MATH356 - Probability

Based on lectures from Fall 2024 by Prof. Asoud Asgharian.
Notes by Louis Meunier
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§1 PREREQUISITES

< Definition 1.1 (limsup, liminf of sets): Let {A,,} _, be a sequence of sets. We define

n>1

lim,,_,, = limsup A,, := {x : x € A,, for infinitely many n} = ﬂ U Ag
=00 n=1k=n

and

lim, =liminfA, := {x:x € A, for all but finitely many n} = U ﬂ Ay

n
n=1k=n

If iminfA, = limsup A,,, we say A,, converges to this value and write lim,_, ., A, =

liminfA, = limsup A,
< Proposition 1.1: liminfA, C limsup A4,

® Example 1.1: Let A, = {n}. Then liminfA, = limsupA, = @ =limA,. Let A, = {(-1)"}.
Then liminfA, = @, limsup A,, = {-1,1}.

< Definition 1.2 (sigma-field) : A non-empty class of subsets of a set () which is closed under

countable unions and complement, and contains @ is called a c-field or c-algebra.

< Definition 1.3 (Borel sigma-algebra): The c-algebra generated by the class of all bounded,
semi-closed intervals is called the Borel algebra of subsets of R, denoted B, B (R).

—Theorem 1.1: Every countable set is Borel.

n=1

Proor. {x} = (. <x—%,x]foranyxeR,soA:: {x,;neN}=U_{x,} €B. =

—Theorem 1.2: B = o ({open sets inR }).

§2 PROBABILITY

§2.1 Sample Space

2.1 Sample Space



< Definition 2.1 (Random/statistical experiment): A random/statistical experiment (stat. exp.) is
one in which

1. all outcomes are known in advance;

2. any performance of the experiment results in an outcome that is not known in advance;

3. the experiment can be repeated under identical conditions.

< Definition 2.2 (Sample space): The sample space of a stat. exp. is the pair (), ) where Q) the

set of all possible outcomes and F a o-algebra of subsets of Q.

We call points w € Q sample points, A € F events. If Q) countable, we call (Q), F) a discrete
sample space.

< Definition 2.3: Let ((), J*) be a sample space. A set function P is called a probability measure
or simply probability if

1. P(A) >0forallA e F

2. P(O)) =1

3. For {A,} C F, disjoint, then P(J_; A,) = Y.~ P(A,).

n=1
—Theorem 2.1: P monotone (A C B = P(A) < P(B)) and subtractive P(B\ A) = P(B) — P(A).
—Theorem 2.2:Forall A,B € J,P(AUB) = P(A) + P(B) — P(A N B).

< Corollary 2.1: P subadditive; for any A,B € ¥, P(A U B) < P(A) + P(B).

—Corollary 2.2: P(A°) =1 - P(A).

2.1 Sample Space



—Theorem 2.3 (Principle of Inclusion/Exclusion): Let Ay, ..., A,, € F. Then
n n
P( g Ak) =) P(Ay)
k=1 k=1
= 2 P(Ak N4,

kqi<k,

+ Z P(Ay, N A, NA,)

kq<ky<ks

e (—1)”P( ﬁ Ak).

k=1

—Theorem 2.4 (Bonferroni's Inequality): For A4, ..., A,,

ip )= Y P(AinA)) < (l

i=1 i<j

Az) ZP(A)

&C:

—Theorem 2.5 (Boole's Inequality): P(A N B) > 1 — P(A°) — P(B°).

< Corollary 2.3: For {A,} C F,

P(N5o1 Ay) 2 1= ) P(AS)
n=1

< Theorem 2.6 (Implication Rule): If A,B,C € F and A and B imply C (i.e. A N B C C) then
P(C¢) < P(A®) + P(B°).

< Theorem 2.7 (Continuity): Let {4,,} C J non-decreasing i.e. A,, D A,,_; V n, then

lim P(A,) = P( g An).
n=1

Let {A, } non-increasing, then

Jim, P(A,) = P (HA)

Finally, more generally, for {A,,} such that lim,,_, ., A,, = A exists, then
P(A) = A%P(An)

2.1 Sample Space



§3 COMBINATORICS - FINITE 0-FIELDS

§3.1 Counting
We consider now Q) = {wy, ..., w,,} finite sample spaces, and consider F = 2.

