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1 Probability Prerequisites

Definition 1 :𝑋𝑛 ≔ 1
𝑛∑

𝑛
𝑖=1𝑋𝑖 and 𝑆2𝑛 ≔ 1

𝑛−1∑
𝑛
𝑖=1 (𝑋𝑖 −𝑋𝑛)

2

Theorem 1 (Properties of Normal Distributions) :  Let 𝑋1,…,𝑋𝑛 ∼
iid𝒩(𝜇, 𝜎2), then

(i) 𝑋𝑛 ∼ 𝒩(𝜇, 𝜎
2

𝑛 );
(ii) 𝑋𝑛 and 𝑆2𝑛 are independent;

(iii) (𝑛−1)𝑆2𝑛
𝜎2 ∼ 𝜒2(𝑛−1);

(iv) If 𝑍 ∼ 𝒩(0, 1) and 𝑉 ∼ 𝜒2(𝜈), 
𝑍

√𝑉 /𝜈
∼ 𝑡(𝜈). In particular,

𝑋𝑛 − 𝜇
√𝑆2𝑛/𝑛

=
√
𝑛(𝑋𝑛 − 𝜇)
𝑆𝑛

∼ 𝑡(𝑛 − 1).

Similarly, if 𝑌𝑗 ∼ 𝒩(�̃�, �̃�2), 𝑗 = 1,…,𝑚 another independent normal sample, then

𝑋𝑛 − 𝑌𝑚 − (𝜇 − �̃�)

𝑆pooled√ 1
𝑛 +

1
𝑚

∼ 𝑡(𝑚 + 𝑛 − 2), 𝑆2pooled ≔
(𝑛 − 1)𝑆2𝑛 + (𝑚− 1)𝑆2𝑚

𝑚+ 𝑛− 2
.

(v) If 𝑈 ∼ 𝜒2(𝑚), 𝑉 ∼ 𝜒
2
(𝑛) are independent rv’s, then 𝑈/𝑚𝑉 /𝑛 ∼ 𝐹(𝑚, 𝑛).

Theorem 2 (Order Statistics) :  If 𝑋1,…,𝑋𝑛 iid rv’s with CDF 𝐹 , the CDF’s of the min, max order
statistics are respectively

𝐹𝑋(1)
(𝑥) = 1 − [1 − 𝐹(𝑥)]𝑛, 𝐹𝑋(𝑛)

(𝑥) = [𝐹(𝑥)]𝑛,

and generally, for 1 ≤ 𝑗 ≤ 𝑛,

𝐹𝑋(𝑗)
(𝑥) =∑

𝑛

𝑘=𝑗
(
𝑛
𝑘
)𝐹 𝑘(𝑥)[1 − 𝐹(𝑥)]𝑛−𝑘.
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Theorem 3 (Convergence Theorems) :
(i) (Slutsky’s) If 𝑋𝑛 →

𝑑
𝑋 and 𝑌𝑛 →

𝑃
𝑎, then 𝑋𝑛 + 𝑌𝑛 →

𝑑
𝑋 + 𝑎, 𝑋𝑛𝑌𝑛 →

𝑑
𝑎𝑋 and, if 𝑎 ≠ 0, 

𝑋𝑛/𝑌𝑛 →
𝑑
𝑋/𝑎.

(ii) (Continuous Mapping Theorem) If 𝑋𝑛 →
𝑃,𝑑
𝑋 and 𝑔 continuous on a set 𝐶 where 𝑃(𝑋 ∈

𝐶) = 1, then 𝑔(𝑋𝑛) →
𝑃,𝑑
𝑔(𝑋).

(iii) (WLLN) If 𝑋𝑖 iid rv’s with mean 𝜇 and finite second moment, 𝑋𝑛 →
𝑃
𝜇.

