MATH325 - Honours ODEs

A Course on Ordinary Differential Equations

Based on lectures from Winter, 2024 by Prof. Antony Humphries
Notes by Louis Meunier

Contents

1 Introduction 3
1.1 Definitions 3
1.2 Initival Values 3
1.3 Physical Applications 4
1.4 Uniqueness 4
1.5 Solutions 6
2 First Order ODEs 6
2.1 Separable ODEs 6
2.2 Linear First Order ODEs 8
2.3 Exact Equations 10
2.4 Exact ODEs Via Integrating Factors 13
2.5 Substitutions 15
2.6 Qualitative Methods and Theory 16
2.7 Existence and Uniqueness 16
3 Second Order ODEs 21
3.1 Introduction 21
3.2 Linear, Homogeneous 23
3.2.1 Principle of Superposition 23
3.3 Reduction of Order 24
3.4 Constant Coefficient Linear Homogeneous Second Order ODEs 24
3.5 Nonhomogeneous Second Order ODEs 27
3.5.1 Linear Operator Notation 27
3.5.2 Finding y_{p} : Method of Undetermined Coefficients 28
3.6 Variation of Parameters 30
4 Nth Order ODEs 32
4.1 A Little Theory 32
4.2 Linear nth Order ODEs 33
4.3 Linear Homogeneous N th Order ODES 34
4.4 Nonhomogeneous Nth Order Linear ODEs 40
4.5 Fundamental Set of Solutions 44
4.6 Non-Constant Coefficient Linear ODEs 45
5 Series Solutions 46
5.1 Review of Power Series 46
5.2 Series Solutions near Ordinary Points 49
5.3 Analytic Coefficients 51
5.4 Nonhomogeneous Series Solutions 52
5.5 Singular Points 53
5.6 Frobenius's Method 54
6 Laplace Transforms 56
6.1 Definitions 56
6.2 Solving Constant Coefficient Linear ODE IVP's 59
6.3 Discontinuous Functions 63
6.4 Derivatives of Transforms 64
6.5 Transforms of Integrals 65
6.6 Dirac Delta Function 66
6.7 Convolutions, Green's Function 67
6.8 Transforms of Periodic Functions 68
7 List of Theorems 70

1 Introduction

1.1 Definitions

\hookrightarrow Definition 1.1: Diffferential equation

A diffferential equation (DE) is an equation with derivatives. Ordinary DE's (ODE) will be covered in this course; other types (PDE's, SDE's, DDE's, FDE's, etc.) exist as well but won't be discussed. ODE's only have one independent variable (typically, $y=f(x)$ or $y=f(t)$).

$$
\begin{aligned}
& \circledast \text { Example 1.1: A Trivial Example } \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x . \text { Integrating both sides: } \\
& \qquad \int \frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x=\int 6 x \mathrm{~d} x \Longrightarrow y(x)=3 x^{2}+C .
\end{aligned}
$$

\circledast Example 1.2: Another One

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} t^{2}}=0 \Longrightarrow y=a t+b
$$

\hookrightarrow Definition 1.2: Order

The order of a differential equation is defined as the order of the highest derivative in the equation.

1.2 Initival Values

Remark 1.1. Note the existence of arbitrary constants in the previous examples, indicating infinite solutions. We often desire unique solutions by fixing these coefficients. For first order ODEs, we simply specify a single initial condition (say, some $y\left(x_{0}\right)=\alpha_{0}$). For higher order ODEs of degree n, we can either specify $n-1$ initial conditions for $n-1$ derivatives (say, $y\left(x_{0}\right)=\alpha_{0}, y^{\prime}\left(x_{0}\right)=\beta_{0}$), or boundary conditions (say, $y\left(x_{0}\right)=\alpha_{0}, y\left(x_{1}\right)=\alpha_{1}$) where values for the solution itself are specified.

\circledast Example 1.3: A Less Trivial Example

$\frac{\mathrm{d} y}{\mathrm{~d} x}=y$. We cannot simply integrate both sides as before, as we have no way to know what $\int y \mathrm{~d} x$ (the RHS) is equal to. We can fairly easily guess that $y=e^{x}$ is a solution; its derivative is equal to itself, hence it does indeed solve the equation. This is not the only solution; indeed, given $y=c e^{x}$, we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=c e^{x}=y=c e^{x}
$$

Luckily, we were rather limited in how many places constants could appear; this doesn't always hold.

1.3 Physical Applications

\circledast Example 1.4: Simple Pendulum

Let θ be the angle of a pendulum of mass m from vertical and length l. Then, we have the equation of motion

$$
m l \ddot{\theta}=-m g \sin \theta \Longrightarrow \ddot{\theta}+\frac{g}{l} \sin \theta=0 \Longrightarrow \ddot{\theta}+\omega^{2} \sin \theta=0
$$

Take θ small, then, $\sin \theta \approx \theta$. Then, $\ddot{\theta}+\omega^{2} \theta=0$. This is linear simple harmonic motion, and has periodic solutions; how do we know this is a valid solution to the non-linear model?

\circledast Example 1.5: Lorenz Equations

$$
\begin{array}{r}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sigma(y-x) \\
\frac{\mathrm{d} y}{\mathrm{~d} t}=r x-y-x z \\
\frac{\mathrm{~d} z}{\mathrm{~d} t}=x y-b z
\end{array}
$$

These are a famous set of equations originally derived from atmospheric modeling, known for its chaotic behavior for particular parameters. This is a nonlinear system of de's, and beyond the scope of this class (indeed, it is not solvable exactly).

1.4 Uniqueness

Given an ODE of the general form $y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{n-1}\right)$, if we wish to determine $y^{(n)}\left(t_{0}\right)$ uniquely, we need to specify the initial conditions

$$
y\left(t_{0}\right), y^{\prime}\left(t_{0}\right), \ldots, y^{(n-1)}\left(t_{0}\right)
$$

Moreover, this not only determines uniqueness of $y^{(n)}\left(t_{0}\right)$, byt the uniqueness of solution y for $t \in I$ for some "interval of validity" I.

\hookrightarrow Definition 1.3: Autonomous/Nonautonomous

An ODE of the form

$$
y^{(n)}=f\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

is called autonomous; that is, if it has no explicit dependence on the independent variable. Otherwise, the system is called nonautonomous.

\hookrightarrow Definition 1.4: Linear/Nonlinear

Linear ODEs of dimension n have a solution space which is a vector space of dimension n. As a result, solutions can be written as a linear combination of n basis solutions (or "fundamental set of solutions"). Solutions to nonlinear ODEs cannot be written this way (except locally).

Alternatively (but equivalently), if we can write an nth order ODE in the form

$$
a_{n}(t) y^{n}(t)+\cdots a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

or equivalently,

$$
\sum_{i=0}^{n} a_{i}(t) y^{i}(t)=g(t),
$$

where each $a_{i}(t)$ and $g(t)$ are known functions of t, then we say that the ODE is linear. Otherwise, it is nonlinear.

* Example 1.6

The pendulum

$$
\ddot{\theta}+\omega^{2} \sin \theta=0
$$

is autonomous and linear;

$$
\ddot{\theta}+\omega^{2} \sin \theta=0
$$

is autonomous and nonlinear, due to the $\sin \theta$ term (indeed, this is a nonlinear oscillator equation); a damped-forced oscillator

$$
\ddot{\theta}+k^{2} \dot{\theta}+\omega^{2} \theta=A \sin (\mu t)
$$

is nonautonomous and linear.

Remark 1.2. Note that the following definitions apply only to linear ODEs.

\hookrightarrow Definition 1.5: Homogeneous/Nonhomogeneous

A linear ODE of the form \circledast is homogeneous if $g(t)=0$; otherwise it is nonhomogeneous.

\hookrightarrow Definition 1.6: Constant/Variable

A linear ODE of the form $*$ is constant coefficient if $a_{j}(t)=$ constant $\forall j$; if at least one a_{j} not constant, it is non-constant or variable coefficient.

Remark 1.3. Note that while we define linearity of ODEs in terms of the form of $y^{(n)}=f(t, y, \ldots)$, this more "helpfully" relates to the form of the solution of such an ODE, which is indeed linear.

1.5 Solutions

Given an n order ODE $y^{(n)}=f(t, y, \ldots)$, and assuming f continuous, then for $y(t)$ to be a solution, we need y to be n-times differentiable; hence, $y, \ldots, y^{(n-1)}$ must all exist and be continuous. Then, $y^{(n)}$, being a continuous function of continuous functions, is, itself, continuous.

\hookrightarrow Definition 1.7: Solution

The function $y(t): I \rightarrow \mathbb{R}$ is a solution to an ODE on an interval $I \subseteq \mathbb{R}$ if it is n-times differentiable on I, and satisfies the ODE on this interval.

Given an well-defined IVP with $n-1$ initial values defined at t_{0}, then $y(t)$ is a solution if $t_{0} \in I, y$ satisfies the initial values, and $y(t)$ is a solution on the interval.

\hookrightarrow Definition 1.8: Interval of Validity

The largest I on which $y(t): I \rightarrow \mathbb{R}$ solves an ODE is called the interval of validity of the problem.

2 First Order ODEs

2.1 Separable ODEs

\hookrightarrow Definition 2.1: Separable ODE
An ODE of the form

$$
y^{\prime}=P(t) Q(y)
$$

is called separable. We solve them:

$$
\begin{array}{r}
\frac{\mathrm{d} y}{\mathrm{~d} t}=P(t) Q(y) \\
\Longrightarrow \int \frac{1}{Q(y)} \mathrm{d} y=\int P(t) \mathrm{d} t .
\end{array}
$$

Finish by evaluating both sides.

Example 2.1

$$
\begin{align*}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =t y \tag{1}\\
& \Longrightarrow \frac{1}{y} \mathrm{~d} y=t \mathrm{~d} t \tag{2}\\
& \Longrightarrow \ln |y|=\frac{t^{2}}{2}+C \tag{3}\\
& \Longrightarrow|y|=K e^{\frac{t^{2}}{2}} \quad \text { where } K=e^{C} \tag{4}\\
& \Longrightarrow y=B e^{\frac{t^{2}}{2}} \quad \text { where } B= \pm K= \pm e^{C} \tag{5}
\end{align*}
$$

Note that we call line (3) an implicit solution. In this case, we could easily turn this into an explicit solution by solving for $y(t)$; this won't always be possible.

Note that it would appear, based on the definition, that $B \neq 0$ (as $e^{\cdots} \neq 0$); however, plugging $y=0$ into (1) shows that this is indeed a solution. It is quite easy to verify that (5) is a valid solution;

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(B e^{\frac{t^{2}}{2}}\right)=B t e^{\frac{t^{2}}{2}}=t \cdot y
$$

as desired; this holds $\forall B \in \mathbb{R}$.

Remark 2.1. Is it valid to split the differentials like this?

$$
\begin{array}{r}
\frac{1}{Q(y)} \frac{\mathrm{d} y}{\mathrm{~d} t}=P(t) \\
\Longrightarrow \int \frac{1}{Q(t)} \frac{\mathrm{d} y}{\mathrm{~d} t} \mathrm{~d} t=\int P(t) \mathrm{d} t
\end{array}
$$

Let $g(y)=\frac{1}{Q}(y)$ and $G(y)=\int g(y) \mathrm{d} y$. By the chain rule,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(G(y(t)))=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d}}{\mathrm{~d} y} G(y(t))=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot g(y(t))=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{1}{Q(y(t))} .
$$

Integrating both sides with respect to time, we have

$$
\begin{aligned}
G(y(t))= & \int \frac{1}{Q(y(t))} \frac{\mathrm{d} y}{\mathrm{~d} t} \mathrm{~d} t=\int P(t) \mathrm{d} t+C \\
& \Longrightarrow \int g(y) \mathrm{d} y=\int P(t) \mathrm{d} t+C \\
& \Longrightarrow \int \frac{1}{Q(y)} \mathrm{d} y=\int P(t) \mathrm{d} t+C
\end{aligned}
$$

This was our original expression obtaining by "splitting", hence it is indeed "valid".

Example 2.2

$$
\begin{array}{r}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}}{1-y^{2}} \\
\Longrightarrow \int\left(1-y^{2}\right) \mathrm{d} y=\int x^{2} \mathrm{~d} x \\
\Longrightarrow y-\frac{y^{3}}{3}=\frac{x^{3}}{x}+C \\
\Longrightarrow y-\frac{1}{3}\left(y^{3}+x^{3}\right)=C
\end{array}
$$

Suppose we have the same ODE but now with an IVP $y(0)=4$. Then, plugging this into our implicit solution:

$$
4-\frac{1}{3}(64+0)=C \Longrightarrow C=4-\frac{64}{3}=-\frac{52}{3}
$$

so our IVP solution is

$$
y-\frac{1}{3}\left(y^{3}+x^{3}\right)=-\frac{52}{3} .
$$

2.2 Linear First Order ODEs

\hookrightarrow Definition 2.2: Integrating Factor

A linear first order ODE of the form

$$
\begin{array}{r}
a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t) \\
\Longrightarrow y^{\prime}+\frac{a_{0}}{a_{1}} y=\frac{g}{a_{1}} \\
\Longrightarrow y^{\prime}+p(t) y=q(t) .
\end{array}
$$

To solve, we multiply by some integrating factor $\mu(t)$;

$$
\mu(t) y^{\prime}(t)+p(t) \mu(t) y(t)=\mu(t) q(t)
$$

It would be quite convenient if $p(t) \mu(t)=\mu^{\prime}(t)$; in this case, we'd have

$$
\begin{array}{r}
\mu(t) y^{\prime}+\mu^{\prime}(t) y=\mu(t) q(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu(t) y(t))=\mu(t) q(t) \\
\Longrightarrow \mu(t) y(t)=\int \mu(t) q(t) \mathrm{d} t+C \\
\Longrightarrow y(t)=\frac{1}{\mu(t)} \int \mu(t) q(t) \mathrm{d} t+\frac{C}{\mu(t)}
\end{array}
$$

Now, what is $\mu(t)$? We required that

$$
\begin{array}{r}
\mu^{\prime}(t)=p(t) \mu \\
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=p(t) \mu \\
\Longrightarrow \int \frac{\mathrm{d} \mu}{\mu}=\int p(t) \mathrm{d} t \Longrightarrow \ln |\mu|=\int p(t) \mathrm{d} t \\
\Longrightarrow \mu(t)=K e \int p(t) \mathrm{d} t
\end{array}
$$

However, note in our whole process earlier, we need only one μ; hence, for convenience, we can disregard any constants of integration and simply take

$$
\text { Integrating Factor: } \mu(t):=e^{\int p(t) \mathrm{d} t}
$$

Then, our original linear ODE has general solution

$$
y(t)=C e^{-\int p(t) \mathrm{d} t}+e^{-\int p(t) \mathrm{d} t} \int e^{\int p(t) \mathrm{d} t} q(t) \mathrm{d} t
$$

Example 2.3

$$
\begin{aligned}
t y^{\prime}+3 y-t^{2} & =0 \\
y^{\prime}+\frac{3}{t} y & =t \\
& \Longrightarrow \mu(t)=e^{\int \frac{3}{t} \mathrm{~d} t}=e^{3 \ln |t|}=t^{3} \\
& \Longrightarrow t^{3} y^{\prime}+3 t^{2} y=t^{4} \\
& \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(y t^{3}\right)=t^{4} \\
& \Longrightarrow y t^{3}=\int t^{4} \mathrm{~d} t \\
& \Longrightarrow y=\frac{1}{t^{3}} \cdot \frac{t^{5}}{5}+\frac{C}{t^{3}}=\frac{t^{2}}{5}+\frac{C}{t^{3}}
\end{aligned}
$$

Note the division by zero issue when $t=0$; this is not an issue with the solution method, but indeed with the ODE itself. The ODE breaks down when $t=0$ for the same reason.

Thus, this solution is valid for $t \in(-\infty, 0) \cup(0, \infty)=: I_{1} \cup I_{2}$; if we are given an IVP $y\left(t_{0}\right)=y_{0}$, if $t_{0}<0$, then the interval of validity is I_{1}, and if $t_{0}>0$, the interval of validity is I_{2}.

2.3 Exact Equations

\hookrightarrow Definition 2.3: Exact Equations

A first order ODE of the form

$$
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \Longleftrightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{M(x, y)}{N(x, y)}
$$

is said to be exact if

$$
\frac{\partial}{\partial y} M(x, y)=\frac{\partial}{\partial x} N(x, y) \Longleftrightarrow M_{y}(x, y)=N_{x}(x, y)
$$

Suppose we have a solution $f(x, y(x))=C$. Then,

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} x}(f(x, y(x)))=0 \\
\Longrightarrow \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\Longrightarrow \frac{f_{x}}{f_{y}}=-\frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}
$$

Now, with $f_{x}(x, y)=M(x, y)$ and $f_{y}=N(x, y)$, then $M_{y}(x, y)=f_{x y}(x, y)$ and $N_{x}=f_{y x}(x, y)$. Assuming f continuous with existing, continuous partial derivatives, then $f_{x y}=f_{y x}$ and hence $M_{y}(x, y)=N_{x}(x, y)$. Thus, a function f such that $f_{x}=M$ and $f_{y}=N$ yields a solution to the ODE.

Example 2.4

$$
\begin{array}{r}
2 x y^{2} \mathrm{~d} x+2 x^{2} y \mathrm{~d} y=0 \equiv M \mathrm{~d} x+N \mathrm{~d} y=0 \\
\Longrightarrow M_{y}=4 x y, \quad \Longrightarrow N_{x}=4 x y \\
f_{x}=M=2 x y^{2} \Longrightarrow f(x, y)=x^{2} y^{2}+C+F(y) \\
f_{y}=N=2 x^{2} y \Longrightarrow f(x, y)=x^{2} y^{2}+C+F(x) \\
\Longrightarrow f(x, y)=x^{2} y^{2}+C=K
\end{array}
$$

We can rearrange this as an explicit solution

$$
y=\frac{k}{x}
$$

for some constant k.

\hookrightarrow Theorem 2.1

This technique works generally.

Proof. Given an exact ODE of the form $M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0$, we need to show that $\exists f(x, y)$ s.t. $f(x, y)=$ c solves the ODE. Let

$$
f(x, y)=\int_{x_{0}}^{x} M(s, y) \mathrm{d} s+g(y)
$$

for some function $g(y)$ to be chosen such that $f_{y}=N$. But we have

$$
\begin{aligned}
N(x, y)=f_{y}(x, y) & =\frac{\partial}{\partial y}\left[\int_{x_{0}}^{x} M(s, y) \mathrm{d} s+g(y)\right] \\
& =g^{\prime}(y)+\frac{\partial}{\partial y} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s \\
& \Longrightarrow g^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s
\end{aligned}
$$

But the LHS is a function of y only, while the RHS depends explicitly on x; hence, this technique will only work if the entire expression is actually independent of x. To show this, we take the partial of the RHS with respect to x :

$$
\begin{aligned}
\frac{\partial}{\partial x}\left[N(x, y)-\frac{\partial}{\partial y} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s\right] & =N_{x}(x, y)-\frac{\partial}{\partial x} \frac{\partial}{\partial y} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s \\
& =N_{x}(x, y)-\frac{\partial}{\partial y}\left[\frac{\partial}{\partial x} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s\right] \\
& =N_{x}(x, y)-\frac{\partial}{\partial y}[M(x, y)] \\
& =N_{x}-M_{y}=0
\end{aligned}
$$

as the ODE is exact. Hence, the RHS is indeed a function of y alone. So, integrating both sides with respect to y :

$$
g(y)=\int\left[N(x, y)-\frac{\partial}{\partial y} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s\right] \mathrm{d} y,
$$

which gives us a $f(x, y)$ of

$$
\begin{array}{r}
f(x, y)=\int_{x_{0}}^{x} M(s, y) \mathrm{d} s+\int\left[N(x, y)-\frac{\partial}{\partial y} \int_{x_{0}}^{x} M(s, y) \mathrm{d} s\right] \mathrm{d} y, \\
\Longrightarrow f(x, y)=\int_{x_{0}}^{x} M(s, y) \mathrm{d} s+\int_{y_{0}}^{y} N(x, t) \mathrm{d} t-\int_{y_{0}}^{y} \int_{x_{0}}^{x} M_{y}(s, t) \mathrm{d} s \mathrm{~d} t \quad \star
\end{array}
$$

which satisfies $f_{x}=M$ and $f_{y}=N$. Then, for $f(x, y)=C$, we have

$$
\frac{\partial f}{\partial x}+\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\partial f}{\partial y}=M+\frac{\mathrm{d} y}{\mathrm{~d} x} N=0 \Longrightarrow M \mathrm{~d} x+N \mathrm{~d} y=0
$$

as desired.

