MATH475 - PDEs

Summary

Fall 2024, Prof. Rustum Choksi. Notes by Louis Meunier

1 First-Order Equations	1
2 The Wave Equation	2
3 Distributions	3
4 Fourier Transform	4
5 Diffusion Equation	4

1 First-Order Equations

Definition 1 (Method of Characteristics): A characteristic of a PDE

$$egin{cases} F[u]=0,oldsymbol{x}\in\mathbb{R}^N\ u(oldsymbol{x})=arphi(oldsymbol{x}),oldsymbol{x}\in\Gamma\subset\mathbb{R}^{N-1} \end{cases}$$

is a curve upon which a solution to the PDE is constant. With appropriate assumptions on the PDE and its given initial data, one can find the value of a solution u(x) to F anywhere by

- Given x, find the characteristic curve γ that passes through x; one should take care to parametrize γ (for convenience) such that $\gamma(0)$ lies on Γ .
- "Trace back" along γ to where it hits the initial data. We have then that $u(x) = u(\gamma(0))$.

Theorem 1 (Linear Equations): Given a linear PDE of the form

$$\begin{cases} a(x,y)u_x+b(x,y)u_y=c_1(x,y)u+c_2(x,y)\\ u(x,y)=\varphi(x,y) \text{ on } \Gamma\subset \mathbb{R} \end{cases},$$

the characteristics $\gamma(s)=(x,y,z)(s)$ of u(x,y) is given by the solution to the system of ODEs

$$\begin{cases} \dot{x}(s) = a(x(s), y(s)) \\ \dot{y}(s) = b(x(s), y(s)) \\ \dot{z}(s) = c_1(x(s), y(s))z(s) + c_2(x(s), y(s)), \\ x(0) \coloneqq x_0, y(0) \coloneqq y_0 \\ z(0) \coloneqq z_0 = u(x_0, y_0) = \varphi(x_0, y_0) \end{cases}$$

where x_0, y_0 such that $(x_0, y_0) \in \Gamma$.

Remark 1: Notice that the x, y and z equations are decoupled. Hence, one can begin by solving for x(s), y(s) then plugging into the ODE for z(s) to finish.

1

Remark 2: One can pick x_0, y_0 (with caveats) for convenience, as long as the point (x_0, y_0) lies on Γ , ensuring we can find u here. For simple data like $u(x, 0) = \varphi(x)$ for $x \in \mathbb{R}$, it is easiest to pick $y_0 := 0$, then letting x_0 be free; this serves as a "parametrization" of the curves; not in the sense that s is a parameter, rather a parametrization of the family of characteristics, i.e. one should end up with a family $\{\gamma\}_{x_0 \in \mathbb{R}}$.

Remark 3: In temporal equations, i.e. where y (for instance) equals t, we will often have $b(x, t) \equiv 1$; in this case, one can often reparametrize with t rather than s, since the ODE for $\dot{t}(s)$ will just result in $t(s) = s + t_0$, effectively reducing from a system of 3 to 2 equations.

Remark 4: This method extends naturally to higher-dimensions equations; a PDE on \mathbb{R}^N will result in N + 1 ODEs to solve. Note that characteristics are *still* curves in this case, *not* N - 1 dimensional manifolds as one mingt expect!!

Theorem 2 (Semiilinear Equations): Given a semiilinear PDE of the form

$$a(x,y)u_x + b(x,y)u_y = c(x,y,u),$$

where c may be nonlinear, we have characteristics given by

$$\begin{cases} \dot{x}(s) = a(\cdots) \\ \dot{y}(s) = b(\cdots) \\ \dot{z}(s) = c(\cdots) \end{cases}$$

Theorem 3 (Quasilinear Equations): Given a quasilinear equation of the form

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u),$$

characteristics are given as in previous cases, though are ODEs are now all coupled.

Remark 5: "Unique"/classical solutions may not exist for all initial data in quasilinear equations; in particular, if the initial data u(x, 0) = g(x) is nondecreasing, then our characteristic curves will intersect g(x) precisely once and we are all good; in general, this may not hold.

Theorem 4 (Fully Nonlinear Equations):

2 The Wave Equation

Definition 2: The (general) wave equation in \mathbb{R}^N is given by

$$\left\{ u_{tt}=c^{2}\Delta u,x\in\mathbb{R}^{N}
ight\}$$

where $\Delta u = \sum_{i=1}^{N} u_{x_i x_i}$ the Laplacian of u and c > 0.

Theorem 5 (1D): In N = 1, the general solution to the wave equation for $x \in \mathbb{R}$ with initial data $u(x, 0) = \varphi(x), u_x(x, 0) = \psi(x)$ is given by *D'Alembert's formula*

$$u(x,t) = \frac{1}{2}(\varphi(x+ct) + \varphi(x-ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct}\psi(s)\,\mathrm{d}s.$$

Remark 6: We prove/derive this formula by

- (i) Factor the wave equation $(\partial_t c\partial_x)(\partial_t + c\partial_x)u = 0$
- (ii) Make a change of variables $\xi = x + ct$, $\eta = x ct$ in which we see u = f(x + ct) + g(x ct) for any sufficiently smooth functions f, g
- (iii) Solve for f, g in terms of φ, ψ

