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§1 Prerequisites

↪Definition 1.1 (limsup, liminf of sets) :  Let {𝐴𝑛}𝑛≥1 be a sequence of sets. We define

lim𝑛→∞ = lim sup
𝑛→∞

𝐴𝑛 ≔ {𝑥 : 𝑥 ∈ 𝐴𝑛 for infinitely many 𝑛} = ⋂
∞

𝑛=1
⋃
∞

𝑘=𝑛
𝐴𝑘

and

lim𝑛→∞ = lim inf𝑛→∞ 𝐴𝑛 ≔ {𝑥 : 𝑥 ∈ 𝐴𝑛 for all but finitely many 𝑛} = ⋃
∞

𝑛=1
⋂
∞

𝑘=𝑛
𝐴𝑘.

If lim inf 𝐴𝑛 = lim sup 𝐴𝑛, we say 𝐴𝑛 converges to this value and write lim𝑛→∞ 𝐴𝑛 =
lim inf 𝐴𝑛 = lim sup 𝐴𝑛

↪Proposition 1.1 :  lim inf 𝐴𝑛 ⊆ lim sup 𝐴𝑛

⊛ Example 1.1 :  Let 𝐴𝑛 = {𝑛}. Then lim inf 𝐴𝑛 = lim sup 𝐴𝑛 = ⌀ = lim 𝐴𝑛. Let 𝐴𝑛 = {(−1)𝑛}.
Then lim inf 𝐴𝑛 = ⌀, lim sup 𝐴𝑛 = {−1, 1}.

↪Definition 1.2 (sigma-field): A non-empty class of subsets of a set Ω which is closed under
countable unions and complement, and contains ⌀ is called a 𝜎-field or 𝜎-algebra.

↪Definition 1.3 (Borel sigma-algebra) : The 𝜎-algebra generated by the class of all bounded,
semi-closed intervals is called the Borel algebra of subsets of ℝ, denoted 𝔅, 𝔅(ℝ).

↪Theorem 1.1 : Every countable set is Borel.

Proof. {𝑥} = ⋂∞
𝑛=1(𝑥 − 1

𝑛 , 𝑥] for any 𝑥 ∈ ℝ, so 𝐴 ≔ {𝑥𝑛 : 𝑛 ∈ ℕ} = ⋃∞
𝑛=1{𝑥𝑛} ∈ 𝔅. ■

↪Theorem 1.2 : 𝔅 = 𝜎({open sets inℝ}).

§2 Probability

§2.1 Sample Space
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↪Definition 2.1 (Random/statistical experiment) :  A random/statistical experiment (stat. exp.) is
one in which
1. all outcomes are known in advance;
2. any performance of the experiment results in an outcome that is not known in advance;
3. the experiment can be repeated under identical conditions.

↪Definition 2.2 (Sample space) : The sample space of a stat. exp. is the pair (Ω, ℱ) where Ω the
set of all possible outcomes and ℱ  a 𝜎-algebra of subsets of Ω.

We call points 𝜔 ∈ Ω sample points, 𝐴 ∈ ℱ  events. If Ω countable, we call (Ω, ℱ) a discrete
sample space.

↪Definition 2.3 : Let (Ω, ℱ) be a sample space. A set function 𝑃 is called a probability measure
or simply probability if
1. 𝑃(𝐴) ≥ 0 for all 𝐴 ∈ ℱ
2. 𝑃(Ω) = 1
3. For {𝐴𝑛} ⊆ ℱ , disjoint, then 𝑃(⋃∞

𝑛=1 𝐴𝑛) = ∑∞
𝑛=1 𝑃(𝐴𝑛).

↪Theorem 2.1 : 𝑃 monotone (𝐴 ⊆ 𝐵 ⇒ 𝑃(𝐴) ≤ 𝑃(𝐵)) and subtractive 𝑃(𝐵 \ 𝐴) = 𝑃(𝐵) − 𝑃(𝐴).

↪Theorem 2.2 : For all 𝐴, 𝐵 ∈ ℱ, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).

↪Corollary 2.1 : 𝑃 subadditive; for any 𝐴, 𝐵 ∈ ℱ, 𝑃(𝐴 ∪ 𝐵) ≤ 𝑃(𝐴) + 𝑃(𝐵).