Note that \star is evaluated over a rectangle $\left[x_{0}, x\right] \times\left[y_{0}, y\right]$, but holds for any connected domain containing $\left(x_{0}, y_{0}\right)$ and (x, y).

Also note that, as described, $g(y)$ is not a function of x; hence, we can pick x arbitrarily. Suppose we take $x=x_{0}$, then

$$
f(x, y)=\int_{x_{0}}^{x} M(s, y) \mathrm{d} s+\int_{y_{0}}^{y} N\left(x_{0}, t\right) \mathrm{d} t
$$

Remark 2.2. We could have taken $g(x)$ and started from $f_{y}=N$. Then, we would have had the formula

$$
f(x, y)=\int_{y_{0}}^{y} N(x, t) \mathrm{d} t+\int_{x_{0}}^{x} M\left(s, y_{0}\right) \mathrm{d} y .
$$

Example 2.5

$$
2 x y \mathrm{~d} x+\left(x^{2}-1\right) \mathrm{d} y=0
$$

We have $M(x, y)=2 x y$ and $N(x, y)=x^{2}-1$, so $M_{y}=2 x=N_{y}$ and the ODE is exact; hence, a solution exists of the form $f(x, y)=c$ where $f_{x}=M, f_{y}=N$.

$$
\begin{array}{r}
f(x, y)=\int M(x, y) \mathrm{d} x=\int 2 x y \mathrm{~d} x=x^{2} y+k_{1}(y) \\
f(x, y)=\int N(x, y) \mathrm{d} y=\int\left(x^{2}-1\right) \mathrm{d} y=x^{2} y-y+k_{2}(x)
\end{array}
$$

Hence $k_{1}(y)=-y$ and $k_{2}(x)=0$, so

$$
f(x, y)=x^{2} y-y=y\left(x^{2}-1\right)
$$

so solutions to the original ODE are

$$
y\left(x^{2}-1\right)=C \Longrightarrow y=\frac{C}{x^{2}-1} .
$$

2.4 Exact ODEs Via Integrating Factors

Suppose

$$
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0
$$

but $M_{y} \neq N_{x}$, that is, the ODE is not exact. Can we find an integrating factor $\mu(x, y)$ s.t.

$$
[\mu(x, y) M(x, y)] \mathrm{d} x+[\mu(x, y) N(x, y)] \mathrm{d} y=0
$$

is exact? If so, such a μ must satisfy

$$
\begin{aligned}
& \frac{\partial}{\partial y}[\mu(x, y) M(x, y)]=\frac{\partial}{\partial x}[\mu(x, y) N(x, y)] \\
& \Longrightarrow \mu_{y} M+\mu M_{y}=\mu_{x} N+\mu N_{x} \\
& \Longrightarrow N \mu_{x}-M \mu_{y}=\left(M_{y}-N_{x}\right) \mu \circledast
\end{aligned}
$$

This is not a generally easily soluble PDE; we will consider cases where μ is a function of only one independent variable, which greatly simplifies the expression; this could be simply $\mu(x), \mu(y)$, or even $\mu(x \cdot y)$.

Suppose $\mu=\mu(x) \Longrightarrow \mu_{y}=0$. Then, \circledast becomes

$$
N \mu^{\prime}=\left(M_{y}-N_{x}\right) \mu \Longrightarrow \mu^{\prime}=\left(\frac{M_{y}-N_{x}}{N}\right) \mu
$$

This is valid, provided the expression $\left(\frac{M_{y}-N_{x}}{N}\right)$ is a function solely of x. In this case, this becomes a linear first order ODE, with solution

$$
\mu(x)=e^{\int \frac{M_{y}-N x}{N} \mathrm{~d} x} .
$$

OTOH , if $\mu=\mu(y)$, we can similarly derive

$$
\mu(y)=e^{\int \frac{N_{x}-M y}{M} \mathrm{~d} y}
$$

with a similar stipulation on the expression $\left(\frac{N_{x}-M_{y}}{M}\right)$ being a function of y solely.

\circledast Example 2.6

$$
x y \mathrm{~d} x+\left(2 x^{2}+3 y^{2}-20\right) \mathrm{d} y=0
$$

with $M(x, y)=x y \Longrightarrow M_{y}=x$ and $N(x, y)=2 x^{2}+3 y^{2}-20 \quad \Longrightarrow \quad N_{x}=4 x$. We have $M_{y}-N_{x}=x-4 x=-3 x$ (so the ODE is not exact). We write

$$
\frac{M_{y}-N_{x}}{M}=\frac{-3 x}{x y}=\frac{-3}{y}
$$

which is a function solely of y; hence, can find a $\mu(y)$:

$$
\mu(y)=e^{-\int \frac{M_{y}-N_{x}}{M} \mathrm{~d} y}=e^{-\int-\frac{3}{y} \mathrm{~d} y}=e^{3 \ln y}=y^{3},
$$

noting that we, as before, do not care about any integrating factors; we are seeking a single function
that works. Multiplying this into our original ODE:

$$
\underbrace{x y^{4}}_{:=\tilde{M}} \mathrm{~d} x+\underbrace{\left(2 x^{2}+3 y^{2}-20\right) y^{3}}_{:=\tilde{N}} \mathrm{~d} y=0
$$

And indeed, we have

$$
\tilde{M}_{y}=4 x y^{3} ; \quad \tilde{N}_{x}=4 x y^{3} \Longrightarrow \tilde{M}_{y}=\tilde{N}_{x}
$$

as desired.

2.5 Substitutions

\hookrightarrow Definition 2.4: Homogeneous

A function $f(x, y)$ is said to be homogeneous of degree d if $f(t x, t y)=t^{d} f(x, y)$.

Many ODEs can benefit from appropriate substitutions to make the proceeding solution method for clear. We present by example the following three types of substitutions, though naturally many other exist:

1. Homogeneous Equations, $M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0$ where M, N homogeneous to the same degree.
2. Bernoulli Equations, $y^{\prime}+f(x) y+g(x) y^{n}$.
3. $y^{\prime}=f(A x+B y+C)$.

© Example 2.7: 1. Homogeneous Equations

Consider

$$
\left(x^{2}+y^{2}\right) \mathrm{d} x+\left(x^{2}-x y\right) \mathrm{d} y=0, \quad x \neq 0
$$

Dividing both sides by x^{2}, the correct substitution becomes obvious:

$$
\begin{array}{r}
\left(x+\left(\frac{y}{x}\right)^{2}\right) \mathrm{d} x+\left(1-\frac{y}{x}\right) \mathrm{d} y=0 \\
u:=\frac{y}{x} \Longrightarrow y^{\prime}=x u^{\prime}+u \\
\Longrightarrow\left(1+u^{2}\right)=(u-1) y^{\prime}=(u-1)\left(u+x u^{\prime}\right) \\
\Longrightarrow x u^{\prime}=\frac{1+u^{2}}{u-1}-u=\frac{u+1}{u-1},
\end{array}
$$

which is just linear in u.

* Example 2.8: 2. Bernoulli Equations

Generally, let $v(x)=y^{1-n}$ to make the equation linear and solve. For instance, consider

$$
x y^{\prime}+y=x^{2} y^{2}
$$

Example 2.9: 3. $f(A x+B y+C)$
Let $u=A x+B y+C$.

2.6 Qualitative Methods and Theory

Remark 2.3. Read the first few chapters of Strogatz's Nonlinear Dynamics and Chaos book and you should be all good.

\circledast Example 2.10

Show that $y^{\prime}=y^{\frac{1}{3}}$ with $y(0)=0$ has infinite solutions.

2.7 Existence and Uniqueness

\hookrightarrow Definition 2.5: Lipschitz Continuity
A function $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be Lipschitz continuous in y on the rectangle $R=\{(x, y): x \in$ $[a, b], y \in[c, d]\}=[a, b] \times[c, d]$ if there exists a constant $L>0$ s.t.

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leqslant L\left|y_{1}-y_{2}\right|, \quad \forall\left(x, y_{1}\right),\left(x, y_{2}\right) \in R .
$$

L is called the Lipschitz constant.

Remark 2.4. Note that we define in terms on continuity in y; the x variable in each coordinate is kept constant.

\hookrightarrow Lemma 2.1

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is such that $f(x, y)$ and $\frac{\partial f}{\partial y}$ are both continuous in x, y in the rectangle R, then f is Lipschitz in y on R.

Remark 2.5. This result gives Differentiable \Longrightarrow Lipschitz Continuous \Longrightarrow Continuous.

Proof. Using FTC, we have

$$
\begin{aligned}
f\left(x, y_{2}\right)=f\left(x, y_{1}\right)+\int_{y_{1}}^{y_{2}} f_{y}(x, y) \mathrm{d} y & \\
\Longrightarrow\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right|=\left|\int_{y_{1}}^{y_{2}} f_{y}(x, y)\right| & \leqslant \int_{y_{1}}^{y_{2}}\left|f_{y}(x, y)\right| \mathrm{d} y \\
& \leqslant\left|y_{2}-y_{1}\right| \cdot \max _{(x, y) \in R}\left|f_{y}(x, y)\right|,
\end{aligned}
$$

noting that this maximum exists, and is attained, because f_{y} is continuous on a compact set. This gives, then, that f is Lipschitz in y with $L=\max _{(x, y) \in \mathbb{R}}\left|f_{y}(x, y)\right|$.

\hookrightarrow Theorem 2.2: Existence and Uniqueness for Scalar First Order IVPs

If $f(t, y), f_{y}(t, y)$ are continuous in t and y on a rectangle $R=\left\{(t, y): t \in\left[t_{0}-a, t_{0}+a\right], y \in\left[y_{0}-b, y_{0}+\right.\right.$ $b]\}=\left[t_{0}-a, t_{0}+a\right] \times\left[y_{0}-b, y_{0}+b\right]$, then $\exists h \in(0, a]$ s.t. the IVP

$$
y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}
$$

has a unique solution, defined for $t \in\left[t_{0}-h, t_{0}+h\right]$. Moreover, this solution satisfies $y(t) \in\left[y_{0}-b, y_{0}+\right.$ b] $\forall t \in\left[t_{0}-h, t_{0}+h\right]$.

Remark 2.6. A stronger theorem also holds with a weakened condition on f that requires only f Lipschitz. Clearly, f_{y} continuous $\Longrightarrow f$ Lipschitz, so we will use this fact to prove the statement, but won't prove it for the only Lipschitz case for sake of conciseness.

Proof. Rewrite the IVP as

$$
y(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, y(s)) \mathrm{d} s
$$

We will show this form has a unique solution, using an iteration method (namely, Picard Iteration).
We will begin by guessing a solution of the IVP, $y_{0}(t)=y_{0}, \forall t \in\left[t_{0}-a, t_{0}+a\right]$. This clearly satisfies the initial condition, but not the ODE itself.

Now, given $y_{n}(t)$, we define

$$
y_{n+1}(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) \mathrm{d} s
$$

If this terminates, that is, $y_{n+1}(t)=y_{n}(t) \forall t \in\left[t_{0}-a, t_{0}+a\right]$, then $y_{n}(t)$ solves the IVP.
We now show that this iteration is both well-defined, and converges to unique solution.
By construction, $y_{0}:\left[t_{0}-a, t_{0}+a\right] \rightarrow\left[y_{0}-b, y_{0}+b\right]$, and is continuous. As a bounded function on a
bounded interval, it is integrable, and the first step of our step is well-defined.
Now suppose $y_{n}(t):\left[t_{0}-a, t_{0}+a\right] \rightarrow\left[y_{0}-b, y_{0}+b\right]$ is continuous and integrable. Then,

$$
y_{n+1}(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) \mathrm{d} s
$$

is continuous as well, as f is continuous and $y_{n}(s)$ is as well. It is not guaranteed to be restricted to $\left[y_{0}-b, y_{0}+b\right]$, however.

Since f continuous and attains its maximum on R, let

$$
M:=\max _{(t, y) \in R}|f(t, y)|<\infty
$$

We have, then, that

$$
\begin{array}{r}
y_{n+1}(t)-y\left(t_{0}\right)=\int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) \mathrm{d} s \\
\Longrightarrow\left|y_{n+1}(t)-y\left(t_{0}\right)\right| \leqslant\left|t-t_{0}\right| M
\end{array}
$$

Hence, if we choose $h: M h \leqslant b$, and then $y_{n+1}(t):\left[t_{0}-h, t_{0}+h\right] \rightarrow\left[y_{0}-b, y_{0}+b\right]$ and we can iterative inductively, $y_{n}(t):\left[t_{0}-h, t_{0}+h\right] \rightarrow\left[y_{0}-b, y_{0}+b\right] \forall n$. Here, we take $h=\min \left\{\frac{b}{M}, a\right\}$.

Now, let $I=\left[t_{0}-h, t_{0}+h\right]$, then $y_{n}(t): I \rightarrow\left[y_{0}-b, y_{0}+b\right]$ for all n. Each iterate satisfies $y_{n}\left(t_{0}\right)=y\left(t_{0}\right)=y_{0}$; it remains to show that the iteration converges.

Let $C\left(I,\left[y_{0}-b, y_{0}+b\right]\right)$ be the space of continuous functions $f: I \rightarrow\left[y_{0}-b, y_{0}+b\right]$, noting that $y_{n} \in C \forall n$. We define a mapping on $C, T: C \rightarrow C$ by

$$
v=T u, v(t)=y_{0}\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, u(s)) \mathrm{d} s .
$$

Then, $y_{n+1}=T y_{n}$. We aim to show that this iteration converges uniquely; we will do this by showing T is a contraction mapping.

For $y \in C$ define the norm $\|y\|_{\infty}$ by $\|y\|_{\infty}:=\max _{t \in I}|y(t)|$. This is a norm;

1. $\forall k \in \mathbb{R},\|k y\|_{\infty}=|k|\|y\|_{\infty}$.
2. $\|y\|_{\infty}=0 \Longleftrightarrow \max _{t \in I}|y(t)|=0 \Longleftrightarrow y(t)=0 \forall t \in I$.
3. $\left\|y_{1}+y_{2}\right\|_{\infty}=\max _{t \in I}\left|y_{1}+y_{2}\right| \leqslant \max _{t \in I}\left(\left|y_{1}\right|+\left|y_{2}\right|\right) \leqslant \max _{t \in I}\left|y_{1}\right|+\max _{t \in I}\left|y_{2}\right|=\left\|y_{1}\right\|_{\infty}+\left\|y_{2}\right\|_{\infty}$.

Now let $u, v \in C$. Then,

$$
\begin{aligned}
\|T u-T v\|_{\infty} & =\max _{t \in I}|T u(t)-T v(t)| \\
& =\max _{t \in I}\left|y\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, u(s) \mathrm{d} s)-y_{0}+\int_{t_{0}}^{t} f(s, v(s)) \mathrm{d} s\right| \\
& =\max _{t \in I}\left|\int_{t_{0}}^{t} f(s, u(s))-f(s, v(s)) \mathrm{d} s\right| \\
& \leqslant \max _{t \in I} \int_{t_{0}}^{t}|f(s, u(s))-f(s, v(s))| \mathrm{d} s \\
& \leqslant \max _{t \in I}\left|t-t_{0}\right| \cdot \max _{s \in I}|f(s, u(s))-f(s, v(s))| \\
& \leqslant h L \cdot \max _{s \in I}|u(s)-v(s)| \\
& =h L \cdot\|u-v\|_{\infty}
\end{aligned}
$$

hence, we have a contraction mapping if $h L<1$; if $h L \geqslant 1$, let $h<\min \left\{a, \frac{b}{m}, \frac{1}{L}\right\}>0$. With such an h, $\exists \mu \in(0,1): h L \leqslant \mu<1$, and $\|T u-T v\|_{\infty} \leqslant \mu\|u-v\|_{\infty}$, hence, a contraction mapping.

The contractive mapping theorem, which will not be proven, states that any contraction mapping has a unique fixed point $y=T y$; moreover, for any $y_{0} \in C$, the iteration $y_{n+1}=T y_{n}$ converges to y.

To see this, suppose $u=T n, v=T v$ are two solutions of our IVP. Then, by the contraction quality,

$$
\|u-v\|_{\infty}=\|T u-T v\|_{\infty} \leqslant \mu\|u-v\|_{\infty},
$$

a contradiction unless $\|u-v\|_{\infty}=0 \Longleftrightarrow u=v$, hence, we have uniqueness of our solution; that is, our IVP has at most one solution. It remains to show that this solution exists.

Consider a sequence y_{n}, with $y_{n+1}=T y_{n}$. Then,

$$
\sum_{i=0}^{N}\left\|y_{i+1}-y_{i}\right\|_{\infty} \leqslant \mu^{N}\left\|y_{1}-y_{0}\right\|_{\infty}
$$

by the contractive property, thus,

$$
\sum_{i=0}^{\infty}\left\|y_{i+1}-y_{i}\right\| \leqslant\left(\sum_{i=0}^{\infty} \mu^{j}\right)\left\|y_{1}-y_{0}\right\|_{\infty}=\frac{1}{1-\mu}\left\|y_{1}-y_{0}\right\|_{\infty}=R_{0}
$$

for some radius (real number) R_{0}. Similarly, looking only at the tail of the series,

$$
\sum_{j=n}^{\infty}\left\|y_{j+1}-y_{j}\right\|_{\infty} \leqslant \frac{\mu^{n}}{1-\mu}\left\|y_{1}-y_{0}\right\|_{\infty}=\mu^{n} R_{0}
$$

that is, a "smaller" radius. We could, but won't, show that this sequence is Cauchy, and space C we are
working in is complete and hence this sequence converges to some limit in the space; moreover, the limit of this sequence satisfies the IVP by construction. This is beyond the scope of this course.

\circledast Example 2.11: Using Picard Iteration

$$
y^{\prime}=2 t(1+y)=: f(t, y), \quad y(0)=0
$$

This ODE is linear and separable, and has solution $y(t)=e^{t^{2}}-1$ (solving whichever way you like).
We can alternatively solve this using Picard Iteration.
Let $y_{0}(t)=0 \forall t$, noting that the IC is satisfied. We define

$$
y_{n+1}(t)=y(\theta)^{-0}+\int_{t 0^{0}}^{t} f\left(s, y_{n}(s)\right) d s
$$

where $f\left(s, y_{n}(s)\right)=2 s(1+y(s))$. This gives

$$
\begin{aligned}
y_{n+1}(t) & =\int_{0}^{t} 2 s\left(1+y_{n}(s)\right) \mathrm{d} s \\
& \Longrightarrow y_{1}(t)=\int_{0}^{t} 2 s\left(1+y_{0}(s)\right) \mathrm{d} s=\int_{0}^{t} 2 s \mathrm{~d} s=t^{2} \\
& \Longrightarrow y_{2}(t)=\int_{0}^{t} 2 s\left(1+s^{2}\right) \mathrm{d} s=t^{2}+\frac{1}{2} t^{4} \\
& \Longrightarrow y_{3}(t)=\cdots=t^{2}+\frac{1}{2!} t^{4}+\frac{1}{3!} t^{6} \\
& \cdots \Longrightarrow y_{n}(t)=\sum_{k=1}^{n} \frac{t^{2 k}}{k!} \\
& \Longrightarrow \lim _{n \rightarrow \infty} y_{n}(t)=\sum_{k=1}^{\infty} \frac{\left(t^{2}\right)^{k}}{k!}=e^{t^{2}}-1
\end{aligned}
$$

the same solution as previously shown.

Remark 2.7. The previous example worked nicely due to $y_{n}(t)$ always being a simple polynomial with a familiar convergence. This is not always (nor often) the case.

Remark 2.8. Recall the example $y^{\prime}=y^{\frac{1}{3}}$ with multiple solutions. In the language of the theorem, $f(t, y)=y^{\frac{1}{3}}$ is continuous, but $f_{1}(t, y)=\frac{1}{3} y^{-\frac{2}{3}}$ becomes unbounded as $y \rightarrow 0$, and the function is thus not Lipschitz in a neighborhood of $y=0$.