< Definition 3.1 (Permutation): An ordered arrangement of r distinct objects is called a
permutation. The number of ways to order n distinct objects taken r at a time is

n!
n — X
N €7 Y

< Definition 3.2 (Combination): The number of combinations of n objects taken r at a time is

the number of subsets of size r that can be formed from n objects,

P} n!
n_ (MY _ ___ "
€= <7’> ol rim=r)!

—Theorem 3.1: The number of unordered arrangements of r objects out of a total of n objects

(n+r=1)

when sampling with replacement is

§3.2 Conditional Probability

< Theorem 3.2: Let A,H € J. We denote by P(A | H) the probability of A given H has

occured. We have, in particular,

P(ANnH
.RAIH)=—%§372,

if P(H) # 0.

< Definition 3.3: We say two events A, B are independent if P(A | B) = P(A), or equivalently
P(ANB) =PA)P(B).

= Proposition 3.1 (Multiplication Rule):
n 1 .
Pl (4 | =]]P(AiInNZ54)),
j=1 i=1

taking A, := () by convention.

3.2 Conditional Probability



< Proposition 3.2 (Law of Total Probability): Let {H,} C J be a partition of J, namely H; N
H; = g foralli #j,and U2, H; = Q. If P(H,,) > 0V 1, then

P(B)= ) P(B|H,)P(H,)VBEeE T.
n=1

—Theorem 3.3 (Baye's): Let {H, } be a partition of () with all strictly nonzero measure and let
B € J with nonzero measure. Then

P(H,)P(B|H,)
Y1 P(H,)P(B | Hy)

P(H, |B) =

< Definition 3.4 (Mutual Independence): A family of sets A is said to be mutually independent
iff V finite sub collections {Ail, ...,Aik}, the following holds

(k) = []7(4):

§4 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
We tacitly fix some sample space (Q), F).

< Definition 4.1 (Random Variable): A real-valued function X : () —» R is called a random

variable or rv if
X 1B erF

forall B € By.

—Theorem4.1: X anrv & forallx € R,

(X <x}e F.

—Theorem 4.2:If X arv,thensoisaX + b foralla, b € R.

<Theorem 4.3: Fix an rv X defined on a probability space (), F, P). Then, X induces a

measure on the sample space (R, B ), denote Q and given by

Q(B) := P(X~1B)

for any Borel set B.

4 Random Variables and Probability Distributions



Remark 4.1: If X a random variable, then the sets {X = x},{a < x < b}, {X < x}, etc are all

events.

= Definition 4.2 (Distribution Function): An R-valued function F that is non-decreasing,
right-continuous and satisfies

F(—o00) =0,F(+00) =1

is called a distribution function or df.
—Theorem 4.4: {x | F discontinuous} is at most countable.

< Definition 4.3: Given a random variable X and a probability space (Q, 7, P), we define the
df of X as

F(x) = P(X < x).
Remark 4.2: It is not obvious a priori that this is indeed a df.

—Theorem 4.5:If Q a probability on (R,B ), then there exists a df F where
F(X) = Q(_oolx]l

and conversely, given a df F, there exists a unique probability on (R, By).

§4.1 Discrete and Continuous Random Variables

< Definition 4.4: X called “discrete” if 3 countable set E C R such that P(X € E) = 1.

< Proposition 4.1: Suppose E = {x,} ", and put p,, := P(X = x,,). Then,

i pPn=1
n=1

where {p, } defines a non-negative sequence.

4.1 Discrete and Continuous Random Variables



< Definition 4.5 (PMF): Such a sequence {p,,} satisying 0 < p,, = P(X = x,,) for a sequence
{x,} and ) p, = 1is called a probability mass function (pmf) of X. Then,

Px(.X) = PX((—OO,.'X,']) = Z Pn

n:x,<x

and

X(w) =) %, lixey,(@).
n=1

< Definition 4.6: X called continuous if F induced by X is absolutely continuous, i.e. if there

exists a non-negative function f (t) such that
X
P = fmdt

for all x € R. Such a function f is called the probability density function (pdf) of X.

—Theorem 4.6: Let X continuous with pdf f. Then
P(B) = t) dt
®)= [ f®

for every B € B.

—Theorem 4.7: Every nonnegative real function f that is integrable over R and such that
f_cx; f(x) dx = 1 is the PDF of some continuous X.

§4.2 Functions of a Random Variable

—Theorem 4.8: Let X be an rv and g a Borel-measurable function on R. Then, g(X) also an rv.

—Theorem 4.9: Let Y = ¢(X) as above. Then, P(Y <y) = P(X € g~} (—o0,y]).