↪Corollary 2.2 : 𝑃(𝐴𝑐) = 1 − 𝑃(𝐴).
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↪Theorem 2.3 (Principle of Inclusion/Exclusion): Let 𝐴1, …, 𝐴𝑛 ∈ ℱ . Then

𝑃
⎝
⎜⎛ ⋃

𝑛

𝑘=1
𝐴𝑘

⎠
⎟⎞ = ∑

𝑛

𝑘=1
𝑃(𝐴𝑘)

− ∑
𝑘1<𝑘2

𝑃(𝐴𝑘1
∩ 𝐴𝑘2

)

+ ∑
𝑘1<𝑘2<𝑘3

𝑃(𝐴𝑘1
∩ 𝐴𝑘2

∩ 𝐴𝑘3
)

+… + (−1)𝑛𝑃
⎝
⎜⎛ ⋂

𝑛

𝑘=1
𝐴𝑘

⎠
⎟⎞.

↪Theorem 2.4 (Bonferroni's Inequality) : For 𝐴1, …, 𝐴𝑛,

∑
𝑛

𝑖=1
𝑃(𝐴𝑖) − ∑

𝑖<𝑗
𝑃(𝐴𝑖 ∩ 𝐴𝑗) ≤ 𝑃

⎝
⎜⎛⋃

𝑛

𝑖=1
𝐴𝑖

⎠
⎟⎞ ≤ ∑

𝑛

𝑖=1
𝑃(𝐴𝑖).

↪Theorem 2.5 (Boole's Inequality) : 𝑃(𝐴 ∩ 𝐵) ≥ 1 − 𝑃(𝐴𝑐) − 𝑃(𝐵𝑐).

↪Corollary 2.3 : For {𝐴𝑛} ⊆ ℱ ,

𝑃(∩∞
𝑛=1 𝐴𝑛) ≥ 1 − ∑

∞

𝑛=1
𝑃(𝐴𝑐

𝑛)

↪Theorem 2.6 (Implication Rule) : If 𝐴, 𝐵, 𝐶 ∈ ℱ  and 𝐴 and 𝐵 imply 𝐶 (i.e. 𝐴 ∩ 𝐵 ⊆ 𝐶) then 
𝑃(𝐶𝑐) ≤ 𝑃(𝐴𝑐) + 𝑃(𝐵𝑐).

↪Theorem 2.7 (Continuity) : Let {𝐴𝑛} ⊆ ℱ  non-decreasing i.e. 𝐴𝑛 ⊇ 𝐴𝑛−1 ∀ 𝑛, then

lim𝑛→∞ 𝑃(𝐴𝑛) = 𝑃
⎝
⎜⎛ ⋃

∞

𝑛=1
𝐴𝑛

⎠
⎟⎞.

Let {𝐴𝑛} non-increasing, then

lim𝑛→∞ 𝑃(𝐴𝑛) = 𝑃
⎝
⎜⎛ ⋂

∞

𝑛=1
𝐴𝑛

⎠
⎟⎞.

Finally, more generally, for {𝐴𝑛} such that lim𝑛→∞ 𝐴𝑛 = 𝐴 exists, then

𝑃(𝐴) = lim𝑛→∞ 𝑃(𝐴𝑛).

2.1 Sample Space 4



§3 Combinatorics - Finite 𝜎-fields

§3.1 Counting
We consider now Ω = {𝜔1, …, 𝜔𝑛} finite sample spaces, and consider ℱ = 2Ω.

↪Definition 3.1 (Permutation): An ordered arrangement of 𝑟 distinct objects is called a
permutation. The number of ways to order 𝑛 distinct objects taken 𝑟 at a time is

𝘗𝑛
𝑟 =

𝑛!
(𝑛 − 𝑟)! .

↪Definition 3.2 (Combination): The number of combinations of 𝑛 objects taken 𝑟 at a time is
the number of subsets of size 𝑟 that can be formed from 𝑛 objects,

𝘊𝑛
𝑟 = (𝑛

𝑟) =
𝘗𝑛

𝑟
𝑟! =

𝑛!
𝑟!(𝑛 − 𝑟)! .

