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1 First-Order Equations

Definition 1 (Method of Characteristics) : A characteristic of a PDE

{
𝐹[𝑢] = 0, 𝒙 ∈ ℝ𝑁

𝑢(𝒙) = 𝜑(𝒙), 𝒙 ∈ Γ ⊂ ℝ𝑁−1

is a curve upon which a solution to the PDE is constant. With appropriate assumptions on the PDE and
its given initial data, one can find the value of a solution 𝑢(𝒙) to 𝐹  anywhere by

• Given 𝒙, find the characteristic curve 𝛾 that passes through 𝒙; one should take care to
parametrize 𝛾 (for convenience) such that 𝛾(0) lies on Γ.

• “Trace back” along 𝛾 to where it hits the initial data. We have then that 𝑢(𝒙) = 𝑢(𝛾(0)).

Theorem 1 (Linear Equations) :  Given a linear PDE of the form

{
𝑎(𝑥, 𝑦)𝑢𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑦 = 𝑐1(𝑥, 𝑦)𝑢 + 𝑐2(𝑥, 𝑦)
𝑢(𝑥, 𝑦) = 𝜑(𝑥, 𝑦) on Γ ⊂ ℝ

,

the characteristics 𝛾(𝑠) = (𝑥, 𝑦, 𝑧)(𝑠) of 𝑢(𝑥, 𝑦) is given by the solution to the system of ODEs

⎩{
{{
{⎨
{{
{{
⎧ ̇𝑥(𝑠) = 𝑎(𝑥(𝑠), 𝑦(𝑠))
̇𝑦(𝑠) = 𝑏(𝑥(𝑠), 𝑦(𝑠))
̇𝑧(𝑠) = 𝑐1(𝑥(𝑠), 𝑦(𝑠))𝑧(𝑠) + 𝑐2(𝑥(𝑠), 𝑦(𝑠))
𝑥(0) ≔ 𝑥0, 𝑦(0) ≔ 𝑦0
𝑧(0) ≔ 𝑧0 = 𝑢(𝑥0, 𝑦0) = 𝜑(𝑥0, 𝑦0)

,

where 𝑥0, 𝑦0 such that (𝑥0, 𝑦0) ∈ Γ.

Remark 1 : Notice that the 𝑥, 𝑦 and 𝑧 equations are decoupled. Hence, one can begin by solving for 
𝑥(𝑠), 𝑦(𝑠) then plugging into the ODE for 𝑧(𝑠) to finish.
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Remark 2 : One can pick 𝑥0, 𝑦0 (with caveats) for convenience, as long as the point (𝑥0, 𝑦0) lies on Γ,
ensuring we can find 𝑢 here. For simple data like 𝑢(𝑥, 0) = 𝜑(𝑥) for 𝑥 ∈ ℝ, it is easiest to pick 𝑦0 ≔ 0,
then letting 𝑥0 be free; this serves as a “parametrization” of the curves; not in the sense that 𝑠 is a
parameter, rather a parametrization of the family of characteristics, i.e. one should end up with a family
{𝛾}𝑥0∈ℝ.

Remark 3 : In temporal equations, i.e. where 𝑦 (for instance) equals 𝑡, we will often have 𝑏(𝑥, 𝑡) ≡ 1; in
this case, one can often reparametrize with 𝑡 rather than 𝑠, since the ODE for ̇𝑡(𝑠) will just result in 
𝑡(𝑠) = 𝑠 + 𝑡0, effectively reducing from a system of 3 to 2 equations.

Remark 4 : This method extends naturally to higher-dimensions equations; a PDE on ℝ𝑁  will result in 
𝑁 + 1 ODEs to solve. Note that characteristics are still curves in this case, not 𝑁 − 1 dimensional
manifolds as one mihgt expect‼

Theorem 2 (Semiilinear Equations) : Given a semiilinear PDE of the form

𝑎(𝑥, 𝑦)𝑢𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑦 = 𝑐(𝑥, 𝑦, 𝑢),

where 𝑐 may be nonlinear, we have characteristics given by

⎩
{
⎨
{
⎧ ̇𝑥(𝑠) = 𝑎(⋯)
̇𝑦(𝑠) = 𝑏(⋯)
̇𝑧(𝑠) = 𝑐(⋯)

.

