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§1 Review of Probability

↪Definition 1.1 (Measurable Space, Probability Space) :  We work with a set Ω = sample
space = {outcomes}, and a 𝜎-algebra ℱ , which is a collection of subsets of Ω containing Ω
and closed under taking complements and countable unions. The tuple (Ω, ℱ) is called
measurable space.

We call a nonnegative function 𝑃 : ℱ → ℝ defined on a measurable space a probability
function if 𝑃(Ω) = 1 and if {𝐸𝑛} ⊆ ℱ  a disjoint collection of subsets of Ω, then 𝑃(⋃𝑛≥1 𝐸𝑛) =
∑𝑛≥1 𝑃(𝐸𝑛). We call the tuple (Ω, ℱ, 𝑃) a probability space.

↪Definition 1.2 (Random Variables) :  Fix a probability space (Ω, ℱ, 𝑃). A Borel-measurable
function 𝑋 : Ω → ℝ (namely, 𝑋−1(𝐵) ∈ ℱ  for every 𝐵 ∈ 𝔅(ℝ)) is called a random variable on 
ℱ .
• Probability distribution: 𝑋 induces a probability distribution on 𝔅(ℝ) given by 𝑃(𝑋 ∈ 𝐵)
• Cumulative distribution function (CDF):

𝐹𝑋(𝑥) ≔ 𝑃(𝑋 ≤ 𝑥).

Note that 𝐹(−∞) = 0, 𝐹(+∞) = 1 and 𝐹 right-continuous.

We say 𝑋 discrete if there exists a countable set 𝑆 ≔ {𝑥1, 𝑥2, …} ⊂ ℝ, called the support of 𝑋,
such that 𝑃(𝑋 ∈ 𝑆) = 1. Putting 𝑝𝑖 ≔ 𝑃(𝑋 = 𝑥𝑖), then {𝑝𝑖 : 𝑖 ≥ 1} is called the probability mass
function (PMF) of 𝑋, and the CDF of 𝑋 is given by

𝑃(𝑋 ≤ 𝑥) = ∑
𝑖:𝑥𝑖≤𝑥

𝑝𝑖.

We say 𝑋 continuous if there is a nonnegative function 𝑓 , called the probability distribution
function (PDF) of 𝑋 such that 𝐹(𝑥) = ∫𝑥

−∞ 𝑓 (𝑡) d𝑡 for every 𝑥 ∈ ℝ. Then,
• ∀ 𝐵 ∈ 𝔅(ℝ), 𝑃(𝑋 ∈ 𝐵) = ∫𝐵 𝑓 (𝑡) d𝑡
• 𝐹′(𝑥) = 𝑓 (𝑥)
• ∫∞

−∞ 𝑓 (𝑥) d𝑥 = 1

If 𝑋 : Ω → ℝ a random variable and 𝑔 : ℝ → ℝ a Borel-measurable function, then 𝑌 ≔ 𝑔(𝑋) :
Ω → ℝ also a random variable.
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↪Definition 1.3 (Moments) :  Let 𝑋 be a discrete/random random variable with pmf/pdf 𝑓
and support 𝑆. Then, if ∑𝑥∈𝑆|𝑥| 𝑓 (𝑥)/∫𝑆|𝑥| 𝑓 (𝑥) d𝑥 < ∞, then we say the first moment/mean of
𝑋 exists, and define

𝜇𝑋 = 𝔼[𝑋] =
⎩{
⎨
{⎧∑𝑥∈𝑆 𝑥𝑓 (𝑥)

∫𝑆 𝑥𝑓 (𝑥) d𝑥
.

Let 𝑔 : ℝ → ℝ be a Borel-measurable function. Then, we have

𝔼[𝑔(𝑋)] =
⎩{
⎨
{⎧∑𝑥∈𝑆 𝑔(𝑥)𝑓 (𝑥)

∫𝑆 𝑔(𝑥)𝑓 (𝑥)
.

Taking 𝑔(𝑥) = |𝑥|𝑘 gives the so-called “𝑘th absolute moments”, and 𝑔(𝑥) = 𝑥𝑘 gives the
ordinary “𝑘th moments”. Notice that 𝔼[⋅] linear in its argument.

For 𝑘 ≥ 1, if 𝜇 exists, define the central moments

𝜇𝑘 ≔ 𝔼[(𝑋 − 𝜇)𝑘],

where they exist.

↪Definition 1.4 (Moment Generating Function (mgf)) :  If 𝑋 a r.v., the mgf of 𝑋 is given by

𝑀(𝑡) ≔ 𝔼[𝑒𝑡𝑋],

if it exists for 𝑡 ∈ (−ℎ, ℎ), ℎ > 0. Then, 𝑀(𝑛)(0) = 𝔼[𝑋𝑛].
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↪Definition 1.5 (Multiple Random Variable) :  𝑋 = (𝑋1, …, 𝑋𝑛) : Ω → ℝ𝑛 a random vector if 
𝑋−1(𝐼) ∈ ℱ  for every 𝐼 ∈ 𝔅ℝ𝑛. (It suffices to check for “rectangles” 𝐼 = (−∞, 𝑎1] × ⋯ ×
(−∞, 𝑎𝑛], as before.)

Let 𝐹 be the CDF of 𝑋, and let 𝐴 ⊆ {1, …, 𝑛}, enumerating 𝐴 by {𝑖1, …, 𝑖𝑘}. Then, the CDF of
the subvector 𝑋𝐴 = (𝑋𝑖1

, …, 𝑋𝑖𝑘
) is given by

𝐹𝑋𝐴
(𝑥𝑖1

, …, 𝑥𝑖𝑘
) = lim𝑥𝑖𝑗→∞,

𝑖𝑗∈ℐ\𝐴

𝐹(𝑥1, …, 𝑥𝑛).

In particular, the marginal distribution of 𝑋𝑖 is given by

𝐹𝑋𝑖
(𝑥) = lim

𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛→+∞
𝐹(𝑥1, …, 𝑥, …, 𝑥𝑛).

Let 𝑔 : ℝ𝑛 → ℝ measurable. Then,

𝔼[𝑔(𝑋1, …, 𝑋𝑛)] =
⎩{
⎨
{⎧∑(𝑥1,…,𝑥𝑛) 𝑔(𝑥1, …, 𝑥𝑛)𝑓 (𝑥1, …, 𝑥𝑛)

∫ ⋯ ∫ 𝑔(𝑥1, …, 𝑥𝑛)𝑓 (𝑥1, …, 𝑥𝑛) d𝑥1⋯ d𝑥𝑛
.

We have the notion of a joint mgf,

𝑀(𝑡1, …, 𝑡𝑛) = 𝔼[𝑒∑𝑛
𝑖=1 𝑡𝑖𝑋𝑖],

if it exists for 0 < (∑𝑛
𝑖=1 𝑡2

𝑖 )
1
2 < ℎ for some ℎ > 0. Notice that 𝑀(0, …, 0, 𝑡𝑖, 0, …, 0) is equal to

the mgf of 𝑋𝑖.

1 Review of Probability 4



↪Definition 1.6 (Conditional Probability) :  Let (𝑋1, …, 𝑋𝑛) a random vector. Let ℐ = {1, …, 𝑛}
and 𝐴, 𝐵 disjoint subsets of ℐ  with 𝑘 ≔ |𝐴|, ℎ ≔ |𝐵|. Write 𝑋𝐴 = (𝑋𝑖1

, …, 𝑋𝑖𝑘
)

𝑡
, similar for 𝐵.

Then, the conditional probability of 𝐴 given 𝐵 is given by

𝑓𝑋𝐴|𝑋𝐵
(𝑥𝑎|𝑥𝑏) ≔ 𝑓𝑋𝐴 | 𝑋𝐵=𝑥𝐵

(𝑥𝐴) =
𝑓𝑋𝐴,𝑋𝐵

(𝑥𝑎, 𝑥𝑏)
𝑓𝑋𝑏

(𝑥𝑏)
,

provided the denominator is nonzero. Sometimes we have information about conditional
probabilities but not the main probability function; we have that

𝑓 (𝑥1, …, 𝑥𝑛) = 𝑓 (𝑥1)𝑓 (𝑥2 | 𝑥1)𝑓 (𝑥3|𝑥1, 𝑥2)⋯𝑓 (𝑥𝑛 |𝑥1, …, 𝑥𝑛−1),

which follows from expanding the previous definition and observing the cancellation.

Let 𝑋 = (𝑋1, …, 𝑋𝑛) ∼ 𝐹. We say 𝑋1, …, 𝑋𝑛 (mutually) independent and write ∐𝑛
𝑖=1 𝑋𝑖 if

𝐹(𝑥1, …, 𝑥𝑛) = ∏
𝑛

𝑖=1
𝐹𝑋𝑖

(𝑥𝑖),

where 𝐹𝑋𝑖
 the marginal cdf of 𝑋𝑖. Equivalently,

∐
𝑛

𝑖=1
𝑋𝑖 ⇔ 𝑓 (𝑥1, …, 𝑥𝑛) = ∏

𝑛

𝑖=1
𝑓𝑋𝑖

(𝑥𝑖)

⇔ 𝑃(𝑋1 ∈ 𝐵1, …, 𝑋𝑛 ∈ 𝐵𝑛) = ∏
𝑛

𝑖=1
𝑃(𝑋𝑖 ∈ 𝐵𝑖) ∀ 𝐵𝑖 ∈ 𝔅ℝ

⇔ 𝑀𝑋(𝑡1, …, 𝑡𝑛) = ∏
𝑛

𝑖=1
𝑀𝑋𝑖

(𝑡𝑖).

If 𝑋, 𝑌 are two random variables with cdfs 𝐹𝑋, 𝐹𝑌 such that 𝐹𝑋(𝑧) = 𝐹𝑌(𝑧) for every 𝑧, we say 
𝑋, 𝑌 identically distributed and write 𝑋 =𝑑 𝑌 (note that 𝑋 need not equal 𝑌 pointwise). If 
𝑋1, …, 𝑋𝑛 a collection of random variables that are independent and identically distributed
with common cdf 𝐹, we write 𝑋1, …, 𝑋𝑛 ∼iid 𝐹.

Further, define the covariance, correlation of two random variables 𝑋, 𝑌 respectively:

Cov(𝑋, 𝑌) ≔ 𝜎𝑋,𝑌 ≔ 𝔼[(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌])] = 𝔼[𝑋𝑌] − 𝜇𝑋𝜇𝑌, 𝜌𝑋,𝑌 ≔
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
,

if 𝔼[|𝑋 − 𝔼[𝑋]| |𝑌 − 𝔼[𝑌]|] < ∞.

↪Theorem 1.1 : If 𝑋1, …, 𝑋𝑛 independent and 𝑔1, …, 𝑔𝑛 : ℝ → ℝ borel-measurable functions,
then 𝑔1(𝑋1), …, 𝑔𝑛(𝑋𝑛) also independent.
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↪Definition 1.7 (Conditional Expectation):  Let 𝑋, 𝑌 be random variables and 𝑔 : ℝ → ℝ a
borel-measurable function. We define the following notions:

𝔼[𝑔(𝑋)|𝑌 = 𝑦] =
⎩{
⎨
{⎧∑𝑥∈𝑆𝑋

𝑔(𝑥)𝑓 (𝑥|𝑦) discrete

∫𝑆𝑥
𝑔(𝑥)𝑓 (𝑥|𝑦) d𝑥 cnts

.

Var(𝑋|𝑌 = 𝑦) = 𝔼[𝑋2|𝑌 = 𝑦] − 𝔼2[𝑋|𝑌 = 𝑦].

↪Theorem 1.2 : If 𝔼[𝑔(𝑋)] exists, then 𝔼[𝑔(𝑋)] = 𝔼[𝔼[𝑔(𝑋)|𝑌]], where the first nested 𝔼 is
with respect to 𝑥, the second 𝑦.

↪Theorem 1.3 : If 𝔼[𝑋2] < ∞, then Var(𝑋) = Var(𝔼[𝑋|𝑌]) + 𝔼[Var(𝑋|𝑌)]. In particular, 
Var(𝑋) ≥ Var(𝔼[𝑋|𝑌]).

§2 Common Statistical Tools

§2.1 Definition of Statistics

↪Definition 2.1 (Inference) :  We consider some population with some characteristic we wish
to study. We can model this characteristic as a random variable 𝑋 ∼ 𝐹. In general, we don’t
have access to 𝐹, but wish to take samples from our population to make inferences about its
properties.

(1) Parametric inference: in this setting, we assume we know the functional form of 𝑋 up to
some parameter, 𝜃 ∈ Θ ⊂ ℝ𝑑, where Θ our “parameter space”. Namely, we know 𝑋 ∼ 𝐹𝜃 ∈
ℱ ≔ {𝐹𝜃 | 𝜃 ∈ Θ}.

(2) Non-parametric inference: in this setting we know noting about 𝐹 itself, except perhaps
that 𝐹 continuous, discrete, etc.

Other types exist. We’ll focus on these two.

↪Definition 2.2 (Random Sample) : Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹. Then 𝑋1, …, 𝑋𝑛 called a random sample
of the population.

We also call 𝑋𝑖 the “pre-experimental data” (to be observed) and 𝑥𝑖 the “post-experimental
data” (been observed).
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↪Definition 2.3 (Statistics) :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹 where 𝑋𝑖 a 𝑑-dimensional random vector. Let

𝑇 : ℝ𝑑 × ℝ𝑑 × ⋯ × ℝ𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−fold

→ ℝ𝑘

be a borel-measurable function. Then, 𝑇(𝑋1, …, 𝑋𝑛) is called a statistic, provided it does not
depend on any unknown.

⊛ Example 2.1 :  𝑋𝑛 ≔ 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖 (the “sample mean”) and 𝑆2
𝑛 = 1

𝑛−1 ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋𝑛)

2
, (the

“sample variance”) are both typical statistics.

§2.2 Properties of Normal and other Common Distributions

↪Theorem 2.1 :  Let 𝑥1, …, 𝑥𝑛 ∈ ℝ, then

(a) argmin𝛼∈ℝ{∑𝑛
𝑖=1 (𝑥𝑖 − 𝛼)2} = 𝑥𝑛;

(b) ∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑛)2 = ∑𝑛

𝑖=1(𝑥2
𝑖 ) − 𝑛𝑥𝑛

2;

(c) ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥𝑛) = 0.

↪Theorem 2.2 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹, and 𝑔 : ℝ → ℝ borel-measurable such that Var (𝑔(𝑋)) <
∞. Then,

(a) 𝔼[∑𝑛
𝑖=1 𝑔(𝑋𝑖)] = 𝑛𝔼[𝑔(𝑋1)];

(b) Var (∑𝑛
𝑖=1 𝑔(𝑋𝑖)) = 𝑛 Var(𝑋1).

↪Theorem 2.3 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹 with 𝜎2 < ∞, then

1. 𝔼[𝑋𝑛] = 𝜇, Var(𝑋𝑛) = 𝜎2

𝑛 , 𝔼[𝑆2
𝑛] = 𝜎2.

2. If 𝑀𝑋1
(𝑡) exists in some neighborhood of 0, then 𝑀𝑋𝑛

(𝑡) = 𝑀𝑋1
( 𝑡

𝑛)
𝑛

, where it exists.

↪Theorem 2.4 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒩(𝜇, 𝜎2). Then

1. 𝑋𝑛 ∼ 𝒩(𝜇, 𝜎2

𝑛 );
2. 𝑋𝑛, 𝑆2

𝑛 are independent;
3. (𝑛−1)𝑆2

𝑛

𝜎2 =
∑𝑛

𝑖=1 (𝑋𝑖−𝑋𝑛)
2

𝜎2 ∼ 𝜒2
(𝑛−1).

Remark 2.1 :
2. actually holds iff the underlying distribution is normal.

Proof. We prove 2. We first write 𝑆2
𝑛 as a function of (𝑋2 − 𝑋𝑛, …, 𝑋𝑛 − 𝑋𝑛):
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𝑆2
𝑛 =

1
𝑛 − 1 ∑

𝑛

𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
=

1
𝑛 − 1⎩{

⎨
{⎧∑

𝑛

𝑖=2
(𝑋𝑖 − 𝑋𝑛)

2
+ (𝑋1 − 𝑋𝑛)

2

⎭}
⎬
}⎫

=
1

𝑛 − 1⎩{
⎨
{⎧

∑
𝑛

𝑖=2
(𝑋𝑖 − 𝑋𝑛)

2
+

⎝
⎜⎛∑

𝑛

𝑖=2
(𝑋𝑖 − 𝑋𝑛)

⎠
⎟⎞

2

⎭}
⎬
}⎫

.

Then, it suffices to show that 𝑋𝑛 and (𝑋2 − 𝑋𝑛, …, 𝑋𝑛 − 𝑋𝑛) are independent.

Consider now the transformation

⎩{
{{
⎨
{{
{⎧𝑦1 = 𝑥𝑛

𝑦2 = 𝑥2 − 𝑥𝑛
⋱

𝑦𝑛 = 𝑥𝑛 − 𝑥𝑛

⇒

⎩{
{{
⎨
{{
{⎧𝑥1 = 𝑦1 − ∑𝑛

𝑖=2 𝑦𝑖
𝑥2 = 𝑦2 + 𝑦1

⋱
𝑥𝑛 = 𝑦𝑛 + 𝑦1

,

which gives Jacobian

|𝐽| =

|
||
||
|
|

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎛1

1
⋮
1

−1
1
⋱
0

⋯
0
⋱
⋯

−1
⋯
⋮
1 ⎠

⎟⎟⎟
⎟⎟⎟
⎟⎞

|
||
||
|
|

= 𝑛,

and so

𝑓𝑌1,…,𝑌𝑛
(𝑦1, …, 𝑦𝑛) = |𝐽| ⋅ 𝑓𝑋1,…,𝑋𝑛

(𝑥1(𝑦1, …, 𝑦𝑛), …, 𝑥𝑛(𝑦1, …, 𝑦𝑛))

= 𝑛 ⋅ ∏
𝑛

𝑖=1

1
√2𝜋𝜎2

𝑒− 1
2𝜎2 (𝑥𝑖(𝑦1,…,𝑦𝑛)−𝜇)2

≈ 𝑒−𝑛
(𝑦1−𝜇)2

2𝜎2⏟⏟⏟⏟⏟
only 𝑦1

⋅ 𝑒
− 1

2𝜎2 {(∑𝑛
𝑖=2 𝑦𝑖)

2+ ∑𝑛
𝑖=2 𝑦2

𝑖 }
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

no 𝑦1 dependence
,

and hence as the PDFs split, we conclude 𝑌1 independent of 𝑌2, …, 𝑌𝑛 and so 𝑋𝑛
independent of (𝑋2 − 𝑋𝑛, …, 𝑋𝑛 − 𝑋𝑛) and so in particular of any Borel-measurable
function of this vector such as 𝑆2

𝑛, completing the proof.

For 3, note that

𝑉 ≔ ∑
𝑛

𝑖=1
(

𝑋𝑖 − 𝜇
𝜎 )

2
=

1
𝜎2 ∑

𝑛

𝑖=1
((𝑋𝑖 − 𝑋𝑛) − (𝜇 − 𝑋𝑛))

2

=
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋𝑛)
2

𝜎2 +
𝑛(𝑋𝑛 − 𝜇)

2

𝜎2 ≕ 𝑊1 + 𝑊2.