↪Theorem 3.1 : The number of unordered arrangements of 𝑟 objects out of a total of 𝑛 objects
when sampling with replacement is

(𝑛 + 𝑟 − 1
𝑟 ).

§3.2 Conditional Probability

↪Theorem 3.2 :  Let 𝐴, 𝐻 ∈ ℱ . We denote by 𝑃(𝐴 | 𝐻) the probability of 𝐴 given 𝐻 has
occured. We have, in particular,

𝑃(𝐴 | 𝐻) =
𝑃(𝐴 ∩ 𝐻)

𝑃(𝐻) ,

if 𝑃(𝐻) ≠ 0.

↪Definition 3.3 : We say two events 𝐴, 𝐵 are independent if 𝑃(𝐴 | 𝐵) = 𝑃(𝐴), or equivalently 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

↪Proposition 3.1 (Multiplication Rule) :

𝑃
⎝
⎜⎜
⎛⋂

𝑛

𝑗=1
𝐴𝑗

⎠
⎟⎟
⎞ = ∏

𝑛

𝑖=1
𝑃(𝐴𝑖 | ∩𝑖−1

𝑗=0 𝐴𝑗),

taking 𝐴0 ≔ Ω by convention.
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↪Proposition 3.2 (Law of Total Probability) :  Let {𝐻𝑛} ⊆ ℱ  be a partition of ℱ , namely 𝐻𝑖 ∩
𝐻𝑗 = ⌀ for all 𝑖 ≠ 𝑗, and ∪∞

𝑗=1 𝐻𝑗 = Ω. If 𝑃(𝐻𝑛) > 0 ∀ 𝑛, then

𝑃(𝐵) = ∑
∞

𝑛=1
𝑃(𝐵 | 𝐻𝑛)𝑃(𝐻𝑛) ∀ 𝐵 ∈ ℱ.

↪Theorem 3.3 (Baye's) :  Let {𝐻𝑛} be a partition of Ω with all strictly nonzero measure and let 
𝐵 ∈ ℱ  with nonzero measure. Then

𝑃(𝐻𝑛 | 𝐵) =
𝑃(𝐻𝑛)𝑃(𝐵 | 𝐻𝑛)

∑∞
𝑛=1 𝑃(𝐻𝑛)𝑃(𝐵 | 𝐻𝑛)

.

↪Definition 3.4 (Mutual Independence) :  A family of sets 𝒜  is said to be mutually independent
iff ∀  finite sub collections {𝐴𝑖1

, …, 𝐴𝑖𝑘
}, the following holds

𝑃(∩𝑘
𝑗=1 𝐴𝑖𝑗

) = ∏
𝑘

𝑗=1
𝑃(𝐴𝑖𝑗

).

§4 Random Variables and Probability Distributions
We tacitly fix some sample space (Ω, ℱ).

↪Definition 4.1 (Random Variable) : A real-valued function 𝑋 : Ω → ℝ is called a random
variable or rv if

𝑋−1(𝐵) ∈ ℱ

for all 𝐵 ∈ 𝔅ℝ.

↪Theorem 4.1 : 𝑋 an rv ⇔ for all 𝑥 ∈ ℝ,

{𝑋 ≤ 𝑥} ∈ ℱ.

↪Theorem 4.2 : If 𝑋 a rv, then so is 𝑎𝑋 + 𝑏 for all 𝑎, 𝑏 ∈ ℝ.

↪Theorem 4.3 :  Fix an rv 𝑋 defined on a probability space (Ω, ℱ, 𝑃). Then, 𝑋 induces a
measure on the sample space (ℝ, 𝔅ℝ), denote 𝑄 and given by

𝑄(𝐵) ≔ 𝑃(𝑋−1𝐵)

for any Borel set 𝐵.
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Remark 4.1 : If 𝑋 a random variable, then the sets {𝑋 = 𝑥}, {𝑎 < 𝑥 ≤ 𝑏}, {𝑋 < 𝑥}, etc are all
events.

↪Definition 4.2 (Distribution Function): An ℝ-valued function 𝐹 that is non-decreasing,
right-continuous and satisfies

𝐹(−∞) = 0, 𝐹(+∞) = 1

is called a distribution function or df.