Remark 2.9. Recall that this theorem guarantees solutions in a closed rectangular region; it is possible, under certain conditions, to extend the solution beyond the bounds. But how far?

Example 2.12

$$
y^{\prime}=y^{2}, \quad y(0)=1
$$

This has a solution $y(t)=\frac{1}{c-t}=\frac{1}{1-t}$ (with IC). Notice that $y(t) \rightarrow+\infty$ as $t \rightarrow 1$. By this observation, we have that, if we were to repeat Picard iteration for increasing time t, the rectangular domains of our validity of each piecewise solution would be bounded by 1 .

\hookrightarrow Corollary 2.1

If $f(t, y)$ and $f_{y}(t, y)$ are continuous for all $t, y \in \mathbb{R}$, then $\exists t_{-}<t_{0}<t_{+}$such that the IVP

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

has a unique solution $y(t) \forall t \in\left(t_{-}, t_{+}\right)$, and moreover, either $t_{+}=+\infty$ or $\lim _{t \rightarrow t_{+}}|y(t)|=\infty$, and either $t_{-}=-\infty$ or $\lim _{t \rightarrow t_{-}}|y(t)|=\infty$.

Remark 2.10. Finding t_{-}, t_{+}requires the solution. In example $2.12, t_{-}=-\infty, t_{+}=1$. Changing the IC will naturally change these values.
\hookrightarrow Theorem 2.3
If $p(t), g(t)$ continuous on an open interval $I=(\alpha, \beta)$ and $t_{0} \in I$, then the IVP

$$
y^{\prime}(t)+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

has a unique solution $y(t): I \rightarrow \mathbb{R}$.

Remark 2.11. In other words, this is a special case of the corollary above for linear ODEs; any "misbehavior" of the solutions would be solely due to discontinuities in the defining ODE.

3 Second Order ODEs

3.1 Introduction

Second Order ODEs are of the form

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

There is no general technique to solving these; we will be looking at special classes throughout.
Specifically in the case of nonlinear odes, there are two special cases we can solve,

1. f does not depend on y; ie $y^{\prime \prime}=f\left(t, y^{\prime}\right)$. A substitution $u=y^{\prime}$ yields $u^{\prime}=f(t, u)$, hence this is just a first order ODE, with corresponding $y(t)=k_{1}+\int u(t) \mathrm{d} t$.
2. f does not depend on t; ie $y^{\prime \prime}=f\left(y, y^{\prime}\right)$. Let $u=y^{\prime}$, so $u^{\prime}=y^{\prime \prime}=f(y, u)$. Consider $u=u(y(t))$, then,

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\mathrm{d} u}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} t}=u \frac{\mathrm{~d} u}{\mathrm{~d} y}
$$

and so

$$
u \frac{\mathrm{~d} u}{\mathrm{~d} y}=\frac{\mathrm{d} u}{\mathrm{~d} t}=f(y, u) \Longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} y}=\frac{1}{y} f(y, u)
$$

which again yields a first order ODE, in $u=u(y)$.

\circledast Example 3.1: Of Case 2.

$$
y^{\prime \prime}+\omega^{2} y=0^{a}
$$

Rewrite this as $y^{\prime \prime}=-\omega^{2} y=f\left(y, y^{\prime}\right)$, and let $u=y^{\prime}$, then $\frac{\mathrm{d} u}{\mathrm{~d} y}=\frac{1}{u} f(y, u)=\frac{1}{u}\left[-\omega^{2} y\right]$. This is a separable equation:

$$
\begin{array}{r}
u \mathrm{~d} u=-\omega^{2} y \mathrm{~d} y \\
\frac{1}{2} u^{2}=-\frac{1}{2} \omega^{2} y^{2}+c \\
\Longrightarrow u^{2}=-\omega^{2} y^{2}+c^{\prime} \\
\Longrightarrow u= \pm \sqrt{k^{2}-\omega^{2} y^{2}} \Longrightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}= \pm \sqrt{k^{2}-\omega^{2} y^{2}}
\end{array}
$$

Which is just another separable equation ${ }^{b}$:

$$
\begin{array}{r}
\pm \int \mathrm{d} t=\frac{1}{\omega} \int \frac{\mathrm{~d} y}{\sqrt{\frac{k^{2}}{\omega^{2}}-y^{2}}} \\
\Longrightarrow \frac{1}{\omega} \arcsin \left(\frac{\omega y}{k}\right)= \pm t+C \\
\Longrightarrow \frac{\omega y}{k}=\sin (\pm \omega t \pm \omega \tilde{C})= \pm \sin (\omega t+\omega \tilde{C}) \\
\Longrightarrow y(t)= \pm \frac{k}{\omega} \sin (\omega t+\omega \tilde{C}) \\
\Longrightarrow y(t)=K \sin (\omega t+C)
\end{array}
$$

which can be rewritten $y(t)=k_{1} \sin (\omega t)+k_{2} \cos (\omega t)$ with the appropriate substitutions.
${ }^{a}$ This is the equation for a simple harmonic oscillator.
${ }^{b}$ Please excuse the sloppy use of constants, it doesn't really matter.

Remark 3.1. This is not the easiest way to solve this equation. More generally, this technique can lead to intractable integrals.

Example 3.2: Nonlinear Pendulum

$$
y^{\prime \prime}+\omega^{2} \sin y=0
$$

Making the same substitution as before, $u=y^{\prime}$, we have

$$
\begin{array}{r}
\frac{\mathrm{d} u}{\mathrm{~d} y}=-\frac{1}{u} \omega^{2} \sin y \\
\int u \mathrm{~d} u=\int-\omega^{2} \sin y \mathrm{~d} y \\
\frac{1}{2} u^{2}=\omega^{2} \cos y+c_{1} \\
\frac{1}{2}\left(y^{\prime}\right)^{2}=\omega^{2} \cos y+c_{1} \\
y^{\prime}= \pm \sqrt{2 c_{1}+2 \omega^{2} \cos y} \\
\pm \int \mathrm{d} t=\int \frac{\mathrm{d} y}{\sqrt{2 c+2 \omega^{2} \cos y}}
\end{array}
$$

where the integral on the RHS is some type of elliptic integral.

3.2 Linear, Homogeneous

We will solve a general form

$$
a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=0
$$

3.2.1 Principle of Superposition

\hookrightarrow Theorem 3.1: Superposition of Solutions to Linear Second Order ODEs

If $y_{1}(t), y_{2}(t)$ solve $*$ for $t \in I$-interval, then $y(t)=k_{1} y_{1}(t)+k_{2} y_{2}(t)$, for constants k_{1}, k_{2} solves \circledast on I as well. In other words, linear combinations of solutions are themselves solutions.

Remark 3.2. This can be extended quite naturally to any linear order of $O D E$.

$$
\begin{aligned}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t) & =a(t)\left(k_{1} y_{1}^{\prime \prime}+k_{2} y_{2}^{\prime \prime}\right)+b(t)\left(k_{1} y_{1}^{\prime}+k_{2} y_{2}^{\prime}\right)+c(t)\left(k_{1} y_{1}+k_{2} y_{2}\right) \\
& =k_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+k_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right) \\
& =k_{1} \cdot 0+k_{2} \cdot 0=0
\end{aligned}
$$

as desired.

\hookrightarrow Definition 3.1: Linear Independence of Functions

If $y_{1}(t), y_{2}(t)$ are defined $\forall t \in I$ for some interval $I \subseteq \mathbb{R}$, then $y_{1}(t), y_{2}(t)$ are linearly dependent on I if $\exists k_{1}, k_{2}$ constants (not both zero) so that $k_{1} \cdot y_{1}(t)+k_{2} \cdot y_{2}(t)=0 \forall t \in I$.

If the only constants which solve this are $k_{1}=k_{2}=0$, then $y_{1}(t), y_{2}(t)$ are linearly independent on I.

Remark 3.3. If $y_{j}(t)$ is the zero function, then take $k_{j}=1$ and the other constant zero; ie, the zero function is always linearly dependent.

3.3 Reduction of Order

Suppose $y_{1}(t)$ solves the homogeneous ODE $0=a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y$. Let $y(t)=u(t) y_{1}(t)$ for some unknown $u(t)$, and assume it solves the ODE. Then:

$$
y=u y_{1} \Longrightarrow y^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime} \Longrightarrow y^{\prime \prime}=u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}=u y_{1}^{\prime \prime}+2 u^{\prime} y_{1}^{\prime}+u^{\prime \prime} y_{1} .
$$

Substituting this into the original ODE:

$$
\begin{aligned}
0= & a\left(u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}\right)+b\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+c\left(u y_{1}^{\prime}\right) \\
& =\left[a y_{1}\right] u^{\prime \prime}+\left[2 a y_{1}^{\prime}+b y_{1}\right] u^{\prime}+\underbrace{\left[a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right]}_{=0} u
\end{aligned}
$$

Let $v=u^{\prime} \Longrightarrow v^{\prime}=u^{\prime \prime}$, and we have reduced to a first-order ODE

$$
0=\left[a y_{1}\right] v^{\prime}+\left[2 a y_{1}^{\prime}+b y_{1}\right] v
$$

which we can solve for v, then conclude by integrating v to solve for u.

3.4 Constant Coefficient Linear Homogeneous Second Order ODEs

We consider the case

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, c are constants. If $a=0$, this is simply first order with an exponential solution; so, suppose (guess) that this ODE has solution $y=e^{r t}$ for $a \neq 0$. This gives

$$
\begin{array}{r}
a\left(e^{r t}\right)^{\prime \prime}+b\left(e^{r t}\right)^{\prime}+c\left(e^{r t}\right)=0 \\
\Longrightarrow a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0 \\
\Longrightarrow a r^{2}+b r+c=0 \Longrightarrow r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

and we thus have just to solve a quadratic equation. We call this the auxiliary equation or characteristic equation for the ODE.

We thus have three cases to consider:

1. $b^{2}>4 a c: r$ has two real roots, giving two real solutions to the original ODE of the form

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=e^{r_{-} t}
$$

where $r_{ \pm}:=r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Note that $\frac{y_{2}}{y_{2}}=e^{\left(r_{-}-r_{+}\right) t}$ is non-constant hence these solutions are independent. It follows that we have a general solution

$$
y(t)=k_{1} e^{r_{+} t}+k_{2} e^{r_{-} t}
$$

for arbitrary constants k_{1}, k_{2}.
2. $b^{2}=4 a c: r$ has one real (repeated) solution, $r=\frac{-b}{2 a}$. This gives only one solution $y_{1}=e^{r_{1} t}$: we find another by reduction of order. Let $y=u y_{1}=u e^{r_{1} t}=u e^{\frac{-b t}{2 a}}$. We have:

$$
\begin{aligned}
& 0=a y^{\prime \prime}+b y^{\prime}+c y \\
& 0=a\left(u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}\right)+b\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+c u y^{\prime} \\
& 0=a y_{1} u^{\prime \prime}+\left(2 a y_{1}^{\prime}+b y_{1}\right) u^{\prime}+\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+\overrightarrow{y_{1}}\right) u \\
& 0=a e^{r t} u^{\prime \prime}+\left(2 a r e^{r t}+b e^{r t}\right) u^{\prime} \\
& 0=a u^{\prime \prime}+(2 a r+b) u^{\prime} \\
& 0=a u^{\prime \prime}+\left(-\frac{2 a b}{2 a}+b\right) u^{\prime} \\
& 0=a u^{\prime \prime} \\
& 0=u^{\prime \prime} \Longrightarrow u^{\prime}=k_{1} \Longrightarrow u=k_{1} t+k_{2}
\end{aligned}
$$

and so we have another solution $y=u y_{1}=\left(k_{1} t+k_{2}\right) e^{r t}$; these constants k_{1}, k_{2} are arbitrary (as long as $k_{1} \neq 0$, which would just give a linearly dependent solution to the original), so take $k_{1}=1, k_{2}=0$. This gives a general solution

$$
y(t)=c_{1} e^{r t}+c_{2} t e^{r t}=\left(c_{1}+c_{2} t\right) e^{r t}
$$

which is actually just the "second" solution we found before (and thus this one was indeed the general solution by itself).
3. $b^{2}<4 a c: r$ has two complex conjugate roots $r_{ \pm}=-\frac{b}{2 a} \pm \frac{\sqrt{4 a c-b^{2}}}{2 a} i:=\alpha \pm i \beta$. This gives solutions

$$
y_{+}=e^{(\alpha+i \beta) t}, \quad y_{-}=e^{(\alpha-i \beta) t}
$$

While valid, these complex solutions are not necessarily useful in this form; we can rewrite them using Euler's formula to take only the real parts.

$$
\begin{aligned}
& y_{+}=e^{(\alpha+i \beta) t}=e^{\alpha t} e^{i \beta t}=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
& y_{-}=e^{(\alpha-i \beta) t}=e^{\alpha t} e^{-i \beta t}=e^{\alpha t}[\cos (-\beta t)+i \sin (-\beta t)]=e^{\alpha t}[\cos (\beta t)-i \sin (\beta t)]
\end{aligned}
$$

Let $y_{1}=\frac{1}{2}\left(y_{+}+y_{-}\right)=e^{\alpha t} \cos (\beta t)$; this is a first, purely real solution to our ODE. To find a second, we could use reduction of order, or just take another linear combination of y_{+}, y_{-}

$$
y_{2}=\frac{1}{2 i}\left[y_{+}-y_{-}\right]=e^{\alpha t} \sin (\beta t) .
$$

y_{1}, y_{2} are linearly independent, since $\frac{y_{2}}{y_{1}}=\tan (\beta t)=0 \forall t \Longleftrightarrow \beta=0$, which we assumed was not the case (otherwise, we'd be in case 2.). Together, we have a general, purely real solution

$$
y(t)=e^{\alpha t}\left(k_{1} \sin (\beta t)+k_{2} \cos (\beta t)\right),
$$

where k_{1}, k_{2} arbitrary and $r=\alpha \pm i \beta$.

Harding once said: that "there is no permanent place in the world for ugly mathematics"; that means that there is a temporary place in the world for ugly mathematics. Make it pretty later.

Example 3.3

1. $y^{\prime \prime}-3 y^{\prime}+2 y=0$

This gives an auxiliary equation $r^{2}-3 r+2=0$ with solution $r=\frac{3 \pm \sqrt{9-8}}{2}=2,1$. These are both positive and real, and we thus have a general solution

$$
y(t)=k_{1} e^{t}+k_{2} e^{2 t} .
$$

2. $y^{\prime \prime}-2 y^{\prime}+y=0$

$$
\begin{aligned}
r^{2}-2 r+1=0 & \Longrightarrow(r-1)(r-1)=0 \Longrightarrow r=1 \\
& \Longrightarrow y(t)=\left(k_{1} t+k_{2}\right) e^{t}
\end{aligned}
$$

3. $y^{\prime \prime}+4 y^{\prime}+7 y=0$

$$
\begin{aligned}
r^{2}+4 r+7=0 & \Longrightarrow r=\frac{-4 \pm \sqrt{16-28}}{2}=-2 \pm i \frac{1}{2} \sqrt{12}=-2 \pm i \sqrt{3} \\
& \Longrightarrow y(t)=e^{-2 t}\left(k_{1} \sin (\sqrt{3} t)+k_{2} \cos (\sqrt{3} t)\right)
\end{aligned}
$$

3.5 Nonhomogeneous Second Order ODEs

We consider equations of the form

$$
a(t) y^{\prime \prime}+b(t) y^{\prime}+c y=g(t)
$$

Let's look for solutions of the form

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t),
$$

where y_{1}, y_{2} are linearly independent solutions of the homogenous equation $(g=0)$ and y_{p} is a particular solution to the ODE. Plugging this into the original equation:

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =a\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}+y_{p}^{\prime \prime}\right)+b\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}+y_{p}^{\prime}\right)+c\left(c_{1} y_{1}+c_{2} y_{2}+y_{p}\right) \\
& =c_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+\mathrm{cy}_{1}\right)+c_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+\overrightarrow{c y_{2}}\right)+a y_{p}^{\prime \prime}+b y_{p}^{\prime}+\mathrm{cy}_{p} \\
& =g,
\end{aligned}
$$

as desired. Indeed, all solutions are of this form; we will show this later.
Remark 3.4. Note that c_{1}, c_{2} are arbitrary constants; y_{p} is not multiplied by a constant, and should not be.
Remark 3.5. y_{1}, y_{2} are called a fundamental set of solutions; $y_{c}=c_{1} y_{1}+c_{2} y_{2}$, the general solution to the homogeneous equation, is called the complementary solution of the nonhomogeneous equation. $y=y_{c}+y_{p}$ is the general solution of the nonhomogeneous equation.

3.5.1 Linear Operator Notation

We denote $C(\mathbb{R})$ to be the space of continuous functions on \mathbb{R}. Let $C^{p}(\mathbb{R})$ be the space of p-times differentiable functions on \mathbb{R}; ie, $y \in C^{p}(\mathbb{R}) \Longrightarrow y^{(j)} \in C(\mathbb{R}), j=0,1, \ldots, p$. Notice that $C^{p+1}(\mathbb{R}) \subsetneq C^{p}(\mathbb{R})$. It follows that $C^{\infty}(\mathbb{R}) \subsetneq \cdots \subsetneq C^{n}(\mathbb{R}) \subsetneq \cdots \subsetneq C(\mathbb{R})$.

Let $D: C^{n}(\mathbb{R}) \rightarrow C^{(n-1)}(\mathbb{R})$ be the differentiation operator, ie $D y=y^{\prime}$, noting that $D y$ less differentiable than y unless $y \in C^{\infty}(\mathbb{R})$. Its clear that D is a linear operator.

Now, define the operator $L=a(x) D^{2}+b(x) D+c(x)$. Then, $L[y]=a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y$; hence, $L[y]=0$ and $L[y]=g$ are equivalent to our homogeneous and nonhomogeneous equations. It is clearly linear.

We explore two methods for finding the particular solution.

3.5.2 Finding $y_{p}:$ Method of Undetermined Coefficients

This method only applies to ODEs with constant coefficients, and only for certain functions g.

* Example 3.4

Consider $g(t)=L[y](t)$. Suppose $g(t)=\mu e^{\gamma t}$. Let's guess that $y_{p}=A e^{\gamma t}$. Then:

$$
L\left[y_{p}\right]=a A \gamma^{2} e^{\gamma t}+b A \gamma e^{\gamma t}+c A e^{\gamma t}=\left(a \gamma^{2}+b \gamma+c\right) A e^{\gamma t}
$$

hence, for $L\left[y_{p}\right]=g=\mu e^{\gamma t}$, we need $\mu=A\left(a \gamma^{2}+b \gamma+c\right) \Longrightarrow A=\frac{\mu}{a \gamma^{2}+b \gamma+c}$. Provided $a \gamma^{2}+b \gamma+c \neq 0 \Longleftrightarrow \gamma$ does not solve auxiliary equation, this A as defined will provide y_{p}.

Remark 3.6. This example worked* because differentiating the exponential yields another exponential, which cancel nicely. The same idea can be applied for polynomials and trig functions.

* Example 3.5: With trig

Suppose $L[y]=y^{\prime \prime}-y^{\prime}+y=g(t)=2 \sin (3 t)$, with auxiliary equation $r^{2}-r+1=0 \Longrightarrow r=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$.
This gives complementary solution

$$
y_{c}=e^{\frac{t}{2}}\left(k_{1} \sin \left(\frac{\sqrt{3}}{2} t\right)+k_{2} \cos \left(\frac{\sqrt{3}}{2} t\right)\right) .
$$

Suppose $y_{p}=A \sin (3 t)$; this would give

$$
-9 A \sin (3 t)-3 A \cos (3 t)+A \sin (3 t)=2 \sin (3 t)
$$

which implies $2=-8 A$ and $0=-3 A$, which has no solution. This does not necessarily mean that no y_{p} exists; at least in this case, we made a wrong guess at the beginning.

Suppose instead that $y_{p}=A \sin (3 t)+B \cos (3 t)$. This gives

$$
\begin{array}{r}
-9 A \sin (3 t)-9 B \cos (3 t)-3 A \cos (3 t)+3 B \sin (3 t)+A \sin (3 t)+B \cos (3 t)=2 \sin (3 t) \\
2 \sin (3 t)=(-3 B-8 A) \sin (3 t)+(-8 B-3 A) \cos (3 t) \\
\Longrightarrow 2=-3 B-8 A, \quad 0=-8 B-3 A
\end{array}
$$

Solving this equation gives $A=-\frac{16}{73}$ and $B=\frac{6}{73}$. This gives $y_{p}=\frac{-16}{73} \sin (3 t)+\frac{6}{73} \cos (3 t)$.