(iv) (First-Order Delta Method) If 
√
𝑛(𝑋𝑛 − 𝜇) →

𝑑
𝑉  and 𝑔 a function such that 𝑔′ exist and is

nonzero at 𝑥 = 𝜇, then

√
𝑛(𝑔(𝑋𝑛) − 𝑔(𝜇)) →

𝑑
𝑔′(𝜇) ⋅ 𝑉 .

(v) (Second-Order Delta Method) If 
√
𝑛(𝑋𝑛 − 𝜇) →

𝑑
𝒩(0, 𝜎2), and 𝑔 a function with 𝑔′(𝜇) = 0

but 𝑔″(𝜇) ≠ 0, then

√
𝑛(𝑔(𝑋𝑛) − 𝑔(𝜇)) →

𝑑
𝒩(0, 𝑔′(𝜇)2𝜎2).

Theorem 4 (Empirical CDF Properties) :  Let 𝑋1,…,𝑋𝑛 be iid with cdf 𝐹 . The ECDF is the rv defined
by, for 𝑥 ∈ ℝ, 𝐹𝑛(𝑥) ≔ 1

𝑛∑
𝑛
𝑖=1 𝟙(𝑋𝑖 ≤ 𝑥). The following hold:

(i) 𝑛𝐹𝑛(𝑥) ∼ Bin(𝑛, 𝐹(𝑥)); in particular,

𝔼[𝐹𝑛(𝑥)] = 𝐹(𝑥), Var(𝐹𝑛(𝑥)) =
1
𝑛
𝐹(𝑥)(1 − 𝐹(𝑥))

(ii)
√
𝑛(𝐹𝑛(𝑥)−𝐹(𝑥))
√𝐹(𝑥)(1−𝐹(𝑥))

→
𝑑
𝒩(0, 1)

(iii) 𝐹𝑛(𝑥) →
𝑃
𝐹(𝑥)

2 Parametric Inference

Definition 2 (Qualities of Estimators) :
(i) The bias of an estimator 𝜃 of 𝜃 is defined Bias(𝜃) = 𝔼𝜃[𝜃] − 𝜃. 𝜃 is unbiased if it has zero

bias.
(ii) The mean-squared error (MSE) is defined MSE(𝜃) = 𝔼[(𝜃 − 𝜃)

2
].

(iii) We say 𝜃 unbiased if 𝜃 →
𝑃
𝜃.

Theorem 5 (Cramer-Rau Lower Bound) :  For a parametric family {𝑝(⋅, 𝜃) : 𝜃 ∈ Θ}, if 𝑇 (𝑿) an
unbiased estimator of a function of a parameter 𝜏(𝜃), with finite variance, then

Var(𝑇 (𝑿)) ≥
[𝜏 ′(𝜃)]2

𝐼(𝜃)
,

for every 𝜃 ∈ Θ in the, where 𝐼(𝜃) ≔ 𝔼[( dd𝜃 log 𝑝𝜃(𝑿))
2
] the Fisher information of the parametric

family and assuming the denominator is finite, and moreover:
(i) {𝑝𝜃 : 𝜃 ∈ Θ} has common support independent of 𝜃

(ii) for any 𝒙 and 𝜃 ∈ Θ, dd𝜃 log 𝑝𝜃(𝒙) < ∞
(iii) for any statistic ℎ(𝑿) with finite first absolute moment, differentiation under the integral

holds ie dd𝜃 ∫ℎ(𝒙)𝑝(𝒙) d𝒙 = ∫ℎ(𝒙)
d
d𝜃𝑝𝜃(𝒙) d𝒙

Moreover, equality occurs iff there exists a function 𝑎(𝜃) such that 𝑎(𝜃){𝑇 (𝒙) − 𝜏(𝜃)} = d
d𝜃 log 𝑝(𝒙; 𝜃).
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Remark 1 :  If 𝑝𝜃 twice differentiable in 𝜃 and 𝔼[ dd𝜃 log 𝑝𝜃(𝑿)] differentiable “under the integral sign”,
then 𝐼(𝜃) = −𝔼[ d2d𝜃2𝑝𝜃(𝑿)].