The first part, 𝑊1, of this summation is just (𝑛 − 1) 𝑆2
𝑛

𝜎2 , a function of 𝑆2
𝑛, and the second,

𝑊2, is a function of 𝑋𝑛. By what we’ve just shown in the previous part, these two are
independent. In addition, 𝑉 ∼ 𝜒2

(𝑛) and

𝑊2 =
𝑛(𝑋𝑛 − 𝜇)

2

𝜎2 =
⎝
⎜⎜⎜
⎛𝑋𝑛 − 𝜇

𝜎
√𝑛 ⎠

⎟⎟⎟
⎞

2

∼ 𝜒2
(1),

2.2 Properties of Normal and other Common Distributions 8



since the inner random variable is a standard normal. Then, since 𝑊1, 𝑊2
independent, 𝑀𝑉(𝑡) = 𝑀𝑊1

(𝑡)𝑀𝑊2
(𝑡), so for 𝑡 < 1

2 ,

𝑀𝑊1
(𝑡) =

𝑀𝑉(𝑡)
𝑀𝑊2

(𝑡) =
(1 − 2𝑡)−𝑛

2

(1 − 2𝑡)−1
2

= (1 − 2𝑡)− (𝑛−1)
2 ,

hence 𝑊1 ∼ 𝜒2
(𝑛−1). ■

↪Proposition 2.1 :  Let 𝑋 ∼ 𝑡(𝜈), the Student 𝑡-distribution i.e

𝑓 (𝑥) =
Γ(𝜈+1

2 )

√𝜋𝜈 ⋅ Γ(𝜈
2 )⎝

⎜⎛1 +
𝑥2

𝜈 ⎠
⎟⎞

−𝜈+1
2

,

then
• Var(𝑋) = 𝜈

𝜈−2  for 𝜈 > 2
• If 𝑍 ∼ 𝒩(0, 1) and 𝑉 ∼ 𝜒2

(𝜈) are independent random variables, then 𝑇 = 𝑍
√𝑉/𝜈

∼ 𝑡(𝜈).

↪Theorem 2.5 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒩(𝜇, 𝜎2). Then,

𝑇 =
𝑋𝑛 − 𝜇

√𝑆2
𝑛/𝑛

=
√𝑛(𝑋𝑛 − 𝜇)

𝑆𝑛
∼ 𝑡(𝑛 − 1).

Remark 2.2 :  By combing CLT and Slutsky’s Theorem, 𝑇 asymptotes to 𝒩(0, 1), but this gives
a general distribution. Note that for large 𝑛, 𝑡(𝑛 − 1) approximately normal too.

Proof. Notice that

𝑊1 ≔ √𝑛
𝑋𝑛 − 𝜇

𝜎 ∼ 𝒩(0, 1), 𝑊2 ≔
(𝑛 − 1)𝑆2

𝑛
𝜎2 ∼ 𝜒2

(𝑛−1)

are independent, and

𝑇 =
𝑊1

√𝑊2/(𝑛 − 1)

so by the previous proposition 𝑇 ∼ 𝑡(𝑛 − 1). ■

↪Proposition 2.2 :  Given 𝑈 ∼ 𝜒2
(𝑚), 𝑉 ∼ 𝜒2

(𝑛) independent, then 𝐹 = 𝑈/𝑚
𝑉/𝑛 ∼ 𝐹(𝑚, 𝑛). If 𝑇 ∼

𝑡(𝜈), 𝑇2 ∼ 𝐹(1, 𝜈).
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↪Theorem 2.6 :  Let 𝑋1, …, 𝑋𝑚 ∼iid 𝒩(𝜇1, 𝜎2
1 ) and 𝑌1, …, 𝑌𝑛 ∼iid 𝒩(𝜇2, 𝜎2

2 ) be mutually
independent random samples. Then,

𝐹 =
𝑆2

𝑚/𝜎2
1

𝑆2
𝑛/𝜎2

2
∼ 𝐹(𝑚 − 1, 𝑛 − 1).

Proof. We have that 𝑈 = (𝑚−1)𝑆2
𝑚

𝜎2
1

∼ 𝜒2
(𝑚−1) and 𝑉 = (𝑛−1)𝑆2

𝑛

𝜎2
2

 are independent so by

the previous proposition

𝐹 =
𝑈/(𝑚 − 1)
𝑉/(𝑛 − 1) ∼ 𝐹(𝑚 − 1, 𝑛 − 1).

■

§2.3 Order Statistics

↪Definition 2.4 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹. Then, the order statistics are

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛),

where 𝑋(𝑖) the 𝑖th largest of 𝑋1, …, 𝑋𝑛.

↪Definition 2.5 (Related Functions of Order Statistics) :  The sample range is defined

𝑅𝑛 ≔ 𝑋(𝑛) − 𝑋(1).

The sample median is defined

𝑀(𝑋1, …, 𝑋𝑛) ≔

⎩{
{{
⎨
{{
{⎧𝑋(𝑛+1

2 ) if 𝑛 odd

𝑋(𝑛
2 )+𝑋

(𝑛+1
2 )

2 if 𝑛 even.

↪Theorem 2.7 (Distribution of Max, Min):  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹, 𝑓 .

(Discrete)

(a) 𝑃(𝑋(1) = 𝑥) = [1 − 𝐹(𝑥−)]𝑛 − [1 − 𝐹(𝑥)]𝑛

(b) 𝑃(𝑋(𝑛) = 𝑦) = [𝐹(𝑦)]𝑛 − [𝐹(𝑦−)]𝑛

(Continuous)

(c) 𝐹𝑋(1)
(𝑥) = 𝑃(𝑋(1) ≤ 𝑥) = 1 − [1 − 𝐹(𝑥)]𝑛,  𝑓𝑋(1)

(𝑥) = 𝑛 ⋅ 𝑓 (𝑥)[1 − 𝐹(𝑥)]𝑛−1

(d) 𝐹𝑋(𝑛)
(𝑦) = [𝐹(𝑦)]𝑛, 𝑓𝑋(𝑛)

(𝑦) = 𝑛 ⋅ 𝑓 (𝑦)[𝐹(𝑦)]𝑛−1

Proof. (a) Notice

𝑃(𝑋(1) = 𝑥) = 𝑃(𝑋(1) ≤ 𝑥) − 𝑃(𝑋(1) < 𝑥).

2.3 Order Statistics 10



We have

𝑃(𝑋(1) ≤ 𝑥) = 1 − 𝑃(𝑋(1) > 𝑥)

= 1 − 𝑃(𝑋1 > 𝑥, 𝑋2 > 𝑥, …, 𝑋𝑛 > 𝑥)

= 1 − 𝑃(𝑋1 > 𝑥)𝑃(𝑥2 > 𝑥)⋯𝑃(𝑋𝑛 > 𝑥)

= 1 − [1 − 𝐹(𝑥)]𝑛,

and similarly

𝑃(𝑋(1) < 𝑥) = 1 − 𝑃(𝑋(1) ≥ 𝑥) = 1 − [1 − 𝐹(𝑥−)]𝑛,

where 𝐹(𝑥−) = lim𝑧→𝑥− 𝐹(𝑧). So in all,

𝑃(𝑋(1) = 𝑥) = [1 − 𝐹(𝑥−)]𝑛 − [1 − 𝐹(𝑥)]𝑛.

(b) is very similar. For (c), we have

𝑃(𝑋(1) ≤ 𝑥) = 1 − 𝑃(𝑋(1) > 𝑥)

= 1 − 𝑃(𝑋1 > 𝑥, …, 𝑋𝑛 > 𝑥)

= 1 − [1 − 𝐹(𝑥)]𝑛.

(d) is similar. ■

↪Theorem 2.8 (Distribution of 𝑗th Order Statistics) :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹, 𝑓 .

(Discrete) Suppose the 𝑋𝑖’s take values in 𝑆𝑥 = {𝑥1, 𝑥2, …} and put 𝑝𝑖 = 𝑃(𝑋𝑖). Then,

𝐹𝑋(𝑗)
(𝑥𝑖) = 𝑃(𝑋(𝑗)(𝑥𝑖) ≤ 𝑥𝑖) = ∑

𝑛

𝑘=𝑗
(

𝑛
𝑘

)𝑃𝑘
𝑖 (1 − 𝑃𝑖)

𝑛−𝑘,

where 𝑃𝑖 = 𝑃(𝑋𝑖 ≤ 𝑥𝑖) = ∑𝑖
ℓ=1 𝑝ℓ.

(Continuous)

𝐹𝑋(𝑗)
(𝑥) = ∑

𝑛

𝑘=𝑗
(

𝑛
𝑘

)𝐹𝑘(𝑥)[1 − 𝐹(𝑥)]𝑛−𝑘,

so

𝑓𝑋(𝑗)
(𝑥) =

𝑛!
(𝑗 − 1)!(𝑛 − 𝑗)!

𝑓 (𝑥)[𝐹(𝑥)]𝑗−1[1 − 𝐹(𝑥)]𝑛−𝑗.

Proof. For discrete, we have

𝑃(𝑋(𝑗)(𝑥𝑖) ≤ 𝑥𝑖) = 𝑃(at least 𝑗 out of 𝑋1, …, 𝑋𝑛 ≤ 𝑥𝑖).

Then,

𝑃(at least 𝑗 out of 𝑋1, …, 𝑋𝑛 ≤ 𝑥𝑖) = ∑
𝑛

𝑘=𝑗
(

𝑛
𝑘

)𝑃𝑘
𝑖 (1 − 𝑃𝑖)

𝑛−𝑘.

Continuous is similar. ■
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§2.4 Large Sample/Asymptotic Theory

↪Definition 2.6 (Convergence in Probability) :  We say 𝑇𝑛 = 𝑇(𝑋1, …, 𝑋𝑛) converges in
probability to 𝜃 𝑇𝑛 →𝑃 𝜃 as 𝑛 → ∞ if for any 𝜀 > 0,

lim𝑛→∞ 𝑃(|𝑇𝑛 − 𝜃| > 𝜀) = 0.

↪Definition 2.7 (Convergence in Distribution):  Find a positive sequence {𝑟𝑛} with 𝑟𝑛 → ∞
such that

𝑟𝑛(𝑇𝑛 − 𝜃) →𝑑 𝑇,

where 𝑇 a random variable.

↪Theorem 2.9 (Slutsky's) :  Suppose 𝑋𝑛 →𝑑 𝑋 and 𝑌𝑛 →𝑃 𝑎 for some 𝑎 ∈ ℝ. Then,

𝑋𝑛 + 𝑌𝑛 →𝑑 𝑋 + 𝑎

𝑋𝑛𝑌𝑛 →𝑑 𝑎𝑋,

and if 𝑎 ≠ 0,

𝑋𝑛
𝑌𝑛

→𝑑
𝑋
𝑎 .

↪Theorem 2.10 (Continuous Mapping Theorem (CMT)):  Suppose 𝑋𝑛 →𝑃 𝑋 and 𝑔 is
continuous on the set 𝐶 such that 𝑃(𝑋 ∈ 𝐶) = 1. Then,

𝑔(𝑋𝑛) →𝑃 𝑔(𝑋).

⊛ Example 2.2 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹 with 𝜇 = 𝔼[𝑋𝑖], 𝜎2 = Var(𝑋𝑖) < ∞. Then,

√𝑛(𝑋𝑛 − 𝜇)
𝑆𝑛

→𝑑 𝒩(0, 1),

since we may rewrite

√𝑛(𝑋𝑛 − 𝜇)/𝜎
𝑆𝑛/𝜎 .

The numerator →𝑑 𝒩(0, 1) by CLT. 𝑆2
𝑛 →𝑃 𝜎2, so the denominator goes to 1 in probability.
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↪Definition 2.8 (Big 𝒪 , Little ℴ  Notation):  Let {𝑎𝑛}, {𝑏𝑛} ⊆ ℝ real sequences.

• We say 𝑎𝑛 = 𝒪(𝑏𝑛) if ∃ 0 < 𝑐 ∈ ℝ and 𝑁 ∈ ℕ such that |𝑎𝑛
𝑏𝑛

| ≤ 𝑐 for every 𝑛 ≥ 𝑁.

• We say 𝑎𝑛 = ℴ(𝑏𝑛) if lim𝑛→∞
𝑎𝑛
𝑏𝑛

= 0.

↪Definition 2.9 (Big 𝒪𝑝, Little ℴ𝑝 Notation):  Let {𝑋𝑛}, {𝑌𝑛} sequences of random variables.
• We say 𝑋𝑛 = 𝒪𝑝(1) if ∀ 𝜀 > 0 there is a 𝑁𝜀 ∈ ℕ and 𝐶𝜀 ∈ ℝ such that

𝑃(|𝑋𝑛| > 𝐶𝜀) < 𝜀

for every 𝑛 > 𝑁𝜀.
‣ We say 𝑋𝑛 = 𝒪𝑝(𝑌𝑛) if 𝑋𝑛/𝑌𝑛 = 𝒪𝑝(1).

• We say 𝑋𝑛 = ℴ𝑝(1) if 𝑋𝑛 →𝑃 0.
‣ We say 𝑋𝑛 = ℴ𝑝(𝑌𝑛) if 𝑋𝑛/𝑌𝑛 = ℴ𝑝(1).

↪Proposition 2.3 :  If 𝑋𝑛 →𝑑 𝑋, then 𝑋𝑛 = 𝒪𝑝(1).

↪Proposition 2.4 (The Delta Method (First Order)) :  Let √𝑛(𝑋𝑛 − 𝜇) →𝑑 𝑉 and 𝑔 a real-valued
function such that 𝑔′ exists at 𝑥 = 𝜇 and 𝑔′(𝜇) ≠ 0. Then,

√𝑛(𝑔(𝑋𝑛) − 𝑔(𝜇)) →𝑑 𝑔′(𝜇)𝑉.

In particular, if 𝑉 ∼ 𝒩(0, 𝜎2) then

√𝑛(𝑔(𝑋𝑛) − 𝑔(𝜇)) →𝑑 𝒩(0, 𝑔′(𝜇)2𝜎2).

Proof. Taylor expanding the LHS,

√𝑛{𝑔(𝑋𝑛) − 𝑔(𝜇)} = 𝑔′(𝜇)√𝑛(𝑋𝑛 − 𝜇) + ℴ𝑝(1) → 𝑔′(𝜇)𝑉.

■

↪Proposition 2.5 (The Delta Method (Second Order)) :  Suppose √𝑛(𝑋𝑛 − 𝜇) →𝑑 𝒩(0, 𝜎2) and 
𝑔′(𝜇) = 0 but 𝑔″(𝜇) ≠ 0. Then,

𝑛{𝑔(𝑋𝑛) − 𝑔(𝜇)} →𝑑 𝜎2 ⋅
𝑔″(𝜇)

2 ⋅ 𝜒2
(1).

Proof.

𝑔(𝑋𝑛) − 𝑔(𝜇) =
𝑔″(𝜇)

2 (𝑋𝑛 − 𝜇)2 + ℴ𝑝(1),

so
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𝑛(𝑔(𝑋𝑛) − 𝑔(𝜇)) = 𝜎2 𝑔″(𝜇)
2 ⎣

⎢⎡
√𝑛(𝑋𝑛 − 𝜇)

𝜎 ⎦
⎥⎤

2

+ ℴ𝑝(1).

The bracketed term converges in distribution to 𝒩(0, 1) and the ℴ𝑝(1) term converges
in probability to zero, so the proposition follows by applying Slutsky’s Theorem. ■

⊛ Example 2.3 :  √𝑛(𝑋𝑛 − 𝜇) →𝑑 𝒩(0, 𝜎2) by CLT. Letting 𝑔(𝑥) = 𝑥2, and assuming 𝜇 ≠ 0, then

√𝑛(𝑋2
𝑛 − 𝜇2) → 𝒩(0, 4𝜇2𝜎2),

by the first-order delta method.

↪Proposition 2.6 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹, and denote the ECDF 𝐹𝑛(𝑥) = 1
𝑛 ∑𝑛

𝑖=1 𝟙(𝑋𝑖 ≤ 𝑥). Then,
1. 𝔼[𝐹𝑛(𝑥)] = 𝐹(𝑥);
2. Var (𝐹𝑛(𝑥)) = 1

𝑛𝐹(𝑥)(1 − 𝐹(𝑥));
3. 𝑛𝐹𝑛(𝑥) = ∑𝑛

𝑖=1 𝟙(𝑋𝑖 ≤ 𝑥) ∼ Bin(𝑛, 𝐹(𝑥));
4. √𝑛(𝐹𝑛(𝑥)−𝐹(𝑥))

√𝐹(𝑥)(1−𝐹(𝑥))
→𝑑 𝒩(0, 1).

5. 𝐹𝑛(𝑥) →𝑃 𝐹(𝑥).
6. 𝑃(|𝐹𝑛(𝑥) − 𝐹(𝑥)| ≥ 𝜀) ≤ 2𝑒−2𝑛𝜀2, by Hoeffing’s Inequality.
7. sup𝑥∈ℝ|𝐹𝑛(𝑥) − 𝐹(𝑥)| = ‖𝐹𝑛 − 𝐹‖∞ →a.s. 0, by the Glivenko-Cantelli Theorem.
8. 𝑃(‖𝐹𝑛 − 𝐹‖∞ > 𝜀) ≤ 𝐶𝜀𝑒−2𝑛𝜀2 for some constant 𝐶 (Dvoretzky-Kiefer-Wolfowitz Theorem).

Remark 2.3 :  The constant in 8. was shown to be 2 by Massart.

§3 Parametric Inference

↪Definition 3.1 (Point Estimator) :  Let 𝑋1, …, 𝑋𝑛 a random sample. A point estimator ̂𝜃 ≔
̂𝜃(𝑋1, …, 𝑋𝑛) is an estimator of a parameter 𝜃 if it is a statistic.

⊛ Example 3.1 :  Let 𝑋 be a random variable denoting whether a randomly selected electronic
chip is operational or not, i.e. 𝑋 = {1 operational

0 else
, supposing 𝑋 ∼ Ber(𝜃), then 0 < 𝜃 < 1 is the

probability a randomly selected chip is operational. Let 𝑋1, …, 𝑋𝑛 ∼iid Ber(𝜃). Then,

ℱ = {Ber(𝜃) : 0 < 𝜃 < 1}, Θ = (0, 1).

Then, possible estimators are 𝑋𝑛, 𝑋1+𝑋2
2 , just 𝑋2, etc.
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↪Definition 3.2 (Bias) :  An estimator ̂𝜃𝑛 is an unbiased estimator of 𝜃 if

𝔼𝜃[ ̂𝜃𝑛] = 𝜃, ∀ 𝜃 ∈ Θ,

where the expected value is taken with respect to the distribution of ̂𝜃𝑛 (and thus depends on
the distribution 𝐹𝜃).

Generally, the bias of an estimator ̂𝜃𝑛 is defined

Bias( ̂𝜃𝑛) ≔ 𝔼𝜃[ ̂𝜃𝑛] − 𝜃, 𝜃 ∈ Θ.

If ̂𝜃𝑛 unbiased, then Bias( ̂𝜃𝑛) = 0.

⊛ Example 3.2 :  For instance, recalling the previous example,

𝔼𝜃[𝑋𝑛] =
1
𝑛 ∑

𝑛

𝑖=1
𝔼𝜃[𝑋𝑖] =

1
𝑛𝑛𝜃 = 𝜃,

so 𝑋𝑛 unbiased. Also,

𝔼𝜃[𝑋1] = 𝜃,

so just 𝑋1 also unbiased, as is 𝑋1+𝑋2
2 .

⊛ Example 3.3 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹𝜃, 𝜃 = (
𝜇

𝜎2), 𝜇 = 𝔼[𝑋𝑖], 𝜎2 Var(𝑋𝑖). Then, �̂�𝑛 = 𝑋𝑛 =
1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖 an unbiased estimator of 𝜇. Let �̂�2
𝑛 = 𝑆2

𝑛 = 1
𝑛−1 ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋𝑛)
2
, then recalling 

𝔼[�̂�2
𝑛] = 𝜎2, this is an unbiased estimator of 𝜎2. However, changing the constant term, to get

�̂�∗2
𝑛 =

1
𝑛 ∑

𝑛

𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
,

is biased, with

𝔼𝜃[�̂�∗2
𝑛 ] =

𝑛 − 1
𝑛 𝜎2,

so

Bias(�̂�∗2
𝑛 ) = −

𝜎2

𝑛 < 0,

i.e. �̂�∗2
𝑛  underestimates the true parameter on average. Of course, in the limit it becomes 0.
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⊛ Example 3.4 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒰(0, 𝜃), 𝜃 > 0, Θ = (0, ∞). Recall 𝔼𝜃[𝑋𝑖] = 𝜃
2 . Consider

̂𝜃𝑛,1 ≔ 2𝑋3, ̂𝜃𝑛,2 ≔ 2𝑋𝑛, ̂𝜃𝑛,3 ≔ 𝑋(𝑛).