© Example 3.6: With polynomials

Consider $L[y]=y^{\prime \prime}+2 y^{\prime}+y=t^{3}=g$. Suppose $y_{p}=A t^{3}+B t^{2}+C t+D$. Then:

$$
\begin{array}{r}
L\left[y_{p}\right]=6 A t+2 B+2\left(3 A t^{2}+2 B t+C\right)+A t^{3}+B t^{2}+C t+D=t^{3} \\
A t^{3}+(6 A+B) t^{2}+(6 A+B) t^{2}+(6 A+4 B+C) t+(2 B+C+D)=t^{3} \\
1=A \\
0=6 A+B \\
\Longrightarrow \\
0=6 A+4 B+C \\
0=2 B+C+D
\end{array} \begin{gathered}
A=1 \\
B=-6 \\
C=18 \\
D=-24
\end{gathered}
$$

so $y_{p}=t^{3}-6 t^{2}+18 t-24$.

\circledast Example 3.7: Exponential

Take $L[y]=y^{\prime \prime}-2 y^{\prime}+y=4 e^{x}$ with homogeneous auxiliary $r^{2}-2 r+1=0 \Longrightarrow(r-1)^{2}=0$ so

$$
y_{1}=e^{x}, \quad y_{2}=x e^{x} .
$$

If we guessed, $y_{p}=A e^{x}$ then we'd have $L\left[A e^{x}\right]=A L\left[e^{x}\right]=0$, so it will not work. The same happens with guessing $A x e^{x}$. Suppose, then, that $A x^{2} e^{x}$. Then:

$$
\begin{array}{r}
L\left[A x^{2} e^{x}\right]=A\left(x^{2}+4 x+2\right) e^{x}-2 A\left(x^{2}+2 x\right) e^{x}+A x^{2} e^{x}=4 e^{x} \\
4 e^{x}=2 A e^{x} \Longrightarrow A=2 .
\end{array}
$$

$y_{p}=2 x^{2} e^{x}$, with general solution $y=\left(k_{1}+k_{2}+2 x^{2}\right) e^{x}$.

We now generalize the method:
Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ and $q(x)=\sum_{j=0}^{n} b_{j} x^{j}$ be given polynomials. To solve $L[y](x)=g(x)$ for a constant coefficient ODE, we have the following cases:

- $s=0$ if $\alpha+i \beta$ is not a root of the auxiliary equation.

$g(x)$ (given)	$y_{p(x)}$ (guess)
$p(x)$	$x^{s}\left(A_{n} x^{n}+\cdots+A_{1} x+A_{0}\right)$
$e^{\alpha x}$	$x^{s} A e^{\alpha x}$
$p(x) e^{\alpha x}$	$x^{s}\left(A_{n} x^{n}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x}$
$p(x) e^{\alpha x} \cos \beta x+q(x) e^{\alpha x} \sin \beta x$	$x^{s} e^{\alpha x} \cos (\beta x) \sum_{i=0}^{n} A_{i} x^{i}+x^{s} e^{\alpha x} \sin (\beta x) \sum_{j=0}^{n} B_{j} x^{j}$.

- $s=$ multiplicity of the root of $\alpha+i \beta$ if it is a root of the equation.

Remark 3.7. First two cases are just special cases of the third; they are all just special cases of the last one.

Remark 3.8. Linear combinations of the g^{\prime} 's above can also be solved, ie if $L[y]=g_{1}+g_{2}$, take $y_{p}=y_{p 1}+y_{p 2}$ where $y_{p i}$ matches the "proper guess" for g_{i}.

Remark 3.9. The method fails if a, b, c not constants, or if g not of the required form.

\circledast Example 3.8

1. Consider $y^{\prime \prime}+y^{\prime}-2 y=3 e^{2 x}$. We have

$$
r^{2}+r-2=0 \Longrightarrow(r-1)(r+2)=0 \Longrightarrow y_{1}=e^{x}, y_{2}=e^{-2 x}
$$

for the homogeneous equations. Let $y_{p}=A e^{2 x}$, since $e^{2 x}$ does solve the equation.
2. $y^{\prime \prime}=1-x^{2}$. $r^{2}=0 \Longrightarrow y_{1}=1, y_{2}=x$. Guess $g(x)=p(x) e^{\alpha x} \cos (\beta x)$ for $\alpha=0, \beta=0$, $p(x)=1-x^{2}$. Guessing $y_{p}=A x^{2}+B x+C$ won't work; instead, guess $x^{2}\left(A x^{2}+B x+C\right)$. Forgetting the x^{2} would yield an unsolvable equation.
3. $y^{\prime \prime}+4 y=3 \cos x . \quad r^{2}+4=0 \Longrightarrow r= \pm 2 i$ so $y_{1}=\cos 2 x, y_{2}=\sin 2 x$. Guess $y_{p}=$ $A \cos x+B \sin x$. We don't need the sin, since it won't appear in the ODE; this isn't a problem anyways, as this way we'll just find that $B=0$.

3.6 Variation of Parameters

This method works for non-constant coefficient ODEs, and (in principle) any g. To use it, we need first to know a fundamental set of solutions y_{1}, y_{2} of the homogeneous equation.

Consider the nonhomogeneous equation

$$
L[y](x)=g(x)=a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y
$$

Suppose $L\left[y_{1}\right]=L\left[y_{2}\right]=0$, so $y_{c}=k_{1} y_{1}+k_{2} y_{2}$ solves the homogeneous equation (constants k_{i}). Replace these k_{i} 's with unknown functions, $u_{i}(x)$, and assume that $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ solves the ODE.

We have

$$
\begin{aligned}
& y_{p}^{\prime}=\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]+\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right] \\
& y_{p}^{\prime \prime}=\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}+\left[u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}\right]
\end{aligned}
$$

Substituting this into \circledast, we have that

$$
\begin{aligned}
& g=L\left[y_{p}\right]=a(x)\left(\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}\right)+a(x)\left[u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}\right] \\
& +b(x)\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]+b(x)\left[u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right] \\
& +c(x)\left[u_{1} y_{1}+u_{2} y_{2}\right] \\
& \frac{u_{1}\left[a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right]}{0}+u_{2}\left[a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right] \quad 00 \text { (solve ODE by assumption) }
\end{aligned}
$$

But this is a single equation "trying" to define two unknown functions u_{1}, u_{2}; it is undetermined. We introduce an extra constraint to make it solvable. Let us state, for convenience, $u_{1}^{\prime}(x) y_{1}(x)+u_{2}^{\prime}(x) y_{2}(x)=0 \forall x$, implying $\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}=0 \forall x .{ }^{1}$ This assumption yields $g=a\left[u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right]$, so we write

$$
f(x):=\frac{g}{a}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} . \quad 0=u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}
$$

a system of two differential equations for u_{1}, u_{2}. We can solve these:

$$
\begin{aligned}
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}} & =\binom{0}{f(x)} \\
\Longrightarrow\binom{u_{1}^{\prime}}{u_{2}^{\prime}} & =\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)^{-1}\binom{0}{f(x)} \\
& =\frac{1}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}\left(\begin{array}{cc}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right)\binom{0}{f} .
\end{aligned}
$$

This can be problematic if $y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=0$; define $W\left(y_{1}, y_{2}\right)(x):=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$. Then, assuming $W\left(y_{1}, y_{2}\right)(x) \neq 0$, we have

$$
u_{1}^{\prime}(x)=\frac{-y_{2}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} \quad u_{2}^{\prime}(x)=\frac{y_{1}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)}
$$

which we can then integrate to find u_{1}, u_{2} appropriately. We call $W\left(y_{1}, y_{2}\right)(x)$ the Wronskian of y_{1}, y_{2} wrt x.
Note that, if y_{1}, y_{2} are linearly dependent with $y_{2}=c y_{1}$, then $W\left(y_{1}, y_{2}\right)(x)=y_{1}\left(c y_{1}^{\prime}\right)-y_{1}^{\prime}\left(c y_{1}\right)=0$; that is, a necessary condition for $W\left(y_{1}, y_{2}\right) \neq 0$ is for y_{1}, y_{2} to be linearly independent; it is not sufficient. However, we'll

[^0]only use W when y_{1}, y_{2} both solve the same ODE; in this case, it can be shown that $W\left(y_{1}, y_{2}\right)(x) \neq 0 \Longleftrightarrow y_{1}, y_{2}$ are linearly independent ${ }^{2}$.

Example 3.9

$$
4 y^{\prime \prime}+36 y=\frac{1}{\sin (3 x)} \Longrightarrow y^{\prime \prime}+9 y=\frac{1}{4 \sin (3 x)}=\frac{1}{4} \csc (3 x)
$$

Solving the homogeneous equation: $r^{2}+9=0 \Longrightarrow r= \pm 3 i$. This gives us $y_{1}=\cos (3 x), y_{2}=$ $\sin (3 x)$. Let $y_{p}=u_{1} \cos (3 x)+u_{2} \sin (3 x)$. We have $W\left(y_{1}, y_{2}\right)=(\cos 3 x) 3 \cos (3 x)+(3 \sin (3 x))(\sin (3 x))=$ 3 , yielding

$$
\begin{gathered}
u_{1}^{\prime}=\frac{-y_{2} f}{W\left(y_{1}, y_{2}\right)(x)}=\frac{-\sin (3 x) \frac{1}{4 \sin (3 x)}}{3}=-\frac{1}{12} \Longrightarrow u_{1}=-\frac{x}{12} \\
u_{2}^{\prime}=\frac{\cos (3 x) \frac{1}{4 \sin (3 x)}}{3}=\frac{1}{36}\left(\frac{3 \cos (3 x)}{\sin (3 x)}\right)=\frac{1}{36} \frac{h^{\prime}}{h} \Longrightarrow u_{1}=\frac{1}{36} \ln (|\sin 3 x|)
\end{gathered}
$$

We have

$$
y_{p}=-\frac{x}{12} \cos (3 x)+\frac{1}{36}(\ln |\sin 3 x|) \sin (3 x),
$$

with a general solution

$$
y(x)=\left(k_{1}-\frac{x}{12}\right) \cos (3 x)+\sin (3 x)\left(k_{2}+\frac{1}{36} \ln |\sin (3 x)|\right) .
$$

4 Nth Order ODEs

4.1 A Little Theory

Consider a nonlinear nth order IVP,

$$
\begin{gather*}
y^{(n)}(x)=f\left(x, y(x), y^{\prime}(x), \ldots, y^{(n-1)}(x)\right) \tag{i}\\
y\left(x_{0}\right)=\alpha_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=\alpha_{n} \tag{ii}
\end{gather*}
$$

noting that this is sufficient to specify a unique solution.

\hookrightarrow Theorem 4.1

If $f\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)$ and $\frac{\partial f}{\partial y_{j}}$ are continuous on the box $R=\left\{\left(x, y_{1}, \ldots, y_{n}\right):\left|x-x_{0}\right| \leqslant a,\left|y_{i}-\alpha_{i}\right| \leqslant\right.$ $b, i=1, \ldots, n\}$, then the initial value problem (i), (ii) has a unique solution $y(x)$ for $x \in\left[x_{0}-h, x+0+h\right]$ for some $h \in(0, a]$, with solution satisfying $\left|y(x)-\alpha_{1}\right| \leqslant b \forall x \in\left[x_{0}-h, x_{0}+h\right]$.

[^1]Remark 4.1. The proof is very similar to the case $n=1$; the key step is to rewrite the nth order ODE as a system of first order ODEs.

Let $u_{1}=y, u_{2}=y^{\prime}, \ldots, u_{n}=y^{(n-1)}$, and define $\underline{u}(t)=\left(\begin{array}{c}u_{1}(t) \\ \vdots \\ u_{n}(t)\end{array}\right)$. The ODE, then, can be written

$$
\underline{u}^{\prime}(t)=\left(\begin{array}{c}
u_{1}^{\prime}(t) \\
\vdots \\
u_{n}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{c}
y^{\prime} \\
\vdots \\
y^{(n)}
\end{array}\right)=\left(\begin{array}{c}
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)=: \underline{F}(x, \underline{u})
$$

"vectorally".

4.2 Linear nth Order ODEs

We consider

$$
y^{(n)}+\sum_{i=1}^{n} p_{i}(x) y^{(n-1)}=g(x)=: L[y],
$$

with ICs

$$
y\left(x_{0}\right)=\alpha_{1}, \ldots, y^{(n-1)}\left(x_{0}\right) \alpha_{n} .
$$

We would like to show that the general solution is as before with second order ODEs, ie

$$
y(x)=\sum_{j=1}^{n} k_{j} y_{j}+y_{p}
$$

where y_{p} is a particular solution of $L[y]=g$, and y_{1}, \ldots, y_{n} a fundamental set of solutions (of $L[y]=0$, eg). We want to show "both directions" of this equality; this form defines solutions, and any solution is of this form. This implies, then, that the solution space has exactly dimension n.

\hookrightarrow Lemma 4.1

Let $\varphi(x)$ be any solution of the homogeneous ODE $L[y](x)=0$ on I. Let $u(x) \geqslant 0$ be defined by $(u(x))^{2}=\varphi(x)^{2}+\varphi^{\prime}(x)^{2}+\cdots+\varphi^{(n-1)}(x)^{2}$. Then, $\forall x \in I$,

$$
u\left(x_{0}\right) e^{-k\left|x-x_{0}\right|} \leqslant u(x) \leqslant u\left(x_{0}\right) e^{k\left|x-x_{0}\right|}
$$

where $k=1+\sum_{i=1}^{n} \beta_{i}, \beta=\max _{x \in I}\left|p_{i}(x)\right|$.

\hookrightarrow Proposition 4.1

Let $I \subseteq \mathbb{R}, x_{0} \in I$ and let $p_{i}(x), i=1, \ldots, n$ and $g(x)$ be continuous on I. Then, the IVP

$$
L[y](x)=g(x) \quad y^{(j)}\left(x_{0}\right)=\alpha_{j+1}, j=0, \ldots, n-1
$$

has at most one solution $y(x)$ defined on I.

$$
L[\varphi]=L\left[y_{1}-y_{2}\right]=L\left[y_{1}\right]-L\left[y_{2}\right]=g(x)-g(x)=0 \forall x \in I,
$$

so $L[\varphi]=0 \forall x \in I$. Moreover, $\varphi\left(x_{0}\right)=y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=\alpha_{1}-\alpha_{1}=0$ (with similar computations for the other ICs wrt derivatives of φ). Let $u(x)=\varphi(x)^{2}+\varphi^{\prime}(x)^{2}+\cdots+\left(\varphi^{(n-1)}(x)\right)^{2}$. Then, $\varphi\left(x_{0}\right)=0$, so by the previous lemma $u(x)=0 \forall x \in I$, and thus $y_{1}(x)=y_{2}(x) \forall x \in I$, and thus there is at most one solution of the IVP.

4.3 Linear Homogeneous N th Order ODES

Consider $L[y]=y^{(n)}+\sum_{j=1}^{n} p_{j}(x) y^{(n j)}=0$; in this section, we aim to find the exact dimension of the solution space of L.

\hookrightarrow Theorem 4.2: Principle of Superposition

If y_{1}, \ldots, y_{m} are solutions of $L[y]=0$ for some $I \subseteq \mathbb{R}$ then $y(t)=\sum_{j}^{m} k_{j} y_{j}(t)$ is also a solution for arbitrary constants k_{j}.

\hookrightarrow Definition 4.1: Fundamental Set of Solutions

A set of n functions $\left\{y_{i}(x): L\left[y_{i}\right]=0, i=1, \ldots, n\right\}$ on an interval $I \subseteq \mathbb{R}$ is called a fundamental set of solutionsif y_{1}, \ldots, y_{n} are linearly independent on I.

This necessitates the need to test for linear independence of solutions, which is far harder in $\mathbb{R}^{n}, n \geqslant 3$ than $n=2$.

\hookrightarrow Definition 4.2: Wronskian

We define

$$
W\left(y_{1}, \ldots, y_{n}\right)(x):=\left|\begin{array}{ccc}
y_{1}(x) & \cdots & y_{n}(x) \\
y_{1}^{\prime}(x) & \cdots & y_{n}^{\prime}(x) \\
\vdots & \cdots & \vdots \\
y_{1}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x)
\end{array}\right| .
$$

\hookrightarrow Theorem 4.3

Let $y_{1}, \ldots, y_{n} \in C^{n-1}(I)$. If $W\left(y_{1}, \ldots, y_{n}\right)\left(x_{0}\right) \neq 0$ for some $x_{0} \in I$, then y_{1}, \ldots, y_{n} are linearly independent on I. Consequently, if y_{1}, \ldots, y_{n} are linearly dependent on I, then $W\left(y_{1}, \ldots, y_{n}\right)(x)=0 \forall x \in I$.

Remark 4.2. This does not mean that $W\left(y_{1}, \ldots, y_{n}\right)(x)=0$ implies the functions are linearly dependent; it does not hold iff.

Proof. We show the contrapositive. Assume y_{1}, \ldots, y_{n} are linearly dependent on I. Then, $\exists k_{i}, i=1, \ldots, n$, not all zero, such that $\sum_{j=1}^{n} k_{j} y_{j}(x) 0 \forall x \in I$, assuming wlog that $k_{n} \neq 0$. Then

$$
\begin{aligned}
y_{n}(x) & =-\frac{k_{1}}{k_{n}} y_{1}(x)-\frac{k_{2}}{k_{n}} y_{2}(x)-\cdots-\frac{k_{n-1}}{k_{n}} y_{n-1}(x) \\
& \Longrightarrow y_{n}^{\prime}(x)=-\frac{k_{1}}{k_{n}} y_{1}^{\prime}(x)-\cdots \frac{k_{n-1}}{k_{n}} y_{n-1}^{\prime}(x) \\
& \vdots \\
& \Longrightarrow y_{n}^{(n-1)}(x)=-\frac{k_{1}}{k_{n}} y_{1}^{(n-1)}(x)-\cdots-\frac{k_{n-1}}{k_{n}} y_{n-1}^{(n-1)}(x) \\
& \Longrightarrow\left(\begin{array}{c}
y_{n}(x) \\
\vdots \\
y_{n}^{(n-1)}(x)
\end{array}\right)=-\frac{k_{1}}{k_{n}}\left(\begin{array}{c}
y_{1}(x) \\
\vdots \\
y_{1}^{(n-1)}(x)
\end{array}\right)-\cdots-\frac{k_{n-1}}{k_{n}}\left(\begin{array}{c}
y_{n-1}(x) \\
\vdots \\
y_{n-1}^{(n-1)}(x)
\end{array}\right)
\end{aligned}
$$

but each of these column vectors are just rows of the Wronskian (times constants), and we thus have that the Wronskian has linearly dependent columns, ie is singular, ie has zero determinant, as we aimed to show.

* Example 4.1

Let $y_{1}(x)=x^{2}$ and $y_{2}(x)=\left\{\begin{array}{ll}x^{2} & x \geqslant 0 \\ -x^{2} & x<0\end{array}\right.$, where both are continuously differentiable on \mathbb{R}, but $y_{2}^{\prime \prime}(x)$ is discontinuous at $x=0$.

$$
W\left(y_{1}, y_{2}\right)(x)=\left\{\left.\begin{array}{ll}
\left|\begin{array}{ll}
x^{2} & x^{2} \\
2 x & 2 x
\end{array}\right|=0 & \forall x \geqslant 0 \\
x^{2} & -x^{2} \\
2 x & -2 x
\end{array} \right\rvert\,=0 \quad \forall x<0 \quad=0 \forall x .\right.
$$

Notice too that for $I=[0, \infty), y_{1}=y_{2}$ and are thus linearly dependent. However, y_{1}, y_{2} are linearly independent on \mathbb{R}. Clearly, our choice of interval changes the dependence/independence of our functions, and moreover, this is an example of functions with Wronskian 0 but are not linearly
dependent.