If working with iid rv’s, then the denominator becomes 𝑛𝐼1(𝜃) where 𝐼1(𝜃) the Fisher information of
a single rv.

Theorem 6 (Neyman-Fisher Factorization) :  A statistic 𝑇 (𝑿), 𝑿 ∼ 𝑝𝜃(⋅) is called sufficient for 𝜃 if the
conditional distribution of 𝑿 given 𝑇 (𝑿) = 𝑡 is independent of 𝜃. 𝑇 (𝑿) is sufficient iff there are
functions ℎ(⋅), 𝑔(⋅; 𝜃) such that 𝑝𝜃(𝒙) = ℎ(𝒙)𝑔(𝑇 (𝒙), 𝜃).

Theorem 7 : Any one-to-one function of a sufficient statistic is still sufficient.

Theorem 8 (Minimal Sufficiency) :  A sufficient statistic is minimal if it is a function of every other
sufficient statistic. For a parametrized pdf 𝑝𝜃(⋅), suppose 𝑇 (𝒙) = 𝑇(𝒚) ⇔ 𝑝𝜃(𝒙)

𝑝𝜃(𝒚)
 does not depend on 𝜃.

Then, 𝑇 (𝑿) is minimally sufficient.

Definition 3 (Completeness) : An estimator 𝜃 is called complete if 𝔼[𝑔(𝜃)] = 0 for every 𝜃 implies 𝑔 =
0 (a.s.).

Theorem 9 (Rao-Blackwell) :  Let 𝑈(𝑿) be unbiased for 𝜏(𝜃) and 𝑇 (𝑿) sufficient, and define 𝛿(𝑡) ≔
𝔼𝜃[𝑈(𝑿) | 𝑇 (𝑿) = 𝑡]. Then 𝛿(𝑿) is unbiased for 𝜏(𝜃), and has smaller variance then 𝑈(𝑿).

Theorem 10 (Lehmann-Scheffé) :  Let 𝑇 (𝑿) be complete and sufficient and 𝑈(𝑿) = ℎ(𝑇 (𝑿))
unbiased with finite second moment, then 𝑈(𝑿) is the UMVUE for 𝜏(𝜃).

Remark 2 : Combine these two theorems to systematically construct UMVUEs starting from an
(arbitrary) unbiased estimator and a complete and sufficient statistic.

Theorem 11 (Existence of a UMVUE):  An estimator 𝑈(𝑿) of 𝜏(𝜃) = 𝔼[𝑈(𝑿)] is the best unbiased
estimator iff Cov(𝛿(𝑿), 𝑈(𝑿)) = 0 for every estimator 𝛿(𝑿) such that 𝔼[𝛿(𝑿)] = 0.

3 Systematic Parameter Estimation

Definition 4 (Method of Moments) :  The method of moments estimator(s) for rv’s 𝑋1,…,𝑋𝑛 ∼
iid 𝑓𝜃 is

given by solving the system

1
𝑛
∑
𝑛

𝑖=1
𝑋𝑗
𝑖 = 𝜇𝑗(𝜃) ≔ 𝔼[𝑋𝑗

𝑖 ],

for 𝑗 as high as we need for the system of equations to have solutions.

3



Definition 5 (Minimum Likelihood Estimation (MLE)) :  An estimator 𝜃𝑛 is said to be an MLE of a
parametric family if it maximizes the likelihood (resp. log likelihood) function (for any post-
experimental data 𝒙)

𝐿𝑛 : Θ → [0,∞)
𝐿𝑛(𝜃) = 𝑝𝜃(𝒙)

, (
ℓ𝑛 : Θ → (−∞,∞)
ℓ𝑛(𝜃) = log𝐿𝑛(𝜃)

).

If differentiable, one can solve for the (at least a candidate) MLE by solving the likelihood equations 
𝜕𝜃𝐿𝑛 = 0 or equivalently 𝜕𝜃ℓ𝑛 = 0.