Then, 𝔼[ ̂𝜃𝑛,𝑖] = 𝜃 for 𝑖 = 1, 2 and 𝑛
𝑛+1𝜃 for 𝑖 = 3. Hence, we can scale the last one, ̂𝜃𝑛,4 ≔

𝑛+1
𝑛

̂𝜃𝑛,3, to get an unbiased estimator.

↪Definition 3.3 (Mean-Squared Error) :  The Mean-Squared Error (MSE) of an estimator is
defined

MSE𝜃( ̂𝜃𝑛) ≔ 𝔼𝜃[( ̂𝜃𝑛 − 𝜃)
2
]

= 𝔼𝜃[(( ̂𝜃𝑛 − 𝔼𝜃[ ̂𝜃𝑛]) + (𝔼𝜃[ ̂𝜃𝑛] − 𝜃))
2
]

= Var𝜃( ̂𝜃𝑛) + [Bias ( ̂𝜃𝑛)]
2
.

Remark that if 𝔼𝜃[ ̂𝜃𝑛] = 𝜃, i.e. ̂𝜃𝑛 unbiased, then MSE𝜃( ̂𝜃𝑛) = Var𝜃( ̂𝜃𝑛).

↪Definition 3.4 (Consistency):  We say an estimator ̂𝜃𝑛 of 𝜃 is consistent if ̂𝜃𝑛 →𝑃 𝜃 as 𝑛 → ∞.

Remark 3.1 :  There are many ways of establishing consistency; by direct definition of
convergence in probability, the WLLN (maybe continuous mapping theorem), or checking if 
𝔼𝜃[ ̂𝜃𝑛] → 𝜃 (if this happens we say ̂𝜃𝑛 “asymptotically unbiased”) and Var𝜃( ̂𝜃𝑛) → 0 as 𝑛 →
∞, for in this case by Chebyshev’s Inequality we have consistency.
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⊛ Example 3.5 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝐹𝜃.

1. �̂�𝑛 ≔ 𝑋𝑛 →𝑃 𝜇 by WLLN, and 𝑆2
𝑛 →𝑃 𝜎2 similarly.

2. If 𝑋1, …, 𝑋𝑛 ∼iid 𝒰(0, 𝜃), then 𝔼[𝑋𝑖] = 𝜃
2 . Note that ̂𝜃𝑛,1 = 2𝑋𝑛 and ̂𝜃𝑛,2 = 𝑛+1

𝑛 𝑋(𝑛) are both
unbiased estimators of 𝜃, and both are consistent. To see the second one, we have that for
any 𝜀 > 0,

𝑃(|𝑋(𝑛) − 𝜃| > 𝜀) = 𝑃(𝜃 − 𝑋(𝑛) > 𝜀)

= 𝑃(𝑋(𝑛) < 𝜃 − 𝜀)

= (
𝜃 − 𝜀

𝜃 )
𝑛

→ 0 as 𝑛 → ∞.

We have too that

MSE𝜃( ̂𝜃𝑛,1) = Var𝜃( ̂𝜃𝑛,1) = 4Var𝜃(𝑋𝑛) =
4
𝑛 Var(𝑋𝑖) =

4
𝑛

𝜃2

12 =
𝜃2

3𝑛.

Also

MSE𝜃( ̂𝜃𝑛,2) = Var𝜃( ̂𝜃𝑛,2) = (
𝑛 + 1

𝑛 )
2

Var(𝑋(𝑛))

= ⋯ =
𝜃2

𝑛(𝑛 + 2) =
𝜃2

3𝑛 ⋅
3

𝑛 + 2 ≤ MSE𝜃( ̂𝜃𝑛,1) ∀ 𝑛 ≥ 1.

We will focus on the class of unbiased estimators of a real-valued parameter, 𝜏(𝜃), 𝜏 : Θ → ℝ.

§3.1 Uniformly Minimum Variance Unbiased Estimators (UMVUE), Cramér-Rau Lower
Bound (CRLB)

↪Definition 3.5 (UMVUE):  Let 𝑿 = (𝑋1, …, 𝑋𝑛)𝑡 be a random variable with a joint pdf/pmf
given by

𝑝𝜃(𝒙) = 𝑝𝜃(𝑥1, …, 𝑥𝑛),

where 𝜃 some parameter in Θ ⊆ ℝ𝑑. An estimator Τ(𝑿) of a real valued parameter 𝜏(𝜃) :
Θ → ℝ is said to be a UMVUE of 𝜏(𝜃) if
1. 𝔼𝜃[Τ(𝑿)] = 𝜏(𝜃) for every 𝜃 ∈ Θ;
2. for any other unbiased estimator Τ∗(𝑿) of 𝜏(𝜃), we have

Var𝜃(Τ(𝑿)) ≤ Var𝜃(Τ∗(𝑿)), ∀ 𝜃 ∈ Θ.
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↪Proposition 3.1 (Cramér-Rau Lower Bound):  We define in the case 𝑑 = 1 (Θ ⊆ ℝ) for
convenience. Assume that

(1) the family {𝑝𝜃 : 𝜃 ∈ Θ} has a common support 𝑆 = {𝒙 ∈ ℝ𝑛 : 𝑝𝜃(𝒙) > 0} that does not
depend on 𝜃;

(2) for 𝒙 ∈ 𝑆, 𝜃 ∈ Θ, d
d𝜃 log 𝑝𝜃(𝒙) < ∞;

(3) for any statistic ℎ(𝒙) with 𝔼𝜃[|ℎ(𝒙)|] < ∞ for every 𝜃 ∈ Θ, we have

d
d𝜃 ∫

𝑆
ℎ(𝒙)𝑝𝜃(𝒙) d𝒙 = ∫

𝑆
ℎ(𝒙)

d
d𝜃 𝑝𝜃(𝒙) d𝒙,

whenever the right-hand side is finite.

Let Τ(𝑿) be such that Var𝜃(Τ(𝑿)) < ∞ and 𝔼𝜃[Τ(𝑿)] = 𝜏(𝜃) for every every 𝜃 ∈ Θ. Then if
0 < 𝔼𝜃[( d

d𝜃 log(𝑝𝜃(𝒙)))
2
] < ∞ for every 𝜃 ∈ Θ, then the Cramér-Rao Lower Bound (CRLB)

holds:

Var𝜃(Τ(𝑿)) ≥
[𝜏′(𝜃)]2

𝔼𝜃[( d
d𝜃 log 𝑝𝜃(𝒙))

2
]

, ∀ 𝜃 ∈ Θ.

Remark 3.2 :  The quantity

𝐼(𝜃) ≔ 𝔼𝜃
⎣
⎢⎡(

d
d𝜃 log(𝑝𝜃(𝒙)))

2

⎦
⎥⎤

is called the Fisher information contained in 𝑿  about 𝜃.

Proof. Note that 𝜏(𝜃) = 𝔼𝜃[Τ(𝑿)] implies

𝜏′(𝜃) =
d

d𝜃 𝔼[Τ(𝑿)]

=
d

d𝜃 [∫
𝑆

Τ(𝒙)𝑝𝜃(𝒙) d𝒙]

by ass. 2, 3 = ∫
𝑆

Τ(𝒙)
d

d𝜃 𝑝𝜃(𝒙) d𝒙

= ∫
𝑆

Τ(𝒙)
d

d𝜃 [log 𝑝𝜃(𝒙)]𝑝𝜃(𝒙) d𝑥

= 𝔼𝜃[Τ(𝑿)
d

d𝜃 log 𝑝𝜃(𝑿)], ∀ 𝜃 ∈ Θ. (I)

On the other hand, by (3) with ℎ ≡ 1, then
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0 = ∫
𝑆

d
d𝜃 𝑝𝜃(𝒙) d𝒙 = ∫

𝑆
[

d
d𝜃 log 𝑝𝜃(𝒙)]𝑝𝜃(𝒙) d𝒙 ∀ 𝜃 ∈ Θ

⇒ 𝔼𝜃[
d

d𝜃 log 𝑝𝜃(𝑿)] = 0. (II)

Combining (I) and (II),

𝜏′(𝜃) = Cov𝜃(Τ(𝑿),
d

d𝜃 log 𝑝𝜃(𝒙)),

since Cov(𝑋, 𝑌) = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌], but the second of these terms vanishes by (II).
Thus,

[𝜏′(𝜃)]2 = Cov2
𝜃(Τ(𝑿),

d
d𝜃 log 𝑝𝜃(𝑿)).

By Cauchy-Schwarz, we find

[𝜏′(𝜃)]2 ≤ Var𝜃(Τ(𝑿))Var𝜃(
d

d𝜃 log 𝑝𝜃(𝑿))

= Var𝜃(Τ(𝑿))𝔼𝜃
⎩{
⎨
{⎧[

d
d𝜃 log 𝑝𝜃(𝑿)]

2

⎭}
⎬
}⎫,

the last line following by the Bartlett Identity. ■

Remark 3.3 :  If 𝑋1, …, 𝑋𝑛 ∼iid 𝑓𝜃, then 𝑝𝜃(𝒙) = ∏𝑛
𝑖=1 𝑓 (𝑥𝑖; 𝜃), and

𝐼(𝜃) = 𝔼𝜃
⎩{
⎨
{⎧[

d
d𝜃 log 𝑝𝜃(𝑿)]

2

⎭}
⎬
}⎫ = 𝔼𝜃

⎩{
⎨
{⎧

⎣
⎢⎡∑

𝑛

𝑖=1

d
d𝜃 log 𝑓 (𝑋𝑖; 𝜃)

⎦
⎥⎤

2

⎭}
⎬
}⎫

= 𝑛𝔼𝜃
⎩{
⎨
{⎧(

d
d𝜃 log 𝑓 (𝑋1; 𝜃))

2

⎭}
⎬
}⎫

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐼1(𝜃)

,

so the CRLB in this case reads

Var𝜃(Τ(𝑿)) ≥
[𝜏′(𝜃)]2

𝑛𝐼1(𝜃) ,

and moreover if 𝜏(𝜃) = 𝜃 itself,

Var𝜃(Τ(𝑿)) ≥
1

𝑛𝐼1(𝜃).
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⊛ Example 3.6 :  Let 𝑋1, …, 𝑋𝑛 ∼iid Ber(𝜃), so 𝑓 (𝑥; 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 for 𝑥 = 0, 1. Then,

log(𝑓 (𝑥; 𝜃)) = 𝑥 log(𝜃) + (1 − 𝑥) log(1 − 𝜃)

so

d
d𝜃 log(𝑓 (𝑥; 𝜃)) =

𝑥
𝜃 −

1 − 𝑥
1 − 𝜃 ,

so the Fisher information in one 𝑋1 is given

𝐼1(𝜃) = 𝔼𝜃
⎩{
⎨
{⎧(

𝑋
𝜃 −

1 − 𝑋
1 − 𝜃 )

2

⎭}
⎬
}⎫ =

1
𝜃(1 − 𝜃).

For any unbiased estimator of 𝜏(𝜃) = 𝜃, the CRLB gives

Var𝜃(Τ(𝑿)) ≥
1

𝑛𝐼1(𝜃) =
𝜃(1 − 𝜃)

𝑛 .

Recall our estimator ̂𝜃𝑛 = 𝑋𝑛. We have that Var𝜃(𝑋𝑛) = 1
𝑛Var𝜃(𝑋1) = 𝜃(1−𝜃)

𝑛 .

Remark 3.4 :  If 𝑝𝜃 additionally twice differentiable in 𝜃 and 𝔼𝜃{ d
d𝜃 log 𝑝𝜃(𝑿)} is also

differentiable under the 𝔼𝜃,

d
d𝜃 log 𝑝𝜃(𝑿) = ∫

d
d𝜃 {[

d
d𝜃 log 𝑝𝜃(𝒙)]𝑝𝜃(𝒙)} d𝑥.

In particular, this implies ∫ 𝑝″
𝜃(𝒙) d𝒙 = 0. Then,

𝐼(𝜃) = 𝔼𝜃
⎩{
⎨
{⎧[

d
d𝜃 log 𝑝𝜃(𝑿)]

2

⎭}
⎬
}⎫ = −𝔼𝜃

⎩{
⎨
{⎧ d2

d𝜃2 𝑝𝜃(𝑿)
⎭}
⎬
}⎫,

making it easier to compute 𝐼(𝜃). This follows from the fact that

d2

d𝜃2 log 𝑝𝜃(𝒙) =
𝑝𝜃″(𝒙)
𝑝𝜃(𝒙) − [

d
d𝜃 log 𝑝𝜃(𝒙)]

2
,

and so taking the expected value of both sides cancels the inner-most term by the
differentiability condition of 𝑝𝜃;

𝔼
⎣
⎢⎡

d2

d𝜃2 log 𝑝𝜃(𝒙)
⎦
⎥⎤ = 𝔼

⎣
⎢⎡

𝑝𝜃″(𝒙)
𝑝𝜃(𝒙) ⎦

⎥⎤ − 𝔼
⎣
⎢⎡[

d
d𝜃 log 𝑝𝜃(𝒙)]

2

⎦
⎥⎤

= ∫ 𝑝″
𝜃(𝒙) d𝒙 − 𝐼(𝜃).
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⊛ Example 3.7 :  Returning to the previous example, remark that

d2

d𝜃2 log(𝑓 (𝑥; 𝜃)) = −
𝑥
𝜃2 −

𝑥 − 1
(1 − 𝜃)2 ,

and so

𝔼
⎣
⎢⎡

d2

d𝜃2 log 𝑓 (𝑥; 𝜃)
⎦
⎥⎤ =

1
𝜃 +

1
1 − 𝜃

so 𝐼1(𝜃) = 1
𝜃(1−𝜃)  as we found before.

Remark 3.5 :  The CRLB is not a sharp bound, in the sense that the UMVUE for a particular
parameter may be strictly larger than the CRLB.

⊛ Example 3.8 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒩(𝜇, 𝜃2). Then, �̂�𝑛 the UMVUE for 𝜇. If 𝜇 known, then �̂�2
𝑛 =

1
𝑛 ∑𝑛

𝑖=1 (𝑋𝑖 − 𝜇)2 is the UMVUE for 𝜎2. If 𝜇 is unknown, then 1
𝑛−1 ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋𝑛)
2
 would be

the UMVUE for 𝜎2.

However, if 𝑋𝑖 ∼iid exp(𝛽), with 𝑓 (𝑥; 𝛽) = 1
𝛽𝑒− 𝑥

𝛽  for 𝑥 > 0, 𝑆2
𝑛 is not the UMVUE for 

Var𝛽(𝑋𝑖) = 𝛽2.

↪Theorem 3.1 (Attaining the CRLB):  Suppose 𝑿 = (𝑋1, …, 𝑋𝑛) ∼ 𝑝𝜃. Let Τ(𝑿) be unbiased
for 𝜏(𝜃). Then, Τ(𝑿) attains the CRLB if and only if

𝑎(𝜃){Τ(𝒙) − 𝜏(𝜃)} =
d

d𝜃 log 𝑝(𝒙; 𝜃),

for some function 𝑎(𝜃), for every 𝜃 ∈ Θ and 𝒙 in the support of 𝑝.

Proof. In the proof of the CRLB, the only inequality arose from using Cauchy-
Schwarz with bounding the covariance of Τ(𝑿) and d

d𝜃 log 𝑝𝜃(𝑿). Equality in this
inequality holds if and only if the terms are linearly dependent, namely if there is
some function 𝑎(𝜃) and 𝑏(𝜃) such that 𝑎(𝜃)𝑇(𝒙) + 𝑏(𝜃) = d

d𝜃 log 𝑝𝜃(𝒙).

On the other hand,

𝔼𝜃{𝑎(𝜃)𝑇(𝑿) + 𝑏(𝜃)} = 𝔼𝜃{
d

d𝜃 log 𝑝𝜃(𝑥)} = 0 ⇒ 𝑏(𝜃) = −𝔼𝜃{𝑎(𝜃)𝑇(𝑿)} = −𝑎(𝜃)𝜏(𝜃),

so combining these two gives the desired linear relation. ■

3.1 Uniformly Minimum Variance Unbiased Estimators (UMVUE), Cramér-Rau Lower Bound (CRLB) 21



⊛ Example 3.9 (Exponential family) :  𝑋𝑖 ∼iid 𝑓 (𝑥; 𝜃) = ℎ(𝑥)𝑐(𝜃) exp{𝜔(𝜃)𝑇1(𝑥)}, where ℎ a
nonnegative function of only 𝑥 and 𝑐 a nonnegative function of only 𝜃, with the support of 𝑓
being independent of 𝜃. Then

𝑝𝜃(𝒙) = ∏
𝑛

𝑖=1
𝑓 (𝑥𝑖; 𝜃) =

⎣
⎢⎡∏

𝑛

𝑖=1
ℎ(𝑥𝑖)

⎦
⎥⎤(𝑐(𝜃))𝑛 exp

⎝
⎜⎛𝜔(𝜃) ∑

𝑛

𝑖=1
𝑇1(𝑥𝑖)

⎠
⎟⎞.

Taking the log:

d
d𝜃 log 𝑝𝜃(𝒙) = 𝑛

𝑐′(𝜃)
𝑐(𝜃) + 𝜔′(𝜃) ∑

𝑛

𝑖=1
𝑇1(𝑥𝑖)

= 𝜔′(𝜃)
⎩{
⎨
{⎧∑

𝑛

𝑖=1
𝑇1(𝑥𝑖) −

−𝑛𝑐′(𝜃)
𝑐(𝜃)𝜔′(𝜃)⎭}

⎬
}⎫.

Let

𝜏(𝜃) = −
𝑐′(𝜃)

𝑐(𝜃)𝜔′(𝜃).

Then, since

𝔼𝜃[
d

d𝜃 log 𝑝𝜃(𝒙)] = 0,

then

𝔼𝜃
⎣
⎢⎡∑

𝑛

𝑖=1
𝑇1(𝑋𝑖)

⎦
⎥⎤ = 𝑛𝜏(𝜃),

so

𝑇(𝑿) =
1
𝑛 ∑

𝑛

𝑖=1
𝑇1(𝑋𝑖)

is a UMVUE for 𝜏(𝜃) by the previous theorem.
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⊛ Example 3.10 :  Let 𝑋𝑖 ∼iid Poisson(𝜃) so

𝑓 (𝑥; 𝜃) =
𝑒−𝜃

𝑥! 𝜃𝑥 =
𝑒−𝜃

𝑥! 𝑒𝑥 log(𝜃),

with support 𝑥 ∈ {0, 1, …}. Then, we notice that with

ℎ(𝑥) =
1
𝑥! , 𝑐(𝜃) = 𝑒−𝜃, 𝜔(𝜃) = log(𝜃), 𝑇1(𝑥) = 𝑥,

that 𝑋𝑖 in the exponential family. Then, according to the previous example,

𝜏(𝜃) = −
−𝑒−𝜃

𝑒−𝜃 1
𝜃

= 𝜃,

has UMVUE

𝑇(𝑿) =
1
𝑛 ∑

𝑛

𝑖=1
𝑋𝑖 = 𝑋𝑛.

⊛ Example 3.11 :  Recall we found, for 𝑋𝑖 ∼iid 𝒰(0, 𝜃), that ̂𝜃𝑛 ≔ 𝑛+1
𝑛 𝑋(𝑛) was an unbiased

estimator but cannot obtain the CRLB since the regularity conditions are not satisfied (namely,
the support of the pdfs depends on the parameter). Moreover, we found

𝔼𝜃{
𝑛 + 1

𝑛 𝑋(𝑛)} = 𝜃, Var𝜃{
𝑛 + 1

𝑛 𝑋(𝑛)} =
𝜃2

𝑛(𝑛 + 2).