4.2 Functions of a Random Variable



® Example 4.1: Let X be an RV with Poisson distribution; we write X ~ Poisson(A); where
A /\k
k!

e

P(X=k) =

fork € NU{0}. LetY = X% + 3. We say that X has support {0, 1, 2, dots} (more generally,
where X can take values), and so Y has support on {3,4,7,...} =: B. Then

e~ VY3
P(Y=y)=P(X=,y=-3) = el

7

fory e Band P(Y =y) =0fory & B.

—Theorem 4.10: Let X cont. rv with pdf £ X. Let Y = g(X) be differentiable for all x and with
either strictly positive or negative derivative. Then, Y = g(X) also a continuous rv with pdf
given by

h(y) = fe(87r (W) |diyg_1(y)| fora <y < 131

0 else
where

a := min{g(—c0),g (o)}, B := max{g(—oco),g(0)}.

—Theorem 4.11: Let X continuous rv with cdf Fx (x). Let Y = Fx(X). Then, Y ~ Unif (0, 1).

ProOOF.
P(Y<y)=P(Fx(X)<y)

= P(X < Fx'(y)).

—Theorem 4.12: Let X continuous rv with pdf fx and y = g(x)

§5 MoOMENTS AND MOMENT GENERATING FUNCTIONS

< Definition 5.1 (Expected Value): Let X be a discrete (continuous) rv with PMF (PDF) p; =
P(X = xp) (f). If Y|yl pr < oo ([1x] fx (x) dx < o0) then we say the expected value of X exists,
and write

E(X) = Zxkpk<: fx -f(x) dx).

5 Moments and Moment Generating Functions



—Theorem 5.1: If X symmetricabouta € R,ie. P(X >a+x) =P(X <a—x)forallx e R
(or in the continuous case, f (« — x) = f(« + x)), then E(X) = a.

—Theorem 5.2: Let ¢ Borel-measurable and Y = g(X). Then,
E(Y) =) 8(%)Px(X = ;).
j=1

If X continuous,

= fg(x)f(x) dx.

— Definition 5.2: For « > 0, we say E(|X|%) (if it exists) is the a-th moment of X.

® Example 5.1: Let X such that P(X =k) = %, k=1,..,N,namely X ~ Unif; p,. Then
Nk N+1
EX)=) — = :
=N 2

—Theorem 5.3: If the tth moment of X exists, so does the sth moment for s < ¢.

—Theorem 5.4: If ]E(lek) < oo for some k > 0, then
n*P(IX| > n) - 0

as n — oo.

§5.1 Variance
Let X a random variable. Put yiy := E[X]. We define the variance of X, denoted ¢%, by

ok = Var(X) = E[(X - ﬂx)z]
or eqiuvalently
Var(X) = E[X2] - 2uxE[X] + E[ %]
= E[X?] - 24% + ¢} = E[X?] - E[X]?

Let S ~ Bin(n,p). Then, Var[S] = E[S?] — (np)z. To compute E[S?] = E[S(S — 1) + S], we may

abuse combinatorial identities and eventually find

Var[S] = np(1 —p).

5.1 Variance 10



§5.2 Some Particular Distributions

5.2.1 Hypergeometric
Consider a population of N objects, and a subpopulation of M objects. Let X; be a random

variable equal to 1 if a sampled object is from the M-subpopulation, 0 else, and put Y = Z?zl X

Then,

for any k = 0, ...,n. We have

-

=0

%iw@:w

VRS
2 Z2| -
N—
o

(N —n)|(N = 1)!
"Nl — 1IN = n)!

5.2.2 Uniform Distribution
Let X be a discrete uniformly distributed random variable, with P(X = x) =
{1,...,N} (one typically writes X ~ unif{1, N}). Then,

1
ﬁforxe

Zk N(N+1) N+1
— 2

5.2.3 Binomial Distribution
Let X; fori =1,...,n be a discrete boolean rv with P(X; =1) =p,P(X; =0) =1 —p.Put S =
> 1 X;. We say S has binomial distribution, and write

S ~ Bin(n, p).

Then, we have that

Pes) = () —p*

5.2.3 Binomial Distribution

l’.

11



and so

n
E[S]= ) kP(S=k) = =np.
k=0
An easier way to compute this is by using the linearity of E, namely,

E[S] = ]E[in} _ im[xi] = il-p+0- (p—1) = np.
i=1 i=1

i=1

5.2.3 Binomial Distribution

12
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