↪Theorem 4.4 : {𝑥 | 𝐹 discontinuous} is at most countable.

↪Definition 4.3 : Given a random variable 𝑋 and a probability space (Ω, ℱ, 𝑃), we define the
df of 𝑋 as

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥).

Remark 4.2 : It is not obvious a priori that this is indeed a df.

↪Theorem 4.5 : If 𝑄 a probability on (ℝ, 𝔅ℝ), then there exists a df 𝐹 where

𝐹(𝑥) = 𝑄(−∞, 𝑥],

and conversely, given a df 𝐹, there exists a unique probability on (ℝ, 𝔅ℝ).

§4.1 Discrete and Continuous Random Variables

↪Definition 4.4 : 𝑋 called “discrete” if ∃  countable set Ε ⊂ ℝ such that 𝑃(𝑋 ∈ Ε) = 1.

↪Proposition 4.1 : Suppose Ε = {𝑥𝑛}∞
𝑛=1 and put 𝑝𝑛 ≔ 𝑃(𝑋 = 𝑥𝑛). Then,

∑
∞

𝑛=1
𝑝𝑛 = 1,

where {𝑝𝑛} defines a non-negative sequence.
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↪Definition 4.5 (PMF):  Such a sequence {𝑝𝑛} satisying 0 ≤ 𝑝𝑛 = 𝑃(𝑋 = 𝑥𝑛) for a sequence 
{𝑥𝑛} and ∑ 𝑝𝑛 = 1 is called a probability mass function (pmf) of 𝑋. Then,

𝐹𝑋(𝑥) = 𝑃𝑋((−∞, 𝑥]) = ∑
𝑛:𝑥𝑛≤𝑥

𝑝𝑛

and

𝑋(𝜔) = ∑
∞

𝑛=1
𝑥𝑛𝟙{𝑋=𝑥𝑛}(𝜔).

↪Definition 4.6 :  𝑋 called continuous if 𝐹 induced by 𝑋 is absolutely continuous, i.e. if there
exists a non-negative function 𝑓 (𝑡) such that

𝐹(𝑥) = ∫
𝑥

−∞
𝑓 (𝑡) d𝑡

for all 𝑥 ∈ ℝ. Such a function 𝑓  is called the probability density function (pdf) of 𝑋.

↪Theorem 4.6 : Let 𝑋 continuous with pdf 𝑓 . Then

𝑃(𝐵) = ∫
𝐵

𝑓 (𝑡) d𝑡

for every 𝐵 ∈ 𝔅ℝ.

↪Theorem 4.7 : Every nonnegative real function 𝑓  that is integrable over ℝ and such that 
∫∞

−∞ 𝑓 (𝑥) d𝑥 = 1 is the PDF of some continuous 𝑋.

§4.2 Functions of a Random Variable

↪Theorem 4.8 : Let 𝑋 be an rv and 𝑔 a Borel-measurable function on ℝ. Then, 𝑔(𝑋) also an rv.

↪Theorem 4.9 : Let 𝑌 = 𝑔(𝑋) as above. Then, 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑋 ∈ 𝑔−1(−∞, 𝑦]).
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⊛ Example 4.1 :  Let 𝑋 be an RV with Poisson distribution; we write 𝑋 ∼ Poisson(𝜆); where

𝑃(𝑋 = 𝑘) =
𝑒−𝜆𝜆𝑘

𝑘!

for 𝑘 ∈ ℕ ∪ {0}. Let 𝑌 = 𝑋2 + 3. We say that 𝑋 has support {0, 1, 2, dots} (more generally,
where 𝑋 can take values), and so 𝑌 has support on {3, 4, 7, …} ≕ 𝐵. Then

𝑃(𝑌 = 𝑦) = 𝑃(𝑋 = √𝑦 − 3) =
𝑒−𝜆𝜆√𝑦−3

√𝑦 − 3!
,

for 𝑦 ∈ 𝐵 and 𝑃(𝑌 = 𝑦) = 0 for 𝑦 ∉ 𝐵.