If we temporarily ignore that we cannot apply CRLB, we would find

CRLB =
1

𝑛𝐼1(𝜃) =
𝜃2

𝑛 ,

so our estimator actually has a “better” variance. We’ll see later that this estimator actually the
UMVUE.

§3.2 Sufficiency
We can’t always find unbiased estimators; here we look for other ways for comparing different

estimators.
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⊛ Example 3.12 :  Let 𝑋𝑖 ∼iid 𝒩(𝜇, 𝜎2), and consider the following estimators of 𝜎2:

𝑆2
1 =

1
𝑛 − 1 ∑

𝑛

𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
,

𝑆2
2 =

1
𝑛 ∑

𝑛

𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
,

𝑆2
3 =

1
𝑛 + 1 ∑

𝑛

𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
.

One verifies these have respective means, variances

𝑆2
1 𝑆2

2 𝑆2
3

𝔼 𝑛−1
𝑛 𝜎2 𝜎2 𝑛−1

𝑛+1𝜎2

Var 2(𝑛−1)𝜎4

𝑛2
2𝜎4

𝑛−1
2(𝑛−1)
(𝑛+1)2 𝜎4

. We notice then that

MSE(𝑆2
3) < MSE(𝑆2

2) < MSE(𝑆2
1),

so despite the fact that 𝑆2
2 is unbiased, it does not minimize the MSE.

↪Definition 3.6 (Sufficiency):  Suppose 𝑿 = (𝑋1, …, 𝑋𝑛) has joint pdf (pmf) 𝑝(𝒙; 𝜃) for 𝜃 ∈ Θ.
A statistic 𝑇(𝑿) : ℝ𝑛 ⊇ 𝑋 → 𝑆𝑇 ⊆ ℝ𝑘, 𝑘 ≤ 𝑛, is sufficient for 𝜃 or the parametric family {𝑝𝜃 :
𝜃 ∈ Θ} if the conditional distribution of (𝑋1, …, 𝑋𝑛) given 𝑇(𝑿) = 𝑡 for any 𝜃 ∈ Θ and 𝑡 ∈ 𝑆𝑇
in the support such that 𝑃𝜃(𝑡 ∈ 𝑆𝑇) = 1, does not depend on 𝜃. Namely,

𝑓𝑿|𝑇(𝑿)=𝑡(𝑥1, …, 𝑥𝑛),

does not depend on 𝜃.

⊛ Example 3.13 :  Let 𝑋1, …, 𝑋𝑛 ∼iid Ber(𝜃). Let 𝑇(𝑿) = ∑𝑛
𝑖=1 𝑋𝑖. We know that then 𝑇(𝑿) ∼

Bin(𝑛, 𝜃). We claim 𝑇 sufficient; we have

𝑓𝜃(𝑥1, …, 𝑥𝑛 | 𝑇(𝑿) = 𝑡) =
⎩{
⎨
{⎧ 1

(𝑛
𝑡 )

if ∑𝑛
𝑖=1 𝑥𝑖 = 𝑡

0 else
,

which is independent of 𝜃 so indeed sufficient.
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Remark 3.6 :  A sufficient statistic induces a partitioning of the sample space Χ ⊆ ℝ𝑛; namely,

Χ = ⋃
𝑡∈𝑆𝑇

Π𝑡,

such that

Π𝑡 = {𝒙 = (𝑥1, …, 𝑥𝑛) ∈ Χ | 𝑇(𝒙) = 𝑡},

and 𝑆𝑇 the support of 𝑇.

⊛ Example 3.14 :  Return to the Bernoulli example from before, and consider specifically the
case when 𝑛 = 2, so 𝑇(𝑿) = 𝑋1 + 𝑋2 is a sufficient statistic as we showed. Then, the sample
space is given by

Χ = {(0, 0), (0, 1), (1, 0), (1, 1)},

and 𝑇 has support

𝑇(𝒙) = 𝑥1 + 𝑥2 ∈ {0, 1, 2} ≕ 𝑆𝑇.

This induces the partitioning

Χ = Π0 ⊔ Π1 ⊔ Π2 = {(0, 0)} ⊔ {(0, 1), (1, 0)} ⊔ {(1, 1)}.

↪Theorem 3.2 (Neyman-Fisher Factorization Theorem):  Let 𝑿 = (𝑋1, …, 𝑋𝑛)𝑡 be a random
vector with a joint pdf/pmf 𝑝𝜃(𝒙) = 𝑝(𝒙; 𝜃). A statistic 𝑇(𝑿) is sufficient for 𝜃 if and only if
there exist functions 𝑔(⋅; 𝜃) and ℎ(⋅) such that

𝑝𝜃(𝒙) = ℎ(𝒙) ⋅ 𝑔(𝜃, 𝑇(𝒙)),

for every 𝜃 ∈ Θ and 𝒙 ∈ Χ.

Note that 𝑔 depends on 𝒙 only through 𝑇(𝒙), and ℎ does not depend on 𝜃.

Proof. We prove in the discrete case.

Note that

𝑓𝑿|𝑇(𝑿)=𝑡𝒙
(𝒙) =

𝑃𝜃(𝑋1 = 𝑥1, …, 𝑋𝑛 = 𝑥𝑛, 𝑇(𝑿) = 𝑡𝒙)
𝑃𝜃(𝑇(𝑿) = 𝑡𝒙)

,

for every 𝒙 such that 𝑇(𝒙) = 𝑡𝒙, and 0 otherwise;

=
𝑃𝜃(𝑋1 = 𝑥1, …, 𝑋𝑛 = 𝑥𝑛)

∑𝒚=(𝑦1,…,𝑦𝑛):𝑇(𝒚)=𝑡𝒙
𝑃(𝑋1 = 𝑦1, …, 𝑋𝑛 = 𝑦𝑛)

.

If 𝑇(𝑿) a sufficient statistic for 𝜃, then the above ratio, by definition, does not depend
on 𝜃; hence, putting ℎ(𝒙) to be the ratio above, it is independent of 𝜃 (is only a function
of the data), and if we take 𝑔 to be the denominator of the ratio above, then 𝑔 depends
on the data only through 𝑇. Hence, we can write 𝑝𝜃(𝒙) = ℎ(𝒙) ⋅ 𝑔(𝑡𝒙; 𝜃).
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Conversely, suppose 𝑝𝜃(𝒙) = 𝑔(𝑇(𝒙); 𝜃)ℎ(𝒙). Then,

𝑓𝑿|𝑇(𝑿)=𝑡𝒙
(𝒙; 𝜃) =

𝑔(𝑡𝒙; 𝜃)ℎ(𝒙)
∑𝒚:𝑇(𝒚)=𝑡𝒙

𝑔(𝑇(𝒚); 𝜃)ℎ(𝒚)
=

ℎ(𝒙)
∑𝒚:𝑇(𝒚)=𝑡𝒙

ℎ(𝒚)
,

which depends only on 𝒙 and hence 𝑇(𝑿) a sufficient statistic. ■

⊛ Example 3.15 :  Let again 𝑋1, …, 𝑋𝑛 ∼iid Ber(𝜃) so

𝑝𝜃(𝑥1, …, 𝑥𝑛) = ∏
𝑛

𝑖=1
𝜃𝑥𝑖(1 − 𝜃)1−𝑥𝑖 = 𝜃∑𝑛

𝑖=1 𝑥𝑖(1 − 𝜃)𝑛− ∑𝑛
𝑖=1 𝑥𝑖 ∏

𝑛

𝑖=1
𝟙{𝑥𝑖 ∈ {0, 1}}.

for 𝑥𝑖 = 0, 1.

One notices that the LHS (not the product) can be written as a function of 𝜃 and ∑𝑛
𝑖=1 𝑥𝑖

only, and the remaining term is independent of 𝜃. Hence by the previous theorem 𝑇(𝑿) =
∑𝑛

𝑖=1 𝑋𝑖 a sufficient statistic for 𝜃.

⊛ Example 3.16 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒰(0, 𝜃), so 𝑓 (𝑥; 𝜃) = {
1
𝜃 if 0<𝑥<𝜃

0 else
. Then

𝑝𝜃(𝒙) = ∏
𝑛

𝑖=1

1
𝜃 𝟙(0 < 𝑥𝑖 < 𝜃)

=
1

𝜃𝑛 𝟙(𝑥(𝑛) < 𝜃}
⏟⏟⏟⏟⏟⏟⏟

≕𝑔(𝑇(𝒙),𝜃)

𝟙(0 < 𝑥(1))⏟⏟⏟⏟⏟
≕ℎ(𝒙)

,

so 𝑋(𝑛) is a sufficient statistic for 𝜃.

Remark 3.7 :  If 𝑇 is a sufficient statistic for 𝜃 and 𝑇(𝑿) = Φ(𝑇∗(𝑿)) where Φ is a measurable
function and 𝑇∗ another statistic, then 𝑇∗ is also a sufficient statistic.

⊛ Example 3.17 :  In the exponential family, we claim 𝑇(𝑋1, …, 𝑋𝑛) = ∑𝑛
𝑖=1 𝑇1(𝑋𝑖) a sufficient

statistic.

⊛ Example 3.18 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒩(𝜇, 𝜎2) and 𝜃 = (𝜇, 𝜎2) both unknown. Using the
factorization theorem, we can see that

𝑇(𝑿) =
⎝
⎜⎛∑

𝑛

𝑖=1
𝑋𝑖, ∑

𝑛

𝑖=1
𝑋2

𝑖
⎠
⎟⎞

is a sufficient statistic for 𝜃, as is (𝑋𝑛, 𝑆2
𝑛).
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Remark 3.8 :  This does not imply that say ∑𝑛
𝑖=1 𝑋𝑖 sufficient for 𝜇! Namely 𝑇 is a sufficient

statistic for the 2-dimensional parameter 𝜃. We cannot simply separate the dependence.

⊛ Example 3.19 :  Recall the Bernoulli example once again. We claim that

𝑇∗
𝑚(𝑿) =

⎝
⎜⎜⎛∑

𝑚

𝑖=1
𝑋𝑖, ∑

𝑛

𝑖=𝑚+1
𝑋𝑖

⎠
⎟⎟⎞, 1 ≤ 𝑚 ≤ 𝑛 − 1

is also sufficient for 0 < 𝜃 < 1. Clearly this is no different then just using the one-dimensional
statistic ∑𝑛

𝑖=1 𝑋𝑖; we’d like to formalize how to differentiate such statistics. Namely, ∑𝑛
𝑖=1 𝑋𝑖 is

called a minimal sufficient statistic for 𝜃.

↪Definition 3.7 (Minimal Sufficient Statistic) :  A statistic 𝑇(𝑿) is a minimal sufficient statistic
for 𝜃 iff

• 𝑇(𝑿) is sufficient;
• For any other sufficient statistic 𝑇∗(𝑿) of 𝜃, 𝑇(𝑿) is a function of 𝑇∗(𝑿), i.e.

𝑇(𝑿) = 𝜑(𝑇∗(𝑿)),

where 𝜑(⋅) some measurable function, or equivalently, ∀ 𝒙, 𝒚 ∈ Χ ⊆ ℝ𝑛, if 𝑇∗(𝒙) = 𝑇∗(𝒚)
then 𝑇(𝒙) = 𝑇(𝒚).

Remark 3.9 :  If 𝑇(𝑿) minimally sufficient and induces a partitioning

Χ = ⋃
𝑡∈𝑆𝑇

Π𝑡, Π𝑡 ≔ {𝒙 ∈ Χ : 𝑇(𝒙) = 𝑡}

and 𝑇∗(𝑿) any sufficient statistic that induces a partitioning

Χ = ⋃
𝑡∗∈𝑆∗

𝑇∗

Π∗
𝑡∗, Π∗

𝑡∗ ≔ {𝒙 ∈ Χ : 𝑇∗(𝒙) = 𝑡∗},

then we find that ∀ 𝑡∗ ∈ 𝑆∗
𝑇∗, there is some 𝑡 ∈ 𝑆𝑇 such that Π∗

𝑡∗ ⊆ Π𝑡; namely, the partition
induced by 𝑇(𝑿) is the coarsest possible partition of Χ.

↪Theorem 3.3 (Lehmann-Scheffé):  For a parametric family 𝑝𝜃(⋅) (the joint pdf/pmf of 𝑿),
suppose a statistic 𝑇(𝑿) = 𝑇(𝑋1, …, 𝑋𝑛) is such that for every 𝒙, 𝒚 ∈ Χ ⊆ ℝ𝑛 𝑇(𝒙) = 𝑇(𝒚) ⇔
𝑝𝜃(𝒙)
𝑝𝜃(𝒚)  does not depend on 𝜃. Then, 𝑇(𝑿) is a minimal sufficient statistic for 𝜃.
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⊛ Example 3.20 :  Suppose 𝑋𝑖 ∼iid 𝒰(0, 𝜃), then 𝑝𝜃(𝒙) = 1
𝜃𝑛 𝟙{𝑥(𝑛) < 𝜃}𝟙{𝑥(1) > 0}; then 𝑇(𝑿) =

𝑋(𝑛) is a sufficient statistic for 𝜃. For any 𝒙, 𝒚 ∈ Χ, we find

𝑝𝜃(𝒙)
𝑝𝜃(𝒚)

=
𝟙{𝑥(𝑛) < 𝜃}𝟙{𝑥(1) > 0}
𝟙{𝑦(𝑛) < 𝜃}𝟙{𝑦(1) > 0}

,

which does not depend on 𝜃 iff 𝑥(𝑛) = 𝑦(𝑛) iff 𝑇(𝒙) = 𝑇(𝒚) and therefore by the previous
theorem 𝑇(𝑿) is a minimally sufficient statistic.

⊛ Example 3.21 :  If 𝑋𝑖 ∼iid 𝒩(𝜇, 𝜎2) and 𝜃 = (𝜇, 𝜎2), it can be shown that

𝑇(𝑿) =
⎝
⎜⎛∑

𝑛

𝑖=1
𝑋𝑖, ∑

𝑛

𝑖=1
𝑋2

𝑖
⎠
⎟⎞

is a minimal sufficient statistic for 𝜃. Any one-to-one function of a minimally sufficient statistic
also minimally sufficient, hence this implies (𝑋𝑛, 𝑆2

𝑛) is also minimally sufficient for 𝜃.

§3.3 Completeness

↪Definition 3.8 (Completeness) :  Let 𝑋 be a random variable with a pmf/pdf belonging to a
parametric family ℱ = {𝑓𝜃 : 𝜃 ∈ Θ}. This family is said to be complete if for any measurable
function 𝑔 with 𝔼𝜃[𝑔(𝑿)] < ∞, then 𝔼𝜃[𝑔(𝑿)] = 0 for all 𝜃 ∈ Θ implies 𝑃𝜃(𝑔(𝑋) = 0) = 1.

A statistic 𝑇(𝑿) = 𝑇(𝑋1, …, 𝑋𝑛) is said to be complete if the family of its distributions is
complete.

Remark 3.10 :  Complete and sufficient ⇒ minimal, but minimally sufficient may not be
complete, as we’ll see.
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⊛ Example 3.22 :  Let 𝑋𝑖 ∼iid Ber(𝜃), then note 𝑇(𝑿) = ∑𝑛
𝑖=1 𝑋𝑖 ∼ Bin(𝑛, 𝜃). Let 𝑔 a measurable

function. Then,

0 = 𝔼𝜃[𝑔(𝑿)] ⇒ 0 = ∑
𝑛

𝑡=0
𝑔(𝑡)(

𝑛
𝑡 )𝜃𝑡(1 − 𝜃)𝑛−𝑡

= (1 − 𝜃)𝑛 ∑
𝑛

𝑡=0
𝑔(𝑡)(

𝑛
𝑡 )

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎛

≕𝜂
⏞𝜃
1 − 𝜃

⎠
⎟⎟⎟
⎟⎟⎟
⎟⎟⎞

𝑡

= ∑
𝑛

𝑡=0
𝑔(𝑡)(

𝑛
𝑡 )𝜂𝑡.

Then, this is just a polynomial in 𝜂, which, being equal to zero implies all the coefficients 
𝑔(𝑡)(𝑛

𝑡 ) = 0 for every 𝑡 and hence 𝑔(𝑡) = 0. Hence, 𝑇(𝑿) is a complete statistic.

⊛ Example 3.23 :  If 𝑋 ∼ 𝒩(0, 𝜃), the family is not complete. For instance with 𝑔(𝑥) ≔ 𝑥, 
𝔼𝜃(𝑋) = 0 but 𝑔(𝑥) is not identically zero. On the other hand, 𝑇(𝑋) = 𝑋2 is a complete
statistic. To see this, we know 𝑋2

𝜃 ∼ 𝜒2
(1), so

𝔼𝜃(𝑔(𝑇)) = 0 ⇒ 0 = ∫
∞

0
𝑔(𝑡)𝑓𝑇(𝑡; 𝜃) d𝑡

= ∫
∞

0

1
√2𝜋𝜃

𝑔(𝑡)𝑡−1
2 𝑒− 𝑡

2𝜃 d𝑡

= ℒ
⎩{
⎨
{⎧𝑔(𝑡)𝑡−1

2
1

√2𝜋𝜃 ⎭}
⎬
}⎫.

By uniqueness of the Laplace transform, it must be that 𝑔(𝑡)𝑡−1
2 ≡ 0 hence 𝑔(𝑡) = 0 and thus 

𝑇(𝑋) = 𝑋2 is a complete statistic.

⊛ Example 3.24 :  In the exponential family, ∑𝑛
𝑖=1 𝑇1(𝑋𝑖) is a complete statistic.

Note that an unbiased estimator of a parameter of interest may not even exist. For instance,

⊛ Example 3.25 :  If 𝑋 ∼ Bin(𝑛, 𝜃), let 𝜏(𝜃) = 1
𝜃 . If 𝛿(𝑋) is an unbiased estimator of 𝜏(𝜃), we

must have 𝔼𝜃[𝛿(𝑋)] = 1
𝜃  i.e.

∑
𝑛

𝑥=0
𝛿(𝑥)(

𝑛
𝑥 )𝜃𝑥(1 − 𝜃)𝑛−𝑥 =

1
𝜃 .

As 𝜃 → 0, the left-hand side will just be 𝛿(0), while the right-hand side will diverge to ∞, so
no such estimator exists.
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↪Theorem 3.4 (Rao-Blackwell) :  Let 𝑈(𝑿) be an unbiased estimator of 𝜏(𝜃) and let 𝑇(𝑿) be a
sufficient statistic for the parametric family. Set

𝛿(𝑡) = 𝔼𝜃[𝑈(𝑿) | 𝑇(𝑿) = 𝑡], 𝑡 ∈ 𝑆𝑇.

Then,

• 𝛿(𝑇(𝑿)) is a statistic, i.e. only depends on 𝑿 ;
• 𝔼𝜃[𝛿(𝑇(𝑿))] = 𝜏(𝜃);
• Var𝜃(𝛿(𝑇(𝑿))) ≤ Var𝜃[𝑈(𝑿)].

Proof.

• 𝛿(𝑇(𝑿)) = 𝔼𝜃[𝑈(𝑿)|𝑇(𝑿)] is a random variable in its own right, and is a statistic
because 𝑇(𝑿) is sufficient, hence conditioning on 𝑇(𝑿) will result in no reliance on 
𝜃.

• 𝔼𝜃[𝛿(𝑇(𝑿))] = 𝔼𝜃[𝔼𝜃[𝑈(𝑿)|𝑇(𝑿)]] = 𝔼𝜃[𝑈(𝑿)] = 𝜏(𝜃) (using the law of total
expectation), since 𝑈(𝑿) is an unbiased estimator of 𝜏(𝜃).