Theorem 3 (Quasilinear Equations) : Given a quasilinear equation of the form

𝑎(𝑥, 𝑦, 𝑢)𝑢𝑥 + 𝑏(𝑥, 𝑦, 𝑢)𝑢𝑦 = 𝑐(𝑥, 𝑦, 𝑢),

characteristics are given as in previous cases, though are ODEs are now all coupled.

Remark 5 : “Unique”/classical solutions may not exist for all initial data in quasilinear equations; in
particular, if the initial data 𝑢(𝑥, 0) = 𝑔(𝑥) is nondecreasing, then our characteristic curves will
intersect 𝑔(𝑥) precisely once and we are all good; in general, this may not hold.

Theorem 4 (Fully Nonlinear Equations) :

2 The Wave Equation

Definition 2 : The (general) wave equation in ℝ𝑁  is given by

{𝑢𝑡𝑡 = 𝑐2Δ𝑢,𝒙 ∈ ℝ𝑁

where Δ𝑢 = ∑𝑁
𝑖=1 𝑢𝑥𝑖𝑥𝑖  the Laplacian of 𝑢 and 𝑐 > 0.
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Theorem 5 (1D) : In 𝑁 = 1, the general solution to the wave equation for 𝑥 ∈ ℝ with initial data 
𝑢(𝑥, 0) = 𝜑(𝑥), 𝑢𝑥(𝑥, 0) = 𝜓(𝑥) is given by D’Alembert’s formula

𝑢(𝑥, 𝑡) =
1
2
(𝜑(𝑥 + 𝑐𝑡) + 𝜑(𝑥 − 𝑐𝑡)) +

1
2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝜓(𝑠) d𝑠.

Remark 6 : We prove/derive this formula by
(i) Factor the wave equation (𝜕𝑡 − 𝑐𝜕𝑥)(𝜕𝑡 + 𝑐𝜕𝑥)𝑢 = 0

(ii) Make a change of variables 𝜉 = 𝑥 + 𝑐𝑡, 𝜂 = 𝑥 − 𝑐𝑡 in which we see 𝑢 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 −
𝑐𝑡) for any sufficiently smooth functions 𝑓, 𝑔

(iii) Solve for 𝑓, 𝑔 in terms of 𝜑,𝜓

Theorem 6 (1D, semi-infinite) :  In 𝑁 = 1, the “semi-infinite equation”, namely th wave equation
restricted to 𝑥 ≥ 0 with boundary condition 𝑢(0, 𝑡) = 0 for all 𝑡 ≥ 0, has solution given by

𝑢(𝑥, 𝑡) =
1
2
(𝜑odd(𝑥 + 𝑐𝑡) + 𝜑odd(𝑥 − 𝑐𝑡)) +

1
2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝜓odd(𝑠) d𝑠

=
⎩{
⎨
{⎧1
2(𝜑(𝑥 + 𝑐𝑡) + 𝜑(𝑥 − 𝑐𝑡)) +

1
2𝑐 ∫

𝑥+𝑐𝑡
𝑥−𝑐𝑡

𝜓(𝑠) d𝑠 if 𝑥 ≥ 𝑐𝑡
1
2(𝜑(𝑥 + 𝑐𝑡) − 𝜑(𝑐𝑡 − 𝑥)) +

1
2𝑐 ∫

𝑥+𝑐𝑡
𝑐𝑡−𝑥

𝜓(𝑠) d𝑠 if 0 ≤ 𝑥 ≤ 𝑐𝑡
,

where 𝜑odd(𝑥) ≔ {𝜑(𝑥) if 𝑥≥0
−𝜑(−𝑥) if 𝑥<0

, etc.

Remark 7 : Domain of dependence, influence are quite different in the semi-infinite case:

Theorem 7 (3D Wave Equation) : The solution to the 3D wave equation on all of ℝ3 is given by

𝑢(𝒙, 𝑡) =
1

4𝜋𝑐2𝑡2
∬
𝜕𝐵(𝒙,𝑐𝑡)

𝜑(𝒚) + ∇𝜑(𝒚) · (𝒚 − 𝒙) + 𝑡𝜓(𝒚) d𝑆𝒚.