This example seems to show that the use of the Wronksian to determine independence of solutions is not reliable; however, we are not particularly interested in this in general, rather, we are concerned with solutions to an nth order ODE. In the previous example, y_{2} was not twice continuously differentiable, and so wouldn't even solve a second order ODE.

\hookrightarrow Theorem 4.4: Abel's

Let y_{1}, \ldots, y_{n} be solutions of the nth order homogeneous ODE $L[y]=0$ on I with continuous $p_{j}(x)$ on I. Then,

$$
W(x):=W\left(y_{1}, \ldots, y_{n}\right)(x)
$$

satisfies the ODE

$$
W^{\prime}(x)+p_{1}(x) W(x)=0 \quad \forall x \in I
$$

and hence

$$
W(x)=C e^{-\int p_{1}(x) \mathrm{d} x}
$$

Moreover, either

1. $c=0$, and $W\left(y_{1}, \ldots, y_{n}\right)(x)=0 \forall x \in I$ and y_{1}, \ldots, y_{n} are linearly dependent on I.
2. c $\neq 0$, and $W\left(y_{1}, \ldots, y_{n}\right)(x) \neq 0 \forall x \in I$ and y_{1}, \ldots, y_{n} are linearly independent on I, forming a fundamental set of solutions.

Proof. We show first that W satisfies the required ODE.
Consider first the $n=2$ case. We have, $\forall x \in I$

$$
\begin{aligned}
& 0=L\left[y_{1}\right]=y_{1}^{\prime \prime}+p_{1}(x) y_{1}^{\prime}+p_{2}(x) y_{1} \\
& 0=L\left[y_{2}\right]=y_{2}^{\prime \prime}+p_{1}(x) y_{2}^{\prime}+p_{2}(x) y_{2}
\end{aligned}
$$

Consider:

$$
\begin{gathered}
y_{2}\left(y_{1}^{\prime \prime}+p_{1} y_{1}^{\prime}+p_{2} y_{1}\right)-y_{1}\left(y_{2}^{\prime \prime}+p_{1} y_{2}^{\prime}+p_{2} y_{2}\right)=0 \\
\quad \Longrightarrow y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}+p_{1}\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)=0 \quad *^{1}
\end{gathered}
$$

But recall that $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, hence

$$
W^{\prime}(x)=y_{1} y_{2}^{\prime \prime}+y_{1}^{\prime} y_{2}^{\prime}-y_{1}^{\prime} y_{2}^{\prime}-y_{1}^{\prime \prime} y_{2}=y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
$$

and thus, as this matches the left-hand terms of $*^{1}, W^{\prime}(x)+p_{1} W(x)=0$ as desired.
For general n,

$$
\begin{aligned}
& W\left(y_{1}, \ldots, y_{n}\right)(x)=\left|\begin{array}{ccc}
y_{1}(x) & \cdots & y_{n}(x) \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x)
\end{array}\right| \\
& W^{\prime}(x)=\underbrace{\left|\begin{array}{ccc}
y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|+\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
y_{1}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
y_{1}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|+\cdots+\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)} \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|}_{=0 \text {; have a repeated row }}\left|+\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{n-1} \\
y_{1}^{(n)} & \cdots & y_{n}^{(n)}
\end{array}\right| *^{2}\right.
\end{aligned}
$$

But we have that $y_{j}^{(n)}=-p_{1} y_{j}^{(n-1)}-p_{2} y_{j}^{(n-2)}-\cdots-p_{n} y_{j}, j=1, \ldots, n$, so we can substitute this into $*^{2}$. This will simplify:

$$
\begin{aligned}
& W^{\prime}=-p_{1}\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-2)} & \cdots & y_{n}^{(n-2)} \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|-\underbrace{\left|\begin{array}{ccc}
p_{1} & \cdots & y_{n} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-2)} & \cdots & y_{n}^{(n-2)} \\
y_{1}^{(n-2)} & \cdots & y_{n}^{(n-2)}
\end{array}\right|-\cdots-p_{n}\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-2)} & \cdots & y_{n}^{(n-2)} \\
y_{1} & \cdots & y_{n}
\end{array}\right|}_{=0} \\
& =-p_{1} W,
\end{aligned}
$$

as required.
In the case $c \neq 0$, case 2 ., then $W(x) \neq 0 \forall x \in I$, and we've already shown that y_{1}, \ldots, y_{n} are linearly independent on I.

If $c=0$, case 2., and $W(x)=0 \forall x \in I$, then it remains to show that y_{1}, \ldots, y_{n} are linearly dependent.
Let $\varphi(x)=\sum_{j=1}^{n} c_{j} y_{j}(x)$, with c_{j} such that φ solves the IVP; ie

$$
L[\varphi]=0 ; \quad \varphi\left(x_{0}\right)=\cdots=\varphi^{(n-1)}\left(x_{0}\right)=0 .
$$

We must have:

$$
\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
\varphi\left(x_{0}\right) \\
\vdots \\
\varphi^{(n-1)}\left(x_{0}\right)
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) & \cdots & y_{n}\left(x_{0}\right) \\
\vdots & \ddots & \ddots & \vdots \\
y_{1}^{(n-1)}\left(x_{0}\right) & \cdots & \cdots & y_{n}^{(n-1)}\left(x_{0}\right)
\end{array}\right)}_{:=A}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Since $W(x)=0 \forall x \in I, W\left(x_{0}\right)=0$ and thus this matrix A has determinant 0 , is singular, and has a non-trivial kernel.

Let $\left(c_{1}, \ldots, c_{n}\right)^{T} \in \operatorname{Ker}(A)$, not equal to the zero vector; then, these c_{j} make φ satisfy the IVP as desired:

$$
L[\varphi]=\sum_{j=1}^{n} c_{j} L\left[y_{j}\right]=0
$$

as y_{j} solutions and c_{j} chosen appropriately to satisfy IVP.
We clearly have, as well, that $y(x)=0$ will solve the IVP; but by uniqueness, it must be that

$$
\begin{aligned}
0=y(x) & =\varphi(x) \forall x \in I \\
& \Longrightarrow 0=\sum_{j=1}^{n} c_{j} y_{j}(x),
\end{aligned}
$$

but by construction the c_{j} s are not all zero, hence, y_{1}, \ldots, y_{n} must be linearly dependent.

\hookrightarrow Corollary 4.1

If $L\left[y_{j}\right]=0 \forall x \in I, j=1, \ldots, n$, where p_{j} are continuous for all $x \in I$, and let $Y:=\left\{y_{j}: 1 \leqslant j \leqslant 1\right\}$. TFAE:

1. Y form a fundamental set of solutions on I;
2. Y are linearly independent on I;
3. $W(Y)\left(x_{0}\right) \neq 0$ for some $x_{0} \in I$;
4. $W(Y)(x) \neq 0 \forall x \in I$.

\hookrightarrow Theorem 4.5

Let y_{1}, \ldots, y_{n} be a fundamental set of solutions for $L[y]=0$ on I, where $p_{j}(x)$-continuous on I.

1. The IVP

$$
L[y]=0, \quad y\left(x_{0}\right)=\alpha_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=\alpha_{n}
$$

has a unique solution $y(x)$ for $x \in I$, which can be written as

$$
y(x)=\sum_{j=1}^{n} c_{j} y_{j}(x),
$$

for a unique choice of the constants c_{1}, \ldots, c_{n}.
2. Every solution $y(x)$ of the ODE $L[y]=0$ defined on I can be written in the form + for some choice of the parameters c_{1}, \ldots, c_{n}.

Remark 4.3. This theorem does not guarantee existence of the fundamental set of solutions for an arbitrary $L[y]=0$.
Part 2. shows that the fundamental set of solutions span the whole solution space: the space of solutions is exactly n-dimensional.

Proof. To prove 1., let $y(x)$ as defined by \dagger. Then, $L[y]=0$ trivially satisfies the ODE, by superposition, so it remains to show that there is a unique choice of $\left(c_{j}\right)$ such that the IVP is satisfied. We need:

$$
\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
y\left(x_{0}\right) \\
\vdots \\
y^{(n-1)}\left(x_{0}\right)
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) & \cdots & y_{n}\left(x_{0}\right) \\
\vdots & \ddots & \ddots & \vdots \\
y_{1}^{(n-1)}\left(x_{0}\right) & y_{2}^{(n-1)}\left(x_{0}\right) & \cdots & y_{n}^{(n-1)}\left(x_{0}\right)
\end{array}\right)}_{:=A}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

But now, $\operatorname{det}\{A\}=W\left(y_{1}, \ldots, y_{n}\right)\left(x_{0}\right) \neq 0$, hence A invertible, and we have

$$
\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=A^{-1}\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) .
$$

Since A^{-1} is unique, then so are the $\left(c_{j}\right)^{\prime}$ s.
To prove 2 ., note that any $y(x)$ defined by \dagger satisfies $L[y]=0 \forall x \in I$ for any choice of c_{j} by superposition. To show that there are no other forms of solutions, suppose $\varphi(x)$ is a solution that cannot be written as such.

Suppose $L[\varphi](x)=0 \forall x \in I$. For φ, let $x_{0} \in I$ and find $y(x)$ that satisfies the IVP

$$
L[y]=0, \quad y\left(x_{0}\right)=\varphi\left(x_{0}\right), \cdots, y^{(n-1)}\left(x_{0}\right)=\varphi^{(n-1)}\left(x_{0}\right)
$$

By 1. this IVP has a unique solution of the form \dagger, and with the same IC as φ, we have thus that $\varphi=y$, a contradiction.

4.4 Nonhomogeneous Nth Order Linear ODEs

Consider $L[y]=g$. If y_{1}, \ldots, y_{n} a fundamental set of solutions of $L[y]=0$ and $L\left[y_{p}\right]=g$, then

$$
y(x)=y_{p}(x)+\sum_{j=1}^{n} c_{j} y_{j}(x)
$$

will satisfy the original $L[y]=g$. We need to show that we can construct such an y_{p}.
We will use variation of parameters to find y_{p}. Suppose $y_{p}(x)=\sum_{j=1}^{n} u_{j}(x) y_{j}(x)$ for $\operatorname{TBD} u_{j}(x)$, and suppose $L\left[y_{p}\right]=g$. This gives

$$
y_{p}^{\prime}(x)=\sum_{j} u_{j}(x) y_{j}^{\prime}(x)+\sum_{j} u_{j}^{\prime}(x) y_{j}(x) .
$$

To simplify, we'll assume that $\sum_{j} u_{j}^{\prime} y_{j}=0 \forall x \in I$, so

$$
y_{p}^{\prime \prime}(x)=\sum_{j} u_{j} y_{j}^{\prime \prime}+\sum_{j} u_{j}^{\prime} y_{j}^{\prime}
$$

and assume, similarly, $\sum_{j} u_{j}^{\prime} y_{j}^{\prime}=0 \forall x$, remarking that at each of these steps we introduce a new constraint, and as such we will eventually have $n-1$ constraints to solve for.

\hookrightarrow Theorem 4.6

Let y_{1}, \ldots, y_{n} be a fundamental set of solutions of $L[y]=0$ for $x \in I$ where p_{j} continuous on I. Suppose $g(x)$ continuous on I. Then

1. The IVP $L[y]=g, y\left(x_{0}\right)=\alpha_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=\alpha_{n}$ has a unique solution $y(x)$ for $x \in I$.
2. Every solution of the ODE $L[y]=g$ can be written in the form

$$
y(x)=y_{p}(x)+\sum_{j=1}^{n} c_{j} y_{j}(x) \quad \ddagger
$$

where y_{p} a particular solution satisfying $L\left[y_{p}\right]=g$.

Proof. We show 2. first. Suppose $y_{p_{1}}$ solves $L\left[y_{p_{1}}\right]=g$ (which exists by 1.). Then, $y_{p_{1}}(x)$ is of the form \ddagger with $c_{j}=0$ and $y_{p}=y_{p_{1}}$. Let $y_{p_{2}}$ be a different solution of $L\left[y_{p_{2}}\right]=g$. Let $Y=y_{p_{2}}-y_{p_{1}}$. Then,

$$
L[Y]=L\left[y_{p_{2}}\right]-L\left[y_{p_{1}}\right]=g-g=0 \forall x \in I,
$$

hence $Y(x)$ solves the corresponding homogeneous problem $L[Y]=0$, and so by the previous theorem, can be written in the form $Y=\sum_{j=1}^{n} c_{j} y_{j}(x)$ for appropriate choice of c_{j} 's. Thus,

$$
y_{p_{2}}(x)=Y(x)+y_{p_{1}}(x)=\sum_{j=1}^{n} c_{j} y_{j}(x)+y_{p_{1}}(x)
$$

as required.
We proceed to 1 . We've already shown that this IVP has at most one solutions, so it suffices to find that there is exactly one. We will do so by variation of parameters. Suppose $y_{p}=\sum_{j=1}^{n} u_{j}(x) y_{j}(x)$ where y_{p} solves $L\left[y_{p}\right]=g$. Then,

$$
y_{p}^{\prime}=\sum_{j=1}^{n} u_{j} y_{j}^{\prime}+\sum_{j=1}^{n} u_{j}^{\prime} y_{j}
$$

and assume that $\sum_{j=1}^{n} u_{j}^{\prime} y_{j}=0 \forall x \in I$, hence

$$
y_{p}^{\prime \prime}=\sum u_{j}^{\prime} y_{j}^{\prime}+\sum u_{j} y_{j}^{\prime \prime}
$$

Let us assume too that $\sum u_{j}^{\prime} y_{j}^{\prime}=0 \forall x \in I$. We can continue in this manner, differentiating $n-1$ times, yielding

$$
y_{p}^{(j)}=\sum_{i=1}^{n} u_{i} y_{i}^{(j)}, \quad j=0, \ldots, n-1
$$

and assuming appropriately $\sum u_{i}^{\prime} y_{i}^{(j-1)}=0$, for $j=1, \ldots, n-1$. Finally, differentiating once more, we have

$$
y_{p}^{(n)}=\sum u_{i} y_{i}^{(n)}+\sum u_{i}^{\prime} y_{i}^{(n-1)}
$$

this time, not assuming that the last term vanishes. Plugging into L, then we have

$$
\begin{aligned}
g=L\left[y_{p}\right] & =y_{p}^{(n)}+\sum_{j=1}^{n} p_{j} y_{p}^{(n-j)} \\
& =\sum u_{i} y_{i}^{(n)}+\sum u_{i}^{\prime} y_{i}^{(n-1)}+\sum_{j=1}^{n} p_{j}(x) \sum_{i=1}^{n} u_{i} y_{i}^{(n-j)} \\
& =\sum u_{i}^{\prime} y_{i}^{(n-1)}+\sum_{i} u_{i} \underbrace{\left[y_{i}^{(n)}+\sum_{j} p_{j} y_{i}^{(n-j)}\right]}_{=0, \text { for each } i, \text { solving } L\left[y_{i}\right]=0} \\
& \Longrightarrow g=\sum_{i} u_{i}^{\prime} y_{i}^{(n-1)} .
\end{aligned}
$$

This, along with our $n-1$ constraints, gives us n equations defining the $u_{i}^{\prime}(x)$, giving us the linear system:

$$
\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \ddots & \ddots & \vdots \\
y_{1}^{(n-2)} & y_{2}^{(n-2)} & \cdots & y_{n}^{(n-2)} \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right) \cdot\left(\begin{array}{c}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
\vdots \\
u_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
g(x)
\end{array}\right)
$$

where the first $n-1$ rows of the matrix follow from the constrains we imposed on u_{i}^{\prime}, the last follows from the previous line when we plugged in our y_{p} into $L\left[y_{p}\right]=g$. But this is just the Wronskian matrix, and $W\left(y_{1}, \ldots, y_{n}\right)(x) \neq 0 \forall x \in I$ by Abel's since y_{i} 's form a fundamental set of solutions by assumption, thus, the matrix is invertible and we can therefore solve for $u_{i}^{\prime} \mathrm{s}$:

$$
\left(\begin{array}{c}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
\vdots \\
u_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \ddots & \ddots & \vdots \\
y_{1}^{(n-2)} & y_{2}^{(n-2)} & \cdots & y_{n}^{(n-2)} \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right)^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
g(x)
\end{array}\right)=:\left(\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right)
$$

hence, $u_{j}^{\prime}(x)=f_{j}(x)$ for some f_{j} as defined, and thus

$$
u_{j}(x)=\int_{x_{0}}^{x} f_{j}(s) \mathrm{d} s
$$

and so our particular solution is

$$
y_{p}(x)=\sum_{i} y_{i} \int_{x_{0}}^{x} f_{i}(s) \mathrm{d} s
$$

This is a solution to the ODE; it remains to show that the IVP can be solved by a unique choice of the c_{j} 's. This is similar to the homogeneous case; left as a (homework) exercise.
\hookrightarrow Theorem 4.7: Cramer's Rule
Let $A \in M_{n}(\mathbb{R})$ be invertible and $x, b n \times 1$ column vectors. Then for any $b \in \mathbb{R}^{n}, A x=b$ has a unique solution $x \in \mathbb{R}^{n}$ given by

$$
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

where A_{i} is the matrix obtained by replacing the i th column of A by the vector b.

\hookrightarrow Theorem 4.8: Variation of Parameters

Let y_{1}, \ldots, y_{n} be a fundamental set of solutions of $L[y]=0$, let $W(x)=W\left(y_{1}, \ldots, y_{n}\right)(x)$, let $W_{i}(x)$ be the determinant of the matrix obtained by replacing the i th column of W by $\left(\begin{array}{c}0 \\ \vdots \\ g\end{array}\right)$, and let $u_{i}=\int_{x_{0}}^{x} \frac{W_{i}(s)}{W(s)} \mathrm{d} s$, then

$$
y_{p}=\sum_{i=1}^{n} u_{i}(x) y_{i}(x) .
$$

Proof. This follows from the work we showed in the proof of theorem 4.6 part 2. and Cramer's Rule.

```
\(\circledast\) Example 4.2
```

Find the general solution of $y^{\prime \prime \prime}+y^{\prime}=\tan x$. We first find a fundamental set of solutions to

$$
y^{\prime \prime \prime}+y^{\prime}=0 \text {. }
$$

Suppose $y=e^{r x}$, giving

$$
0=r^{3}+r=r\left(r^{2}+1\right) \Longrightarrow r=0, \pm i,
$$

giving us solutions

$$
y_{1}(x)=1, \quad y_{2}(x)=\cos x, \quad y_{3}(x)=\sin x .
$$

To verify linear independence:

$$
W(x)=\left|\begin{array}{ccc}
1 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
0 & -\cos x & -\sin x
\end{array}\right|=\sin ^{2}(x)+\cos ^{2}(x)=1 .
$$

$$
\begin{aligned}
& W_{1}(x)=\left|\begin{array}{ccc}
0 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
\tan x & -\cos x & -\sin x
\end{array}\right|=\cos ^{2} x \tan x+\sin ^{2} x \tan x=\tan x \\
& W_{2}(x)=\left|\begin{array}{ccc}
1 & 0 & \sin x \\
0 & 0 & \cos x \\
0 & \tan x & -\sin x
\end{array}\right|=-\cos x \tan x=-\sin x \\
& W_{3}(x)=\left|\begin{array}{ccc}
1 & \cos x & 0 \\
0 & -\sin x & 0 \\
0 & -\cos x & \tan x
\end{array}\right|=-\sin x \tan x=\frac{-\sin ^{2} x}{\cos x}
\end{aligned}
$$

Then, this gives

$$
\begin{aligned}
& u_{1}=\int \frac{W_{1}}{W} \mathrm{~d} x=\int \tan x \mathrm{~d} x=-\ln |\cos x| \\
& u_{2}=\int \frac{W_{2}}{W} \mathrm{~d} x=\int-\sin x \mathrm{~d} x=\cos x \\
& u_{3}=\int \frac{W_{3}}{W} \mathrm{~d} x=\int \frac{-\sin ^{2} x}{\cos x} \mathrm{~d} x=\int \frac{\cos ^{2} x-1}{\cos x}=\sin x-\ln |\tan x+\sec x|
\end{aligned}
$$

and so

$$
\begin{aligned}
y_{p} & =\sum_{j=1}^{3} u_{j} y_{j}=-\ln |\cos x|+\cos x \cdot \cos x+(\sin x-\ln |\tan x+\sec x|) \cdot \sin x \\
& =1-\ln |\cos x|-(\ln |\tan x+\sec x|) \sin x,
\end{aligned}
$$

4.5 Fundamental Set of Solutions

\hookrightarrow Theorem 4.9

Let $L[y]:=\sum_{j=0}^{n} a_{j} y^{(j)}$ where a_{j} are real constants with $a_{n} \neq 0$. Let

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} r^{j}=0 \tag{A}
\end{equation*}
$$

be the corresponding auxiliary equation, supposing it has roots r_{j} of multiplicity s_{j}. Then, the linear homogeneous $L[y]=0$ has a fundamental set of solutions defined on \mathbb{R} composed of

$$
x^{k} e^{r_{j} x}, \quad k=0, \ldots, s_{j}-1, r_{j} \in \mathbb{R} \text { of mult. } s_{j}
$$

and

$$
x^{k} e^{\alpha_{j} x} \cos \left(\beta_{j} x\right), \quad x^{k} e^{\alpha_{j} x} \sin \left(\beta_{j} x\right), \quad k=0,1, \ldots, s_{j}-1, \text { where } r_{j}=\alpha_{j} \pm \beta_{j} \text { of mult. } s_{j} .
$$

Proof. We won't prove this, but is just a generalization of the same idea for second-order equations. Difficulties in the proof arise when proving linear independence.

