (bistable).

Definition 3.6 (Hysteresis). Cycle of “tipping points” due to variation of parameters.

4 Flows on Circle

4.1 Summary

So far we’ve only consider dynamics on the real line. We can define the phase space as θ ∈
[0, 2π), with an ODE of the form θ̇ = f(θ) with periodic orbit.

5 Two-Dimensional Dynamical Systems

5.1 Introduction

A two-dimensional system has the form

ẋ = f(x, y) or ẋ = f(x, y;µ)

ẏ = g(x, y) or ẏ = g(x, y;µ)

where µ is a parameter. Let u(t) =

x(t)

y(t)

 ∈ R2 be a soln for some initial u(0) =

x(0)

y(0)

.

Notice that (̇u)(t) =

ẋ

ẏ

 =

f(x, y)

g(x, y)

. Let E(u) =

f(x, y)

g(x, y)

 , so u̇(t) = E(u(t)).

Example 5.1. Nonlinear damped pendulum; ẍ+ x2ẋ+ sinx = 0.

Let ẋ = y, so ẏ = ẍ = −x2ẋ− sinx = −x2y − sinx.

5.2 Two Dimensional Linear Dynamical Systems

Mainly, we consider
ẋ = ax+ by; ẏ = cx+ dy,

where a, b, c, d are parameters. Let u(x) =

x

y

 =⇒ u̇ =

ẋ

ẏ

 =

a b

c d

x

y

, so

u̇ = Au.
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Recall u̇ = λu, u(0) = u0 ∈ R, λ ∈ R has solutions u(t) = u0e
tλ; it would be convenient if

our 2D system had solutions u(t) = u0e
tA ∈ R2. Recalling et = 1 + t+ 1

2!
t2 + 1

3!
t3 + · · · , let’s

define

eA = I + A+
1

2
A2 +

1

3!
A3 +

1

4!
A4 + · · · =

∞∑
j=0

Aj

j!
.

Then, etA is

etA = I + (tA) +
1

2
(tA)2 + · · · =

∞∑
j=0

tjAj

j!
,

which works for A ∈ Rn×n; however, this series, despite being absolutely convergent, does so
very slowly and is thus not convenient to evaluate or approximate. We can, though, differen-
tiate term by term:

d

dt
etA =

d

dt

(
∞∑
j=0

tjAj

j!

)
=

∞∑
j=0

d

dt

(
tjAj

j!

)

=
∞∑
j=1

jtj−1Aj

j!

= A
∞∑
j=1

tj−1Aj−1

(j − 1)!

= AetA,

thus, if we let u(t) = u0e
tA, then u̇ = u0Ae

tA = Au(t). So, with our definition of etA, we
have that u(t) = u0e

tA does indeed solve u̇ = Au. Moreover, for t = 0, etA = e0A = I . Thus,
u(0) = Iu0 = u0, and the initial condition is also satisfied.
If v is an eigenvector with eigenvalue λ, then we see

etAv = (I + tA+ · · · )v = (1 + tλ+
1

2
t2λ2 + · · · )v

= etλv

So, usingAv = λv, we remove theA’s from the problem, and we only need a scalar exponential
function.
If v1, v2 are two linearly independent eigenvectors with eigenvalues λ1, λ2, then any point
u0 ∈ R2 can be written

u0 = α1v1 + α2 + v2

for suitable α1, α2 ∈ R. Solving u̇ = Au, u(0) = u0, then

u(t) = u0e
tA = etA(α1v1 + α2v2)

= α1e
tAv1 + α2e

tAv2

= α1e
tλ1v1 + α2e

tλ2v2
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This idea can be extended to Rn given a complete set of eigenvectors v1 · · · vn.
Notice that, if λ1 < 0, λ2 < 0, u(t)→ 0 as t→∞; u̇ = Au always has a steady state at u = 0,
regardless of initial conditions; it is globally asymptotically stable/unstable.

5.3 Dynamics

Take

u̇ = Au u =

x

y

 A =

a b

c d

 .

The eigenvectors and eigenvalues will determine the dynamics. These are defined by (A −
λI)v = 0. For a nontrivial solution, we require A − λI to be singular/non-invertible, so
det(A− λI) = 0. Then,

0 = det(A− λI) = det

a− λ b

c d− λ


= (a− λ)(d− λ)− bc

= λ2 − (a+ d)λ+ ad− bc

= λ2 − tr(A)λ+ det(A) ← characteristic eqn

where trA := the trace of A, the sum of the diagonal entries. The roots are given

λ± =
1

2
tr(A)± 1

2

√
tr(A)2 − 4 det(A).

We care about whether the eigenvalues are positive, negative, or complex.

• tr(A)2 > 4 det(A) =⇒ two real distinct eigenvalues

• tr(A)2 = 4det(A) =⇒ one real repeated eigenvalue

• tr(A)2 < 4 det(A) =⇒ pair of complex conjugate eigenvalues

Now, consider the eigenvectors; for these, we can diagonalize. Let Λ =

λ+ 0

0 λ−

 and

P =
(
v+ | v−

)
. Then, A = PΛP ⊣, or Λ = P ⊣AP , where Λ is the diagonalization of A.

This doesn’t help find the eigenvectors; but, solutions of u̇ = Au are of the form

u(t) = k1e
λ+tvt + k2e

λ−tv−,

and we can make a change of coordinates such that

w = P ⊣u =⇒ u = Pw
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so u̇ = Pẇ; but Pẇ = u̇ = Au = PλP ⊣u, and so P ⊣Pẇ = P ⊣PΛP ⊣u =⇒ ẇ = ΛP ⊣u. But
by definition, u = Pw =⇒ P ⊣u = w, so ẇ = Λw, and we can write

ẇ =

λ+ 0

0 λ−

w =⇒ ẇ1 = λ+w1; ẇ2 = λ−w2

Notice that, since λ−, λ+ are roots of the characteristic equation (quadratic), we can factorize.

0 = (λ− λ+)(λ− λ−)

= λ2 − (λ+ + λ−)λ
2 + λ+λ−

=⇒ tr(A) = λ+ + λ− and det(A) = λ+λ−

5.3.1 Complex Eigenvalues

When 4 det(A) > tr(A)2, the eigenvalues will be complex. Take λ± = α ± iβ, where α =
Re(λ±) =

1
2
tr(A) and β = Im(λ±). We can then write

λ± = α± iβ =
1

2
tr(A)± i

1

2

√
4 det(A)− tr(A)2

We can now study the different cases of the dynamics:

• Case 1: det(A) < 0 =⇒ λ+ > 0 > λ−. Setting k1 = 0, we have a solution u(t) =
k2e

λ−tv−, corresponding to a straight-line in the direction of v−, and u → 0 as t → ∞.
Similarly, with k2 = 0, we have u(t) = k1e

λ+tv+, but now λ+ > 0 so u(t) → ∞ as
t→∞.
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