• Using the law of total variance, we find

Var𝜃(𝑈(𝑿)) = Var𝜃(𝔼𝜃[𝑈(𝑿)|𝑇(𝑿)]⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝛿(𝑇(𝑿))

) + 𝔼𝜃[Var𝜃(𝑈(𝑿)|𝑇(𝑿))]

= Var𝜃[𝛿(𝑇(𝑿))] + 𝔼𝜃[Var𝜃(𝑈(𝑿)|𝑇(𝑿))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

]

≥ Var𝜃[𝛿(𝑇(𝑿))].

■

Remark 3.11 :  This theorem gives a systematic manner of improving unbiased estimators, by
taking an unbiased estimator and a sufficient statistic, and “Rao-Blackwell-izing”, leading to a
uniform improvement in variance.

↪Theorem 3.5 (Lehmann-Scheffé: Uniqueness) :  Let 𝑇(𝑿) be a complete sufficient statistic.
Let 𝑈(𝑿) = ℎ(𝑇(𝑿)), for a measurable function ℎ, an unbiased estimator of 𝜏(𝜃) such that 
𝔼𝜃[𝑈(𝑿)2] < ∞. Then, 𝑈(𝑿) is the unique unbiased estimator of 𝜏(𝜃) with the smallest
variance in the class of unbiased estimators of 𝜏(𝜃).

Proof. By the Rao-Blackwell Theorem, it suffices to restrict attention to unbiased
estimators that are only functions of 𝑇(𝑿); for any other such unbiased statistic,
applying Rao-Blackwell to it results in a new statistic with smaller variance.

Now, let 𝑉(𝑿) = ℎ∗(𝑇(𝑿)) be any other unbiased estimator of 𝜏(𝜃). Then,

𝔼𝜃[𝑉(𝑿)] = 𝔼𝜃[𝑈(𝑿)] = 𝜏(𝜃)

hence
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𝔼𝜃[𝑉(𝑿) − 𝑈(𝑿)] = 𝔼𝜃[ℎ∗(𝑇(𝑿)) − ℎ(𝑇(𝑿))] = 0.

Let 𝑔(𝑇(𝑿)) = ℎ∗(𝑇(𝑿)) − ℎ(𝑇(𝑿)); then, since 𝑇(𝑿) complete, it must be that 𝑃(𝑔 =
0) = 1 i.e.

𝑃(ℎ(𝑇(𝑿)) = ℎ∗(𝑇(𝑿))) = 1,

so 𝑈(𝑿), 𝑉(𝑿) are almost surely identical, hence we indeed have uniqueness. ■

Remark 3.12 :  This, combined with the Rao-Blackwell theorem, provides a method for
obtaining the UMVUE for 𝜏(𝜃) starting with a complete sufficient statistic and an unbiased
statistic.

⊛ Example 3.26 :  Let 𝑋𝑖 ∼iid Ber(𝜃), 𝑖 = 1, …, 𝑛 and ̂𝜃𝑛 = 𝑋𝑛. This is unbiased, and ∑𝑛
𝑖=1 𝑋𝑖 is a

complete and sufficient statistic. Hence, ̂𝜃𝑛 is a unbiased estimator that is a function of a
complete and sufficient statistic and thus is the UMVUE for 𝜃 by the Lehmann-Scheffé
Theorem.

⊛ Example 3.27 :  Let 𝑋𝑖 ∼iid Pos(𝜃), 𝑖 = 1, …, 𝑛 and ̂𝜃𝑛 = 𝑋𝑛. This is unbiased, and again 
∑𝑛

𝑖=1 𝑋𝑖 is a complete sufficient statistic hence ̂𝜃𝑛 is the UMVUE of 𝜃.

Suppose now 𝜏(𝜃) = 𝑃𝜃(𝑋 = 0) = 𝑒−𝜃; can we obtain a UMVUE for this (function of) a
parameter? Define

𝑈(𝑋1) = 𝟙{𝑋1 = 0},

which will be unbiased for 𝜏(𝜃). We already have a complete and sufficient statistic. Applying
now the Rao-Blackwell theorem, we obtain

𝛿(𝑡) = 𝔼𝜃
⎣
⎢
⎡𝑈(𝑋1) | ∑

𝑛

𝑗=1
𝑋𝑗 = 𝑡

⎦
⎥
⎤.

One verifies that

⎝
⎜⎜
⎛𝑋𝑖 | ∑

𝑛

𝑗=1
𝑋𝑗 = 𝑡

⎠
⎟⎟
⎞ ∼ Bin(𝑡,

1
𝑛),

therefore

𝛿(𝑡) = 𝑃𝜃(𝑋1 = 0 | 𝑇(𝑿) = 𝑡) = (1 −
1
𝑛)

𝑡
.

So, 𝛿(𝑇(𝑿)) = (1 − 1
𝑛)

∑𝑛
𝑖=1 𝑋𝑖 is the UMVUE of 𝑒−𝜃. Remark that

𝛿(𝑇(𝑿)) = (1 −
1
𝑛)

𝑛𝑋𝑛

≈ 𝑒−𝑋𝑛 for large 𝑛.
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⊛ Example 3.28 :  Let 𝑋𝑖 ∼iid Ber(𝜃), 𝑖 = 1, …, 𝑛, and suppose 𝜏(𝜃) = Var(𝑋𝑖) = 𝜃(1 − 𝜃). Recall
the UMVUE for 𝜃 is ̂𝜃𝑛. Note that

𝑇(𝑿) = ∑
𝑛

𝑖=1
𝑋𝑖 ∼ Bin(𝑛, 𝜃),

is complete and sufficient. We know 𝑆2
𝑛 = 1

𝑛−1 ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋𝑛)

2
= 𝑈(𝑿) is unbiased for 𝜏(𝜃).

We may write

𝑈(𝑿) =
1

𝑛 − 1⎣
⎢⎡∑

𝑛

𝑖=1
𝑋2

𝑖 − 𝑛𝑋2
𝑛

⎦
⎥⎤

since 𝑋𝑖 ∈ {0, 1} =
1

𝑛 − 1⎣
⎢⎡∑

𝑛

𝑖=1
𝑋𝑖 − 𝑛𝑋2

𝑛
⎦
⎥⎤

=
1

𝑛 − 1⎝
⎜⎛𝑇(𝑿) −

𝑇2(𝑿)
𝑛 ⎠

⎟⎞

=
𝑛

𝑛 − 1𝑋𝑛(1 − 𝑋𝑛)

Hence, 𝑈(𝑿) a function of 𝑇(𝑿), a complete sufficient statistic, and 𝑈(𝑿) is unbiased, so we
conclude 𝑈(𝑿) the UMVUE for 𝜏(𝜃).

§3.4 Existence of a UMVUE

↪Definition 3.9 (Unbiased Estimators of Zero) :  An estimator 𝛿(𝑿) satisfying 𝔼𝜃[𝛿(𝑿)] = 0 is
called an unbiased estimator of zero.

↪Theorem 3.6 :  An estimator 𝑈(𝑿) of 𝜏(𝜃) = 𝔼𝜃[𝑈(𝑿)] is the best unbiased estimator iff 
𝑈(𝑿) is uncorellated with all unbiased estimators of zero, i.e.

Cov𝜃(𝑈(𝑿), 𝛿(𝑿)) = 𝔼𝜃[𝑈(𝑿)𝛿(𝑿)] = 0

for every 𝛿(𝑿) such that 𝔼𝜃[𝛿(𝑿)] = 0.

Proof. (Necessity) Let 𝑈(𝑿) be a UMVUE of 𝜏(𝜃) and 𝛿(𝑿) any unbiased estimator of
zero. Then 𝑈∗(𝑿) = 𝑈(𝑿) + 𝑎𝛿(𝑿) for some nonzero 𝑎 ∈ ℝ is also an unbiased
estimator 𝜏(𝜃);

𝔼𝜃[𝑈∗(𝑿)] = 𝔼𝜃[𝑈(𝑿)] + 𝑎𝔼𝜃[𝛿(𝑿)] = 𝔼𝜃[𝑈(𝑿)] = 𝜏(𝜃).

Now,

Var𝜃[𝑈∗(𝑿)] = Var𝜃[𝑈(𝑿)] + 𝑎2Var𝜃[𝛿(𝑿)] + 2𝑎Cov𝜃[𝑈(𝑿), 𝛿(𝑿)].

If this covariance term is non-zero for some 𝜃0, then we may choose some 𝑎 such that

𝑎2Var𝜃0
[𝛿(𝑿)] + 2𝑎Cov𝜃0

[𝑈(𝑿), 𝛿(𝑿)] < 0
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i.e.

𝑎 ∈

⎩{
{{
{⎨
{{
{{
⎧

(0, −2
Cov𝜃0(𝑈(𝑿),𝛿(𝑿))

Var𝜃0(𝛿(𝑿)) )

(−2
Cov𝜃0(𝑈(𝑿),𝛿(𝑿))

Var𝜃0(𝛿(𝑿)) , 0)
,

which ever makes sense. Hence,

Var𝜃0
[𝑈∗(𝑿)] < Var𝜃0

(𝑈(𝑿)),

a contradiction to the minimality of the variance of 𝑈(𝑿) hence the covariance term
must be zero.

(Sufficiency) Suppose that 𝔼𝜃[𝑈(𝑿), 𝛿(𝑿)] = 0 for every 𝜃. Let 𝑈′(𝑿) be any
arbitrary unbiased estimator, then since 𝑈′(𝑿) = 𝑈(𝑿) + (𝑈′(𝑿) − 𝑈(𝑿)), then since 
(𝑈′(𝑿) − 𝑈(𝑿)) an unbiased estimator of zero, we find

Var𝜃[𝑈′(𝑿)] = Var𝜃[𝑈(𝑿)] + Var𝜃[(𝑈′(𝑿) − 𝑈(𝑿))] + 2Cov𝜃[𝑈(𝑿), 𝑈′(𝑿) − 𝑈(𝑿)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0 by assumption

≥ Var𝜃[𝑈(𝑿)],

for every 𝜃. ■

Remark 3.13 :  This theorem can be used to investigate the existence of a UMVUE of 𝜏(𝜃), or
to determine that an estimator is not a UMVUE.
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⊛ Example 3.29 :  Let 𝑋 ∼ unif(𝜃 − 1
2 , 𝜃 + 1

2) for 𝜃 ∈ ℝ. Let 𝛿(𝑋) be an unbiased estimator of
zero. Then,

0 = 𝔼𝜃[𝛿(𝑋)] = ∫
𝜃+1

2

𝜃−1
2

𝛿(𝑥) d𝑥, ∀ 𝜃 ∈ ℝ.

Hence, it must be that 𝛿(𝜃 + 1
2) − 𝛿(𝜃 − 1

2) = 0 (taking the derivative of the above with
respect to 𝜃) or moreover 𝛿(𝑥) = 𝛿(𝑥 + 1) for every 𝑥 ∈ ℝ. Letting now 𝑈(𝑋) be a UVMUE of 
𝜏(𝜃), then by the previous theorem it must be that Cov𝜃(𝑈(𝑋), 𝛿(𝑋)) = 0 for any 𝜃 ∈ ℝ, i.e.

0 = 𝔼𝜃[𝑈(𝑋)𝛿(𝑋)].

Hence, 𝑈(𝑋)𝛿(𝑋) also an unbiased estimator of zero so also has the property that 
𝑈(𝑥)𝛿(𝑥) = 𝑈(𝑥 + 1)𝛿(𝑥 + 1). 𝛿 also unbiased for zero so 𝛿(𝑥) = 𝛿(𝑥 + 1), so it must be that

𝑈(𝑥) = 𝑈(𝑥 + 1), ∀ 𝑥 ∈ ℝ.

But also, 𝑈(𝑋) is unbiased for 𝜏(𝜃), so

𝔼𝜃[𝑈(𝑋)] = ∫
𝜃+1

2

𝜃−1
2

𝑈(𝑥) d𝑥 = 𝜏(𝜃) ⇒ 𝜏′(𝜃) = 𝑈(𝜃 +
1
2) − 𝑈(𝜃 −

1
2).

But since 𝑈(𝜃 + 1
2) = 𝑈(𝜃 − 1

2) by the remarks above, it follows that 𝜏′(𝜃) = 0 so 𝜏(𝜃) is a
constant, for some 𝑐 ∈ ℝ. We conclude, thus, that there is no UMVUE for any non-constant
function 𝜏(𝜃).

§4 Systematic Parameter Estimation
This chapter is devoted to systematic manners of deriving estimators for particular statistical

models.

§4.1 Method of Moments
Let 𝑋1, …, 𝑋𝑛 ∼iid 𝑓𝜃 with 𝜃 = (𝜃1, …, 𝜃𝑑) ∈ Θ ⊆ ℝ𝑑 such that 𝔼𝜃[|𝑋𝑖|𝑑] < ∞. Let 𝜇𝑗(𝜃) =

𝔼𝜃[𝑋𝑗
1] for 𝑗 = 1, …, 𝑑, the non-central moments. Also define

𝑚𝑗(𝑿) ≔
1
𝑛 ∑

𝑛

𝑖=1
𝑋𝑗

𝑖 ,

the non-central sample moments. Note that 𝔼𝜃[𝑚𝑗(𝑿)] = 𝜇𝑗(𝜃) and by the iid assumption, WLLN
implies 𝑚𝑗(𝑿) →𝑃 𝜇𝑗(𝜃).

Typically, 𝜇𝑗(𝜃) = ℎ𝑗(𝜃1, …, 𝜃𝑑) for some real-valued function ℎ𝑗(⋅) for each 𝑗 = 1, …, 𝑑. The
Method of Moments (MM) gives estimates of 𝜃1, …, 𝜃𝑑 by solving the following system of
equations:

𝑚𝑗(𝑿) = 𝜇𝑗(𝜃) = ℎ𝑗(𝜃1, …, 𝜃𝑑), 𝑗 = 1, …, 𝑑,

and solving for each 𝜃𝑗 as a function of the data. In general, this yields

̂𝜃𝑗(𝑿) = 𝑔𝑗(𝑚1(𝑿), …, 𝑚𝑑(𝑿)), 𝑗 = 1, …, 𝑑.
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These ̂𝜃1, …, ̂𝜃𝑑 are the so-called MM estimators of 𝜃1, …, 𝜃𝑑. In general, these may 1) have no
solutions, 2) have a unique solution, 3) have multiple solutions.

⊛ Example 4.1 :  Let 𝑋𝑖 ∼iid Ber(𝜃). Then 𝜇1(𝜃) = 𝜃 and 𝑚1(𝑿) = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖. Setting 𝜇1 = 𝑚1
gives that ̂𝜃𝑛 = 𝑋𝑛.

⊛ Example 4.2 :  Let 𝑋𝑖 ∼iid 𝒩(𝜇, 𝜎2) with 𝜃 = (𝜇, 𝜎2). Then,

⎩{
⎨
{⎧𝑚1(𝑿) = 𝑋𝑛

𝑚2(𝑿) = 1
𝑛 ∑𝑛

𝑖=1 𝑋2
𝑖
,

⎩{
⎨
{⎧𝜇1(𝜃) = 𝜇

𝜇2(𝜃) = 𝜎2 + 𝜇2

which gives a system of equations

⎩{
⎨
{⎧𝑋𝑛 = 𝜇

1
𝑛 ∑𝑛

𝑖=1 𝑋2
𝑖 = 𝜎2 + 𝜇2

.

This yields

�̂�𝑛 = 𝑋𝑛, �̂�2
𝑛 =

1
𝑛 ∑

𝑛

𝑖=1
𝑋2

𝑖 − 𝑋2
𝑛 =

1
𝑛 ∑

𝑛

𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
.

⊛ Example 4.3 :  Let 𝑋𝑖 ∼iid 𝒰(−𝜃, 𝜃). Then, 𝔼𝜃[𝑋𝑖] = 0, so we need to move onto to the second
moment. We have 𝔼𝜃[𝑋2

𝑖 ] = Var𝜃[𝑋𝑖] = 𝜃2

3 . 𝑚2(𝑿) = 1
𝑛 ∑𝑛

𝑖=1 𝑋2
𝑖 , so we have system of

equations

1
𝑛 ∑

𝑛

𝑖=1
𝑋2

𝑖 =
̂𝜃2
𝑛
3 ,

which has solution

̂𝜃𝑛 = √
3
𝑛 ∑

𝑛

𝑖=1
𝑋2

𝑖 .

Note that we have positive and negative roots, but ignore the negative one since 𝜃 > 0.
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⊛ Example 4.4 :  Let 𝑋𝑖 ∼iid Geo(𝑝), so 𝑓 (𝑥; 𝑝) = 𝑝(1 − 𝑝)𝑥−1 with 𝑥 = 1, 2, …. Then, 𝔼𝑝[𝑋𝑖] = 1
𝑝

and 𝑚1(𝑿) = 𝑋𝑛, so

̂𝑝𝑛 =
1

𝑋𝑛
.

Is this an unbiased estimator? One readily computes

𝔼[ ̂𝑝𝑛] = ∑
∞

𝑥1,…,𝑥𝑛=1

𝑛
∑𝑖 𝑥𝑖

𝑝𝑛(1 − 𝑝)∑𝑖 𝑥𝑖−𝑛

⎝
⎜⎛𝑢 ≔ ∑

𝑖
𝑥𝑖

⎠
⎟⎞ = 𝑛(

𝑝
1 − 𝑝)

𝑛
∑
∞

𝑢=𝑛
𝐶𝑢

(1 − 𝑝)𝑢

𝑢 ,

where 𝐶𝑢 = # ways to write 𝑢 ≥ 𝑛 as a sum of 𝑛 elements 𝑥1, …, 𝑥𝑛 where each at least 1 = 
( 𝑢−1

𝑢−𝑛). This probably isn’t equal to 1
𝑝 , but I’m not sure how to reduce it. If one takes 𝑛 = 1,

however, this becomes

𝔼[ ̂𝑝1] = (
𝑝

1 − 𝑝) ∑
∞

𝑢=1

(1 − 𝑝)𝑢

𝑢 =
𝑝

1 − 𝑝 log(
1
𝑝),

using the Taylor series expansion of log(𝑥). Graphically, one sees while this is equal to 𝑝 for
some values of 𝑝 (namely 1 and ≈ .137), it certainly isn’t for general 𝑝 ∈ (0, 1).

Suppose now 𝑛 = 1 so 𝑋 ∼ Geo(𝑝). Assume 𝑇(𝑋) is an unbiased estimator of 𝑝. Then,

𝑝 = ∑
∞

𝑥=1
𝑇(𝑥)𝑓 (𝑥; 𝑝) = ∑

∞

𝑥=1
𝑇(𝑥)𝑝(1 − 𝑝)𝑥−1

so it must be 𝑇(1) = 1, 𝑇(𝑥) = 0 for 𝑥 ≥ 2, since these are two polynomials in 𝑝. This is an
“unreasonable” estimator.

§4.2 Maximum Likelihood Estimation (MLE)
Let 𝑿 = (𝑋1, …, 𝑋𝑛)𝑡 have a joint pdf/pmf 𝑝𝜃(𝒙) for 𝜃 ∈ Θ ⊆ ℝ𝑑 and 𝒙 ∈ Χ ⊆ ℝ𝑛.

↪Definition 4.1 (Likelihood Function):  Having observed (post-experimental data) 𝒙 =
(𝑥1, …, 𝑥𝑛) ∈ Χ, the likelihood function

𝐿𝑛 : Θ → [0, ∞),

is given by

𝐿𝑛(𝜃; 𝒙) = 𝐿𝑛(𝜃) ≔ 𝑝𝜃(𝒙).

Note that 𝒙 is fixed in this definition; 𝐿𝑛 a function of 𝜃.

The log-likelihood is then defined ℓ𝑛(𝜃) ≔ log(𝐿𝑛(𝜃)).
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Remark 4.1 :  If 𝑋1, …, 𝑋𝑛 ∼iid 𝑓𝜃, then

𝐿𝑛(𝜃) = ∏
𝑛

𝑖=1
𝑓 (𝑥𝑖; 𝜃),

so

ℓ𝑛(𝜃) = ∑
𝑛

𝑖=1
log(𝑓 (𝑥𝑖; 𝜃)).