Remark 4.4. Combined with the previous theorem, we thus have that all solutions of $L[y]=0$ can be written in the form $y=\sum_{j=1}^{n} c_{j} y_{j}(x)$.

4.6 Non-Constant Coefficient Linear ODEs

\hookrightarrow Theorem 4.10

Let $L[y]=y^{(n)}+\sum_{j=1}^{n} p_{j}(x) y^{(n-j)}(x)$, where each $p_{j}(x)$ continuous on some $I \subseteq \mathbb{R}$, and let $x_{0} \in I$. Let $y_{i}(x)$ solve the IVP

$$
L\left[y_{i}\right](x)=0 \quad y_{i}^{(i-1)}\left(x_{0}\right)=1, y_{i}^{(j)}\left(x_{0}\right), j=0, \ldots, n-1, j \neq i-1
$$

Then, $\left\{y_{i}: i=1, \ldots, n\right\}$ form a fundamental set of solutions for $L[y]=0$ on I.

Proof. Each of these IVPs has a unique solution $y_{i}(x)$ on I by Picard's Theorem. Now,

$$
W\left(y_{1}, \ldots, y_{n}\right)\left(x_{0}\right)=\left|\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{array}\right|=1
$$

so y_{i} are indeed linearly independent, by Abel's Theorem, on I.

\circledast Example 4.3

Consider the IVP

$$
L[y]:=y^{(4)}+y^{\prime \prime}-2 y=\cos x, \quad y(0)=1, y^{(i)}(0)=0, \quad i=1,2,3 .
$$

We first find $L\left[y_{c}\right]=0$. We have auxiliary

$$
r^{4}+r^{2}-2=0 \Longrightarrow\left(r^{2}-1\right)\left(r^{2}+2\right)=0 \Longrightarrow r= \pm 1, \pm i \sqrt{2}
$$

and thus

$$
y_{1}=e^{x}, \quad y_{2}=e^{-x}, \quad y_{3}=\cos \sqrt{2} x, \quad y_{4}=\sin \sqrt{2} x
$$

We seek now a particular solution, guessing

$$
y_{p}=A \cos x \Longrightarrow L\left[y_{p}\right]=A \cos x-A \cos x-2 A \cos x=\cos x \Longrightarrow A=-\frac{1}{2}
$$

and thus $y_{p}=-\frac{1}{2} \cos x$, giving general solution

$$
y(x)=k_{1} e^{x}+k_{2} e^{-x}+k_{3} \cos (\sqrt{2} x)+k_{4} \sin (\sqrt{2} x)-\frac{1}{2} \cos (x) .
$$

Solving the IVP, we find

$$
\begin{align*}
& 1= y(0)=k_{1}+k_{2}+k_{3}-\frac{1}{2} \quad \text { (i) } \\
& y^{\prime}(x)= k_{1} e^{x}-k_{2} e^{-x}-\sqrt{2} k_{3} \sin (\sqrt{2} x)+\sqrt{2} k_{4} \cos (\sqrt{2} x)+\frac{1}{2} \sin (x) \\
& \Longrightarrow y^{\prime}(0)=0=k_{1}-k_{2}+\sqrt{2} k_{4} \quad \text { (ii) } \tag{ii}\\
& y^{\prime \prime}(x)=k_{1} e^{x}+k_{2} e^{-x}-2 k_{3} \cos (\sqrt{2} x)-2 k_{4} \sin (\sqrt{2} x)+\frac{1}{2} \cos (x) \\
& \Longrightarrow y^{\prime \prime}(0)=0=k_{1}+k_{2}-2 k_{3}+\frac{1}{2} \quad \text { (iii) } \tag{iii}\\
& y^{\prime \prime \prime}(x)=k_{1} e^{x}-k_{2} e^{-x}+2 \sqrt{2} k_{3} \sin (\sqrt{2} x)-2 \sqrt{2} k_{4} \cos (\sqrt{2} x)-\frac{1}{2} \sin (x) \\
& \Longrightarrow y^{\prime \prime \prime}(0)=0=k_{1}-k_{2}-2 \sqrt{2} k_{4} \quad \text { (iv) } \tag{iv}\\
& \text { (i) }- \text { (iii) } \Longrightarrow 1=3 k_{3}-1 \Longrightarrow k_{3}=\frac{2}{3} \\
& \text { (ii) }- \text { (iv) } \Longrightarrow 0=(\sqrt{2}+2 \sqrt{2}) k_{4} \Longrightarrow k_{4}=0 \\
& \text { (iii) }+ \text { (iv) } \Longrightarrow 0=2 k_{1}-2 k_{3}+\frac{1}{2}-2 \sqrt{2} k_{4} \Longrightarrow k_{1}=\frac{5}{12} \\
& \text { (i) } \Longrightarrow 1=\frac{5}{12}+k_{2}+\frac{2}{3}-\frac{1}{2} \Longrightarrow k_{2}=\frac{5}{12}
\end{align*}
$$

So our IVP solution is

$$
y(x)=\frac{5}{12}\left(e^{x}+e^{-x}\right)+\frac{2}{3} \cos (\sqrt{2} x)-\frac{1}{2} \cos (x)
$$

5 Series Solutions

5.1 Review of Power Series

\hookrightarrow Definition 5.1: Convergence

A power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges at a point x_{0} if $\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}\left(x-x_{0}\right)^{n}$ exists for that x. The series is absolutely convergent at x_{0} if $\sum_{n=0}^{m}\left|a_{n}\right|\left|x-x_{0}\right|^{n}$ exists as $m \rightarrow \infty$.

The radius of convergence of a series is the minimal $\rho \geqslant 0$ such that the series is absolutely convergent for x such that $\left|x-x_{0}\right|<\rho$ and divergent for $\left|x-x_{0}\right|>\rho$.

Remark 5.1. Absolutely convergent \Longrightarrow convergent.

\hookrightarrow Definition 5.2: Real Analytic

A function $f: I \rightarrow \mathbb{R}$ is (real) analytic at $x_{0} \in I$ if $\exists \rho>0$ s.t. $\forall x \in I:\left|x-x_{0}\right|<\rho$ we have

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

with power series having radius of convergence (at least) ρ.
Remark 5.2. When f real analytic, it is continuous and has derivatives of all orders for $\left|x-x_{0}\right|<\rho$, and these derivatives can be found by differentiating the power series. Indeed, we have

$$
f^{(m)}(x)=\sum_{n=0}^{\infty} n(n-1) \cdots(n-m+1) a_{n}\left(x-x_{0}\right)^{n-m}=\sum_{n=m}^{\infty} n(n-1) \cdots(n-m+1) a_{n}\left(x-x_{0}\right)^{n-m}
$$

\hookrightarrow Lecture 15; Last Updated: Tue Feb 27 10:08:23 EST 2024

\hookrightarrow Proposition 5.1

Let $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$.

1. $f(x)=g(x) \forall x$ s.t. $\left|x-x_{0}\right|<\rho$ iff $a_{n}=b_{n} \forall n$.
2. $f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right)\left(x-x_{0}\right)^{n}$. The resulting power series has radius of convergence at least as large as the minimum of the radii of convergence of f, g.
3. $f(x) g(x)=\left[\sum_{i=0}^{\infty} a_{i}\left(x-x_{0}\right)^{i}\right]\left[\sum_{j=0}^{\infty} b_{j}\left(x-x_{0}\right)^{j}\right]=\sum_{n=0} c_{n}\left(x-x_{0}\right)^{n}$ where $c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j}$. This power series also has radius of convergence as least as large of the minimum of f, g.
4. We can divide power series (essentially long division of polynomials, but with infinite degrees) and can result in smaller radius of convergence, but won't.

\hookrightarrow Proposition 5.2

If $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ exists then $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$.

Proof. We have by the ratio test that $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges if

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|<1 & \Longleftrightarrow \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)}{a_{n}}\right| \\
& \Longleftrightarrow\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \\
& \Longleftrightarrow\left|x-x_{0}\right|<\frac{1}{\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|}=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
\end{aligned}
$$

Example 5.1

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \Longrightarrow e^{x-x_{0}}=\sum_{n=0}^{\infty} \frac{\left(x-x_{0}\right)^{n}}{n!} \\
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\sin (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

These all have $\rho=+\infty$.

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

This series converges for $\rho<1$ since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=1
$$

Remark 5.3. In the case that $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ does not exist, then the root test gives that

$$
\rho=\frac{1}{\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}} .
$$

\hookrightarrow Proposition 5.3

If $P(x), Q(x)$ are polynomials, then $\frac{Q(x)}{P(x)}$ is analytic at x_{0} if $P\left(x_{0}\right) \neq 0$. When analytic, the radius of convergence from x_{0} is the distance from x_{0} to the nearest zero of $P(x)$ in the complex plane.

* Example 5.2

$\frac{Q(x)}{P(x)}=\frac{1}{1+x^{2}}$. In the complex plane, $P(x)$ has roots at $x= \pm i$, and so $\rho=\sqrt{1+x_{0}^{2}}$.

5.2 Series Solutions near Ordinary Points

\hookrightarrow Definition 5.3: Ordinary Point

Let $L[y]=P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y$ and $p(x)=\frac{Q(x)}{P(x)}, q(x)=\frac{R(x)}{P(x)}$. x_{0} is an ordinary point of $L[y]=0$ if p, q are both analytic at x_{0}; otherwise, x_{0} is a singular point.

\hookrightarrow Theorem 5.1

If x_{0} an ordinary point for $L[y]=0$ then the general solution can be written as

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0}, a_{1} arbitrary and the other a_{i} 's are uniquely determined by choice of a_{0}, a_{1}. The functions y_{1}, y_{2} will be two power series, analytic at x_{0}, and form a fundamental set of solutions with $W\left(y_{1}, y_{2}\right)\left(x_{0}\right)=1$. The radius of convergence of y_{1}, y_{2} and y is at least as large as the smaller of the radii of p, q.

Example 5.3

Consider $\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$, with $p(x)=\frac{-4 x}{1+x^{2}}, q(x)=\frac{6}{1+x^{2}}$; these are analytic $\forall x \in \mathbb{R}$, so we can expand about any $x_{0} \in \mathbb{R}$. For convenience, take $x_{0}=0$. The radius of convergence of $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ will then be $\rho=1$. Then:

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime}(x) & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

$$
\begin{aligned}
0 & =\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=y^{\prime \prime}+x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+x^{2} \sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-4 x \sum_{n=0}^{\infty} n a_{n} x^{n-1}+6 \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n(n-1) a_{n}-4 n a_{n}+6 a_{n}\right] x^{n},
\end{aligned}
$$

so, $\forall n \geqslant 0$, we need

$$
\begin{aligned}
(n+2)(n+1) a_{n+2}+n(n-1) a_{n}-4 n a_{n}+6 a_{n} & =0 \\
(n+2)(n+1) a_{n+2}+(n-2)(n-3) a_{n} & =0 \\
\Longrightarrow a_{n+2}=\frac{-(n-2)(n-3)}{(n+2)(n+1)} a_{n} & \\
n=0 & \Longrightarrow a_{2}=a_{2}=-3 a_{0} \\
n=1 & \Longrightarrow a_{3}=-\frac{a_{1}}{3} \\
n=2 & \Longrightarrow a_{4}=0 \\
n=3 & \Longrightarrow a_{5}=0 \\
& \Longrightarrow a_{n}=0 \forall n \geqslant 4
\end{aligned}
$$

so

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}=a_{0}+a_{1} x-3 a_{0} x^{2}-\frac{a_{1}}{3} x^{3}=a_{0}\left(1-3 x^{2}\right)+a_{1}\left(x-\frac{x^{3}}{3}\right)=: a_{0} y_{1}+a_{1} y_{2}
$$

Remark that

$$
W\left(y_{1}, y_{2}\right)(0)=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

\circledast Example 5.4

Consider $y^{\prime \prime}-x y^{\prime}-x^{2} y=0, p(x)=-x, q(x)=-x^{2}$ which are both analytic on all \mathbb{R}. Let $x_{0}=0$, so

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \Longrightarrow x^{2} y=\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{n=2}^{\infty} a_{n-2} x^{n} \\
y^{\prime} & =\sum_{n=0}^{\infty} n a_{n} x^{n-1} \Longrightarrow x y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \\
0 & =y^{\prime \prime}-x y^{\prime}-x^{2} y=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=2}^{\infty} a_{n+2} x^{n} \\
0 & =2 a_{2}+3 \cdot 2 \cdot a_{3} \cdot x-a_{1} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}-a_{n-2}\right] x^{n}
\end{aligned}
$$

Matching powers of x^{n} yields

$$
\begin{array}{ll}
n=0] & a_{2}=0 \\
n=1] & a_{3}=\frac{a_{1}}{6} \\
n \geqslant 2] & (n+2)(n+1) a_{n+2} n a_{n}-a_{n-2}=0 \Longrightarrow a_{n+2}=\frac{n a_{n}+a_{n-2}}{(n+2)(n+1)}
\end{array}
$$

From here, you can find as many terms of a_{n} as you really want. The important thing to notice is that if n odd, a_{n} will only depend on a_{1}, and if n even, a_{n} will only depend on a_{0}. This gives a final form

$$
y(x)=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where y_{1}, y_{2} power series involving only event, odd terms resp. Remark too that $W\left(y_{1}, y_{2}\right)(0)=1$ (why?).

Remark 5.4. No lecture, in-class midterm.

5.3 Analytic Coefficients

We consider now series solutions to

$$
L[y]=P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

where P, Q, R analytic but not necessarily polynomials. Similar theory holds; a power series solution $y(x)$ will have radius of convergence at least as large as that of p and q. We proceed by instructive example.

© Example 5.5

$x_{0}=0, L[y]=y^{\prime \prime}-e^{x} y$. Here, $q(x)=-e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ with infinite radius of convergence. $p(x)=0$ also has infinite radius of convergence, hence we should find that our solution will as well. Letting $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, we compute as before.

$$
L[y]=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty}\left[\sum_{j=0}^{\infty}\left[\frac{a_{n-j}}{j!}\right] x^{n}\right]
$$

Computation of the corresponding a_{n} follows very similarly to previous examples; the only difficulty is the fact that now a_{n} will rely on all a_{n} 's less than it. Namely, one should find

$$
a_{n+2}=\frac{1}{(n+2)(n+1)} \sum_{j=0}^{n} \frac{a_{n-j}}{j!}
$$

5.4 Nonhomogeneous Series Solutions

We consider the case

$$
L[y]:=y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) .
$$

Writing $L[y]=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ where c_{n} dependent on a_{m} for $m \leqslant n$ and $g(x)=\sum_{n=0}^{\infty} g_{n}\left(x-x_{0}\right)^{n}$, we have that

$$
L[y]=g(x) \Longleftrightarrow c_{n}=g_{n} \forall n \geqslant 0 .
$$

So, we generally have a very similar method, only now we have to deal with a non-zero equivalence on the RHS.

© Example 5.6

$y^{\prime \prime}-x y=\frac{1}{6} x^{3}$; remark that any series solution will have infinite radius of convergence about $x_{0}=0$.
We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=\frac{1}{6} x^{3} \\
\Longrightarrow & 2 a_{2}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n-1}\right] x^{n}=\frac{1}{6} x^{3} .
\end{aligned}
$$

We proceed by matching powers of x on the left, right hand sides.

$$
\begin{aligned}
\left.x^{0}\right] & 2 a_{2}=0 \Longrightarrow a_{2}=0 \\
\left.x^{1}\right] & 3 \cdot 2 \cdot a_{3}-a_{0}=0 \Longrightarrow a_{3}=\frac{a_{0}}{3 \cdot 2} \\
\left.x^{2}\right] & 4 \cdot 3 \cdot a_{4}-a_{1}=0 \Longrightarrow a_{4}=\frac{a_{1}}{4 \cdot 3} \\
\left.x^{3}\right] & 5 \cdot 4 \cdot a_{5}-a_{2}=\frac{1}{6} \Longrightarrow a_{5}=\frac{1}{5!} \\
n \geqslant 4] & a_{n+2}(n+2)(n+1)-a_{n-1}=0 \Longrightarrow a_{n+2}=\frac{a_{n-1}}{(n+1)(n+1)}
\end{aligned}
$$

One can show that for $n \geqslant 0$,

$$
\begin{aligned}
a_{3 n} & =\frac{(3 n-1)(3 n-4)(\cdots)(7)(4) a_{0}}{(3 n)!} \\
a_{3 n+1} & =\frac{(3 n-1)(3 n-4)(\cdots)(8)(5)(2) a_{1}}{(3 n+1)!} \\
a_{3 n+2} & =\frac{3^{n-1} n!}{(3 n+2)!}
\end{aligned}
$$

remarking in particular that $a_{3 n+2}$ has no reliance on a_{0} or a_{1}, and indeed serve as the coefficients of our particular solution. We find

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{3 n} x^{3 n}+\sum_{n=0}^{\infty} a_{3 n+1} x^{3 n+1}+\sum_{n=0}^{\infty} a_{3 n+2} x^{3 n+2} \\
& =a_{0} y_{1}(x)+a_{1} y_{2}(x)+y_{p}(x)
\end{aligned}
$$

5.5 Singular Points

What about finding solutions about non-ordinary points? We now need to be more careful.

\hookrightarrow Definition 5.4: Regular Singular Point

A "not too singular point". If $L[y]=P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y$, then x_{0} a regular singular point if it is a singular point of $L[y]=0$, and also

$$
\left(x-x_{0}\right) \frac{Q(x)}{P(x)} \quad\left(x-x_{0}\right)^{2} \frac{R(x)}{P(x)}
$$

are both analytic at x_{0}. In particular, if P, Q, R polynomials, x_{0} a singular point iff $P\left(x_{0}\right)=0$, and regular iff $\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \frac{Q(x)}{P(x)}, \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} \frac{R(x)}{P(x)}$ are both finite.

5.6 Frobenius's Method

We consider $L[y]=P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$. Let x_{0} be a regular singular point, and multiply both sides by $\frac{\left(x-x_{0}\right)^{2}}{P(x)}$:

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) \underbrace{\left[\left(x-x_{0}\right) \frac{Q(x)}{P(x)}\right]}_{:=p(x)} y+\underbrace{\left[\left(x-x_{0}\right)^{2}\right]}_{:=q(x)} y=0
$$

Recall that, by definition of a regular singular point, we have that p, q analytic at x_{0} and so can be represented as a local power series. We will seek a solution of the form

$$
y(x)=\left|x-x_{0}\right|^{r} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

for some $r \in R$ with $a_{0} \neq 0$. For convenience, and wlog (by linearity, scaling appropriately) we take $a_{0}=1$ by convention. Also for simplicity, we often assume that $x>0$ so we do not have to work with the absolute value.

After tedious computation, one can find that an appropriate such r must satisfy the indicial equation

$$
F(r)=r(r-1)+r p_{0}+q_{0}=0
$$

where p_{0}, q_{0} the x^{0} coefficients of $p(x), q(x)$ resp.
From here, we can either 1) solve to find r (for which we need to do no more work than stare at p, q), plug in $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n+r}$ with appropriate r into our ODE and solve for a_{n}, or 2) derive a general formula.