↪Theorem 4.10 : Let 𝑋 cont. rv with pdf f_X. Let 𝑌 = 𝑔(𝑋) be differentiable for all 𝑥 and with
either strictly positive or negative derivative. Then, 𝑌 = 𝑔(𝑋) also a continuous rv with pdf
given by

ℎ(𝑦) =
⎩{
⎨
{⎧𝑓𝑥(𝑔−1(𝑦)) | d

d𝑦𝑔−1(𝑦)| for 𝛼 < 𝑦 < 𝛽

0 else
,

where

𝛼 ≔ min{𝑔(−∞), 𝑔(∞)}, 𝛽 ≔ max{𝑔(−∞), 𝑔(∞)}.

↪Theorem 4.11 : Let 𝑋 continuous rv with cdf 𝐹𝑋(𝑥). Let 𝑌 = 𝐹𝑋(𝑋). Then, 𝑌 ∼ Unif (0, 1).

Proof.

𝑃(𝑌 ≤ 𝑦) = 𝑃(𝐹𝑋(𝑋) ≤ 𝑦)

= 𝑃(𝑋 ≤ 𝐹−1
𝑋 (𝑦)).

■

↪Theorem 4.12 :  Let 𝑋 continuous rv with pdf 𝑓𝑋 and 𝑦 = 𝑔(𝑥)

§5 Moments and Moment Generating Functions

↪Definition 5.1 (Expected Value) : Let 𝑋 be a discrete (continuous) rv with PMF (PDF) 𝑝𝑘 =
𝑃(𝑋 = 𝑥𝑘) (𝑓 ). If ∑|𝑥𝑘| 𝑝𝑘 < ∞ (∫|𝑥| 𝑓𝑋(𝑥) d𝑥 < ∞) then we say the expected value of 𝑋 exists,
and write

𝔼(𝑋) = ∑ 𝑥𝑘𝑝𝑘(= ∫ 𝑥 ⋅ 𝑓 (𝑥) d𝑥).
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↪Theorem 5.1 :  If 𝑋 symmetric about 𝛼 ∈ ℝ, i.e. 𝑃(𝑋 ≥ 𝛼 + 𝑥) = 𝑃(𝑋 ≤ 𝛼 − 𝑥) for all 𝑥 ∈ ℝ
(or in the continuous case, 𝑓 (𝛼 − 𝑥) = 𝑓 (𝛼 + 𝑥)), then 𝔼(𝑋) = 𝛼.

↪Theorem 5.2 :  Let 𝑔 Borel-measurable and 𝑌 = 𝑔(𝑋). Then,

𝔼(𝑌) = ∑
∞

𝑗=1
𝑔(𝑥𝑗)𝑃𝑋(𝑋 = 𝑥𝑗).

If 𝑋 continuous,

= ∫ 𝑔(𝑥)𝑓 (𝑥) d𝑥.

↪Definition 5.2 :  For 𝛼 > 0, we say 𝔼(|𝑋|𝛼) (if it exists) is the 𝛼-th moment of 𝑋.

⊛ Example 5.1 :  Let 𝑋 such that 𝑃(𝑋 = 𝑘) = 1
𝑁 , 𝑘 = 1, …, 𝑁, namely 𝑋 ∼ Unif{1,…,𝑁}. Then

𝔼(𝑋) = ∑
𝑁

𝑘=1

𝑘
𝑁 =

𝑁 + 1
2 .

↪Theorem 5.3 : If the 𝑡th moment of 𝑋 exists, so does the 𝑠th moment for 𝑠 < 𝑡.

↪Theorem 5.4 : If 𝔼(|𝑋|𝑘) < ∞ for some 𝑘 > 0, then

𝑛𝑘𝑃(|𝑋| > 𝑛) → 0

as 𝑛 → ∞.

