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1 First-Order Equations

Definition 1 (Method of Characteristics): A characteristic of a PDE

Flu] = 0,z € RN
u(x) = p(x),x € T C RVN-1

B R W N =

is a curve upon which a solution to the PDE is constant. With appropriate assumptions on the PDE and

its given initial data, one can find the value of a solution u(x) to F' anywhere by
+ Given z, find the characteristic curve ~y that passes through x; one should take care to
parametrize -y (for convenience) such that (0) lies on I

+ “Trace back” along ~y to where it hits the initial data. We have then that u(x) = u(v(0)).

Theorem 1 (Linear Equations): Given a linear PDE of the form

Y

a(w7y)uz + b(w7y)uy =G (.T, y)u + 02(37’ y)
z,y) = ¢(z,y) on ' CR

—

u

the characteristics y(s) = (z,y, 2)(s) of u(x, y) is given by the solution to the system of ODEs

\

where z, y, such that (z,,y,) € I

Remark 1: Notice that the z, y and z equations are decoupled. Hence, one can begin by solving for

z(s), y(s) then plugging into the ODE for z(s) to finish.



Remark 2: One can pick z,, y, (with caveats) for convenience, as long as the point (z, y,) lies on I,
ensuring we can find u here. For simple data like u(x,0) = ¢(z) for z € R, it is easiest to pick y, := 0,
then letting x, be free; this serves as a “parametrization” of the curves; not in the sense that s is a
parameter, rather a parametrization of the family of characteristics, i.e. one should end up with a family

7}, e

Remark 3: In temporal equations, i.e. where y (for instance) equals ¢, we will often have b(z,t) = 1; in
this case, one can often reparametrize with ¢ rather than s, since the ODE for ¢(s) will just result in
t(s) = s + t,, effectively reducing from a system of 3 to 2 equations.

Remark 4: This method extends naturally to higher-dimensions equations; a PDE on R¥ will result in

N + 1 ODEs to solve. Note that characteristics are still curves in this case, not N — 1 dimensional
manifolds as one mihgt expect!!
Theorem 2 (Semiilinear Equations): Given a semiilinear PDE of the form
a(z,y)u, +b(z,y)u, = c(z,y,u),
where ¢ may be nonlinear, we have characteristics given by
#(s) = a(-~)
y(s) = b(-).
c(-+)
Theorem 3 (Quasilinear Equations): Given a quasilinear equation of the form
a(z,y, u)u, + b(z,y,u)u, = c(x,y,u),
characteristics are given as in previous cases, though are ODEs are now all coupled.
Remark 5: “Unique”/classical solutions may not exist for all initial data in quasilinear equations; in

particular, if the initial data u(x,0) = g(x) is nondecreasing, then our characteristic curves will
intersect g(z) precisely once and we are all good; in general, this may not hold.

Theorem 4 (Fully Nonlinear Equations):

2 The Wave Equation
Definition 2: The (general) wave equation in RY is given by

{uy = 2Au,x € RN

where Au = sz\il Uy o, the Laplacian of u and ¢ > 0.



Theorem 5 (1D):In N = 1, the general solution to the wave equation for z € R with initial data
u(z,0) = p(x),u,(x,0) = 1(x) is given by D’Alembert’s formula

X /mws) N

(e, 1) = Lo+ ef) + ol —ct) + o

Remark 6: We prove/derive this formula by
(i) Factor the wave equation (9, — ¢d,,)(9, + ¢0,)u = 0
(ii) Make a change of variables { = = + c¢t,n = x — ct in which we see u = f(x + ct) + g(xz —
ct) for any sufficiently smooth functions f, g
(iii) Solve for f, g in terms of ¢, 1

Theorem 6 (1D, semi-infinite): In N = 1, the “semi-infinite equation”, namely th wave equation
restricted to z > 0 with boundary condition (0, ¢) = 0 for all ¢ > 0, has solution given by

1 r+ct
(e, t) = 3 (Poaalo+ ) + gl — ) 45 [ dan(e)ds
r—ct

%(Sp(a‘,‘ +ct) + p(x—ct)) + QLC f;j;t P(s)ds if x > et
Bty —plet—2) + £ [ h(s)ds 0 <o < et
(z) if >0
where @Odd(m) = {(p(p(x) if <0’ etc.

Remark 7: Domain of dependence, influence are quite different in the semi-infinite case:

Theorem 7 (3D Wave Equation): The solution to the 3D wave equation on all of R? is given by

1
u(x,t) = T2 //BB(W) o(y) +Ve(y) - (y —z) + tp(y) dS,,.

3 Distributions

Definition 3: Let C2°(R) denote the space of test functions, smooth (infinitely differentiable) functions

with compact support. Then, a distribution F is an element of the dual of C2°(R), that is, a linear
functional acting on smooth functions to return real numbers.

If f a (sufficiently nice) function, we have a natural way of associating f to a functional F'; for any
test function ¢, we define

(Fp,p) = /°° f(z)e(z)de.

—00

Definition 4 (Derivative): The derivative of a functional F' is defined such that for any ¢ € C2°(R),

<F’,(p> = _<Fa Q0/>'



Definition 5 (Delta Function): d is defined as the distribution such that for any test function ¢,

(60, 0) = ©(0).

Definition 6: Let f, be a sequence of functions and F' a distribution. We say f,, — F' in the sense of

distributions (itsod) if for every test function ¢,

(frr0) = (F, )

as a sequence of real numbers.
Theorem 8: Let f,, (z) := (n —n? |.’E’)]].[_;’;] (x) for n > 1. Then, f,, — ¢, itsod.

4 Fourier Transform

Definition 7: Let f € L*(R). We define for every k € R
fio = [ r@e e do = F1)(h),
the Fourier transform of f.

Theorem 9 (Derivative of a Fourier Transform): Assume f € L!(R) n-times differentiable, then for any
positive integer 1 < £ < n,

—

ao
dz(®)

(k) = ik f (k).

Theorem 10: Let f, f € L! be continuous. Then, for every z € R,
1 * o
fl@)== [ [flk)e™ da.
2 J_

More generally, given g(k), we define the Inverse Fourier Transform (IFT) as

1 [ .
/ g(k)et = dk.

g(z) = .

Definition 8 (Convolution): Let f, g be integrable, then we define the convolution

U*mm%=/wf@—ymwmy

Theorem 11 (Properties of Convolution):
. (f/*\g)/ = (f" xg) = (f * g) (supposing f or g differentiable).
« (Fxg)(k) = Fk)a(k)

5 Diffusion Equation



Definition 9: For a > 0, the diffusion equation in 1 space dimension is
Uy = au,,, u(z,0) = g(z), z €R,t>0.
In RY, we have similarly

u, = alAu,,

Theorem 12: The following solves the heat equation, under assumptions of integrability:

u(z, 1) \/W 5 g (y) dy.

In particular,

Jim u(z,t) = g(z)

for every z € R.
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