Theorem 6 (1D, semi-infinite): In N = 1, the "semi-infinite equation", namely the wave equation restricted to $x \ge 0$ with boundary condition u(0, t) = 0 for all $t \ge 0$, has solution given by

$$\begin{split} u(x,t) &= \frac{1}{2}(\varphi_{\mathrm{odd}}(x+ct) + \varphi_{\mathrm{odd}}(x-ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct}\psi_{\mathrm{odd}}(s)\,\mathrm{d}s\\ &= \begin{cases} \frac{1}{2}(\varphi(x+ct) + \varphi(x-ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct}\psi(s)\,\mathrm{d}s \text{ if }x \geq ct\\ \frac{1}{2}(\varphi(x+ct) - \varphi(ct-x)) + \frac{1}{2c}\int_{ct-x}^{x+ct}\psi(s)\,\mathrm{d}s \text{ if }0 \leq x \leq ct \end{cases}, \end{split}$$

where $\varphi_{\mathrm{odd}}(x) \coloneqq \begin{cases} \varphi(x) \text{ if } x \geq 0 \\ -\varphi(-x) \text{ if } x < 0 \end{cases}$, etc.

Remark 7: Domain of dependence, influence are quite different in the semi-infinite case:

Theorem 7 (3D Wave Equation): The solution to the 3D wave equation on all of \mathbb{R}^3 is given by

$$u(\boldsymbol{x},t) = \frac{1}{4\pi c^2 t^2} \iint_{\partial B(\boldsymbol{x},ct)} \varphi(\boldsymbol{y}) + \nabla \varphi(\boldsymbol{y}) \cdot (\boldsymbol{y}-\boldsymbol{x}) + t \psi(\boldsymbol{y}) \, \mathrm{d}S_{\boldsymbol{y}}.$$

3 Distributions

Definition 3: Let $C_c^{\infty}(\mathbb{R})$ denote the space of *test functions*, smooth (infinitely differentiable) functions with compact support. Then, a *distribution* F is an element of the dual of $C_c^{\infty}(\mathbb{R})$, that is, a linear functional acting on smooth functions to return real numbers.

If f a (sufficiently nice) function, we have a natural way of associating f to a functional F_f ; for any test function φ , we define

$$\langle F_f,\varphi\rangle\coloneqq \int_{-\infty}^\infty f(x)\varphi(x)\,\mathrm{d} x.$$

Definition 4 (Derivative): The *derivative* of a functional *F* is defined such that for any $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\langle F',\varphi\rangle=-\langle F,\varphi'\rangle.$$

Definition 5 (Delta Function): δ_0 is defined as the distribution such that for any test function φ ,

$$\langle \delta_0, \varphi \rangle = \varphi(0).$$

Definition 6: Let f_n be a sequence of functions and F a distribution. We say $f_n \to F$ in the sense of distributions (itsod) if for every test function φ ,

$$\langle f_n,\varphi\rangle\to \langle F,\varphi\rangle$$

as a sequence of real numbers.

Theorem 8: Let $f_n(x) \coloneqq (n - n^2 |x|) \mathbb{1}_{\left[-\frac{1}{n}, \frac{1}{n}\right]}(x)$ for $n \ge 1$. Then, $f_n \to \delta_0$ its od.

4 Fourier Transform

Definition 7: Let $f \in L^1(\mathbb{R})$. We define for every $k \in \mathbb{R}$

$$\widehat{f}(k) \coloneqq \int_{-\infty}^{\infty} f(x) e^{-ikx} \, \mathrm{d}x \eqqcolon \mathcal{F}\{f\}(k),$$

the Fourier transform of f.

Theorem 9 (Derivative of a Fourier Transform): Assume $f \in L^1(\mathbb{R})$ *n*-times differentiable, then for any positive integer $1 \le \ell \le n$,

$$\frac{\mathrm{d}^{(\ell)}\hat{f}}{\mathrm{d}x^{(\ell)}}(k) = i^{\ell}k^{\ell}\hat{f}(k).$$

Theorem 10: Let $f, \hat{f} \in L^1$ be continuous. Then, for every $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} \, \mathrm{d}x$$

More generally, given g(k), we define the *Inverse Fourier Transform* (IFT) as

$$\check{g}(x) = rac{1}{2\pi} \int_{-\infty}^{\infty} g(k) e^{ikx} \,\mathrm{d}k.$$

Definition 8 (Convolution): Let f, g be integrable, then we define the *convolution*

$$(f * g)(x) \coloneqq \int_{-\infty}^{\infty} f(x - y)g(y) \,\mathrm{d}y.$$

Theorem 11 (Properties of Convolution):

• (f * g)' = (f' * g) = (f * g') (supposing f or g differentiable). • $(\widehat{f * g})(k) = \widehat{f}(k)\widehat{g}(k)$

5 Diffusion Equation

Definition 9: For $\alpha > 0$, the *diffusion equation* in 1 space dimension is

$$u_t=\alpha u_{xx},\qquad u(x,0)=g(x),\qquad x\in\mathbb{R}, t>0.$$

In \mathbb{R}^N , we have similarly

$$u_t = \alpha \Delta u_{xx}.$$

Theorem 12: The following solves the heat equation, under assumptions of integrability:

$$u(x,t) = \frac{1}{\sqrt{4\pi\alpha t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4\alpha t}} g(y) \,\mathrm{d}y.$$

In particular,

$$\lim_{t\to 0^+} u(x,t) = g(x)$$

for every $x \in \mathbb{R}$.