Remark 3 :  Since log monotonic increasing, the likelihood/log-likelihood functions are equivalent and
thus one should use which ever one is more convenient (lots of parametric families have exponentials,
so using log is helpful).

Theorem 12 (Properties of MLEs) :  We assume "the regularity conditions".
(i) (Invariance) If 𝜃 the MLE of 𝜃 and 𝜏(𝜃) a function of 𝜃, then 𝜏(𝜃) the MLE of 𝜏(𝜃).

(ii) 𝜃 is consistent.
(iii) √𝑛(𝜃 − 𝜃0) →

𝑑
𝒩(0, [𝐼−11 (𝜃0)]) where 𝜃0 the “true value”.

(iv) (1st Bartlett Identity) 𝔼𝜃[
𝜕 log 𝑓(𝑋)

𝜕𝜃 ] = 0.

Definition 6 (Bayesian Estimation) :  Let 𝑿 ∼ 𝑝𝜃 where 𝜃 also random, with pdf/pmf 𝜋(𝜃), called the
prior distribution of 𝜃. The posterior distribution is defined as 𝜋(𝜃|𝒙), which by Baye’s is proportional to 
𝑝𝜃(𝒙)𝜋(𝜃). A loss function 𝐿(𝛿(𝑿), 𝜃) is a function assigning a “penalty” to an estimator 𝛿(𝑿), for
instance the 𝐿2-loss given by (𝛿(𝑿) − 𝜃)2. Baye’s risk given a loss function 𝐿 is defined

𝑅(𝛿) ≔ 𝔼𝜋[𝔼𝑿|𝜃[𝐿(𝛿(𝑿), 𝜃)]].

Then, Baye’s estimator is simply 𝛿(𝑿) ≔ argmin𝛿𝑅(𝛿).

Theorem 13 :  For 𝐿 the 𝐿2-loss function, the Baye’s estimator is

𝛿(𝑿) = 𝔼𝜃|𝑿=𝑥[𝜃|𝑿].

Remark 4 : So, given 𝑝𝜃 and 𝜋(𝜃), the typical steps to finding 𝛿(𝑿) are:
(i) compute 𝑝𝜃(𝒙)𝜋(𝜃), and deduce the distribution of (𝜃|𝑿); if deducing is not possible, one will

have to compute the full proportionality constant i.e.

𝜋(𝜃|𝒙) =
𝑝(𝒙|𝜃)𝜋(𝜃)
𝑝(𝒙)

=
𝑝(𝒙|𝜃)𝜋(𝜃)

∫
Θ
𝑝(𝒙|𝜃)𝜋(𝜃) d𝜃

.

(ii) hopefully the distribution found in (i) has a well-known mean, which is then equal to the
Baye’s estimator 𝛿(𝑿) by the previous theorem; else, one in general would have to solve 
𝔼𝜃|𝑿[𝜃|𝑿].

4 Confidence Intervals and Hypothesis Testing

Definition 7 (Pivotal Quantity) :  A random function 𝑄 = 𝑄(𝑿; 𝜃) is called a pivotal quantity (PQ) for
a distribution if its distribution is independent of 𝜃.

4
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Remark 5 :  Given a confidence level 𝛼, we wish to find 𝐿(𝑿), 𝑈(𝑿) such that 𝑃(𝐿 ≤ 𝜃 ≤ 𝑈) = 1 − 𝛼.
Supposing we have a PQ 𝑄, first find constants 𝑐1, 𝑐2 (which will by virtue be independent of 𝜃) such
that

𝑃(𝑐1 ≤ 𝑄(𝑿; 𝜃) ≤ 𝑐2) = 1 − 𝛼.

Invert/solve then 𝑄 for 𝑿 to find 𝐿(𝑿), 𝑈(𝑿) as functions 𝑐1, 𝑐2.