§5.1 Variance
Let 𝑋 a random variable. Put 𝜇𝑋 ≔ 𝔼[𝑋]. We define the variance of 𝑋, denoted 𝜎2

𝑋, by

𝜎2
𝑋 = Var(𝑋) = 𝔼[(𝑋 − 𝜇𝑋)2]

or eqiuvalently

Var(𝑋) = 𝔼[𝑋2] − 2𝜇𝑋𝔼[𝑋] + 𝔼[𝜇2
𝑋]

= 𝔼[𝑋2] − 2𝜇2
𝑋 + 𝜇2

𝑋 = 𝔼[𝑋2] − 𝔼[𝑋]2

Let 𝑆 ∼ Bin(𝑛, 𝑝). Then, Var[𝑆] = 𝔼[𝑆2] − (𝑛𝑝)2. To compute 𝔼[𝑆2] = 𝔼[𝑆(𝑆 − 1) + 𝑆], we may
abuse combinatorial identities and eventually find

Var[𝑆] = 𝑛𝑝(1 − 𝑝).
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§5.2 Some Particular Distributions

5.2.1 Hypergeometric
Consider a population of 𝑁 objects, and a subpopulation of 𝑀 objects. Let 𝑋𝑖 be a random

variable equal to 1 if a sampled object is from the 𝑀-subpopulation, 0 else, and put 𝑌 = ∑𝑛
𝑖=1 𝑋𝑖.

Then,

𝑃(𝑌 = 𝑘) =
(𝑀

𝑘
)(𝑁−𝑀

𝑛−𝑘
)

(𝑁
𝑛)

for any 𝑘 = 0, …, 𝑛. We have

𝔼[𝑌] =
1

(𝑁
𝑛)

∑
𝑛

𝑘=0
𝑘(𝑀

𝑘
)(𝑁 − 𝑀

𝑛 − 𝑘
)

=
1

(𝑁
𝑛)

∑
𝑛

𝑘=0
𝑘

𝑀!
𝑘(𝑘 − 1)!(𝑁 − 𝑘)!

(𝑁 − 𝑀
𝑛 − 𝑘

)

=
𝑀

(𝑁
𝑛)

∑
𝑛

𝑘=0
(𝑀 − 1

𝑘 − 1
)(𝑁 − 𝑀

𝑛 − 𝑘
)

=
𝑀

(𝑁
𝑛)

∑
𝑛−1

𝑘=0
(𝑀 − 1

𝑘
)( 𝑁 − 𝑀

(𝑛 − 1) − 𝑘)

=
𝑀

(𝑁
𝑛)

(𝑁 − 1
𝑛 − 1 )

= 𝑀 ⋅
𝑛!(𝑁 − 𝑛)!(𝑁 − 1)!
𝑁!(𝑛 − 1)!(𝑁 − 𝑛)!

= 𝑀(
𝑛
𝑁 ).

5.2.2 Uniform Distribution
Let 𝑋 be a discrete uniformly distributed random variable, with 𝑃(𝑋 = 𝑥) = 1

𝑁  for 𝑥 ∈
{1, …, 𝑁} (one typically writes 𝑋 ∼ unif{1, 𝑁}). Then,

𝔼[𝑋] = ∑
𝑁

𝑘=1

𝑘
𝑁 =

𝑁(𝑁 + 1)
2𝑁 =

𝑁 + 1
2 .

5.2.3 Binomial Distribution
Let 𝑋𝑖 for 𝑖 = 1, …, 𝑛 be a discrete boolean rv with 𝑃(𝑋𝑖 = 1) = 𝑝, 𝑃(𝑋𝑖 = 0) = 1 − 𝑝. Put 𝑆 =

∑𝑛
𝑖=1 𝑋𝑖. We say 𝑆 has binomial distribution, and write

𝑆 ∼ Bin(𝑛, 𝑝).

Then, we have that

𝑃(𝑆) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

5.2.3 Binomial Distribution 11



and so

𝔼[𝑆] = ∑
𝑛

𝑘=0
𝑘𝑃(𝑆 = 𝑘) = ⋯ = 𝑛𝑝.

An easier way to compute this is by using the linearity of 𝔼, namely,

𝔼[𝑆] = 𝔼
⎣
⎢⎡∑

𝑛

𝑖=1
𝑋𝑖

⎦
⎥⎤ = ∑

𝑛

𝑖=1
𝔼[𝑋𝑖] = ∑

𝑛

𝑖=1
1 ⋅ 𝑝 + 0 ⋅ (𝑝 − 1) = 𝑛𝑝.

5.2.3 Binomial Distribution 12
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