Remark 4.2 :  Some texts write 𝐿𝑛(𝜃) = 𝑐 ⋅ 𝑝𝜃(𝒙) for some constant 𝑐 > 0, a proportionality
constant. It is not a pdf; 𝜃 varies, and 𝒙 is fixed.

Remark 4.3 :  If 𝑇(𝑿) a sufficient statistic for 𝜃, it contains all the necessary information
needed to compute the likelihood function (by the factorization theorem).

Remark 4.4 :  The likelihood principle states “in light of the data 𝒙, the likelihood contains all the
information in the data about 𝜃”. In addition, two likelihood functions contain the same
information about 𝜃 if they are proportional to each other.

⊛ Example 4.5 :  Consider the following two experiments; Exp. 1: a coin was tossed 20 times
and 8 heads observed. Let 𝑋𝑖 ∼iid Ber(𝜃) for 𝑖 = 1, …, 20 and 𝑌 = ∑20

𝑖=1 𝑋𝑖 ∼ Bin(20, 𝜃). Then

𝐿1(𝜃) = 𝑃(𝑌 = 8) = (
20
8 )𝜃8(1 − 𝜃)12 ∝ 𝜃8(1 − 𝜃)12.

In Exp. 2., we toss 20 coins until 8 heads are observed. So, this is a negative binomial
distribution, and we find

𝐿2(𝜃) = (
19
7 )𝜃7(1 − 𝜃)12 ∝ 𝜃8(1 − 𝜃)12,

so 𝐿1(𝜃), 𝐿2(𝜃) are both proportional to 𝜃8(1 − 𝜃)12.

From a a “maximum likelihood estimation point of view”, both likelihoods contains the
same information about 𝜃.

Remark 4.5 :  In the discrete case, 𝐿𝑛(𝜃) is the probability of observing 𝒙, given distribution
with parameter 𝜃; in particular, if 𝐿𝑛(𝜃1) > 𝐿𝑛(𝜃2), this means we were more likely to observe
our data if the parameter value was 𝜃1 rather than 𝜃2. A “similar” interpretation can be made
in the continuous case.
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↪Definition 4.2 (Maximum Likelihood Estimation):  Given 𝒙 = (𝑥1, …, 𝑥𝑛), ̂𝜃𝑛 = ̂𝜃(𝑥1, …, 𝑥𝑛)
is called a maximum likelihood estimate (MLE) of 𝜃 if it maximizes 𝐿𝑛(𝜃) or equivalently ℓ𝑛(𝜃).
I.e., ̂𝜃𝑛(𝒙) = argmax𝜃∈Θ𝐿𝑛(𝜃).

If ̂𝜃𝑛 exists and ̂𝜃𝑛 : Χ → Θ is measurable, then ̂𝜃(𝑋1, …, 𝑋𝑛) is called the maximum likelihood
estimator of 𝜃.

⊛ Example 4.6 :  Let 𝑋𝑖 ∼iid Poisson(𝜃), then

𝐿𝑛(𝜃) = ∏
𝑛

𝑖=1
𝑓 (𝑥𝑖; 𝜃) = ∏

𝑛

𝑖=1
𝑒−𝜃 𝜃𝑥𝑖

𝑥𝑖!
,

then

ℓ𝑛(𝜃) = − ∑
𝑛

𝑖=1
ln(𝑥𝑖!) − 𝑛𝜃 + 𝑛𝑥𝑛 ln(𝜃).

Then,

dℓ𝑛(𝜃)
d𝜃 = −𝑛 +

𝑛𝑥𝑛
𝜃 = 0 ⇒ 𝑥𝑛 = 𝜃 ⇒ ̂𝜃𝑛 = 𝑥𝑛.

Moreover, since

d2(ℓ𝑛(𝜃))
d𝜃2 = −

𝑛𝑥𝑛
𝜃2 < 0,

it follows that ̂𝜃𝑛 = 𝑥𝑛 is the maximum likelihood estimate of 𝜃.

Remark 4.6 :
1. MLE of 𝜃 may or may not exist over Θ, when Θ is open. It always exists over the closure of 

Θ.
2. If Θ is finite, then certainly Θ = Θ and the MLE always exists and can be computed by

comparing the values of 𝐿𝑛(𝜃) (or ℓ𝑛(𝜃)) over Θ.
3. If 𝐿𝑛(𝜃) or ℓ𝑛(𝜃) is differentiable on Θ∘, then possible candidates for the MLE are values of 

𝜃 ∈ Θ∘ that satisfy the so-called “likelihood equations” or “score equations”,

dℓ𝑛(𝜃)
d𝜃 = 0. ⊛

If ℓ𝑛(𝜃) not differentiable (or in particular not everywhere differentiable), then extrema
may occur at non-differentiability or even discontinuity points of ℓ𝑛(𝜃). So, its crucial to
analyze the entire likelihood function to find its maximum.
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⊛ Example 4.7 :  Let 𝑋𝑖 ∼iid 𝒰(0, 𝜃) so 𝑓 (𝑥; 𝜃) = 1
𝜃 𝟙{0 < 𝑥 < 𝜃}. Then,

𝐿𝑛(𝜃) = ∏
𝑛

𝑖=1

1
𝜃 𝟙{0 < 𝑥𝑖 < 𝜃} =

1
𝜃𝑛 𝟙{𝑥(1) > 0} ⋅ 𝟙{𝜃 > 𝑥(𝑛)}.

Then, 𝐿𝑛(𝜃) is strictly decreasing on (𝑥(𝑛), ∞) and equal to zero on (0, 𝑥(𝑛)). Hence, the MLE
of 𝜃 is ̂𝜃𝑛(𝑥1, …, 𝑥𝑛) = 𝑥(𝑛).

⊛ Example 4.8 :  Let 𝑋𝑖 ∼iid 𝒰(𝜃 − 1
2 , 𝜃 + 1

2), then

𝐿𝑛(𝜃) = ∏
𝑛

𝑖=1
𝟙{𝜃 −

1
2 < 𝑥𝑖 < 𝜃 +

1
2} = 𝟙{𝑥(𝑛) −

1
2 < 𝜃 < 𝑥(1) +

1
2}.

So, any choice of ̂𝜃𝑛 ∈ [𝑥(𝑛) − 1
2 , 𝑥(1) + 1

2] is an MLE of 𝜃, for instance 
𝑥(1)+𝑥(𝑛)

2  (the midpoint).
In short, the MLE is not unique in this case.

⊛ Example 4.9 :  Let 𝑋𝑖 ∼iid 𝒩(𝜇, 𝜎2), with 𝜃 = (𝜇, 𝜎2) ∈ ℝ × ℝ+. Then

𝐿𝑛(𝜃) =
⎝
⎜⎜⎛

1
√2𝜋𝜎2 ⎠

⎟⎟⎞
𝑛

exp
⎝
⎜⎛−

1
2𝜎2 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝜇)2

⎠
⎟⎞,

so its more convenient to consider

ℓ𝑛(𝜃) = −
𝑛
2 ln(𝜎2) −

1
2𝜎2 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝜇)2 + const. indep. of 𝜃.

Then, the likelihood equatiosn give

⎩{
{⎨
{{
⎧𝜕ℓ𝑛(𝜃)

𝜕𝜇 = 1
𝜎2 ∑𝑛

𝑖=1(𝑥𝑖 − 𝜇) = 0
𝜕ℓ𝑛(𝜃)

𝜕𝜎2 = − 𝑛
2𝜎2 + 1

2𝜎4 ∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2 = 0

.

The first equation gives

�̂�𝑛 = 𝑥𝑛,

and so the second gives

�̂�2
𝑛 =

1
𝑛 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝑥𝑛)2.

Then, we find

𝜕2ℓ𝑛(𝜃)
𝜕𝜃2 𝜃= ̂𝜃𝑛

= −
⎝
⎜⎜⎜
⎜⎛

𝑛
�̂�2

0

0
𝑛

2�̂�4 ⎠
⎟⎟⎟
⎟⎞ < 0,

a negative-definite matrix, hence ̂𝜃𝑛 = (𝑥𝑛, 1
𝑛 ∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥𝑛)2) is the MLE of 𝜃 = (𝜇, 𝜎2).

4.2 Maximum Likelihood Estimation (MLE) 39



⊛ Example 4.10 :  Let 𝑋𝑖 ∼iid Gamma(𝛼, 𝛽) with 𝜃 = (𝛼, 𝛽), with pdf 𝑓 (𝑥; 𝜃) =
1

Γ(𝛼)𝛽𝛼 𝑥𝛼−1 exp(− 𝑥
𝛽) for 𝑥 > 0. Then

𝐿𝑛(𝜃) = [Γ(𝛼)𝛽𝛼]−𝑛

⎝
⎜⎛∏

𝑛

𝑖=1
𝑥𝑖

⎠
⎟⎞

𝛼−1

exp
⎝
⎜⎛− ∑

𝑛

𝑖=1

𝑥𝑖
𝛽 ⎠

⎟⎞,

so

ℓ𝑛(𝜃) = −𝑛 log(Γ(𝛼)) − 𝑛𝛼 log(𝛽) + (𝛼 − 1) ∑
𝑛

𝑖=1
log(𝑥𝑖) −

1
𝛽 ∑

𝑛

𝑖=1
𝑥𝑖.

The likelihood equations:

𝜕ℓ𝑛(𝜃)
𝜕𝜃

= 0 ⇒

⎩{
{⎨
{{
⎧𝜕ℓ𝑛(𝜃)

𝜕𝛼 = −𝑛 log(𝛽) − 𝑛Γ′(𝛼)
Γ(𝛼) + ∑𝑛

𝑖=1 log(𝑥𝑖) = 0
𝜕ℓ𝑛(𝜃)

𝜕𝛽 = −𝑛𝛼
𝛽 + ∑𝑛

𝑖=1
𝑥𝑖

𝛽2 = 0.

This gives

⎩{
{⎨
{{
⎧0 = Γ′( ̂𝛼)

Γ( ̂𝛼) + log( ̂𝛽) − 1
𝑛 ∑𝑛

𝑖=1 log(𝑥𝑖)

̂𝛽 = 𝑥𝑛
̂𝛼

,

which gives ̂𝛽 as a function of ̂𝛼. Plugging this expression into the first, we find

log( ̂𝛼) −
Γ′( ̂𝛼)
Γ( ̂𝛼) +

1
𝑛 ∑

𝑛

𝑖=1
log(𝑥𝑖) − log(𝑥𝑛) = 0,

which does not have a nice closed form. So, we must resort to numerical methods to
approximate ̂𝜃𝑛.
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⊛ Example 4.11 (Newton-Raphson):  One way to numerically approximate MLEs (and more
generally approximate roots of functions) such as in the previous example, is to approximate
via linear functions. For instance, suppose we are interested in solving

𝜕ℓ𝑛(𝜃)
𝜕𝜃

= ℓ′
𝑛(𝜃) = 0.

The Newton-Raphson starts with some initial guess 𝜃(0), and is then defined inductively.
Given 𝜃(𝑡), an approximation of 𝜃, the 𝑡 + 1-st iteration performs the following approximation
to obtain 𝜃(𝑡+1), by Taylor exanding,

ℓ′
𝑛(𝜃(𝑡)) + ℓ″

𝑛(𝜃(𝑡))[𝜃(𝑡+1) − 𝜃(𝑡)] = 0,

implying

𝜃(𝑡+1) = 𝜃(𝑡) − [ℓ″
𝑛(𝜃(𝑡))]−1ℓ𝑛(𝜃(𝑡)),

where in the general case ℓ′
𝑛(𝜃) a 𝑑 × 1 vector and ℓ″

𝑛(𝜃) a 𝑑 × 𝑑 matrix. In general, this
procedure need not converge to the true value; typically, one stops after some “proximity
standard” is met, e.g. if for some fixed allowance 𝜀 > 0, one may choose to stop once ‖𝜃(𝑡+1) −
𝜃(𝑡)‖ < 𝜀.

⊛ Example 4.12 :  Let 𝑋𝑖 ∼iid Ber(𝜃) for 0 < 𝜃 < 1. Then,

𝐿𝑛(𝜃) = 𝜃∑𝑛
𝑖=1 𝑥𝑖(1 − 𝜃)𝑛− ∑𝑛

𝑖=1 𝑥𝑖

⇒ ℓ𝑛(𝜃) = 𝑛𝑥𝑛 log(𝜃) + 𝑛(1 − 𝑥𝑛) log(1 − 𝜃)

⇒
dℓ𝑛(𝜃)

d𝜃 =
𝑛𝑥𝑛

𝜃 −
𝑛(1 − 𝑥𝑛)

1 − 𝜃 = 0 ⇒ ̂𝜃𝑛 = 𝑥𝑛,

while also,

d2ℓ𝑛(𝜃)
d𝜃2 = −

𝑛𝑥𝑛
𝜃2 −

𝑛(1 − 𝑥𝑛)
1 − 𝜃 < 0,

so ̂𝜃𝑛 = 𝑥𝑛 is the unique maximizer of ℓ𝑛(𝜃) when 0 < 𝑥𝑛 < 1.

If 𝑥𝑛 = 0, then 𝐿𝑛(𝜃) = (1 − 𝜃)𝑛 is strictly decreasing in 𝜃, with unique maximizer at 0; but 0
is not in our parameter space. Similarly if 𝑥𝑛 = 1, then 𝐿𝑛(𝜃) = 𝜃𝑛 is maximized at 𝜃 = 1
which is again not in our parameter space. Combining these facts, the MLE indeed ̂𝜃𝑛 = 𝑥𝑛.

When 𝜃 ∈ (0, 1), the probability of 𝑥𝑛 = 0 or 𝑥𝑛 = 1 goes to zero as 𝑛 → ∞, exponentially.

4.2.1 Properties of MLE

↪Theorem 4.1 (Invariance Property) :  If ̂𝜃𝑛 the MLE of 𝜃, then for any function 𝜏(𝜃), the MLE
of 𝜏(𝜃) is 𝜏(𝜃) = 𝜏( ̂𝜃).
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↪Theorem 4.2 (Large Sample Behaviour) :  Under the regularity conditions from the CRLB
theorem, then
• ̂𝜃𝑛 is a consistent estimator of the parameter of interest;
• ̂𝜃𝑛, properly scaled and centeralized, is asymptotically normal.

§4.3 Bayesian Estimation
Let 𝑿 = (𝑋1, …, 𝑋𝑛) ∼ 𝑝𝜃(⋅) be data distributed according to some parametrically indexed

joint pdf. In Bayesian inference, the parameter 𝜃 is also treated as a random variable, with a
pdf/pmf 𝜋(𝜃), called the prior distribution of 𝜃. Then, for post-experimental (observed) data 𝒙 =
(𝑥1, …, 𝑥𝑛), then we write

𝑝𝜃(𝑥1, …, 𝑥𝑛) = 𝑝𝜃(𝒙) = 𝑝(𝒙|𝜃),

i.e. treated as a conditional distribution of 𝑋|𝜃.

By Baye’s theorem, where 𝑝𝑋(𝒙) the marginal pdf/pmf of 𝑿 ,

𝜋(𝜃|𝒙) =
𝑝(𝒙|𝜃)𝜋(𝜃)

𝑝𝑿(𝒙) =
𝑝𝜃(𝒙)𝜋(𝜃)

∫Θ 𝑝𝜃(𝒙)𝜋(𝜃) d𝜃
,

where Θ the entire parameter space (i.e., support of 𝜋). Hence, the so-called posterior
distribution, 𝜋(𝜃|𝒙), is proportional

𝜋(𝜃|𝒙) ∝ 𝑝𝜃(𝒙)𝜋(𝜃).

𝜋(𝜃) is purely based on our “prior” belief/knowledge of 𝜃; 𝜋(𝜃|𝒙) reflects the “updated”
knowledge about 𝜃 given some data 𝒙.

Recall that Var𝜋(𝜃) ≥ 𝔼𝜃[Var(𝜃|𝑿)]; so, the prior variance of 𝜃 is at least as big as the
expected posterior variance.

↪Definition 4.3 (Loss Function):  Given data 𝑿 = (𝑋1, …, 𝑋𝑛), a loss function 𝐿(𝛿(𝑿), 𝜃) is a
measure of loss (“penalty”) when 𝜃 is estimated by some function 𝛿(𝑿); for instance, 
𝐿(𝛿(𝑿), 𝜃) = (𝛿(𝑿) − 𝜃)2.

↪Definition 4.4 (Baye's Risk) :  Given a loss function 𝐿, Baye’s Risk of 𝛿(𝑿) is the function

𝑅(𝛿) ≔ 𝔼𝜋{𝔼𝑿|𝜃[𝐿(𝛿(𝑿), 𝜃)]}.

I.e., heuristically, the first nested expected value averages the loss of the estimator 𝛿(𝑿) over
all data 𝑿  given parameter 𝜃, then the second averages over all 𝜃’s.
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↪Definition 4.5 (Baye's Estimator) :  The Baye’s estimator is defined

̂𝛿(𝑿) ≔ argmin𝛿∈𝘋𝑅(𝛿),

where 𝘋 the collection of all possible estimators; i.e. the estimator that minimizes Baye’s Risk.

In the continuous case, we may write, where Θ the parameter space and Χ the support of 𝛿,

𝑅(𝛿) = ∫
Θ

[∫
Χ

𝐿(𝛿(𝒙), 𝜃)𝑝𝜃(𝒙) d𝒙]𝜋(𝜃) d𝜃

= ∫
Χ

[∫
Θ

𝐿(𝛿(𝒙), 𝜃)𝜋(𝜃|𝒙) d𝜃]𝑝𝑿(𝒙) d𝑥.

The outside integral is independent of 𝜃, so it suffices to minimize the inner (bracketed) integral,
hence

̂𝛿(𝑿) = argmin𝛿∈𝘋{∫
Θ

𝐿(𝛿(𝑿); 𝜃)𝜋(𝜃|𝒙) d𝜃}.

This expression is called the posterior expected loss. For instance if 𝐿(𝛿, 𝜃) = (𝛿 − 𝜃)2, then

̂𝛿(𝑿) = argmin𝛿∈𝘋{∫
Θ

(𝛿(𝑿) − 𝜃)2𝜋(𝜃|𝒙) d𝜃}.

Recalling that the minimizer of 𝔼[(𝑋 − 𝑎)2] is 𝑎 = 𝔼[𝑋], we readily find that

̂𝛿(𝑿) = 𝔼𝜃|𝑿=𝒙[𝜃|𝑿 = 𝒙],

called the posterior mean.

↪Theorem 4.3 (Baye's Estimator for Mean-Squared Risk) :  Under the risk function 𝐿(𝛿, 𝜃) =
(𝛿(𝑿) − 𝜃)2, the Baye’s estimator is

𝛿Bayes(𝑿) = 𝔼𝜃|𝑿[𝜃|𝑿].

Similarly, if we take the absolute value loss function 𝐿(𝛿, 𝜃) = |𝛿 − 𝜃|, then we’d find ̂𝛿(𝑿) =
posterior median.
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⊛ Example 4.13 :  Let 𝑋𝑖 ∼iid Ber(𝜃) and assume a Beta prior for 𝜃, namely 𝜃 ∼ 𝜋(𝜃) =
Beta(𝛼, 𝛽), where 𝛼, 𝛽 are so-called “hyperparameters” (namely, they are known), so

𝜋(𝜃) =
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝜃𝛼−1(1 − 𝜃)𝛽−1.