Remark 6 :  The general technique to find PQs is to start with a minimal sufficient statistic, and
transform its distribution to be independent of 𝜃 and moreover to be one for which we have easy access
to its quantiles (typically chi-squared, since many statistics involve exponentials so its often possible to
rescale such into chi-squareds).

Remark 7 :  If not possible to find (or just difficult) to find an exact confidence interval, one can just
appeal to CLT and compute an approximate CI using normal-distribution theory.

Theorem 14 (Neyman-Pearson Lemma):  Let

𝜙(𝑿) ≔ {
1 if 𝑝(𝑿; 𝜃1) > 𝑘 ⋅ 𝑝(𝑿; 𝜃0)
0 if if 𝑝(𝑿; 𝜃1) < 𝑘 ⋅ 𝑝(𝑿; 𝜃0)

,

and either if equal, where 𝑘 is such that 𝑃ℋ0
(rejecting ℋ0) = 𝛼. Then, 𝜙 is the UMP test in the class

of all tests at significance level 𝛼.

Remark 8 : If simple-simple, always use this lemma!

Definition 8 (Likelihood Ratio Statistic) :  The likelihood ratio statistic (LR) is the quantity

𝜆𝑛(𝑿) ≔
𝐿𝑛(𝜃MLE,ℋ0

)

𝐿𝑛(𝜃MLE)
.

A test based on LR is

𝜙(𝑿) = {1 if 𝜆𝑛(𝑿) < 𝐶
0 else

, 𝐶 s.t. 𝑃 (𝜆𝑛(𝑿) < 𝐶) = 𝛼.

Remark 9 : This test should be used when the hypotheses are not simple-simple.

Theorem 15 :  Under the regularity conditions, −2 log(𝜆(𝑿)) ≈𝑑 𝜒2𝑑, where 𝑑 ≔ dim(Θ) − dim(Θ0).

Remark 10 : Sometimes its hard to manipulate/solve the necessary condition 𝑃(𝜆𝑛(𝑿) < 𝐶) = 𝛼
explicitly for what 𝐶 should be. This theorem says that you can take 𝐶 = exp(−𝜒2𝑑,𝛼

2 ) to find an

approximate test.

5 Some MLEs and Such To Remember

Distribution Sufficient Statistic UMVUE MLE

Exponential,
𝑓(𝑥, 𝜃) = ℎ(𝑥)𝑐(𝜃) exp(𝜔(𝜃)𝑇1(𝑥))

∑𝑛
𝑖=1 𝑇1(𝑋𝑖)

1
𝑛∑

𝑛
𝑖=1 𝑇1(𝑋𝑖)

Poisson(𝜆) 𝑓(∑𝑛
𝑖=1𝑋𝑖) 𝑋𝑛 𝑋𝑛
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𝒰(0, 𝜃) 𝑋(𝑛) 𝑛+1
𝑛 𝑋(𝑛) 𝑋(𝑛)

𝒩(𝜇, 𝜎2)
𝜇, 𝜎2 unknown

(∑𝑛
𝑖=1𝑋𝑖,∑

𝑛
𝑖=1𝑋

2
𝑖 ) (𝑋𝑛, 𝑆2𝑛) (𝑋𝑛, 𝑛−1𝑛 𝑆

2
𝑛)

Ber(𝜃) ∑𝑛
𝑖=1𝑋𝑖 𝑋𝑛 𝑋𝑛

𝑓(𝑥; 𝜃) = 𝑒−(𝑥−𝜃), 𝑥 ≥ 𝜃 𝑋(1) 𝑋(1) − 1
𝑛 𝑋(1)

𝜃𝑒−𝜃𝑥 ∑𝑛
𝑖=1𝑋𝑖 (𝑛 − 1)/∑𝑛

𝑖 𝑋𝑖 1/𝑋𝑛

Remark 11 : Recall that any one-to-one function of a (minimal) sufficient statistic is still a (minimal)
sufficient statistic.
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