3 Distributions

Definition 3 :  Let 𝐶∞𝑐 (ℝ) denote the space of test functions, smooth (infinitely differentiable) functions
with compact support. Then, a distribution 𝐹  is an element of the dual of 𝐶∞𝑐 (ℝ), that is, a linear
functional acting on smooth functions to return real numbers.

If 𝑓  a (sufficiently nice) function, we have a natural way of associating 𝑓  to a functional 𝐹𝑓 ; for any
test function 𝜑, we define

⟨𝐹𝑓 , 𝜑⟩ ≔ ∫
∞

−∞
𝑓(𝑥)𝜑(𝑥) d𝑥.

Definition 4 (Derivative) :  The derivative of a functional 𝐹  is defined such that for any 𝜑 ∈ 𝐶∞𝑐 (ℝ),

⟨𝐹 ′, 𝜑⟩ = −⟨𝐹 , 𝜑′⟩.
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Definition 5 (Delta Function) :  𝛿0 is defined as the distribution such that for any test function 𝜑,

⟨𝛿0, 𝜑⟩ = 𝜑(0).

Definition 6 :  Let 𝑓𝑛 be a sequence of functions and 𝐹  a distribution. We say 𝑓𝑛 → 𝐹  in the sense of
distributions (itsod) if for every test function 𝜑,

⟨𝑓𝑛, 𝜑⟩ → ⟨𝐹 , 𝜑⟩

as a sequence of real numbers.

Theorem 8 :  Let 𝑓𝑛(𝑥) ≔ (𝑛 − 𝑛2 |𝑥|)𝟙[− 1
𝑛,

1
𝑛]
(𝑥) for 𝑛 ≥ 1. Then, 𝑓𝑛 → 𝛿0 itsod.

4 Fourier Transform

Definition 7 :  Let 𝑓 ∈ 𝐿1(ℝ). We define for every 𝑘 ∈ ℝ

𝑓(𝑘) ≔ ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 ≕ ℱ{𝑓}(𝑘),

the Fourier transform of 𝑓 .

Theorem 9 (Derivative of a Fourier Transform): Assume 𝑓 ∈ 𝐿1(ℝ) 𝑛-times differentiable, then for any
positive integer 1 ≤ ℓ ≤ 𝑛,

d̂(ℓ)𝑓
d𝑥(ℓ)

(𝑘) = 𝑖ℓ𝑘ℓ𝑓(𝑘).

Theorem 10 : Let 𝑓, 𝑓 ∈ 𝐿1 be continuous. Then, for every 𝑥 ∈ ℝ,

𝑓(𝑥) =
1
2𝜋
∫
∞

−∞
𝑓(𝑘)𝑒𝑖𝑘𝑥 d𝑥.

More generally, given 𝑔(𝑘), we define the Inverse Fourier Transform (IFT) as

̌𝑔(𝑥) =
1
2𝜋
∫
∞

−∞
𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘.

Definition 8 (Convolution) :  Let 𝑓, 𝑔 be integrable, then we define the convolution

(𝑓 ∗ 𝑔)(𝑥) ≔ ∫
∞

−∞
𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦.

Theorem 11 (Properties of Convolution) :
• (𝑓 ∗ 𝑔)′ = (𝑓 ′ ∗ 𝑔) = (𝑓 ∗ 𝑔′) (supposing 𝑓  or 𝑔 differentiable).
• (𝑓 ∗ 𝑔)(𝑘) = 𝑓(𝑘)𝑔(𝑘)

5 Diffusion Equation
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Definition 9 :  For 𝛼 > 0, the diffusion equation in 1 space dimension is

𝑢𝑡 = 𝛼𝑢𝑥𝑥, 𝑢(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ ℝ, 𝑡 > 0.

In ℝ𝑁 , we have similarly

𝑢𝑡 = 𝛼Δ𝑢𝑥𝑥.

Theorem 12 :  The following solves the heat equation, under assumptions of integrability:

𝑢(𝑥, 𝑡) =
1

√
4𝜋𝛼𝑡

∫
∞

−∞
𝑒−

(𝑥−𝑦)2

4𝛼𝑡 𝑔(𝑦) d𝑦.

In particular,

lim
𝑡→0+

𝑢(𝑥, 𝑡) = 𝑔(𝑥)

for every 𝑥 ∈ ℝ.
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