We find the general formula to be

$$
a_{n}=\frac{-1}{F(n+r)} \cdot \sum_{k=0}^{n-1} a_{k}\left[(k+r) p_{n-k}+q_{n-k}\right], \quad \forall n \geqslant 1 .
$$

Remark 5.5. This is a "worst case" general form, where a_{n} depends on a_{n-1}, \ldots, a_{1}; we will generally find in examples that much simplification occurs.

Remark 5.6. Remark that if $F(r)=0$ has 2 real roots $r_{1}<r_{2}$, we'll be dividing by $F\left(n+r_{2}\right), n=1,2, \ldots$; but $F\left(r_{2}\right)=0 \Longrightarrow F\left(n+r_{2}\right) \neq 0 \forall n \geqslant 1$, so there is no division by zero problem. But this does give that if $r_{2}-r_{1}=N \in \mathbb{N}$, then the formula will break (division by zero) at a_{N}. Similarly, if $F(r)=0$ has repeated roots, $r_{1}=r_{2}$, we can only derive one formula this way.

Example 5.7

$$
0=L[y]=4 x y^{\prime \prime}+2 y^{\prime}+2 y .
$$

\hookrightarrow Theorem 5.2: Frobenius

Let $L[y]=\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p(x) y^{\prime}+q(x) y=0$ where x_{0} a regular singular point, p, q both analytic at x_{0}, with $p(x)=\sum_{n=0}^{\infty} p_{n}\left(x-x_{0}\right)^{n}, q(x)=\sum_{n=0}^{\infty} q_{n}\left(x-x_{0}\right)^{n}$, with $\rho:=$ min of the radii of convergence of p, q. Let r_{1}, r_{2} be the roots of

$$
0=F(r)=r(r-1)+p_{0} r+q_{0},
$$

where $r_{1} \geqslant r_{2}$ if both real. Then, there exists a solution of the form

$$
y_{1}(x)=\left|x-x_{0}\right|^{r_{1}}\left[1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right)\left(x-x_{0}\right)^{n}\right],
$$

with $a_{n}\left(r_{1}\right)$ s.t. $a_{0}=1, a_{n}=-\frac{1}{F(n+r)} \sum_{k=0}^{n-1} a_{k}(r)\left[(k+r) p_{n-k}+q_{n-k}\right], n \geqslant 1$, with $r=r_{1}$. We define a second solution as follows:
(i) $\left(r_{1}-r_{2} \neq 0\right.$ and $\left.r_{1}-r_{2} \notin \mathbb{Z}\right)$

$$
y_{2}(x)=\left|x-x_{0}\right|^{r_{2}}\left[1+\sum_{n=1}^{\infty} a_{n}\left(r_{2}\right)\left(x-x_{0}\right)^{n}\right]
$$

(ii) $\left(r_{1}=r_{2}\right)$

$$
y_{2}(x)=y_{1}(x) \cdot \ln \left|x-x_{0}\right|+\left|x-x_{0}\right|^{r_{1}} \cdot \sum_{n=1}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

where $b_{n}:=a_{n}^{\prime}\left(r_{1}\right), n \geqslant 1$.
(iii) $\left(r_{1}-r_{2}=: N \in \mathbb{N}\right)$

$$
y_{2}(x)=a y_{1}(x) \ln \left|x-x_{0}\right|+\left|x-x_{0}\right|^{r_{2}} \cdot\left[1+\sum_{n=1}^{\infty} c_{n}\left(x-x_{0}\right)^{n}\right],
$$

where $a:=\lim _{r \rightarrow r_{2}}\left(r-r_{2}\right) a_{N}(r)$ (possible zero) and

$$
c_{n}:=\left.\frac{\mathrm{d}}{\mathrm{~d} r}\left[\left(r-r_{2}\right) a_{n}(r)\right]\right|_{r=r_{2}}=\left\{\begin{array}{ll}
a_{n}\left(r_{2}\right) & a_{n} \text { well-defined } \\
\text { something else } & \text { otherwise }
\end{array} .\right.
$$

In each case, each series converges absolutely for $\left|x-x_{0}\right|<\rho$, and y_{1}, y_{2} define a fundamental set of solutions for $x \in\left(x_{0}-\rho, x\right)$ and $x \in\left(x_{0}, x_{0}+\rho\right)$.

Remark 5.7. In practice, for cases (ii), (iii), it may be easier to manually find b_{n}, c_{n} rather than that the derivative of a recursive sequence.

Remark 5.8. Lecture cancelled this day because of a power outage or something.
\hookrightarrow Lecture 20; Last Updated: Thu Mar 28 14:31:57 EDT 2024
\hookrightarrow Lecture 21; Last Updated: Thu Mar 28 14:39:31 EDT 2024

6 Laplace Transforms

6.1 Definitions

\hookrightarrow Definition 6.1: Laplace Transform
Let $f:[0, \infty) \rightarrow \mathbb{R}$. The Laplace transform of f, denote $F(s)$ or $\mathcal{L}\{f(t)\}$, is defined by

$$
\mathcal{L}\{f(t)\}:=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

\hookrightarrow Definition 6.2: Piecewise Continuous

A function f is piecewise continuous (pw cont) for $t \in[\alpha, \beta]$ if $[\alpha, \beta]$ can be partitioned by a finite number of points

$$
\alpha=: t_{0}<t_{1}<\cdots<t_{n}:=\beta
$$

such that
(i) f continuous on each $\left(t_{j}, t_{j+1}\right)$,
(ii) for $t \in\left(t_{j}, t_{j+1}\right), \lim _{t \rightarrow t_{j}} f(t)$ and $\lim _{t \rightarrow t_{j+1}} f(t)$ both exist, are finite.

In particular, $\lim _{t \rightarrow t_{j}^{+}} f(t)$ does not necessarily have to equal $\lim _{t \rightarrow t_{j}^{-}} f(t)$.
We say f pw cont on $[\alpha, \infty)$ if pw cont on $[\alpha, \beta], \forall \beta \in(\alpha, \infty)$.

\hookrightarrow Definition 6.3: Exponential Order

We say a function $f(t)$ of exponential order a (only specifying a if relevant) if \exists constants a, K, T such that

$$
|f(t)| \leqslant K e^{a t}, \forall t \geqslant T .
$$

\hookrightarrow Theorem 6.1

Suppose $f(t)$ pw cont on $[0, \infty)$ and f has exponential order a. Then, $\mathcal{L}\{f(t)\}$ exists for $s>a$.

Proof. Remark that to show that $\lim _{\beta \rightarrow \infty} \int_{0}^{\beta} g(t) \mathrm{d} t$ exists, it suffices to show that $\lim _{\beta \rightarrow \infty} \int_{0}^{\beta}|g(t)| \mathrm{d} t$ exists and is finite.

We have that, for some $M>T$ in the definition of exponential order,

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t=\underbrace{\int_{0}^{M} e^{-s t} f(t) \mathrm{d} t}_{\text {finite, since } f \text { pw cont thus bounded }}+\int_{M}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

So, we need to show the RHS converges. Since $M>T$, we have that

$$
\begin{aligned}
\int_{M}^{\infty} e^{-s t}|f(t)| \mathrm{d} t & \leqslant K \cdot \int_{M}^{\infty} e^{-s t} e^{-a t} \mathrm{~d} t \\
& =K \int_{M}^{\infty} e^{(a-s) t} \mathrm{~d} t \\
& =K \frac{e^{(a-s) M}}{s-a}<\infty,
\end{aligned}
$$

where the final line assumes that $s>a$.

Example 6.1

$$
\mathcal{L}\left\{e^{a t}\right\}=\int_{0}^{\infty} e^{-s t} e^{a t} \mathrm{~d} t=\left[\frac{e^{(a-s) t}}{a-s}\right]_{0}^{\infty}=\frac{1}{s-a}
$$

valid for $s>a$. Remark that taking $a=0$ gives us that $\mathcal{L}\{1\}=\frac{1}{s}$, again assuming that $s>0$.

\hookrightarrow Proposition 6.1

$\mathcal{L}\{\cdots\}$ linear.

Proof. Indeed, we have for $\alpha, \beta \in R$ and $f, g \mathrm{pw}$ cont functions,

$$
\begin{aligned}
\mathcal{L}\{\alpha f(t)+\beta g(t)\} & =\int_{0}^{\infty} e^{-s t}[\alpha f(t)+\beta g(t)] \mathrm{d} t \\
& =\alpha \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} T+\beta \int_{0}^{\infty} e^{-s t} g(t) \mathrm{d} t \\
& =\alpha \mathcal{L}\{f(t)\}+\beta \mathcal{L}\{g(t)\}
\end{aligned}
$$

Remark 6.1. This gives, moreover, that $\mathcal{L}\{K\}=K \mathcal{L}\{1\}=\frac{K}{s}$ as before.

\circledast Example 6.2

First, remark that $e^{t^{2}}$ and $\tan t$ do not have Laplace transforms; the first is not of exponential order, and the second is unbounded at its discontinuities and thus not pw cont (indeed, it is also, as a result, not of exponential order).

Next, we compute some basic examples.

$$
\mathcal{L}\{t\}=\int_{0}^{\infty} t e^{-s t} \mathrm{~d} t=\left[\frac{t e^{-s t}}{-s}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-s t}-s \mathrm{~d} t=\frac{1}{s} \int_{0}^{\infty} e^{-s t} \mathrm{~d} t=\frac{1}{s} \mathcal{L}\{1\}=\frac{1}{s^{2}}
$$

Remark too that for any $\varepsilon>0, t<e^{\varepsilon t}$ for sufficiently large t; we say t not only of exponential order, but of "exponential order 0 ".

$$
\begin{aligned}
\mathcal{L}\{\cos (\omega t)\} & =\int_{0}^{\infty} e^{-s t} \cos (\omega t) \mathrm{d} t=\left[\frac{1}{s} e^{-s t} \cos (\omega t)\right]_{0}^{\infty}-\frac{\omega}{s} \int_{0}^{\infty} e^{-s t} \sin (\omega t) \mathrm{d} t \\
& =\frac{1}{s}-\frac{\omega}{s}\left[\left[\sin (\omega t) \frac{e^{-s t}}{-s}\right]_{0}^{\infty}+\frac{\omega}{s} \int_{0}^{\infty} e^{-s t} \cos (\omega t) \mathrm{d} t\right] \\
& \Longrightarrow \mathcal{L}\{\cos \omega t\}=\frac{1}{s}-\frac{\omega^{2}}{s^{2}} \mathcal{L}\{\cos (\omega t)\} \Longrightarrow \mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

A similar computation gives $\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}$.
\hookrightarrow Theorem 6.2: First Translation theorem
If $\mathcal{L}\{f(t)\}=F(s), k \in \mathbb{R}$, then

$$
\mathcal{L}\left\{e^{k t} f(t)\right\}=F(s-k)
$$

Proof.

$$
\mathcal{L}\left\{e^{k t} f(t)\right\}=\int_{0}^{\infty} e^{-s t} e^{k t} f(t) \mathrm{d} t=\int_{0}^{\infty} e^{-(s-k) t} f(t) \mathrm{d} t=F(s-k)
$$

Remark 6.2. We often denote $F(s-a)=\mathcal{L}\{f(t)\}_{s \rightarrow s-a}$

Example 6.3

$$
\mathcal{L}\left\{e^{a t} \cos (\omega t)\right\}=\mathcal{L}\{\cos (\omega t)\}_{s \rightarrow s-a}=\left.\frac{s}{s^{2}+\omega^{2}}\right|_{s \rightarrow s-a}=\frac{s-a}{(s-a)^{2}+\omega^{2}}
$$

6.2 Solving Constant Coefficient Linear ODE IVP's

\hookrightarrow Theorem 6.3

Suppose $f, f^{\prime}, \ldots, f^{(n-1)}$ continuous on $[0, \infty)$ and $f^{(n)}$ pw cont on $[0, \infty)$ and all are of exponential order a. Then, $\mathcal{L}\left\{f^{(n)}(t)\right\}$ exists for $s>a$, and

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} \mathcal{L}\{f(t)\}-\sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0) .
$$

\hookrightarrow Lecture 22; Last Updated: Tue Apr 9 09:35:29 EDT 2024

Proof. For $n=1$, suppose $f^{\prime}(t)$ has discontinuities at t_{1}, \ldots, t_{n-1} on $[0, A]$ for some $A>0$; let $t_{0}:=0, t_{n}:=A$. Then

$$
\begin{aligned}
& \int_{0}^{A} e^{-s t} f^{\prime}(t) \mathrm{d} t=\sum_{j=0}^{m-1} \int_{t_{j}}^{t_{j+1}} e^{-s t} \cdot f^{\prime}(t) \mathrm{d} t \\
& \text { (integrate by parts) }=\sum_{j=0}^{m-1}\left[\left[e^{-s t} f(t)\right]_{t_{j}}^{t_{j+1}}+s \int_{t_{j}}^{t_{j+1}} e^{-s t} f(t) \mathrm{d} t\right] \\
& =\sum_{j=0}^{m-1}\left[e^{-s t} f(t)\right]_{t_{j}}^{t_{j+1}}+s \cdot \sum_{j=0}^{m-1} \int_{t_{j}}^{t_{j+1}} e^{-s t} f(t) \mathrm{d} t \\
& =e^{-s A} f(A)-f(0)+s \int_{0}^{A} e^{-s t} f(t) \mathrm{d} t
\end{aligned}
$$

Remark in $*$, we use that f continuous on each $\left(t_{j}, t_{j+1}\right)$, hence additivity applies.
Hence, for sufficiently large A, f being of exponential order gives us that

$$
\left|e^{-s A} f(A)\right| \leqslant e^{-s A} \cdot K e^{a A}=K e^{-A(s-a)}
$$

which $\rightarrow 0$ as $A \rightarrow \infty$, since $s>a$. Hence, taking $A \rightarrow \infty$, we find that the LHS of our original equation $\rightarrow \mathcal{L}\left\{f^{\prime}(t)\right\}$, and thus $\mathcal{L}\left\{f^{\prime}(t)\right\} \rightarrow f(0)+s \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t=s \mathcal{L}\{f(t)\}-f(0)$ as $A \rightarrow \infty$. Hence, we have the desired form for $n=1$.

For $n=2$, we can simply use that $f^{\prime \prime}(t)=\frac{\mathrm{d}}{\mathrm{d} t}\left(f^{\prime}(t)\right)$, namely

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \quad\left(\text { by } n=1 \text { case applied to } f^{\prime}(t)\right) \\
& \left.=s[s \mathcal{L}\{f(t)\}-f(0)]-f^{\prime}(0) \quad \text { (by } n=1 \text { case applied to } f(t)\right) \\
& =s^{2} \mathcal{L}\{f(t)\}-s f^{\prime}(0)-f(0),
\end{aligned}
$$

the desired form for $n=2$; we explicitly computed these two cases as they are the ones we will encounter most frequently in application.

For the general case, we proceed by induction. We already proved the base case $n=1$, so suppose the case for some $1,2, \ldots$, up to some $n \in \mathbb{N}$, ie $\mathcal{L}\left\{f^{(n)(t)}\right\}=s^{n} \mathcal{L}\{f(t)\}-\sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0)$. Then, we have that (under appropriate assumptions of exponential order, continuity, etc of $f^{(n+1)}$)

$$
\begin{aligned}
\mathcal{L}\left\{f^{(n+1)}(t)\right\} & =s \mathcal{L}\left\{f^{n}(t)\right\}-f^{n}(0) \quad \text { (by assumption, base case) } \\
& =s\left[s^{n} \mathcal{L}\{f(t)\}-\sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0)\right]-f^{(n)}(0) \quad \text { (by assumption, } n \text { case) } \\
& =s^{n+1} \mathcal{L}\{f(t)\}-s \sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0)-f^{(n)}(0) \\
& =s^{n+1} \mathcal{L}\{f(t)\}-\sum_{k=0}^{(n+1)-1} s^{(n+1)-1 k} f^{(k)}(0)
\end{aligned}
$$

as desired; the inductive step is complete and thus the claim holds in general.
This theorem, combined with the linearity of $\mathcal{L}\{\ldots\}$, allows us to convert linear, constant coefficient ODES to algebraic expressions, encoding initial values into the problem directly. To see this, consider the nth order, constant coefficient, linear IVP

$$
L[y]:=\sum_{k=0}^{n} a_{k} y^{(k)}, \quad y(0)=\alpha_{1}, y^{\prime}(0)=\alpha_{2}, \cdots y^{(n-1)}(0)=\alpha_{n},
$$

where a_{k} constants with $a_{n} \neq 0$. We venture to solve $L[y]=f(t)$. Letting $F(s):=\mathcal{L}\{f(t)\}, Y(s):=\mathcal{L}\{y(t)\}$,
then applying $\mathcal{L}\{\ldots\}$ to both sides of our ODE, we find

$$
\begin{aligned}
F(s)=\mathcal{L}\{f(t)\}=\mathcal{L}\{L[y](t)\} & =\mathcal{L}\left\{\sum_{k=0}^{n} a_{k} y^{(k)}\right\} \\
& =\sum_{k=0}^{n} a_{k} \mathcal{L}\left\{y^{(k)}\right\} \quad \text { (linearity) } \\
& =\sum_{k=0}^{n} a_{n}\left[s^{k} Y(s)-\sum_{j=0}^{k-1} s^{k-1-j} y^{(j)}(0)\right] \quad \text { (by theorem 6.3) } \\
& =\underbrace{\left[\sum_{k=0}^{n} a_{k} s^{k}\right]}_{:=P(s)} Y(s)-\underbrace{\sum_{k=0}^{n} a_{k} \sum_{j=0}^{k-1} s^{k-1-j} y^{(j)}(0)}_{:=Q(s)} \\
& \Longrightarrow F(s)=P(s) Y(s)+Q(s) \\
& \Longrightarrow Y(s)=\frac{F(s)}{P(s)}+\frac{Q(s)}{P(s)}
\end{aligned}
$$

Remark that $P(s)$ is a known (based on the ODE) polynomial in s of degree n, and moreover, is precisely the characteristic equation that we found when solving linear ODEs previously. $Q(s)$ on the other hand is a polynomial in s of degree $n-1$, defined by the ICs of the problem.

This gives a clear method to find $Y(s)$, that is, the Laplace transform of our solution; hence, we need to somehow invert this to find $y(t)$, ie $y(t)=\mathcal{L}^{-1}\{Y(s)\}$.

Complex analysis gives us that the inverse Laplace is given by the Bronwich Integral formula

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} F(s) e^{s t} \mathrm{~d} s
$$

We won't use this in practice, but rather make use of algebraic simplifications to bring our solution to a form recognizable as the Laplace transform of a (linear combination) of "elementary" functions. To do so, we first need the following proposition.
\hookrightarrow Proposition 6.2
$\mathcal{L}^{-1}\{F(s)\}$ is linear.

Proof. Recall that $\mathcal{L}\{\ldots\}$ linear, so

$$
\begin{aligned}
\mathcal{L}\{\alpha f(t)+\beta g(t)\} & =\alpha F(s)+\beta G(s) \\
& \Longrightarrow \mathcal{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)=\alpha \mathcal{L}^{-1}\{F(s)\}+\beta \cdot \mathcal{L}^{-1}\{G(s)\}
\end{aligned}
$$

\circledast Example 6.4: Computing $\mathcal{L}^{-1}\{\ldots\}$
Consider $F(s)=\frac{2 s+1}{s^{2}+4}=2\left(\frac{s}{s^{2}+4}\right)+\frac{1}{2}\left(\frac{2}{s^{2}+4}\right)$. Then, one can observe that

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & =2 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}+\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\} \\
& =2 \cos (2 t)+\frac{1}{2} \sin (2 t)
\end{aligned}
$$

In essence, computing inverse Laplace is an exercise in algebraic manipulation and purposeful staring.