We aim to find the Baye’s estimator of 𝜃 under the square loss. We have

𝜋(𝜃|𝒙) ∝ 𝑝𝜃(𝒙)𝜋(𝜃)

= 𝜃∑𝑛
𝑖=1 𝑥𝑖(1 − 𝜃)𝑛− ∑𝑛

𝑖=1 𝑥𝑖
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝜃𝛼−1(1 − 𝜃)𝛽−1

=
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝜃𝑛𝑥𝑛+𝛼−1(1 − 𝜃)𝑛−𝑛𝑥𝑛+𝛽−1,

so in particular one observes 𝜃|𝑿 = 𝒙 ∼ Beta(𝑛𝑥𝑛 + 𝛼, 𝑛 − 𝑛𝑥𝑛 + 𝛽). Thus, using the known
mean of a Beta distribution,

̂𝛿(𝑿) = 𝔼𝜃|𝑿[𝜃|𝑿]

=
𝑛𝑋𝑛 + 𝛼

𝑛𝑋𝑛 + 𝛼 + 𝑛 − 𝑛𝑋𝑛 + 𝛽

=
𝑛𝑋𝑛 + 𝛼

𝑛 + 𝛼 + 𝛽

=
𝑛

𝑛 + 𝛼 + 𝛽𝑋𝑛 +
𝛼 + 𝛽

𝑛 + 𝛼 + 𝛽
𝛼

𝛼 + 𝛽,

where we notice this a convex combination of 𝑋𝑛, the MLE, and 𝛼
𝛼+𝛽 , the prior mean.

§4.4 Large Sample Properties of MLE
Let ℱ = {𝑓𝜃 : 𝜃 ∈ Θ ⊆ ℝ𝑑} and 𝑋 ∼ 𝑓𝜃0

 for some 𝜃0 ∈ Θ. Throughout, we’ll assume the
following regularity conditions about the distribution:

• R0: Θ is either open, or contains an open set 𝑁 such that 𝜃0 an interior point of 𝑁;
• R1: The pdf/pmf 𝑓𝜃 has a common support Χ for all 𝜃 ∈ 𝑁 and is identifiable in 𝜃 for every 

𝑥 ∈ Χ. That is, for every 𝜃1, 𝜃2 ∈ 𝑁, 𝑓 (𝑥; 𝜃1) = 𝑓 (𝑥; 𝜃2) for every 𝑥 ∈ Χ iff 𝜃1 = 𝜃2;
• R2: 𝑓𝜃 is thrice differentiable in 𝜃 for almost every 𝑥 ∈ Χ;
• R3: There exists functions 𝑀𝑖(𝑥) for 𝑖 = 1, 2, 3 (possibly depending on 𝜃0) such that for every 

𝜃 ∈ 𝑁,

|
𝜕𝑓 (𝑥; 𝜃)

𝜕𝜃𝑖
| < 𝑀1(𝑥),

||
||𝜕

2𝑓 (𝑥; 𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗 ||

|| < 𝑀2(𝑥),
||
|| 𝜕3𝑓 (𝑥; 𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘 ||

|| < 𝑀3(𝑥)

for every 𝑥 ∈ Χ, such that the integral of each 𝑀𝑖 over Χ is finite;
• R4: for all 𝜃 ∈ 𝑁, 𝐼1(𝜃) > 0 is a positive definite matrix, as defined below.

Let 𝑋1, …, 𝑋𝑛 ∼iid 𝑓𝜃0
. Let ̂𝜃𝑛(𝑿) = argmax𝜃∈Θ𝐿𝑛(𝜃). Assume we obtained the MLE by

solving the likelihood equations 𝜕ℓ𝑛(𝜃)
𝜕𝜃 = 0. Under R0 - R4, we show
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̂𝜃𝑛 →𝑃 𝜃, √𝑛( ̂𝜃𝑛 − 𝜃0) →𝑑 𝒩(0, 𝐼−1
1 (𝜃0)),

where 𝐼1(𝜃) the Fisher information matrix given by

𝐼1(𝜃) = 𝔼𝜃
⎩{
⎨
{⎧[

𝜕 log(𝑓 (𝑥; 𝜃))
𝜕𝜃

] ⋅ [
𝜕 log(𝑓 (𝑥; 𝜃))

𝜕𝜃
]

𝑡

⎭}
⎬
}⎫.

Before proceeding we need some tools. The function (of 𝜃, with 𝜃0 fixed)

𝔼𝜃0
{log

𝑓 (𝑿; 𝜃0)
𝑓 (𝑿; 𝜃)

}

is called the Kullback-Leibler (KL) distance between 𝑓 (𝒙; 𝜃) and 𝑓 (𝒙; 𝜃0).

↪Proposition 4.1 :  The Kullback-Leibler distance is strictly positive for 𝜃 ≠ 𝜃0 and equal to
zero for 𝜃 = 𝜃0.

Proof. We may write, by Jensen’s inequality

= −𝔼𝜃0
{log

𝑓 (𝑿; 𝜃)
𝑓 (𝑿; 𝜃0)

} ≥ − log 𝔼𝜃0
{

𝑓 (𝑿; 𝜃)
𝑓 (𝑿; 𝜃0)

} = − log ∫
𝑓 (𝒙; 𝜃)
𝑓 (𝒙; 𝜃0)

𝑓 (𝒙; 𝜃0) d𝒙 = − log 1 = 0.

■

↪Lemma 4.1 :  𝑃(ℓ𝑛(𝜃) < ℓ𝑛(𝜃0)) → 1 for every 𝜃 ≠ 𝜃0.

Proof.

1
𝑛[ℓ𝑛(𝜃) − ℓ𝑛(𝜃0)] =

1
𝑛 ∑

𝑛

𝑖=1
log(

𝑓 (𝑋𝑖; 𝜃)
𝑓 (𝑋𝑖; 𝜃0)

) →a.s. 𝔼𝜃0
[log(

𝑓 (𝑋1; 𝜃)
𝑓 (𝑋1; 𝜃0)

)] < 0,

using the strong law of large numbers and the properties of the KL distance. ■

↪Theorem 4.4 :  Under the regularity conditions,
1. 𝔼𝜃[𝜕 log(𝑓 (𝑋;𝜃))

𝜕𝜃 ] = 0 for every 𝜃 ∈ Θ;
2. 𝔼𝜃[𝜕2 log 𝑓 (𝑋;𝜃)

𝜕𝜃2 ] = −𝔼𝜃[[𝜕 log 𝑓 (𝑋;𝜃)
𝜕𝜃 ] ⋅ [𝜕 log 𝑓 (𝑋;𝜃)

𝜕𝜃 ]
𝑡
] = −𝐼(𝜃) for every 𝜃 ∈ Θ;

3. for 𝑑 = 1 i.e. Θ ⊆ ℝ, 𝔼𝜃0
[𝜕 log 𝑓 (𝑋;𝜃)

𝜕𝜃 ] is a strictly decreasing function of 𝜃 in a small
neighborhood of 𝜃0.

These first two are the so-called Bartlett Identities.

Proof. 1., 2., were already proven in the discussion following the CRLB theorem,

Prop. 3.1. For 3., note 𝔼𝜃0⎣
⎢⎡

𝜕 log 𝑓 (𝑋;𝜃)
𝜕𝜃 𝜃=𝜃0⎦

⎥⎤ = 0. Using the regularity conditions,

𝜕
𝜕𝜃

(𝔼𝜃0
[

𝜕 log 𝑓 (𝑋; 𝜃)
𝜕𝜃

])
𝜃=𝜃0

𝔼𝜃0
=

⎣
⎢⎡

𝜕2 log 𝑓 (𝑋; 𝜃)
𝜕𝜃2 𝜃=𝜃0⎦

⎥⎤ = −𝐼(𝜃0) < 0,
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since 𝐼(𝜃0) a positive definite matrix. Hence, since 𝔼𝜃0
[𝜕 log 𝑓 (𝑋;𝜃)

𝜕𝜃 ], as a function of 𝜃, is
decreasing at 𝜃 = 𝜃0, so strictly decreasing in some neighborhood of 𝜃0. ■

↪Theorem 4.5 :  Under the regularity conditions, there exists a sequence ̂𝜃𝑛 = ̂𝜃𝑛(𝑿) such that
1. ℓ′

𝑛( ̂𝜃𝑛) = 0;
2. ̂𝜃𝑛 →a.s. 𝜃0.

Proof. By the previous theorem, for a sufficiently small 𝜀 > 0, by SLLN

⎩{
{⎨
{{
⎧ 1

𝑛ℓ′
𝑛(𝜃0 − 𝜀)

1
𝑛ℓ′

𝑛(𝜃0 + 𝜀)
→a.s.

⎩{
{{
{⎨
{{
{{
⎧

𝔼𝜃0⎣
⎢⎡

𝜕 log 𝑓 (𝑋;𝜃)
𝜕𝜃 𝜃=𝜃0−𝜀⎦

⎥⎤ > 0

𝔼𝜃0⎣
⎢⎡

𝜕 log 𝑓 (𝑋;𝜃)
𝜕𝜃 𝜃=𝜃0+𝜀⎦

⎥⎤ < 0
.

Therefore for large 𝑛, ℓ′
𝑛(𝜃0 + 𝜀) < 0 < ℓ′

𝑛(𝜃0 − 𝜀). For large 𝑛 we had by the lemma as
well that ℓ𝑛(𝜃0 + 𝜀), ℓ𝑛(𝜃0 − 𝜀) < ℓ𝑛(𝜃0) a.s., thus by the intermediate value theorem
there is some ̂𝜃𝑛 ∈ (𝜃0 − 𝜀, 𝜃0 + 𝜀) such that ℓ′

𝑛( ̂𝜃𝑛) = 0. Since 𝜀 arbitrary, we also get 
̂𝜃𝑛 →a.s. 𝜃0. ■

Remark 4.7 :  This result gives asymptotic existence of a sequence of “consistent” roots ̂𝜃𝑛 of 
ℓ′

𝑛(𝜃) = 0. For a given set of roots of ℓ′
𝑛(𝜃) = 0, its consistency must be verified individually,

unless it is unique, in which case it is consistent.

↪Theorem 4.6 (Asymptotic Normality) :  Under the regularity conditions,

√𝑛( ̂𝜃𝑛 − 𝜃0) →𝑑 𝒩(0, 𝐼−1
1 (𝜃0)).

Proof. We have that ℓ′
𝑛( ̂𝜃𝑛) = 0 Then,

0 = ℓ′
𝑛( ̂𝜃𝑛) = ℓ′

𝑛(𝜃0) + ℓ″
𝑛(𝜃0)( ̂𝜃𝑛 − 𝜃0) +

ℓ‴
𝑛 ( ̃𝜃𝑛)( ̂𝜃𝑛 − 𝜃0)

2

2 ,

where ̃𝜃𝑛 is between 𝜃0 and ̂𝜃𝑛. Hence,

√𝑛( ̂𝜃𝑛 − 𝜃0) =
ℓ′

𝑛(𝜃0)/√𝑛
− 1

𝑛ℓ″
𝑛(𝜃0) − 1

2𝑛ℓ‴
𝑛 ( ̃𝜃𝑛)( ̂𝜃𝑛 − 𝜃0)

. ★

Now, by CLT and the Bartlett identities,

ℓ′
𝑛(𝜃0)
√𝑛

→𝑑 𝒩(0, 𝐼1(𝜃0)).

By WLLN and Bartlett,

−
1
𝑛ℓ″

𝑛(𝜃0) →𝑃 −𝔼𝜃0
⎣
⎢⎡

𝜕2𝑓 (𝑋1; 𝜃)
𝜕𝜃2 𝜃=𝜃0⎦

⎥⎤ = 𝐼1(𝜃0).
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Finally, by R3,

|
1
𝑛ℓ‴

𝑛 ( ̃𝜃𝑛)| =
1
𝑛

|
||
|
|
∑

𝑛

𝑖=1

𝜕3 log 𝑓 (𝑋𝑖; 𝜃)
𝜕𝜃3

𝜃= ̃𝜃𝑛 |
||
|
|

≤
1
𝑛 ∑

𝑛

𝑖=1
𝑀3(𝑋𝑖) →𝑃 𝔼𝜃0

[𝑀3(𝑋𝑖)],

so in particular

1
𝑛ℓ‴

𝑛 ( ̃𝜃𝑛) = ℴ𝑝(1).

Thus, combining all these convergences via Slutsky’s theorem in ★, we find

√𝑛( ̂𝜃𝑛 − 𝜃0) →𝑑 𝒩(0, 𝐼−1
1 (𝜃0)).

■

Remark 4.8 :  The MLE is so-called “Fisher-Efficient” as its asymptotic variance approaches the
CRLB.

§5 Confidence Intervals

§5.1 Interpretations
A standard approach to representing uncertainty in point estimation is to report a

“confidence interval” for a parameter of interest.

Let 𝑿 = (𝑋1, …, 𝑋𝑛) ∼iid 𝑓𝜃 be our “data” and 𝒙 = (𝑥1, …, 𝑥𝑛)𝑡 be our “observed data”.

↪Definition 5.1 (Interval Estimator/Confidence Interval) :  Let 𝐿(𝑿), 𝑈(𝑿) be two statistics
such that 𝐿(𝒙) < 𝑈(𝒙) for every 𝒙 ∈ Χ. A random interval (𝐿(𝑿), 𝑈(𝑿)) is called an interval
estimator/confidence interval (CI) with confidence level 1 − 𝛼 with 0 < 𝛼 < 1 if

𝑃(𝐿(𝑿) ≤ 𝜃 ≤ 𝑈(𝑿)) = 1 − 𝛼.

The post-experimental confidence interval is given (𝐿(𝒙), 𝑈(𝒙)) for given data 𝒙.

It is wrong to say that (𝐿(𝒙), 𝑈(𝒙)) captures 𝜃 with probability 1 − 𝛼; this interval either includes 
𝜃 or not (basically, it captures 𝜃 with probability 0 or 1). How do we then interpret (𝐿(𝒙), 𝑈(𝒙)),
for a given 𝛼? If we were to repeat our experiment (i.e. collect data under the same conditions)
and compute similar confidence intervals for 𝜃, we expect 100 × (1 − 𝛼)% of those (post-
experimental) intervals to capture 𝜃.

§5.2 Construction of CI’s
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↪Definition 5.2 (Pivotal Quantity (PQ)) :  A random function 𝑄(𝑿, 𝜃) is called a pivotal
quantity (PQ) if its distribution does not depend on 𝜃, and 𝑄 is only a function of 𝑿  and 𝜃 (i.e.
of no other unknown parameter).

Once/if we have a PQ, we proceed as follows to obtain a CI with confidence 1 − 𝛼:

1. find constants 𝑐1, 𝑐2 such that 𝑃(𝑐1 ≤ 𝑄(𝑿; 𝜃) ≤ 𝑐2) = 1 − 𝛼;
2. having 𝑐1, 𝑐2, solve the inequality from 1. with respect to 𝜃 to get something of the form 

𝑃(𝐿(𝑿) ≤ 𝜃 ≤ 𝑈(𝑿)) = 1 − 𝛼.

When 𝑄 is monotone with respect to 𝜃, then inverting the inequality in 1. is easier. Otherwise,
the resulting interval could be the union of several intervals. Further, for a parametric family,
there may not exist a PQ, or there may exist many PQs. In this second case, we choose a PQ
based of a sufficient statistic.

5.2 Construction of CI’s 48



⊛ Example 5.1 :  Let 𝑋𝑖 ∼iid 𝒩(𝜇, 𝜎2), 𝑖 = 1, …, 𝑛, where 𝜎  known. We seek a confidence interval
for 𝜇. Recall the UMVUE for 𝜇 is 𝑋𝑛. Then, a PQ is given by

𝑄(𝑿; 𝜇) =
√𝑛(𝑋𝑛 − 𝜇)

𝜎 ∼ 𝒩(0, 1).

Next, we seek 𝑎, 𝑏 such that

𝑃
⎝
⎜⎜⎜
⎛𝑎 ≤

√𝑛(𝑋𝑛 − 𝜇)
𝜎 ≤ 𝑏

⎠
⎟⎟⎟
⎞ = 1 − 𝛼.

Suppose we know 𝑎, 𝑏. Solving the inequality for 𝜇, we find

𝑃(𝑋𝑛 −
𝑏𝜎
√𝑛

≤ 𝜇 ≤ 𝑋𝑛 −
𝑎𝜎
√𝑛

) = 1 − 𝛼.

Thus, our 100 × (1 − 𝛼)% CI for 𝜇 is

(𝑋𝑛 −
𝑏𝜎
√𝑛

, 𝑋𝑛 −
𝑎𝜎
√𝑛

).

What are 𝑎, 𝑏 then? We find that the length of this interval is ℓ(𝑿; 𝑎, 𝑏) = (𝑏−𝑎)𝜎
√𝑛

; we’d like to
minimize this length (or in general the expected length, since in general this length is
random). Suppose 𝑏 = 𝑏(𝑎) (which it will be from our restriction above). Then,

d
d𝑎ℓ(𝑿; 𝑎, 𝑏) = (

d𝑏
d𝑎 − 1)

𝜎
√𝑛

= 0 ⇒
d𝑏
d𝑎 = 1 ⇒ 𝑏(𝑎) = 𝑎 + 𝑐,

for a constant 𝑐. Putting Φ, 𝜑 to be the CDF, PDF respectively of the standard norm, we know 
Φ(𝑏) − Φ(𝑎) = 1 − 𝛼. Taking the derivative, we find

𝜑(𝑏)
d𝑏
d𝑎 − 𝜑(𝑎) = 0 ⇒

d𝑏
d𝑎 =

𝜑(𝑎)
𝜑(𝑏)

,

and thus all together, 𝜑(𝑎) = 𝜑(𝑏). Thus, by symmetry of 𝜑, it must be that 𝑎 = ±𝑏. We take
then 𝑎 = −𝑧𝛼/2, 𝑏 = 𝑧𝛼/2 such that 𝑃(𝑍 ≥ 𝑧𝛼/2) = 𝛼/2, 𝑍 ∼ 𝒩(0, 1) so our CI becomes

(𝑋𝑛 − 𝑧𝛼/2
𝜎

√𝑛
, 𝑋𝑛 + 𝑧𝛼/2

𝜎
√𝑛

).
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⊛ Example 5.2 :  In the same setup as the previous, but with 𝜎2 unknown, a PQ is given by

𝑄(𝑿; 𝜇) =
√𝑛(𝑋𝑛 − 𝜇)

𝑆𝑛
∼ 𝑡(𝑛 − 1).

Following similar work to the previous, we find

(𝑋𝑛 − 𝑡(𝑛−1,𝛼/2)
𝑆𝑛
√𝑛

, 𝑋𝑛 + 𝑡(𝑛−1,𝛼/2)
𝑆𝑛
√𝑛

)

to be the shortest CI for 𝜇 with unknown 𝜎 , where 𝑡(𝑛−1,𝛼/2) the analgous quantile of the
appropriate 𝑡 distribution.

⊛ Example 5.3 :  In the same setup, with both (𝜇, 𝜎2) unknown,

𝑄(𝑿; 𝜎2) =
(𝑛 − 1)𝑆2

𝑛
𝜎2 ∼ 𝜒2

(𝑛−1)

is a PQ for 𝜎2 now. This distribution is no longer symmetric as in the previous two cases; we
choose now

𝑃
⎝
⎜⎛𝜒2

(𝑛−1,𝛼/2) ≤
(𝑛 − 1)𝑆2

𝑛
𝜎2 ≤ 𝜒2

(𝑛−1,1−𝛼/2)
⎠
⎟⎞ = 1 − 𝛼,

where

𝑃(𝑍 ≤ 𝜒2
(𝑛−1,𝛼/2)) =

𝛼
2 = 𝑃(𝑍 ≥ 𝜒2

(𝑛−1,1−𝛼/2)), 𝑍 ∼ 𝜒2
(𝑛−1).

This ends up with confidence interval

⎝
⎜⎜⎛

(𝑛 − 1)𝑆2
𝑛

𝜒2
(𝑛−1,1−𝛼/2)

,
(𝑛 − 1)𝑆2

𝑛

𝜒2
(𝑛−1,𝛼/2) ⎠

⎟⎟⎞.

What would be the confidence interval with 𝜇 known?