\circledast Example 6.5: Solving Second Order Linear ODE

We consider

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-4 t}, \quad y(0)=1, y^{\prime}(0)=5
$$

Taking $\mathcal{L}\{\ldots\}$ of both sides:

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\} & =\mathcal{L}\left\{e^{-4 t}\right\} \\
& \Longrightarrow\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+4} \\
& \Longrightarrow\left(s^{2}-3 s+2\right) Y(s)-s-5+3=\frac{1}{s+4} \\
& \Longrightarrow Y(s)=\frac{1}{s^{2}-3+2}\left[\frac{1}{s+4}+s+2\right] \\
& \Longrightarrow Y(s)=\frac{1}{(s-1)(s-2)(s+4)}+\frac{s+2}{(s-1)(s-2)}
\end{aligned}
$$

After applying "classical partial fractions theory", one finds

$$
\begin{aligned}
y(t)=\mathcal{L}^{-1}\{Y(t)\} & =-\frac{16}{5} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+\frac{25}{6} \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}+\frac{1}{30} \mathcal{L}^{-1}\left\{\frac{1}{s+4}\right\} \\
& =-\frac{16}{5} e^{t}+\frac{25}{6} e^{2 t}+\frac{1}{30} e^{-4 t}
\end{aligned}
$$

Remark 6.3. Many questions such as this end up with some kind of partial fractions to work out; as such, don't bother simplifying excessively to find a common denominator or anything like that.

Remark 6.4. We already know how to solve these problems; but one particular advantage of this method is the encoding of the ICs. In the typical characteristic method technique, we needed to differentiate our entire solution in order ot set the appropriate constants. Here, we never differentiated (explicitly).

\circledast Example 6.6: First Order

Consider $y^{\prime}+y=\sin t, y(0)=1$. Taking the Laplace of both sides, we find

$$
\begin{array}{r}
s Y(s)-y(0)+Y(s)=\frac{1}{s^{2}+1} \\
\Longrightarrow \\
Y(s)=\frac{1}{s+1}+\frac{1}{\left(s^{2}+1\right)(s+1)},
\end{array}
$$

and after partial fractioning,

$$
\begin{aligned}
Y(s) & =\frac{1}{s+1}+\frac{1 / 2}{s+1}-\frac{1}{2}\left(\frac{s-1}{s^{2}+1}\right)=\frac{3 / 2}{s+1}-\frac{1}{2}\left(\frac{s}{s^{2}+1}\right)+\frac{1}{2}\left(\frac{1}{s^{2}+1}\right) \\
& \Longrightarrow y(t)=\frac{3}{2} \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}-\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}+\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \\
& \Longrightarrow y(t)=\frac{3}{2} e^{-t}-\frac{1}{2} \cos t+\frac{1}{2} \sin t
\end{aligned}
$$

6.3 Discontinuous Functions

\hookrightarrow Definition 6.4: Unit Step Function

The function given by

$$
\mathcal{U}(t-a):= \begin{cases}0 & t<a \\ 1 & t \geqslant a\end{cases}
$$

\hookrightarrow Theorem 6.4: Second Translation Theorem
If $F(s)=\mathcal{L}\{f(t)\}$, then for $a>0$,

$$
\mathcal{L}\{\mathcal{U}(t-a) f(t-a)\}=e^{-a s} F(s)
$$

Proof.

$$
\begin{aligned}
\mathcal{L}\{\mathcal{U}(t-a) f(t-a)\} & =\int_{0}^{a} e^{-s t} \underbrace{\mathcal{U}(t-a)}_{=0} f(t-a) \mathrm{d} t+\int_{a}^{\infty} e^{-s t} \overbrace{\mathcal{U}(t-a)}^{=1} f(t-a) \mathrm{d} t \\
& =\int_{a}^{\infty} e^{-s t} f(t-a) \mathrm{d} t \quad(w:=t-a) \\
& =\int_{0}^{\infty} e^{-(a+w) s} f(w) \mathrm{d} w \\
& =e^{-a s} \int_{0}^{\infty} e^{-w s} f(w) \mathrm{d} w=e^{-a s} F(s)
\end{aligned}
$$

\hookrightarrow Corollary 6.1
$\mathcal{L}\{\mathcal{U}(t-a)\}=\frac{e^{-a s}}{s}$.

Proof. $\mathcal{L}\{\mathcal{U}(t-a) \cdot 1\} \stackrel{*}{=} e^{-a s} \mathcal{L}\{1\}=\frac{e^{-a s}}{s}$, where we use the previous theorem at $*$.
\hookrightarrow Lecture 23; Last Updated: Tue Apr 2 12:16:34 EDT 2024

Example 6.7

$y^{\prime}+y=f(t):=\left\{\begin{array}{ll}0 & 0 \leqslant t<\pi \\ 3 \cos t & t \geqslant \pi\end{array}, y(0)=2\right.$. We can rewrite $f(t)=\mathcal{U}(t-\pi) g(t-\pi)=3 \mathcal{U}(t-$
$\pi) \cos (t)$, remarking that $g(t)=3 \cos (t+\pi)=-3 \cos (t)$, and so using the translation theorem we have

$$
\begin{aligned}
s Y(s)-y(0)+Y(s)=(s+1) Y(s)-2 & =3 \mathcal{L}\{\mathcal{U}(t-\pi) \cos (t)\}=-3 \frac{s}{s^{2}+1} e^{-\pi s} \\
& \Longrightarrow Y(s)=\frac{2}{s+1}-3 e^{-\pi s} \frac{s}{\left(s^{2}+1\right)(s+1)}
\end{aligned}
$$

Now, we proceed as normal, ignore the exponential for now. We find that

$$
\frac{s}{\left(s^{2}+1\right)(s+1)}=\frac{-1 / 2}{s+1}+\frac{1}{2} \frac{s}{s^{2}+1}+\frac{1}{2} \frac{1}{s^{2}+1}
$$

and so, applying the translation theorem in reverse,

$$
\begin{array}{r}
y(t)=2 e^{-t}-3 \mathcal{L}^{-1}\left\{e^{-\pi s}\left[\frac{-1 / 2}{s+1}+\frac{1}{2} \frac{s}{s^{2}+1}+\frac{1}{2} \frac{1}{s^{2}+1}\right]\right\} \\
=2 e^{-t}+\frac{3}{2} \mathcal{U}(t-\pi)\left[e^{-(t-\pi)}+\cos (t)+\sin (t)\right] .
\end{array}
$$

Remark that, as the ODE was discontinuous at $t=\pi$ with a jump of $\left|\lim _{t \rightarrow \pi^{+}} f(t)-\lim _{t \rightarrow \pi^{-}} f(t)\right|=3$; we can show (1) $y(t)$ is continuous and (2) $y^{\prime}(t)$ is discontinuous at precisely $t=\pi$ with the same jump; this occurs generally.

6.4 Derivatives of Transforms

\hookrightarrow Proposition 6.3
$\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{ds}} \mathfrak{L}\{f(t)\}$.

Proof. Follows from easy induction.

Example 6.8
Show that the Laplace transform of the Euler equation $a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0$ is itself an Euler equation.

6.5 Transforms of Integrals

\hookrightarrow Definition 6.5: Convolution

$(f * g)(t):=\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau$.

Example 6.9

$$
\begin{aligned}
e^{t} * \sin t & =\int_{0}^{t} e^{\tau} \sin (t-\tau) \mathrm{d} \tau \\
& =\cdots-\sin t+e^{t}-\cos t-e^{t} * \sin t \\
& \Longrightarrow e^{t} * \sin t=\frac{1}{2}\left[e^{t}-\sin t-\cos t\right]
\end{aligned}
$$

\hookrightarrow Theorem 6.5: Convolution Theorem

If $f, g \mathrm{pw}$-cont on $[0, \infty)$ and are of exponential order, then

$$
\mathcal{L}\{f * g\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}=F(s) G(s)
$$

Proof. We should but won't show that the Laplace of f, g existing implies that the Laplace of their convolution exists, but won't.

$$
\begin{aligned}
\mathcal{L}\{f * g\} & =\int_{0}^{\infty} \int_{0}^{t} f(\tau) g(t-\tau) e^{-s t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \int_{\tau}^{\infty} f(\tau) g(t-\tau) e^{-s t} \mathrm{~d} t \mathrm{~d} \tau \\
& =\int_{0}^{\infty} f(\tau) e^{-s \tau} \int_{\tau}^{\infty} g(t-\tau) e^{-s(t-\tau)} \mathrm{d} t \mathrm{~d} \tau \\
(w:=t-\tau) & =\int_{0}^{\infty} f(\tau) e^{-s \tau} \mathrm{~d} \tau \int_{0}^{\infty} g(w) e^{-s w} \mathrm{~d} w \\
& =\mathcal{L}\{f\} \mathcal{L}\{g\}
\end{aligned}
$$

\hookrightarrow Corollary 6.2
$\mathcal{L}^{-1}\{F(s) G(s)\}=f * g$.

\hookrightarrow Proposition 6.4

For f, g, h functions and α, β scalars,
(i) $(f * g)(t)=(g * f)(t)$
(ii) $((\alpha f * \beta g) * h)(t)=\alpha(f * h)(t)+\beta(g * h)(t)$
(iii) $0 * g=0$
(iv) $(\mathrm{Id} * g)(t) \neq g(t)$

Example 6.10
Show that $\mathcal{L}\{\sqrt{t}\}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}$.

Example 6.11

Show that $\mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+1\right)(s+3)}\right\}$ without using partial fractions.

6.6 Dirac Delta Function

\hookrightarrow Definition 6.6: Dirac Delta

Denote $\delta\left(t-t_{0}\right):=\left\{\begin{array}{ll}0 & t \neq t_{0} \\ \text { unbounded } & t=t_{0}\end{array}\right.$, in such a way that for any $\varepsilon>0, \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \delta\left(t-t_{0}\right) f(t) \mathrm{d} t=$ $\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) \mathrm{d} t=f\left(t_{0}\right)$. Ie, $\delta\left(t-t_{0}\right)$ "picks out" the function's value at t_{0}.

In particular, letting $f(t) \equiv 1$, we see that

$$
\int_{0}^{t} \delta\left(s-t_{0}\right) \mathrm{d} s= \begin{cases}0 & t<t_{0} \\ 1 & t>t_{0}\end{cases}
$$

Remark 6.5. This is not a very rigorous definition. Sorry.

\hookrightarrow Theorem 6.6

For $t_{0}>0, \mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}$.

Proof. $\mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\}=\int_{0}^{\infty} e^{-s t} \delta\left(t-t_{0}\right) \mathrm{d} t=e^{-s t_{0}}$.

\hookrightarrow Corollary 6.3

$$
\mathcal{L}\{\delta(t)\}=1
$$

6.7 Convolutions, Green's Function

Recall that we can write $L[y]=\sum_{k=0}^{n} a_{k} y^{(k)}(t)=f(t)$ (with IVPs) as $P(s) Y(s)-Q(s)=F(s)$, where $P(s)=$ $\sum_{k=0}^{n} a_{k} s^{k}, Y(s)=\mathcal{L}\{y(t)\}, F(s)=\mathcal{L}\{f(t)\}$, and $Q(s)$ of degree $n-1$ and dependent on the ICs. Letting $G(s):=\frac{1}{P(s)}$, then, we can rewrite this as

$$
y(t)=\mathcal{L}^{-1}\{F(s) G(s)\}+\mathcal{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\}
$$

$\operatorname{deg}(Q)<\operatorname{deg}(P)$ so we can find the RHS of this using typical partial fractions techniques, and we can solve the LHS using the convolution theorem, namely $\mathcal{L}^{-1}\{F(s) G(s)\}=(f * g)(t)$.

\hookrightarrow Definition 6.7: Green's function

The function $g(t)$ that solves $L[g(t)]=\delta(t)$ with IC $g(0)=g^{\prime}(0)=\cdots=g^{(n-1)}(0)$ is called the Green's function of L.

\hookrightarrow Theorem 6.7

Let $g(t)$ be the Green's function of L. Then, $L[g(t)]=G(s)=\frac{1}{P(s)}$.

Proof. $L[g]=\delta(t) \Longrightarrow P(s) G(s)-Q(s)=1 \Longrightarrow P(s) G(s)=1$.

* Example 6.12

Find an expression for $y(t)$ with respect to a convolution integral and $Q(s) / P(s)$ for the ODE

$$
y^{\prime \prime}+\omega^{2} y=f(t)
$$

for arbitrary $y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}$, and then when $\alpha_{0}=\alpha_{1}=0$.

6.8 Transforms of Periodic Functions

\hookrightarrow Definition 6.8: Periodic function

We say a function $f(t)$ is periodic of period T if $f(t)=f(t+T)$ for some minimal $T>0$ for all $t>0$.

Remark 6.6. This definition excludes the constant function as a periodic (why?).

\hookrightarrow Theorem 6.8

Let f-periodic of period T and pw-cont on $[0, \infty)$. Then,

$$
\mathcal{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) \mathrm{d} t
$$

Proof. Straightforward computation (hint: split up the integral in $\mathcal{L}\{f(t)\}$ into two integrals with T as the upper, lower limits resp.).

Example 6.13

Find the Laplace transform of $f(t):=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{U}(t-n)$ (remarking that f periodic with $T=2$) using the previous theorem. Then find it using the linearity of f.

© Example 6.14: Cursed

We consider $y^{\prime \prime}+y^{\prime}+y=f(t)=\delta(t-1)+\mathcal{U}(t-2) e^{-(t-2)}$ with $y(0)=0, y^{\prime}(0)=1$. Taking the Laplace of both sides

$$
\begin{array}{rl}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+s & Y(s)-y(0)+Y(s)=e^{-s}+e^{-2 s} \mathcal{L}\left\{e^{-t}\right\} \\
& \Longrightarrow Y(s)\left(s^{2}+s+1\right)-1=e^{-s}+e^{-2 s}\left(\frac{1}{s+1}\right) \\
& \Longrightarrow Y(s)=\frac{1}{s^{2}+s+1}+e^{-s} \frac{1}{s^{2}+s+1}+e^{-2 s} \frac{1}{\left(s^{2}+s+1\right)(s+1)}
\end{array}
$$

Unlike other examples, $s^{2}+s+1$ not reducible (over \mathbb{R}) so we have some difficulties. Completing the square, we find $s^{2}+s+1=\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}$, and so

$$
\frac{1}{s^{2}+s+1}=\frac{1}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}, \quad \frac{1}{\left(s^{2}+s+1\right)(s+1)}=\frac{1}{\left(\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)(s+1)} .
$$

Using partial fractions on the second expression,

$$
\begin{aligned}
\frac{1}{\left(s^{2}+s+1\right)(s+1)}=\frac{A s+B}{s^{2}+s+1}+\frac{C}{s+1} & \\
\Longrightarrow 1=(A s+B)(s+1)+C\left(s^{2}+s+1\right) & \\
s=-1] & 1=C \\
\left.s^{2}\right] & 0=A+C \Longrightarrow A=-1 \\
\left.s^{0}\right] & 1=B+C \Longrightarrow B=0
\end{aligned}
$$

Bring all the "simplifications" together, we have

$$
Y(s)=\frac{1}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}+e^{-s}\left[\frac{1}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}\right]+e^{-2 s}\left[\frac{-s}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}+\frac{1}{s+1}\right]
$$

For the first term, we need to use the first translation theorem, and for the other two we need to use both the first and second theorems.

$$
\begin{aligned}
\frac{1}{(s+1 / 2)^{2}+3 / 4}= & \frac{2}{\sqrt{3}}\left(\frac{\sqrt{3} / 2}{(s+1 / 2)^{2}+3 / 4}\right) \\
& \stackrel{\mathcal{L}^{-1}\{\ldots\}}{\sim} \rightarrow \frac{2}{\sqrt{3}} e^{-1 / 2 t} \sin \left(\frac{\sqrt{3}}{2} t\right) \\
e^{-s}\left[\frac{1}{(s+1 / 2)^{2}+3 / 4}\right] & \stackrel{\mathcal{L}^{-1}\{\ldots\}}{\leadsto \rightarrow} \mathcal{U}(t-1) \mathcal{L}^{-1}\left\{\frac{2}{\sqrt{3}}\left(\frac{\sqrt{3} / 2}{(s+1 / 2)^{2}+3 / 4}\right)\right\}_{t \mapsto t-1} \\
& \stackrel{\mathcal{L}^{-1}\{\ldots\}}{\leadsto \sim} \mathcal{U}(t-1) \frac{2}{\sqrt{3}} e^{-1 / 2(t-1)} \sin \left(\frac{\sqrt{3}}{2}(t-1)\right)
\end{aligned}
$$

Remark 6.7. In-class review; final lecture. Good luck!

7 List of Theorems

\hookrightarrow Definition 1.1 (Diffferential equation) 3
\hookrightarrow Definition 1.2 (Order) 3
\hookrightarrow Definition 1.3 (Autonomous/Nonautonomous) 5
\hookrightarrow Definition 1.4 (Linear/Nonlinear) 5
\hookrightarrow Definition 1.5 (Homogeneous/Nonhomogeneous) 5
\hookrightarrow Definition 1.6 (Constant/Variable) 6
\hookrightarrow Definition 1.7 (Solution) 6
\hookrightarrow Definition 1.8 (Interval of Validity) 6
\hookrightarrow Definition 2.1 (Separable ODE) 6
\hookrightarrow Definition 2.2 (Integrating Factor) 9
\hookrightarrow Definition 2.3 (Exact Equations) 11
\hookrightarrow Theorem 2.1 11
\hookrightarrow Definition 2.4 (Homogeneous) 15
\hookrightarrow Definition 2.5 (Lipschitz Continuity) 16
\hookrightarrow Lemma 2.1 16
\hookrightarrow Theorem 2.2 (Existence and Uniqueness for Scalar First Order IVPs) 17
\hookrightarrow Corollary 2.1 21
\hookrightarrow Theorem 2.3 21
\hookrightarrow Theorem 3.1 (Superposition of Solutions to Linear Second Order ODEs) 23
\hookrightarrow Definition 3.1 (Linear Independence of Functions) 24
\hookrightarrow Theorem 4.1 32
\hookrightarrow Lemma 4.1 33
\hookrightarrow Proposition 4.1 34
\hookrightarrow Theorem 4.2 (Principle of Superposition) 34
\hookrightarrow Definition 4.1 (Fundamental Set of Solutions) 34
\hookrightarrow Definition 4.2 (Wronskian) 34
\hookrightarrow Theorem 4.3 35
\hookrightarrow Theorem 4.4 (Abel's) 36
\hookrightarrow Corollary 4.1 38
\hookrightarrow Theorem 4.5 39
\hookrightarrow Theorem 4.6 40
\hookrightarrow Theorem 4.7 (Cramer's Rule) 43
\hookrightarrow Theorem 4.8 (Variation of Parameters) 43
\hookrightarrow Theorem 4.9 44
\hookrightarrow Theorem 4.10 45
\hookrightarrow Definition 5.1 (Convergence) 47
\hookrightarrow Definition 5.2 (Real Analytic) 47
\hookrightarrow Proposition 5.1 47
\hookrightarrow Proposition 5.2 47
\hookrightarrow Proposition 5.3 48
\hookrightarrow Definition 5.3 (Ordinary Point) 49
\hookrightarrow Theorem 5.1 49
\hookrightarrow Definition 5.4 (Regular Singular Point) 53
\hookrightarrow Theorem 5.2 (Frobenius) 55
\hookrightarrow Definition 6.1 (Laplace Transform) 56
\hookrightarrow Definition 6.2 (Piecewise Continuous) 56
\hookrightarrow Definition 6.3 (Exponential Order) 56
\hookrightarrow Theorem 6.1 57
\hookrightarrow Proposition 6.1 57
\hookrightarrow Theorem 6.2 (First Translation theorem) 58
\hookrightarrow Theorem 6.3 59
\hookrightarrow Proposition 6.2 61
\hookrightarrow Definition 6.4 (Unit Step Function) 63
\hookrightarrow Theorem 6.4 (Second Translation Theorem) 63
\hookrightarrow Corollary 6.1 64
\hookrightarrow Proposition 6.3 64
\hookrightarrow Definition 6.5 (Convolution) 65
\hookrightarrow Theorem 6.5 (Convolution Theorem) 65
\hookrightarrow Corollary 6.2 66
\hookrightarrow Proposition 6.4 66
\hookrightarrow Definition 6.6 (Dirac Delta) 66
\hookrightarrow Theorem 6.6 67
\hookrightarrow Corollary 6.3 67
\hookrightarrow Definition 6.7 (Green's function) 67
\hookrightarrow Theorem 6.7 67
\hookrightarrow Definition 6.8 (Periodic function) 68
\hookrightarrow Theorem 6.8 68

[^0]: ${ }^{1}$ This is a "trust me for now" instance.

[^1]: ${ }^{2}$ Abel's Identity