⊛ Example 5.4 :  If 𝑋𝑖 an iid sample from a population with unknown mean 𝜇 and known
variance 𝜎2 with 𝔼[𝑋4] < ∞, by CLT 

√𝑛(𝑋𝑛−𝜇)
𝜎 →𝑑 𝒩(0, 1). For large 𝑛, then, this gives an

“approximate” PQ for the unknown family, so the previous analysis can be applied to find an
“approximate” confidence interval for 𝜇. Similarly if 𝜎  unknown, 

√𝑛(𝑋𝑛−𝜇)
𝑆𝑛

→𝑑 𝒩(0, 1) from
which again we can use the confidence interval for when 𝑋𝑖 normal to find an “approximate”
interval in this general case.
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⊛ Example 5.5 :  Suppose we have two independent iid samples 𝑋𝑖 ∼iid 𝒩(𝜇1, 𝜎2
1 ), 𝑖 = 1, …, 𝑚

and 𝑌𝑖 ∼iid 𝒩(𝜇2, 𝜎2
2 ) with 𝜎2

1 = 𝜎2
2 = 𝜎2, and we seek a CI for the difference 𝜇1 − 𝜇2. Let

𝑆2
pooled =

1
𝑚 + 𝑛 − 2⎩{

⎨
{⎧∑

𝑚

𝑖=1
(𝑋𝑖 − 𝑋𝑚)

2
+ ∑

𝑛

𝑖=1
(𝑌𝑖 − 𝑌𝑛)

2

⎭}
⎬
}⎫.

Then, 
(𝑚+𝑛−2)𝑆2

pooled

𝜎2 ∼ 𝜒2
𝑚+𝑛−2. Under these conditions, we have that

𝑋𝑚 − 𝑌𝑛 − (𝜇1 − 𝜇2)

𝑆pooled√ 1
𝑚 + 1

𝑛

∼ 𝑡(𝑚 + 𝑛 − 2).

This can then be used to approximate the confidence interval. If the distributions are not
known, we can use CLT to approximate as in the previous cases with one sample.

⊛ Example 5.6 :  Let 𝑋𝑖 ∼iid Ber(𝜃) and consider the point estimator ̂𝜃𝑛 = 𝑋𝑛. This is consistent
by WLLN, and so by CLT and Slutsky’s,

̂𝜃𝑛 − 𝜃

√ ̂𝜃𝑛(1 − ̂𝜃𝑛)/𝑛
→𝑑 𝒩(0, 1).

Using this as a PQ, this results in a two-sided CI

⎝
⎜⎜⎜
⎜⎜⎛ ̂𝜃𝑛 − 𝑧𝛼/2 ⋅ √

̂𝜃𝑛(1 − ̂𝜃𝑛)
𝑛 , ̂𝜃𝑛 + 𝑧𝛼/2 ⋅ √

̂𝜃𝑛(1 − ̂𝜃𝑛)
𝑛

⎠
⎟⎟⎟
⎟⎟⎞.

⊛ Example 5.7 :  If 𝑋𝑖, 𝑌𝑗, 𝑖 = 1, …, 𝑚, 𝑗 = 1, …, 𝑛 are two iid, independent samples from two
Bernoulli distributions with parameters 𝜃1, 𝜃2, then as 𝑚, 𝑛 → ∞ (with 𝑚/𝑛 → 𝜌),

( ̂𝜃1 − 𝜃1) − ( ̂𝜃2 − 𝜃2)

√ ̂𝜃1(1 − ̂𝜃1)/𝑚 + ̂𝜃2(1 − ̂𝜃2)/𝑛
→𝑑 𝒩(0, 1),

where ̂𝜃1 = 𝑋𝑚, ̂𝜃2 = 𝑌𝑛.
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⊛ Example 5.8 (Know This!) :  Suppose 𝑋𝑖 are iid from a parametric model 𝑓 (⋅, 𝜃) with 𝜃
unknown and ̂𝜃𝑛 be the MLE of 𝜃. Assuming the regularity conditions R1-R4, recall

√𝑛( ̂𝜃𝑛 − 𝜃)

√𝐼1( ̂𝜃𝑛)
−1

→𝑑 𝒩(0, 1).

In practice, 𝐼1(𝜃) is estimated either with 𝐼1( ̂𝜃𝑛) or the so-called “empirical Fisher”, given by

̂𝐼1(𝜃) ≕
1
𝑛 ∑

𝑛

𝑖=1 ⎝
⎜⎛ 𝜕

𝜕𝜃
log(𝑓 (𝑥𝑖; 𝜃))

𝜃= ̂𝜃𝑛⎠
⎟⎞

2

.

Then, this gives approximate CI given by

⎝
⎜⎜⎜
⎛ ̂𝜃𝑛 − 𝑧𝛼/2 ⋅ √ 1

𝑛 ⋅ ̂[𝐼1(𝜃)]−1, ̂𝜃𝑛 + 𝑧𝛼/2 ⋅ √ 1
𝑛 ⋅ ̂[𝐼1(𝜃)]−1

⎠
⎟⎟⎟
⎞.

What does ̂𝐼1(𝜃) converge to in probability as 𝑛 → ∞?

§5.3 Hypothesis Testing
Consider a partitioning of the parameter space Θ = Θ0 ∪ Θ1. Rather than esimating 𝜃, the

goal is to decide, based on the data, whether the unknown 𝜃 lies in Θ0 or Θ1.

↪Definition 5.3 (Hypotheses) :  For a parametric family ℱ = {𝑓 (⋅; 𝜃) | 𝜃 ∈ Θ ⊂ ℝ}, set

ℋ0 : 𝜃 ∈ Θ0 ℋ1 : 𝜃 ∈ Θ1,

such that Θ = Θ0 ∪ Θ1 and Θ0 ∩ Θ1 = ⌀.

↪Definition 5.4 (Test) :  A statistical procedure that is used to decide whether to reject ℋ0 in
favour of the alternative ℋ1 or not reject the null hypothesis ℋ0 is called a statistical test
procedure or simply a test.

A test defines a partition of the sample space Χ into two regions, ℛ ⊔ ℛ𝑐. The hypotheses 
ℋ0 is then reject in favour of ℋ1 depending on where the data 𝑋1, …, 𝑋𝑛 or a suitably chosen
statistic 𝑇(𝑋1, …, 𝑋𝑛) falls into a so-called “rejection region”, ℛ , of Χ. Formally, we may write
the test as

𝜙(𝑇(𝑿)) =
⎩{
⎨
{⎧1(reject ℋ0) if 𝑇(𝑿) ∈ ℛ

0 if 𝑇(𝑿) ∈ ℛ𝑐
.

↪Definition 5.5 (Types of Error) :  Type I error is made if ℋ0 is rejected when ℋ0 is true. Type II
error is made if ℋ0 is not rejected when ℋ1 is true.
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↪Definition 5.6 :  Given a statistical test 𝜙 with a rejection region ℛ ,the power function of the
test is defined as

𝜋(𝜃) = 𝔼𝜃[𝜙(𝑇(𝑿))] = 𝑃𝜃(rejecting ℋ0) = 𝑃𝜃(𝑇(𝑿) ∈ ℛ).

Then,

𝛼(𝜙) ≔ 𝑃(type I error) = 𝑃(rejecting ℋ0 when 𝜃 ∈ Θ0) = 𝑃ℋ0
(𝑇(𝑿) ∈ ℛ)

𝛽(𝜙) ≔ 𝑃(type II error) = 𝑃(not rejecting ℋ0 when 𝜃 ∈ Θ1) = 𝑃ℋ1
(𝑇(𝑿) ∈ ℛ𝑐).

↪Definition 5.7 (Size) :  The size of a statistical test is defined

𝛼 = sup
𝜃∈ℋ0

𝜋(𝜃) = sup
𝜃∈ℋ0

[𝑃𝜃[𝑇(𝑿) ∈ ℛ]].

Systematically, then, given a significance level 0 < 𝛼 < 1, we then venture to find a test 𝜙 amont
all possible tests for which 𝛼 ≤ 𝛼, such that 𝛽𝜙, the probability of type II error, is minimized.

↪Definition 5.8 (Uniformly Most Powerful (UMP) Test) :  A statistical test 𝜙 of size 𝛼 is a UMP
test if 𝛽(𝜙) ≤ 𝛽(𝜙∗) for every 𝜃 ∈ ℋ1, where 𝜙∗ is any other test of size 𝛼, that is, a test that
minimizes type II error given it is of size 𝛼.

5.3.1 Simple-Simple Hypothesis Testing

↪Definition 5.9 (Simple Hypotheses) :  In a simple hypothesis, we simply have Θ0 = {𝜃0}, Θ1 =
{𝜃1}, where 𝜃0, 𝜃1 are known, with hypotheses

ℋ0 : 𝜃 = 𝜃0, ℋ1 : 𝜃 = 𝜃1.

Namely, we are just testing if 𝜃 = 𝜃0 or 𝜃1.

↪Theorem 5.1 (Neyman-Pearson Lemma):  Let

𝜙(𝑿) =
⎩{
⎨
{⎧1 if 𝑝(𝑿; 𝜃1) > 𝑘 ⋅ 𝑝(𝑿; 𝜃0)

0 if 𝑝(𝑿; 𝜃1) < 𝑘 ⋅ 𝑝(𝑿; 𝜃0)
,

(and if equal, either reject or not) for some 𝑘 > 0 such that 𝑃ℋ0
(rejecting ℋ0) = 𝛼. Then, 𝜙 is

the UMP test in the class of all tests 𝜙∗ at the same level 𝛼, namely 𝛽𝜙 ≤ 𝛽𝜙∗.

Proof. Let 𝜙∗ be any other test of level 𝛼 with power 𝜋∗. Since 0 ≤ 𝜙∗ ≤ 1, then

[𝜙(𝒙) − 𝜙∗(𝒙)] ⋅ [𝑝(𝒙; 𝜃1) − 𝑘 ⋅ 𝑝(𝒙; 𝜃0)] ≥ 0, ∀ 𝒙 ∈ Χ,

thus
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∫
Χ

[𝜙(𝒙) − 𝜙∗(𝒙)] ⋅ [𝑝(𝒙; 𝜃1) − 𝑘 ⋅ 𝑝(𝒙; 𝜃0)] d𝒙 ≥ 0.

Thus,

𝔼𝜃1
[𝜙(𝑿)] − 𝔼𝜃1

[𝜙∗(𝑿)] − 𝑘{𝔼𝜃0
[𝜙(𝑿)] − 𝔼𝜃0

[𝜙∗(𝑿)]} ≥ 0.

Since 𝜙 of size 𝛼, the last inequality implies

𝔼𝜃1
[𝜙(𝑿)] − 𝔼𝜃1

[𝜙∗(𝑿)] − 𝑘{𝛼 − 𝔼𝜃0
[𝜙∗(𝑿)]} ≥ 0.

𝜙∗ is also of size 𝛼, so 𝛼 − 𝔼𝜃0
[𝜙∗(𝑿)] ≥ 0. Thus,

𝔼𝜃1
[𝜙(𝑿)] − 𝔼𝜃1

[𝜙∗(𝑿)] ≥ 0,

and thus

𝛽𝜙 ≤ 𝛽𝜙∗.

■

Thus, according to the lemma, the UMP test has the rejection region

ℛ = {𝒙 ∈ Χ :
𝑝(𝒙; 𝜃1)
𝑝(𝒙; 𝜃0)

> 𝑘},

where 𝑘 is as in the lemma i.e. such that 𝑃(rejection ℋ0 when it is true) = 𝑃𝜃0
(𝑿 ∈ ℛ) ≤ 𝛼. The

ratio 𝑝(𝑿;𝜃1)
𝑝(𝑿;𝜃0)  is called the likelihood ratio statistic. In practice, we fix a specified upper bound 𝛼 for

the probability of type I error (which specific value we choose often depends on the specific
application).
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⊛ Example 5.9 :  Let 𝑋𝑖 ∼iid 𝒩(𝜇, 1) where 𝜇 ∈ {0, 1}. The hypotheses of interest are

ℋ0 : 𝜇 = 𝜇0 = 0, ℋ1 : 𝜇 = 𝜇1 = 1.

We wish to find an optimal test with 𝛼 = 0.01. The likelihood ratio statistic:

𝑝(𝒙; 𝜇1)
𝑝(𝒙; 𝜇0)

= ⋯ = exp(𝑛𝑥𝑛 − 𝑛/2).

By the NP lemma,

ℛ = {𝒙 : exp(𝑛𝑥𝑛 − 𝑛/2) > 𝑘} = {𝒙 : 𝑥𝑛 > 𝑘∗},

where 𝑘∗ ≔ 1
2 + ln 𝑘

𝑛 . How large do we need to take 𝑘∗? We want

𝑃(rejection ℋ0 when true) = 𝑃(𝑋𝑛 > 𝑘∗ | 𝜇 = 0) = 𝛼 = 0.01.

Since (𝑋𝑛 | 𝜇 = 0) ∼ 𝒩(0, 1/𝑛) (i.e. under the null hypothesis), we can rewrite

0.01 = 𝑃( √𝑛𝑋𝑛⏟
∼𝒩(0,1)

> √𝑛𝑘∗ | 𝜇 = 0) = 𝑃(𝑍 > 𝑧0.01), 𝑍 ∼ 𝒩(0, 1).

Thus, it must be √𝑛𝑘∗ = 𝑧0.01 = 2.326 (using a standard Normal table), and thus 𝑘∗ = 2.326
√𝑛

.

All together, then, at significance level 𝛼 = 0.01, the optimal test rejects the null ℋ0 in favour
of ℋ1 if 𝑥𝑛 > 2.326

√𝑛
; this value is called the critical value.

⊛ Example 5.10 (Type II Error) :  With the same setup as before, what is the probability of
Type II error? We compute

𝛽(𝜙) = 𝑃(not rejecting ℋ0 | 𝜇 ∈ Θ1) = 𝑃(𝑋𝑛 ≤
2.326

√𝑛
| 𝜇 = 1).

Under the alternative, 𝑋𝑛 ∼ 𝒩(1, 1/𝑛), so

𝛽𝜙 = 𝑃(√𝑛(𝑋𝑛 − 1) ≤ 2.326 − √𝑛 | 𝜇 = 1) = Φ(2.326 − √𝑛),

where Φ the CDF of the standard Normal distribution. In particular, 𝛽𝜙 → 0 as 𝑛 → ∞.

5.3.2 Likelihood Ratio Statistic
We now discuss more complex hypotheses, such as ℋ0 : 𝜃 ≥ 𝜃0, ℋ1 : 𝜃 < 𝜃0.

↪Definition 5.10 (Likelihood Ratio (LR) Statistic) :  The likelihood ratio (LR) statistic of 𝑿  is
given

𝜆𝑛(𝑿) ≔
sup𝜃∈Θ0

𝐿𝑛(𝜃0)
sup𝜃∈Θ 𝐿𝑛(𝜃) =

𝐿𝑛( ̂𝜃MLE,ℋ0
)

𝐿𝑛( ̂𝜃MLE)
,

where 𝐿𝑛 the likelihood function of 𝑿 .
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If well-defined, 𝜆𝑛(𝑿) ≤ 1. Heuristically, if ℋ0 were true, then 𝜆𝑛(𝑿) ≈ 1, and conversely. A test
based on the LR is given by then

𝜙(𝑿) ≔
⎩{
⎨
{⎧1 if 𝜆𝑛(𝑿) < 𝐶

0 if 𝜆𝑛(𝑿) > 𝐶
,

for some 𝐶 ∈ [0, 1] to be determined. This implies rejection region

ℛ = {𝒙 ∈ Χ : 𝜆𝑛(𝒙) < 𝐶}.

For a given 𝛼 ∈ (0, 1), we choose 𝐶𝛼 (if exists) such that

sup
𝜃∈Θ0

𝑃(𝜆𝑛(𝑿) < 𝐶𝛼) ≤ 𝛼.

↪Proposition 5.1 :  Under the regularity conditions R1 - R4, for large 𝑛

−2 log(𝜆(𝑿)) = 2
⎣
⎢⎡sup

𝜃∈Θ
𝐼𝑛(𝜃) − sup

𝜃∈Θ0

𝐼𝑛(𝜃)
⎦
⎥⎤ ≈ 𝜒2

(𝑑),

where 𝑑 ≔ dim(Θ) − dim(Θ0).

Thus, the critical value is given by the quantile 𝐶∗
𝛼 ≥ 𝜒2

(𝑑;𝛼) where 𝐶∗
𝛼 = −2 ln(𝐶𝛼).
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⊛ Example 5.11 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒩(𝜇, 𝜎2) where both parameters unknown, and we test

ℋ0 : 𝜇 = 𝜇0, ℋ1 : 𝜇 ≠ 𝜇0.

The likelihood function is given by

𝐿𝑛(𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑛 exp

⎩{
⎨
{⎧−

1
2𝜎2 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝜇)2

⎭}
⎬
}⎫.

We have that

Θ = {(𝜇, 𝜎2) | 𝜇 ∈ ℝ, 𝜎2 > 0}, Θ0 = {(𝜇, 𝜎2) | 𝜇 = 𝜇0, 𝜎2 > 0}.

We find the MLEs. The log-likelihood function is

ℓ𝑛(𝜇, 𝜎2) = −
𝑛
2 ln(2𝜋) −

𝑛
2 ln(𝜎2) −

1
2𝜎2 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝜇)2,

which readily gives

�̂�𝑛 = 𝑥𝑛, �̂�2
𝑛 =

𝑛 − 1
𝑛 𝑠2

𝑛.

Under the null, 𝜇 = 𝜇0, so in this case the only parameter to estimate is 𝜎2 and we find

�̃�2
𝑛 =

1
𝑛 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝜇0)2 =

𝑛 − 1
𝑛 𝑠2

𝑛 + (𝑥𝑛 − 𝜇0)2.

Then, the LR statistic is given by

𝜆𝑛(𝑿) =
⎝
⎜⎛�̂�2

𝑛
�̃�2

𝑛 ⎠
⎟⎞

𝑛/2

=
⎝
⎜⎜⎜
⎛ 1

1 + 1
𝑛−1𝑇2

⎠
⎟⎟⎟
⎞

𝑛/2

, 𝑇 ≔ √𝑛
𝑋𝑛 − 𝜇0

𝑆𝑛
∼ 𝑡(𝑛 − 1).

Thus, we reject the null iff

𝜆𝑛(𝑿) < 𝐶 ⇔ |𝑇| > 𝑘,

𝑘 a function of 𝐶, ie our rejection region is

ℛ = {𝒙 ∈ Χ : |√𝑛
𝑥𝑛 − 𝜇0

𝑠𝑛
| > 𝑘},

for some 𝑘 > 0. Then, for a given 𝛼, we need

𝑃(|𝑇| > 𝑘 | 𝜇 = 𝜇0) = 𝛼,

and since 𝑇 ∼ 𝑡(𝑛 − 1) we need the quantile 𝑘 = 𝑡(𝑛 − 1; 𝛼/2).
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⊛ Example 5.12 :  Let 𝑋1, …, 𝑋𝑛 ∼iid 𝒩(𝜇, 𝜎2) where both are unknown and we wish to test

ℋ0 : 𝜎2 = 𝜎2
0 , ℋ1 : 𝜎2 ≠ 𝜎2

0 .

Here

Θ = {(𝜇, 𝜎2) : 𝜇 ∈ ℝ, 𝜎2 > 0}, Θ0 = {(𝜇, 𝜎2) : 𝜇 ∈ ℝ, 𝜎2 = 𝜎2
0 }.

The MLE under the entire Θ is the same as the previous example. Under the null hypothesis,
the MLE for 𝜇 stays the same (sample mean), and now 𝜎2 = 𝜎2

0  is known. Then

𝜆𝑛(𝑿) = ⋯ =
⎝
⎜⎜⎛

�̂�2
𝑛

𝜎2
0 ⎠

⎟⎟⎞
𝑛/2

𝑒
𝑛
2 𝑒

−𝑛
2

𝜎2𝑛
𝜎2

0

Do this example!
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